
Initialization is Robust in Evolutionary Algorithms
that Encode Spanning Trees as Sets of Edges

Bryant A. Julstrom
Department of Computer Science

St. Cloud State University
720 Fourth Avenue South
St. Cloud, MN 56301 USA

julstrom@eeyore.stcloudstate.edu

Günther R. Raidl
Institute of Computer Graphics and Algorithms

Vienna University of Technology
Favoritenstraße 9–11/1861

1040 Vienna, Austria

raidl@ads.tuwien.ac.at

ABSTRACT
Evolutionary algorithms (EAs) that search spaces of span-
ning trees can encode candidate trees as sets of edges. In
this case, edge-sets for an EA’s initial population should rep-
resent spanning trees chosen with uniform probabilities on
the graph that underlies the target problem instance. The
generation of random spanning trees is not as simple as it
might appear. Mechanisms based on Prim’s and Kruskal’s
minimum spanning tree algorithms are not uniform, and
uniform mechanisms are slow, not guaranteed to terminate,
or require that the underlying graph be complete.

However, a non-uniform initial population of spanning trees
need not harm an EA’s performance. Trials of a crossover-
only EA for the One-Max-Tree problem, using Prim-based,
Kruskal-based, and uniform initialization, indicate that the
distribution of edges in the initial population is far more
important than the distribution of trees. A skewed distri-
bution of edges in its initial population damages the EA’s
performance, but this is remedied by a reasonable amount
of mutation.

Keywords
Spanning trees, sets of edges, random spanning trees, ini-
tialization

1. INTRODUCTION
A spanning tree of an undirected graph G is a subgraph
of G that connects all of G’s vertices and contains no cy-
cles. While it is computationally easy to find a minimum-
weight spanning tree in a weighted graph, many problems
that search spaces of spanning trees are NP-hard. To such
problems, we apply heuristics, including evolutionary algo-
rithms (EAs).

Evolutionary algorithms have encoded spanning trees in a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

SAC 2002, Madrid, Spain.
c©2002 ACM 1-58113-445-2/02/03...$5.00

variety of ways, including characteristic vectors, predecessor
codings, Prüfer numbers, node and link-and-node biasing
[Palmer and Kershenbaum, 1994], and network random keys
[Rothlauf et al., 2000]. Several authors have recently argued
for the direct representation of spanning trees as sets of their
edges [Li and Bouchebaba, 1999; Gottlieb, et al., 2001]. This
coding can usually be evaluated quickly, and crossover and
mutation operators for it offer high heritability and locality.

An EA’s initial population usually consists of uniformly dis-
tributed random chromosomes, in this case the edge-sets
of spanning trees chosen at random on the graph that un-
derlies the problem instance. Unfortunately, the generation
of uniformly random spanning trees is not as simple as it
might appear. Mechanisms inspired by Prim’s [1957] and
Kruskal’s [1956] minimum spanning tree algorithms do not
associate uniform probabilities with the spanning trees of a
graph. Uniform algorithms are slow, are not guaranteed to
terminate, or require that the underlying graph be complete.

However, a non-uniform initial population of spanning
trees need not harm an EA’s performance. Tests using a
crossover-only EA for the One-Max-Tree problem [Rothlauf
et al., 2000] indicate that the distribution of edges in the
initial population is far more important than the distribu-
tion of trees. A skewed distribution of edges in the initial
population can damage the EA’s performance, but this can
be remedied by a reasonable amount of mutation.

The following sections of the paper review the problem of
generating random spanning trees, describe and analyze
spanning tree generators based on Prim’s and Kruskal’s
algorithms, summarize algorithms that associate uniform
probabilities with spanning trees, examine the effects of the
initialization algorithm and the distribution of edges on the
performance of an EA for the One-Max-Tree problem, and
note the compensating effect of mutation. We conclude that
spanning trees may be chosen for an EA’s initial population
in any way that ensures broad representation of the under-
lying graph’s edges.

2. RANDOM SPANNING TREES
When an evolutionary algorithm searches a solution space
of size N and no special problem-specific knowledge is to
be exploited, we generally seek to initialize its population
so that the space’s elements are equally likely to appear:

(a)(b)(c)

Figure 1: The three structures of spanning trees on
five vertices: A path (a), a path of four vertices with
a branch (b), and a star (c).

