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ABSTRACT
Many optimization problems on weighted graphs seek a sub-
set of the graph’s edges that has minimum weight and sat-
isfies the problem’s constraints. Two examples are the trav-
eling salesman problem (TSP) and the degree-constrained
minimum spanning tree problem (d-MSTP). Heuristics like
evolutionary algorithms often construct candidate solutions
to such problems iteratively, repeatedly including an edge
selected from those currently eligible. Not surprisingly, low-
weight edges usually predominate in good and optimal solu-
tions, an observation we confirm empirically for the TSP and
the d-MSTP. This suggests that any process that builds can-
didate solutions should, with higher probability, select edges
of lower weight. We incorporate into crossover operators
and compare in a genetic algorithm four edge-selection tech-
niques: random, greedy, according to probabilities inversely
proportional to the edges’ weights, and 2-tournament. Tests
on instances of the TSP and the d-MSTP indicate that with
the weight-biased techniques, the GA identifies better solu-
tions faster than with random edge-selection.

1. INTRODUCTION
An undirected graph G(V, E) consists of a finite set V of
vertices or nodes and a set E of unordered pairs of vertices,
called edges. In a weighted undirected graph, a function
w : E → <+ associates a weight with each edge in E. Many
problems in graphs seek a subset S ⊆ E of edges that satis-
fies the problem’s particular constraints and minimizes the
total weight of the edges in S:

w(S) =
X
e∈S

w(e).

The constraints S must satisfy characterize a specific prob-
lem; examples include the following:

• S forms a Hamiltonian path or Hamiltonian tour in
which each vertex is visited exactly once (the traveling
salesman problem).

• S forms a spanning tree of G. Often, additional con-
straints are imposed: In the degree-constrained mini-
mum spanning tree problem [7, 8], the number of edges
adjacent to each vertex is restricted to some upper
bound d > 1. Other variants restrict edge capacities
[14], the number of leaves, or the diameter of the span-
ning tree.

• S forms a k-edge or k-vertex connected network [11].

• S forms a Steiner tree connecting a subset of vertices
from V .

Some of these problems are computationally easy. For ex-
ample, several efficient algorithms exist for identifying an
unconstrained minimum spanning tree. Most, however, are
NP-hard and it is unlikely that fast algorithms exist for
their exact solution. In these cases, we look to heuristic
optimization techniques.

Many of these techniques, such as simple greedy algorithms,
simulated annealing, ant colony optimization, and evolution-
ary algorithms, build candidate solutions to a target prob-
lem instance by repeatedly adding one more edge to an ini-
tially empty solution until a complete, feasible solution is
obtained. Edge-selection chooses each next edge from a set
F ⊆ E of eligible candidate edges whose inclusion in the
solution would not violate the problem’s constraints.

In problems that seek to minimize the total weight w(S),
it is not surprising that low-weight edges predominate in
good and optimal solutions. This suggests that in building
candidate solutions, edge-selection should favor edges in F
of lower weight. In a genetic algorithm (GA), this idea may
be applied in the creation of initial solutions or as crossover
and mutation build new solutions [2, 6, 13, 14].

This paper examines weight-biased crossover operators in
GAs for graph problems like those listed above. We investi-
gate four edge-selection strategies—random, greedy, accord-
ing to probabilities inversely proportional to edges’ weights,
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Figure 1: For test instances of (a) the TSP and (b)
the 3-MSTP, the probability that an edge appears
in a near-optimal solution as a function of its rank.

and 2-tournament—in the crossover operators of GAs for
the traveling salesman problem (TSP) and the degree-
constrained minimum spanning tree problem (d-MSTP).

The next section of this paper investigates the ranks of edges
that appear in near-optimal solutions of instances of the two
problems. Section 3 describes the four edge-selection strate-
gies. Section 4 describes a genetic algorithm and codings
and variation operators for the two problems. Section 5
summarizes tests on six representative instances of each
problem with each edge-selection strategy implemented in
the crossover operators. We confirm that the weight-biased
edge-selection techniques perform far better than unbiased
(random) edge-selection.

2. THE EDGES IN GOOD SOLUTIONS
It is reasonable that low-weight structures in weighted
graphs should consist mostly of low-weight edges. The
following empirical investigation confirms this observation
in the traveling salesman and degree-constrained minimum
spanning tree problems.

