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Abstract

The diameter of a tree is the largest number
of edges on any path between two vertices
in it. Given a weighted, connected, undi-
rected graph G and a bound D > 2, the
bounded-diameter minimum spanning tree
problem seeks a spanning tree on G of min-
imum weight whose diameter does not ex-
ceed D. An evolutionary algorithm for this
NP-hard problem encodes candidate trees as
permutations of their vertices. The first ver-
tex (if D is even) or the first two vertices
(if D is odd) form the center of the tree a
permutation represents. A greedy heuristic
appends the remaining vertices to the tree in
their listed order, as economically as possible,
while maintaining the diameter bound. In
tests on 25 Euclidean problem instances, this
EA identifies shorter trees on average than
does an EA that encodes trees as sets of their
edges, though it takes longer.

1 Introduction

The primary determinant of the effectiveness of an evo-
lutionary algorithm (EA) is the interaction between
the coding by which chromosomes represent candidate
solutions and the variation operators that the EA ap-
plies to those chromosomes. When a greedy heuristic
exists for a problem, an EA can encode solutions as
permutations of the problem’s elements. The heuris-
tic builds the solution a permutation represents by
appending the problem’s elements to the solution in
the order the permutation specifies. The algorithm
searches the problem’s solution space by searching the
space of permutations of its elements, and that search
is aided by the greediness of the heuristic.
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Permutation-coded EAs have been applied to a variety
of problems, including partitioning problems (Jones
and Beltramo, 1991), the minimum-span frequency as-
signment problem (Valenzuela et al., 1998), the trav-
eling salesman problem (Julstrom, 1999), set cover-
ing problems (Aickelin, 2001), and the placement of
cellular transmitters (Raisanen and Whitaker, 2003),
among others. We present such an algorithm for the
bounded-diameter minimum spanning tree problem.

Let T be a spanning tree on a collection of vertices.
The eccentricity of a vertex v is the maximum number
of edges on a path from v to any other vertex in 7.
The diameter of T is the maximum eccentricity of its
vertices, thus the largest number of edges on any path
in T'. The center of T is the one vertex (if T’s diameter
is even) or the two adjacent vertices (if T’s diameter
is odd) of minimum eccentricity.

Given a connected, undirected graph G and an in-
teger bound D > 2, a bounded-diameter spanning
tree (BDST) is a spanning tree on G whose diame-
ter does not exceed D. When numerical weights label
G’s edges, the weight of a spanning tree is the sum
of its edges’ weights, and a bounded-diameter mini-
mum spanning tree (BDMST) is a BDST on G of min-
imum weight. The search for a BDMST is NP-hard
for 4 < D < n—1 (Garey and Johnson, 1979, p.206).

Abdalla et al. (2000) described a greedy heuristic,
based on Prim’s MST algorithm, for the BDMST prob-
lem. An improved greedy heuristic also imitates Prim
but begins at (or in) the center of the tree it builds
(Raidl and Julstrom, 2003b). An evolutionary algo-
rithm for the problem encodes candidate trees as sets
of their edges augmented with their center vertices. It
identifies shorter trees than does either greedy heuris-
tic (Raidl and Julstrom, 2003b).

We present here an EA for the BDMST problem that
encodes trees as permutations of the graph’s vertices.
The center-based greedy heuristic identifies the BDSTs



these chromosomes represent. In tests on 25 Euclidean
instances of the BDMST problem, the permutation-
coded EA finds shorter trees than does the edge-set-
coded EA, though it takes longer to do so.

The following sections of this paper describe the greedy
heuristics for the BDMST problem, the edge-set-coded
EA, the permutation-coded EA, and the comparisons
of the two evolutionary algorithms on the test problem
instances.