When one will be selected, each has probability 1/N . The
number of spanning trees on a complete undirected graph
of n vertices is nn−2 [Cayley, 1889; Even, 1973, pp.98–106].
When an EA will search this space, we would like to choose
spanning trees for its initial population so that, when one
will be chosen, each has probability 1/nn−2. The following
assumes a complete graph and the feasibility of all its span-
ning trees, but the tendencies we show remain valid in the
absence of these conditions.

We analyze “random” spanning tree algorithms by examin-
ing the expected numbers of leaves and the probability that
a particular vertex is a leaf in trees they produce. For ex-
ample, in a complete graph on n = 5 vertices, a spanning
tree may be a path, with two leaves; a path of four vertices
with a branch, for three leaves; or a star, with four leaves.
Figure 1 illustrates these possibilities. Of the 53 = 125 span-
ning trees on five vertices, 5!/2 = 60 are paths,

�
5
4

�
4!/2 = 60

are paths with a branch, and five are stars, so the expected
number of leaves in a uniformly random spanning tree on
five vertices is

2 · 60

125
+ 3 · 60

125
+ 4 · 5

125
=

64

25
= 2.56,

and the probability that a particular vertex is a leaf in such
a tree is 2.56/5 = 0.512.

Rényi [1959] showed that in general the number of leaves in a
random spanning tree on n nodes approaches the normal dis-
tribution N (n/e, n(e− 2)/e2) as n →∞. In particular, the
expected number of leaves—the mean of this distribution—
approaches n/e, and the probability that a particular vertex
will be a leaf therefore approaches 1/e

.
= 0.368.

3. ADAPTING PRIM’S ALGORITHM
Prim’s algorithm [1957] builds a minimum spanning tree on
a weighted graph G by starting from an arbitrary vertex and
repeatedly appending the cheapest edge between a vertex
currently in the tree and one that is not. If the algorithm
instead chooses each edge at random from those currently
eligible, it returns a “random” spanning tree on the graph.
We called the resulting algorithm PrimRST [16]. In the
following sketch, V is the set of vertices of G, E is the edge-
set of G, T is the set of tree-edges, C is the set of vertices
T connects, and vo, u, and v are vertices.

PrimRST(V, E):
vo ← a random vertex in V ;
T ← ∅;
C ← {vo};
while |C| < n

u ← a random vertex in C;
v ← a random vertex in V − C | (u, v) ∈ E;
T ← T ∪ {(u, v)};
C ← C ∪ {v};

This algorithm does not associate uniform probabilities with
the spanning trees of G. In [16] we show that PrimRST as-
signs higher-than-uniform probabilities to star-like trees and
lower-than-uniform probabilities to path-like trees. Here,
consider the probability that a particular vertex va is a leaf
in a tree returned by PrimRST.

Let G be a complete graph on n nodes. Each step of
PrimRST selects one vertex to join the growing spanning
tree. The first chooses vo, and the ith step—an iteration of
the algorithm’s loop—chooses the tree’s ith vertex. For va

to be a leaf, it must be chosen from V − C at some step i,
then never chosen from C. Let pi(va) be the probability of
this event, and note that the probability that va is a leaf is
the sum of these values over all PrimRST’s steps:

P [va is a leaf] =

nX
i=1

pi(va).

In general, va is chosen at a random step; the probability
that it is the ith step (i = 1, . . . , n) is 1/n.

The probability that va is chosen as the start vertex and
remains a leaf is

p1(va) =
1

n
· 1 · 1

2
· 2

3
· . . . · n− 2

n− 1
=

1

n(n− 1)
.

If va joins the tree on step i > 1, |C| becomes i and the prob-
ability that va is never chosen from C during all following
steps is

i− 1

i
· i

i + 1
· . . . · n− 2

n− 1
=

i− 1

n− 1
.

It follows that

pi(va) =
1

n
· i− 1

n− 1
=

i− 1

n(n− 1)
, for i = 2, 3, . . . , n,

and the probability that va is a leaf is

P [va is a leaf] =
1

n(n− 1)
+

nX
i=2

i− 1

n(n− 1)

=
1

n(n− 1)
+

1

n(n− 1)

n−1X
i=1

i

=
1

n(n− 1)
+

1

n(n− 1)

n(n− 1)

2
=

1

n(n− 1)
+

1

2
.