For the TSP, we generated 100 independent instances, each
of n = 100 distinct vertices randomly located in a square
region of the plane. Edges’ weights were the Euclidean dis-
tances between their vertices, and for each instance the edges
were sorted by weight, with ties resolved arbitrarily. An ad-
equate GA identified a near-optimal tour on each instance
and recorded the ranks of the edges that appeared in these
tours. Figure 1(a) summarizes these tests; it shows the prob-
ability that an edge appears in a near-optimal tour as a
function of the edge’s rank in its instance.

About 90% of the edges in the good tours had ranks below
260 = 2.6n (out of 100(100 − 1)/2 = 4950); that is, they
were among the shortest 5.25% of edges. 96% of the edges
in the good tours had ranks no greater than 400 = 4n; that

is, they were among the shortest 8.1% of edges in their in-
stances. The highest rank of any edge that appeared in a
good tour was 1651. These results, of course, hold for ran-
dom problems of a particular size using Euclidean distances.
Other distributions might hold for TSP instances with par-
ticular structures, of other sizes, or under other metrics.

A similar examination of d-MSTP did consider instances of
three different structures. 100 instances consisted of n = 100
vertices randomly scattered in the plane, under Euclidean
distance as in the TSP instances. 100 instances consisted
of n = 100 vertices with edge weights assigned at ran-
dom. Three instances, again of n = 100 vertices, had edge
weights chosen to mislead simple greedy heuristics. These
instances were due to Knowles and Corne [7], who named
them m100n1, m100n2, and m100n3. The genetic algorithm
from [13] identified near-optimal spanning trees of degree
d ≤ 3 on each of these instances. Figure 1(b) summarizes
the results of these tests, as in Figure 1(a).

The distributions for the three classes of d-MSTP problems
differ. The curve for the Euclidean instances resembles that
for the TSP instances. The curve for the instances with
random weights is the smoothest and most heavily favors
low-weight edges. The curve for the misleading instances
shows a peak just above rank 100, which is due to their
special structure. Nonetheless, in all three cases, 98% of the
edges that appear in near-optimal trees have ranks less than
300 = 3n; that is, they are among the shortest 6.1% of all
edges in their instances.

These results support the intuition that meta-heuristics
like genetic algorithms should favor low-weight edges when
building candidate solutions to graph problems like TSP and
d-MSTP, and they raise the question of how to implement
this favoritism.

3. EDGE-SELECTION IN CROSSOVER
When a genetic algorithm’s chromosomes represent graph
structures like tours or trees, crossover often builds an off-
spring iteratively, beginning with the empty set and repeat-
edly selecting a new edge from a current set F of (mostly
parental) edges eligible for inclusion. Four such crossover
operators are distinguished by their edge-selection strate-
gies:

Random crossover (RX1): Select each edge from F at
random. This is the unbiased case.

Greedy crossover (GX1): Always select the edge in F
with the smallest weight. If several share the smallest
weight, select one of them at random.

Inverse-weight-proportional crossover (IX1): Select
each edge from F according to probabilities inversely
proportional to the eligible edges’ weights.

2-tournament crossover (TX1): Select the edge of lower
weight in a 2-tournament of contestants from F . Con-
duct the tournament with replacement, so that the
worst eligible edge has a non-zero probability of being
selected.

A good crossover operator replicates parental substruc-
tures—here, edges and sets of edges—in offspring. In par-



ticular, as Starkweather et al. observed, a GA might ben-
efit if crossover emphasizes the inheritance of common fea-
tures of parental solutions [18]. Thus, we extend each of
the crossovers to select edges in F that are common to both
parents whenever possible. These extended operators are
called RX2, GX2, IX2, and TX2.

4. GENETIC ALGORITHMS
The eight crossover operators were compared in genetic al-
gorithms for the TSP and the d-MSTP. The GA is the same
in both cases. It is steady-state and does not allow duplicate
chromosomes in its population. It initializes its population
with distinct random chromosomes. It selects chromosomes
to be parents for crossover in 2-tournaments without re-
placement, so that the two contestants in any tournament
are different, though the same chromosome may win two
consecutive tournaments. It generates every offspring chro-
mosome via crossover and mutation, as described below. If
a new chromosome differs from those currently in the pop-
ulation, it replaces the worst chromosome; otherwise, it is
discarded. The GA runs through the generation of a fixed
number of distinct new chromosomes.