2 Greedy Heuristics for the BDMST
Problem

The heuristic of Abdalla et al. (2000) is called One
Time Tree Construction (OTTC); it imitates Prim’s
algorithm (Prim, 1957). Prim builds an unconstrained
minimum spanning tree from a start vertex by repeat-
edly appending the lowest-weight edge between a ver-
tex in the tree and one not yet connected to it. The
diameter of the tree at each step can always be found.
Thus OTTC begins from an arbitrarily chosen start
vertex and repeatedly extends the tree with the lowest-
weight edge to an unconnected vertex whose inclusion
does not violate the diameter bound. Note that the
resulting tree depends on the vertex chosen as start
vertex.

OTTC keeps track of the eccentricities of and path
lengths between all the vertices in the tree. Append-
ing each new edge changes some of these values, so
that in the worst case updating the algorithm’s data
structures requires time that is quadratic in the num-
ber n of vertices. n — 1 edges are included in the tree,
of course, so the algorithm’s time is O(n?).

This time can be reduced by a factor of n if the start
vertex is initially fixed as the center (if the diameter
bound D is even) or as one of the two center vertices
(if D is odd) of the spanning tree (Raidl and Julstrom,
2003b). In this case, the heuristic must maintain only
the depth of each vertex: the length of the path from
it to the center. This value is fixed when each vertex
joins the tree, and no vertex may have a depth greater
than [D/2]|. The sketch in Figure 1 summarizes the
center-based heuristic.

Each next vertex can be chosen greedily, at random, or
by any other heuristic. In any case, it is connected to
the tree by the lowest-weight edge whose inclusion does
not yield a tree of diameter greater than D. Repeated
trials of the randomized version on a variety of Eu-
clidean instances returned much lower-weight BDM-
STs than did OTTC (Raidl and Julstrom, 2003b).

T+—0
v, «— start vertex
U—V—{uv}
C —{v,}
depth[v,] < 0
if D is odd
vy «— a vertex in U
T {(v0, 1)}
U—U-— {7}1}
C—Cu {Ul}
depth[vi] < 0
while C # V do
u < a vertex in U
v« the vertex in C nearest u
T —TU{(u,v)}
U—U-{u}
depth[u] « depth[v] +1
if depth[u] < | D/2]
C — CU{u}

return 1T’

Figure 1: The center-based heuristic for the bounded-
diameter minimum spanning tree problem. T is the
tree’s edge set, V' is the graph’s vertex set, U is the set
of unconnected vertices, and C' is the set of connected
vertices to which a new edge may be connected without
violating the diameter bound.

3 An Edge-Set-Coded Evolutionary
Algorithm

A general study of the edge-set representation for
spanning tree problems can be found in Raidl and
Julstrom (2003a). We have previously described an
evolutionary algorithm for the BDMST problem that
encodes candidate trees directly as sets of their edges,
each augmented with its center vertex or vertices
(Raidl and Julstrom, 2003b). A chromosome’s fitness
is the total weight of its tree, which can be found, by
scanning the edge-set, in time that is O(n).

The algorithm’s operators generate only valid span-
ning trees; that is, trees whose diameter does not
exceed the bound D. The randomized center-based
heuristic described in Section 2 provides the spanning
trees for the EA’s initial population. The recombina-
tion operator builds one offspring tree from two par-
ents. It begins by selecting one or two center vertices
from the parents’ centers. It extends the tree, while
conforming to the diameter bound, with edges com-
mon to both parents, if possible, and with edges found
in one parent if necessary. An efficient implementation



of the operator builds temporary sets of adjacency lists
to represent the parent trees. Its time is O(n).

The EA applies four mutation operators. The first re-
moves a random edge from the parent tree and rebuilds
the tree from its unchanged center, as in the recom-
bination operator. It uses parental edges when possi-
ble and other feasible edges chosen at random when
it must. The second shifts the parent tree’s center to
(include) an adjacent vertex and rebuilds the tree as
in the first mutation. The third removes a random
edge from the parent tree, thus disconnecting a sub-
tree rooted at a vertex r. It reconnects the tree with
the lowest-weight edge whose inclusion does not vio-
late the diameter bound.