The expected number of leaves in a PrimRST spanning tree
is then

E[leaves] = n · P [va is a leaf] =
1

n− 1
+

n

2
.

For example, the probability that a particular vertex will be
a leaf when PrimRST generates a spanning tree on n = 5
vertices is 1/(5 · 4) + 1/2 = 11/20 = 0.55, and the expected
number of leaves in such a tree is 1/4 + 5/2 = 11/4 = 2.75.

More generally, as n increases, the probability that a partic-
ular vertex will be a leaf approaches 1/2, and the expected
number of leaves approaches n/2. These are larger than the
corresponding values for uniformly random spanning trees
(1/e and n/e), and they confirm the bias toward stars.

4. ADAPTING KRUSKAL’S ALGORITHM
Kruskal’s algorithm [1956] builds a minimum spanning tree
on a weighted graph G by examining G’s edges in order
of increasing weight. It includes in the spanning tree the
edges that join currently unconnected components. If the
algorithm instead examines G’s edges in random order, it
returns a “random” spanning tree on G. We have called
this algorithm KruskalRST [16]; in the following sketch, V
and E are the vertices, respectively the edges, of G, T is the
set of edges in the spanning tree, and e is an edge.

KruskalRST(V, E):
T ← ∅;
while |T | < n− 1

e ← a random edge in E;
E ← E − {e};
if e’s vertices are not connected in T

T ← T ∪ {e};
Like PrimRST, this algorithm favors stars and disfavors
paths, though not as severely as does PrimRST.

Consider the expected number of leaves and the probabil-
ity that a particular vertex is a leaf in a tree returned by
KruskalRST. Unfortunately, it seems to be impossible to
find closed-form expressions for these quantities; the proba-
bilities as each new edge is added to T depend on its current
structure, and the number of possible structures is vast even
for moderate n. Instead, we pursue an example (which illus-
trates the difficulties) and confirm empirically the intuitions
it suggests.

Again, consider generating a spanning tree on a complete
graph with n = 5 vertices. Restricting our attention to edges
that join components of the developing tree, KruskalRST
includes four (in general, n − 1) edges to complete a tree.
Figure 2 shows the intermediate structures the algorithm
might develop and how they lead to the three possible tree
structures on five vertices.

Figure 2 also shows the probabilities with which the selection
of the next eligible edge transforms one structure into an-
other, and the probabilities that the structures appear. Each
structure’s probability is a weighted sum of the probabilities
of its possible predecessors; the weights are the probabilities
that the structure is produced from those predecessors.

For example, a path of three vertices appears with proba-
bility 2/3 after two edges have been chosen, and a pair of
isolated edges appears with probability 1/3. A path of four
vertices arises from the former with probability 4/7 and from
the latter with probability 1/2; the probability that the first
three edges will form a path is

2

3
· 4

7
+

1

3
· 1

2
=

23

42
.

The three possible spanning tree structures have these prob-
abilities: for a path, 113/252; for a path with a branch,
127/252; and for a star, 12/252. The expected number of
leaves in such a tree is then

2 · 113

252
+ 3 · 127

252
+ 4 · 12

252
=

655

252

.
= 2.5992,

and the probability that a vertex is a leaf is 2.5992/5
.
=

0.5198. Note that these values are less than those of

113/252 127/252 12/252

1/2
1/2 3/4 1/4

1/3

2/3

23/42 8/42 11/42

4/7 2/7

1/7 1/2
1/2

2/3 1/3

2/3 1/3

1

1

Figure 2: The steps KruskalRST might take in gen-
erating a spanning tree on five vertices, the prob-
abilities of the steps, and the probabilities of the
resulting structures.

PrimRST on five vertices (2.75 and 0.55, respectively) but
more than those of a uniformly random tree (2.56 and 0.512).

Tests confirm the biases that the example suggests. A pro-
gram used PrimRST, KruskalRST, and a uniform algorithm
(decoding Prüfer strings, as the next section describes) to
generate spanning trees on complete graphs of 5 to 500 ver-
tices. Each algorithm returned 5 000 trees for each graph
size.

Table 1 reports the average numbers of leaves and the em-
pirical probabilities that a particular vertex is a leaf in the
sets of trials. Only for uniformly random spanning trees
do these values approach the limits identified by Rényi:
E[leaves] → n/e and P [va is a leaf] → 1/e

.
= 0.368.

Clearly the average number of leaves in trees generated by
PrimRST converges to n/2, and the probability that a par-
ticular vertex is a leaf to 1/2, conforming to the analysis
of Section 3. In the uniformly random trees, the average
number of leaves approaches n/e, and the leaf probability
approaches 1/e. The values for KruskalRST always fall be-
tween those for PrimRST and the uniform algorithm; the
leaf probability for KruskalRST appears to be approaching

Table 1: Empirically observed average numbers of
leaves and the probabilities that a particular vertex
is a leaf in spanning trees returned by PrimRST,
KruskalRST, and a uniform algorithm.

PrimRST KruskalRST Uniform
n Leaves P [va] Leaves P [va] Leaves P [va]
5 2.738 0.548 2.597 0.519 2.557 0.511

10 5.108 0.511 4.495 0.450 4.301 0.430
15 7.557 0.504 6.483 0.432 6.118 0.408
20 10.071 0.504 8.446 0.422 7.939 0.397
25 12.534 0.501 10.476 0.419 9.749 0.390
30 15.017 0.501 12.469 0.416 11.608 0.387
40 20.063 0.502 16.573 0.414 15.263 0.382
50 24.981 0.500 20.552 0.411 18.915 0.378
60 30.004 0.500 24.628 0.410 22.631 0.377
80 40.011 0.500 32.766 0.410 29.970 0.375

100 50.002 0.500 40.882 0.409 37.324 0.373
150 75.012 0.500 61.210 0.408 55.732 0.372
200 99.953 0.500 81.461 0.407 74.186 0.371
250 125.017 0.500 101.798 0.407 92.537 0.370
300 149.956 0.500 122.130 0.407 110.940 0.370
400 199.967 0.500 162.828 0.407 147.581 0.369
500 249.982 0.500 203.529 0.407 184.450 0.369

PrimRST

KruskalRST

Uniform

Number of vertices
0 100 200 300 400 500

0.35

0.40

0.45

0.50

0.55

Figure 3: Empirical probabilities P [va] that a partic-
ular vertex is a leaf in spanning trees on n vertices
generated by PrimRST, KruskalRST, and a uniform
algorithm, as n grows.

a value near 0.407. KruskalRST is less biased than PrimRST
but still favors trees with more leaves. Figure 3 plots the ob-
served probabilities that a particular vertex is a leaf in trees
generated by the three algorithms.

5. UNIFORMLY RANDOM ALGORITHMS
While implementations of PrimRST and KruskalRST can
be fast, uniformly random algorithms are usually computa-
tionally more expensive. Guénoche [1983] described an al-
gorithm that associates uniform probabilities with the span-
ning trees of an arbitrary graph G. It uses the fact that the
number of spanning trees on a graph of n vertices can be
identified by computing a determinant of size n×n. The al-
gorithm assumes an ordering of G’s edges; this induces a lex-
icographic order on the set of spanning trees, each of which is
represented by the ordered set of its edges. The ith spanning
tree can be found by computing at most m = |E| determi-
nants, and the algorithm’s time is O(n3m). By computing
fewer determinants, Colbourne et al. [1989] reduced the al-
gorithm’s time to O(n3).

Broder [1989] described an algorithm based on a random
walk in G. A particle starts at an arbitrary vertex in G. At
each step, it moves over a randomly chosen edge incident to
the current vertex. When the particle visits a vertex for the
first time, the edge it moved over joins the spanning tree.
The algorithm terminates when the particle has visited all
of G’s vertices. While the algorithm’s worst-case time is
unbounded, it terminates in O(n log n) expected time for al-
most all graphs and in time that is O(n3) for a few special
cases. Wilson [1996] presented an improved random-walk al-
gorithm whose expected time is only linear for many graphs.