The fourth mutation operator optimally rearranges a
subtree of the parent tree. It randomly selects a vertex
at depth |[D/2] — 1 in the parent tree and tries each
vertex in that subtree as its root, with a direct edge to
each remaining vertex. It implements in the offspring
the rearrangement of lowest weight.

The first three mutations require times that are linear
in n. In the last mutation, let s be the number of ver-
tices in the subtree. Building and evaluating a subtree
requires time that is O(s), and There are s possible
configurations to investigate, since each vertex in the
subtree must be considered as its root. Thus the op-
erator’s total time is O(n + s?). Note that usually
s n.

The augmented edge-set coding and these operators
were applied in a steady-state evolutionary algorithm.
The EA selects parents in tournaments with replace-
ment. It applies recombination with a probability for
each offspring of p < 1.0, and it always applies exactly
one of the mutation operators. Each offspring replaces
the population’s worst solution, except that duplicates
are discarded.

4 A Permutation-Coded Evolutionary
Algorithm

We propose an evolutionary algorithm for the
bounded-diameter minimum spanning tree problem
that encodes candidate spanning trees as permutations
of their vertices. The first vertex listed (if D is even)
or the first two vertices (if D is odd) form the center
of the spanning tree a permutation represents. The
center-based greedy heuristic of Section 2 completes
the tree by appending the remaining vertices in their
listed order. The resulting algorithm is thus a hybrid
of the greedy heuristic used to decode permutations
and an evolutionary algorithm that searches the space

of permutations. Every permutation represents a valid
bounded-diameter spanning tree via the greedy heuris-
tic; the heuristic enforces the diameter bound.

The chromosomes of the algorithm’s initial popula-
tion are random permutations; generating one requires
time that is O(n). Evaluating a chromosome re-
quires identifying the spanning tree it represents—that
is, applying the greedy heuristic—then summing the
weights of the tree’s edges. The time of the latter
step is linear in n, but that of the former is quadratic.
Thus, the time of evaluation is O(n?).

Each vertex’s position in a chromosome determines
when the greedy heuristic includes it in the span-
ning tree the chromosome represents, so the EA ap-
plies Partially Mapped Crossover (PMX) (Goldberg
and Robert Lingle, 1985), which tends to preserve the
positions of symbols from parents to offspring. PMX
generates one offspring from two parents. It chooses
a random segment within one parent and swaps each
symbol in this segment with the symbol appearing at
the same position in the second parent. The offspring
permutation inherits the selected segment exactly from
the second parent. It inherits the remaining positions
primarily from the first parent. In the implementation
of this operator, an auxiliary array holds each vertex’s
position in the offspring chromosome. This array al-
lows PMX to find a vertex from the target segment in
constant time, so the operator’s time is O(n).

Mutation swaps the vertices at two random positions
in the parent chromosome, thus exchanging the times
at which the heuristic includes those vertices in the
spanning tree. Three assignments swap the two ver-
tices, but copying the parent chromosome into the off-
spring takes time that is O(n).

The structure of the permutation-coded EA is identical
to that of the edge-set-coded algorithm of the previous
section. It is steady-state, selects parent chromosomes
in tournaments with replacement, applies recombina-
tion sometimes and mutation always, and replaces the
population’s worst chromosome with each offspring,
except when the offspring duplicates a chromosome
already in the population.

5 Tests

The edge-set-coded EA of Section 3 and the
permutation-coded EA of Section 4 were compared on
25 Euclidean instances of the bounded-diameter mini-
mum spanning tree problem. There were five instances
each of n = 50, 70, 100, 250, and 500 points in the



Table 1: For each set of 50 trials of the edge-set-coded EA and the permutation-coded EA on each of the 25
BDMST instances: the length of the shortest tree found, the average and standard deviation of the 50 tree
lengths, and the average number of iterations in the trials.