For a complete graph G on n vertices, Prüfer [1918] de-
scribed a constructive one-to-one mapping between vectors
of n− 2 vertex labels and spanning trees on the n vertices.
These vectors are called Prüfer numbers, and the degree of
each vertex in the spanning tree a Prüfer number represents
is always one greater than the number of appearances of
the vertex’s label. The following algorithm uses this prop-
erty to identify the spanning tree T that a Prüfer number
α = (α1, α2, . . . , αn−2) represents [Even, 1973, pp.104–106]:

To decode a Prüfer number α:
scan the string to identify the vertices’ degrees;
T ← ∅;
for i from 1 to n− 2

v ← vertex of degree 1 with the smallest label;
T ← T ∪ {(v, αi)};
decrement the degrees of v and αi;

two vertices v1 and v2 remain with degree 1;
T ← T ∪ {(v1, v2)};

For example, when G’s vertices are labeled {1, 2, 3, 4, 5, 6},
the Prüfer number (4, 5, 2, 2) represents the tree T ={(1, 4),
(3, 5), (4, 2), (5, 2), (2, 6)}. The algorithm identifies these
edges in the listed order.

With a priority queue implemented in a heap to hold the
vertices of current degree one, the Prüfer decoding algorithm
runs in time that is O(n log n). Since the generation of a
random Prüfer number requires only linear time, the time
to generate a random spanning tree via a Prüfer number is
also O(n log n).

There are many other mappings like Prüfer’s from vectors of
n−2 vertex labels (we call them generally Prüfer strings) to
spanning trees. Edelson and Gargano [2001] proposed one
with a linear time decoding algorithm. Picciotto [1999] and
Deo and Micikevicius [2001] have described several others.
One, called the Blob Code, exhibits stronger locality and
heritability than do Prüfer numbers, and an EA for the One-
Max-Tree problem performed significantly better when it
encoded spanning trees via the Blob Code than with Prüfer
numbers [9].

When the underlying graph G is complete, uniformly ran-
dom spanning trees are most efficiently generated by decod-
ing random Prüfer numbers via such Prüfer-like mappings.
However, the applicability of such a scheme is limited in
two ways. First, it is restricted to complete graphs. Sec-
ond, it cannot easily honor problem-specific constraints on
such features as a tree’s diameter or edge capacities. For
all Prüfer-like mappings, each vertex’s degree in the repre-
sented spanning tree is one more than the number of times
its symbol appears in the vector, so these codings can honor
constraints on degrees or numbers of leaves.

Table 2: Results of the EA for the One-Max-Tree
problem with random target trees when using Prim-
based (P-RST), Kruskal-based (K-RST), uniform,
or skewed initialization and only crossover, and with
skewed initialization and 30% mutation (w/mut).
Each cell shows the mean and the standard devi-
ation of the best solutions’ fitnesses.

n P-RST K-RST Uniform Skewed w/mut

50 44.48 45.50 45.22 38.96 46.04
1.58 1.33 1.92 1.88 1.43

100 90.00 90.16 89.72 76.90 91.64
2.61 2.84 2.31 3.21 2.37

150 133.66 134.30 133.76 118.24 137.30
3.52 2.81 3.36 3.45 2.43

200 177.40 178.04 177.76 153.26 183.7
3.60 4.26 3.73 4.34 2.79

250 221.24 221.60 221.26 196.12 229.88
4.00 3.70 3.89 3.87 3.06

300 264.10 264.88 265.10 228.70 274.48
4.76 4.65 5.46 4.98 4.09

6. COMPARISONS
In the well-known One-Max problem, a bit string’s fitness is
the number of 1’s it contains. The One-Max-Tree problem
[Rothlauf et al., 2000] is a similar exercise in the space of
spanning trees. Given a connected graph G on n vertices, it
specifies a target spanning tree; the fitness of any spanning
tree on G is the number of edges it shares with the target.

We compared the initialization schemes of the previous
three sections in a generational EA for the One-Max-Tree
problem. The EA represents spanning trees as sets of
their edges, and it initializes its population using PrimRST,
KruskalRST, or a uniform scheme (decoding random Prüfer
strings).

The algorithm uses crossover to generate all offspring trees;
only edges present in the initial population are available to
build new solutions. The EA selects parents for crossover in
tournaments of size two without replacement. Kruskal’s al-
gorithm inspires the crossover operator: After copying into
the offspring all the edges that are common in both parents,
it joins the components so created with edges randomly se-
lected from the remaining parental edges. The EA applies
standard generational replacement with 1-elitism and runs
through a fixed number of generations.

The EA was run 50 times with each initialization operator
on instances of One-Max-Tree with uniformly random target
trees and numbers of vertices from 50 to 300. On n vertices,
its population size was 5n and it ran through 2n generations.