Instance Edge-Set-Coded EA Permutation-Coded EA
n D num. || shortest mean stddev iterations | shortest mean stddev iterations
50 5 1 7.60 7.93 0.22 33947 7.60 7.78 0.16 36 926
50 5 2 7.68 7.87 0.14 36403 7.75 7.84 0.10 27955
50 5 3 7.24 7.51 0.15 27919 7.25 7.41 0.14 31725
50 5 4 6.59 6.75 0.15 31382 6.62 6.65 0.05 40703
50 5 5 7.32 7.49 0.09 34924 7.39 7.47 0.08 34369
70 7 1 7.36 7.66 0.13 82351 7.23 7.32 0.06 68 863
70 7 2 7.26 7.57 0.14 65 581 7.12 7.21 0.06 61106
70 7 3 7.18 7.49 0.15 79838 6.99 7.13 0.11 64 824
70 7 4 7.68 8.01 0.17 56 401 7.53 7.62 0.07 54316
70 7 5 7.45 7.72 0.16 83404 7.27 7.32 0.06 71344
100 10 1 8.00 8.30 0.12 189026 7.77 7.89 0.06 88831
100 10 2 8.10 8.41 0.16 205891 7.88 8.02 0.08 82560
100 10 3 8.22 8.61 0.19 176 043 7.93 8.11 0.10 88467
100 10 4 8.27 8.57 0.17 163 142 8.00 8.13 0.07 92993
100 10 5 8.48 8.72 0.15 164651 8.16 8.30 0.07 89735
250 15 1 12.93 13.36 0.19 471 803 12.41 12.52 0.07 278 984
250 15 2 12.86 13.25 0.20 466 047 12.20 12.37 0.09 311349
250 15 3 12.69 13.06 0.20 464618 12.12 12.23 0.08 309 699
250 15 4 13.22 13.65 0.19 442 446 12.64 12.77 0.08 305125
250 15 5 13.02 13.40 0.19 497 450 12.37 12.56 0.08 316 006
500 20 1 18.33 18.77 0.29 527 659 17.10 17.35 0.12 712011
500 20 2 18.17 18.60 0.19 652009 16.97 17.20 0.14 736 921
500 20 3 18.33 18.76 0.28 504 315 17.13 17.28 0.10 746 259
500 20 4 18.32 18.74 0.18 654871 17.09 17.29 0.12 742231
500 20 5 17.80 18.40 0.28 648 148 16.79 17.03 0.15 705313

unit square. They are found in Beasley’s OR-Library!
(Beasley, 1990), listed as instances of the Euclidean
Steiner problem. The library contains fifteen instances
of each size; we have used the first five.

The points are treated as the vertices of complete
graphs whose edge weights are the Euclidean distances
between the points. For n = 50, the diameter bound
D is 5; when n = 70, D = 7; when n = 100, D = 10;
when n = 250, D = 15, and when n = 500, D = 20.

For the tests, the two EA’s parameters were set iden-
tically. Both algorithms’ populations contained 400
chromosomes. Both selected parent chromosomes in
tournaments of size three. Both applied recombina-
tion with a probability of 60%; the edge-set-coded
EA applied its edge-delete and center-move mutations
(the first two listed) with probabilities of 20% and the
remaining two mutations with probabilities of 30%.
Both EAs terminated when their populations’ best

'mscmga.ms.ic.ac.uk/info.html

chromosomes had not improved for 100 000 new chro-
mosomes.

On each instance, both EAs were run 50 indepen-
dent times. Table 1 summarizes the results of these
sets of trials. For each algorithm and each instance it
lists the length of the shortest bounded-diameter tree
found, the average and standard deviation of the 50
tree lengths, and the average number of iterations in
each trial until its best tree.

On the smallest instances, with n = 50, the results are
ambiguous. On each of the five instances, the edge-set-
coded EA identifies in its best run the overall shortest
tree (with one tie), while the permutation-coded al-
gorithm consistently returns shorter trees on average.
The two algorithms execute approximately the same
numbers of iterations to identify their shortest trees.

On all the larger instances, the permutation-coded EA
enjoys a decisive advantage. On each instance this EA
identifies in its best run the overall shortest tree, and



Figure 2: The lowest-weight bounded-diameter spanning trees found by the two EAs on the second problem
instance with n = 250 and D = 15: (a) by the edge-set-coded EA; weight = 12.86; (b) by the permutation-coded

EA; weight = 12.20.

its trees are also on average shorter than those found
by the edge-set-coded algorithm. Indeed, the average
length of the permutation-coded EA’s 50 trees is al-
ways less than the length of the shortest tree found
by the edge-set-coded EA. Further, the number of it-
erations the permutation-coded EA requires is on av-
erage less than the number expended by the edge-set-
coded EA except, interestingly, on the instances with
n = 500.

Figure 2 shows the shortest trees found by the two
algorithms on the second instance with n = 250 ver-
tices. The edge-set-coded EA’s tree has length 12.86,
and the permutation-coded EA’s tree has length 12.20.

The permutation-coded EA’s superior performance is
explained by the greediness of the heuristic that de-
codes its chromosomes. By appending each vertex as
economically as possible (without violating the diam-
eter bound), it aggressively seeks short trees. Since it
appends vertices only in the order a permutation dic-
tates, it can still construct trees in which longer edges
connect more widely separated groups of vertices.

The permutation-coded EA’s effectiveness, however,
comes at a price. In the edge-set-coded EA, evalu-
ation, recombination, and mutation all require times
that are at worst slightly larger than linear in n. In the
permutation-coded EA, recombination and mutation
are O(n), but evaluation’s time is O(n?). Even though
the permutation-coded EA performs fewer evaluations
on average than does the edge-set-coded EA, it takes
longer, and the difference grows with n.

We compared the two representations and their
operators in similar EA structures. Because the

permutation-coded EA takes so much longer to run, a
fairer comparison would allow the edge-set-coded EA
more time by relaxing its termination condition, us-
ing a larger population size, or applying some addi-
tional diversity-preservation mechanism. We expect
that such modifications would significantly improve
the edge-set-coded EA’s solutions.

6 Conclusion

Given a connected, weighted, undirected graph G and
a bound D > 2, the bounded-diameter minimum span-
ning tree problem seeks a spanning tree on G of small-
est weight in which the longest path between any two
vertices does not contain more than D edges. Greedy
heuristics for this problem imitate Prim’s algorithm.
They attach each new vertex with the edge of lowest
weight whose inclusion does not yield a tree of diame-
ter greater than D.

A previously described evolutionary algorithm for this
problem encodes spanning trees directly as sets of their
edges. Its operators build spanning trees with diame-
ters no greater than D from their centers.

A new EA encodes candidate spanning trees as permu-
tations of their vertices. The bounded-diameter span-
ning tree that a permutation represents is identified by
a greedy heuristic. The heuristic uses a permutation’s
first vertex (if D is even) or two vertices (if D is odd)
as its tree’s center, then appends the remaining ver-
tices in their listed order. It attaches each vertex with
the lowest-weight edge to a vertex in the tree whose
inclusion does not violate the diameter bound. This
EA searches the space of diameter-bounded spanning



trees by searching the space of permutations of the
vertices.

The two EAs, with similar structures and param-
eters, were compared on 25 Euclidean instances of
the bounded-diameter minimum spanning tree prob-
lem of n = 50 to 500 vertices. On the five small-
est instances, the EAs’ performances were similar,
but on the instances with 70 or more vertices, the
permutation-coded EA consistently identified shorter
bounded-diameter spanning trees in fewer iterations
than did the edge-set-coded EA. However, because the
heuristic that decodes permutations requires time that
is O(n?), the permutation-coded EA is slower, and
its disadvantage in time increases with the size of the
problem instances.
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