The first three columns of Table 2 summarize these tests.
Each cell displays the mean and standard deviation of the
best fitnesses in one set of trials. At every number of ver-
tices, there are no significant differences among the average
best fitnesses when the EA initialized its population with
PrimRST, KruskalRST, and the uniform algorithm. The
choice of initialization operator does not affect the EA’s per-
formance on the One-Max-Tree problem.

Why should this be so, when target trees are uniformly ran-

Table 3: Distributions of edges in 1 000 spanning
trees on n = 8 vertices generated by the uniform
algorithm (a) and by the Skewed algorithm (b).

(a) 1 2 3 4 5 6 7
0 240 249 255 258 262 213 269
1 246 239 264 248 243 254
2 258 255 223 265 248
3 249 240 264 234
4 244 264 257
5 246 270
6 243

(b) 1 2 3 4 5 6 7
0 237 484 256 458 250 457 252
1 269 25 233 24 273 25
2 269 464 252 465 251
3 240 23 245 21
4 241 500 272
5 249 29
6 236

dom and both KruskalRST and especially PrimRST favor
star-like structures? Because the structures of the trees in
the initial population do not matter. Using crossover alone,
the EA builds fitter trees using the edges present in the
initial population; a uniform distribution of edges is thus
most conducive to the EA’s progress, and this is what all
three initialization algorithms provide. Though PrimRST
and KruskalRST favor stars over other trees, none of the
three algorithms favors any edges; all provide the same raw
material for the evolution of fitter trees.

This suggests that a skewed distribution of edges in the EA’s
initial population will damage its performance. We tested
this conjecture, and the explanation above, with such ini-
tial populations. A function called Skewed decoded non-
uniformly random Prüfer strings in which even vertex num-
bers were 19 times as likely to appear as odd. Table 3 com-
pares empirical distributions of edges for the uniform algo-
rithm and this one with n = 8; in the trees generated by
Skewed, edges joining odd-numbered vertices are rare, those
joining even-numbered vertices are over-abundant.

The fourth column of Table 2 presents the results of trials
using Skewed initialization in the EA for the One-Max-Tree
problem. At every number of vertices, the mean fitness using
Skewed is less than those for PrimRST, KruskalRST, and
the uniform algorithm, and the differences are all significant.

Mutation is usually used to (re-)introduce genetic informa-
tion into the population, so if the relative failure of the EA
using Skewed initialization is due to the unbalanced dis-
tribution of edges in the initial population, incorporating
mutation into the algorithm should restore its performance.

Position-by-position mutation for sets of edges scans a chro-
mosome and, with a small probability, replaces each edge by
a new feasible random edge that reconnects the tree. The
fifth column of Table 2 summarizes the performance of the
EA with Skewed initialization and this operator. For these
trials, the probability of crossover was reduced to 70% and
mutation generated the remaining 30% of all offspring. With

n vertices, the probability that any one edge was mutated
was 1/n.

For every number of vertices, the EA with Skewed initial-
ization and mutation performs slightly better than any pre-
vious version. Mutation does indeed compensate for the
poor distribution of edges in the initial population. More
generally, these results suggest that when an evolutionary
algorithm encodes candidate spanning trees as sets of edges,
the mechanism by which it generates its initial population
is unimportant as long as it and the algorithm’s mutation
operator provide an adequate selection of edges.

7. CONCLUSION
When an evolutionary algorithm that searches a space of
spanning trees encodes candidate trees as sets of edges, its
initial population consists of “random” spanning trees on
the underlying graph G. Mechanisms to generate such trees
based on Prim’s and Kruskal’s minimum spanning tree algo-
rithms do not associate uniform probabilities with the span-
ning trees of G; both favor stars and disfavor paths. Algo-
rithms that yield uniform spanning trees are slower or not
guaranteed to terminate, except for the decoding of random
Prüfer strings, which applies only when G is complete.

However, the choice of the initialization algorithm is not as
important as it might appear. Trials of a crossover-only EA
for the One-Max-Tree problem found no significant differ-
ences in performance between Prim-based, Kruskal-based,
and uniform initialization, apparently because all three ini-
tializations yield uniform distributions of edges, the raw ma-
terial from which the EA constructs fitter trees. This anal-
ysis is supported by the relative failure of the EA with an
edge-skewed initialization operator and by the restoration of
that algorithm’s performance by mutation.

These results suggest that when an evolutionary algorithm
encodes spanning trees as sets of edges, the mechanism it
uses to generate the trees in its initial population is less
important than the variety of edges that initialization and
mutation together provide.

Acknowledgements
This work is supported by the Austrian Science Fund (FWF)
under the grant P13602–INF.

8. REFERENCES
[1] A. Broder. Generating random spanning trees. In

IEEE 30th Annual Symposium on Foundations of
Computer Science, pages 442–447. IEEE, 1989.

[2] A. Cayley. A theorem on trees. Quarterly Journal of
Mathematics, 23:376–378, 1889.

[3] C. J. Colbourne, R. P. J. Day, and L. D. Nel.
Unranking and ranking spanning trees of a graph.
Journal of Algorithms, 10(2):249–270, 1989.

[4] N. Deo and P. Micikevicius. Comparison of Prüfer-like
codes for labeled trees. Baton Rouge, LA, 2001.
Thirty-Second Southeastern International Conference
on Combinatorics, Graph Theory, and Computing.

[5] W. Edelson and M. Gargano. A modified Prüfer code:
O(n) implementation. In Graph Theory Notes of the
N.Y. Academy of Sciences, pages 37–39. N.Y.
Academy of Sciences, 2001.

[6] S. Even. Algorithmic Combinatorics. The Macmillan
Company, New York, 1973.

[7] J. Gottlieb, B. A. Julstrom, G. R. Raidl, and
F. Rothlauf. Prüfer numbers: A poor representation of
spanning trees for evolutionary search. In L. Spector
et al., editors, Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO–2001,
pages 343–350, San Francisco, CA, 2001. Morgan
Kaufmann.

[8] A. Guénoche. Random spanning tree. Journal of
Algorithms, 2:214–220, 1983.

[9] B. A. Julstrom. The Blob Code: A better string
coding of spanning trees for evolutionary search. In
Wu [20], pages 256–261. July 7.

[10] J. B. Kruskal. On the shortest spanning subtree of a
graph and the traveling salesman problem.
Proceedings of the American Mathematics Society,
7(1):48–50, 1956.

[11] Y. Li and Y. Bouchebaba. A new genetic algorithm
for the optimal communication spanning tree problem.
In C. Fonlupt, J.-K. Hao, E. Lutton, E. Ronald, and
M. Schoenauer, editors, Proceedings of Artificial
Evolution: Fifth European Conference, volume 1829 of
LNCS, pages 162–173. Springer, 1999.

[12] C. C. Palmer and A. Kershenbaum. Representing
trees in genetic algorithms. In D. Schaffer, H.-P.
Schwefel, and D. B. Fogel, editors, Proceedings of the
First IEEE Conference on Evolutionary Computation,
pages 379–384. IEEE Press, 1994.

[13] S. Picciotto. How to encode a tree. PhD thesis,
University of California, San Diego, 1999.

[14] R. C. Prim. Shortest connection networks and some
generalizations. Bell System Technical Journal,
36:1389–1401, 1957.

[15] H. Prüfer. Neuer Beweis eines Satzes über
Permutationen. Archiv für Mathematik und Physik,
27:142–144, 1918.

[16] G. R. Raidl and B. A. Julstrom. Edge-sets: An
effective evolutionary coding of spanning trees. IEEE
Transactions on Evolutionary Computation, 2001.
Submitted.

[17] A. Rényi. Some remarks on the theory of trees.
Magyar Tudományos Akadémia Matematikai Kutató
Intézetének Közleményei, 4:73–85, 1959. Reprinted in
Selected Papers of Alfréd Rényi (Pál Turán, Ed.),
volume 2. Budapest: Akadémiai Kiadó, 1976.

[18] F. Rothlauf, D. Goldberg, and A. Heinzl. Network
random keys – a tree network representation scheme
for genetic and evolutionary algorithms. Technical
Report 2000010, Illinois Genetic Algorithms
Laboratory, University of Illinois at
Urbana-Champaign, 2000.

[19] D. B. Wilson. Generating random spanning trees more
quickly than the cover time. In Proceedings of the
Twenty-eighth Annual Symposium on the Theory of
Computing, pages 296–303, N.Y., 1996. ACM Press.

[20] A. S. Wu, editor. 2001 Genetic and Evolutionary
Computation Conference Workshop Program, San
Francisco, CA, 2001. July 7.