For TSP and d-MSTP, the GA used the codings, initial-
ization, and variation operators that the next two sections
describe. In the tests of Section 5, on a problem instance
of n nodes, the GA’s population size was 2n, and it ran
through the generation of 1000n distinct new chromosomes.

4.1 Encoding and operators for the TSP
TSP tours are encoded in the most straightforward and in-
tuitive way: as permutations of the cities; each city partic-
ipates in the two edges to its predecessor and its successor.
Two such chromosomes are the same if they list the cities in
the same order, regardless of the starting city, though the
GA does not consider the reversal of an existing tour to be
a duplicate and will allow it in the population.

All eight crossover operators build a new permutation, rep-
resenting a new tour, from two parents in the following way:

Select the first vertex (i.e., city) at random; this
city is current.

Repeat n− 1 times:
Identify the parental edges that connect the
current city to an unvisited one; these edges
form the candidate set F .

Edge-selection: If F is not empty, select an edge
from it; otherwise select an edge connecting
the current city to an unvisited city.

Append the city at the other end of the selected
edge to the tour; this city becomes current.

The details of the edge-selection step distinguish the eight
crossover operators. The most aggressive of these, GX2, is
the very greedy crossover described in [6].

Many researchers have described crossovers that conform
to the outline above. Perhaps the first was proposed by
Grefenstette et al. [4]; their heuristic crossover selects the
shortest parental edge to an unvisited city, if such an edge
exists. Otherwise, it chooses the next city at random from
those not yet in the tour. Liepins et al. [10], Suh and Van

Gucht [19], and Jog, Suh, and Van Gucht [5] implemented
variations on this greedy theme.

As Grefenstette observed, operators like these may find
the set F of parental edges to unvisited cities empty, and
thus need to introduce non-parental edges into the off-
spring [4]. In order to reduce the number of offspring edges
not inherited from the parents, Whitley, Starkweather, and
Fuquay [20] described edge recombination (ER), which fa-
vors parental edges to cities with the fewest connections to
other cities not yet in the new tour. We do not consider
this approach here, since it is specific to the TSP. The in-
troduction of non-parental edges by crossover is an implicit
mutation; therefore, we apply the mutation operator, which
reverses a random subtour, only to 30% of all offspring chro-
mosomes.

4.2 Encoding and operators for thed-MSTP
Many techniques have been proposed for encoding spanning
trees in evolutionary algorithms, including random keys [17],
weighted codings [12, 15], and even Prüfer numbers [21].
Here, a chromosome represents the edges of a spanning tree
directly in a hash table, as in [13].

The crossover operator adapts Kruskal’s algorithm for iden-
tifying an unconstrained minimum spanning tree [9]. At
each step, all parental edges that connect two separated
components and would not violate the degree constraint
form the set F , which is usually much larger than in the
case of TSP. Only when F is empty is a non-parental edge
introduced into the offspring; in contrast to the TSP, this
happens rarely. [13] describes a linear-time implementation
of this operator.

Since crossover often creates offspring consisting only of
parental edges, mutation is important to maintain variety
in the population. Mutation deletes a random edge and re-
places it with one that joins the resulting two components
and does not violate the degree constraint. This operator is
applied to every offspring produced by crossover.

5. TESTS
The eight crossover variants were compared on six TSP in-
stances, of 50 to 200 cities, from Reinelt’s data base of such
problems [16, pp. 211–213]. The GA was run 50 times with
each crossover on each instance; its progress was measured
by the average percentage gap between the lengths w(S) of
the trials’ shortest tours and the known optimal tour lengths
w∗: gap = (w(S)/w∗ − 1) · 100%. Table 1 summarizes these
tests. In it, each cell lists the average gap after the GA has
generated n, 10n, 100n, and 1000n new chromosomes, as
well as the standard deviation of these values after 1000n
chromosomes. The best results in each row are bold.

For the d-MSTP, two test instances were due to Krish-
namoorthy et al. [8]: a Euclidean instance of 100 nodes
(crd100) and a “structured hard” instance of 30 nodes
(shrd30); for these instances, the maximum degree was
d = 3. Four “misleading” instances of 50, 100, 200, and
400 nodes were due to Knowles and Corne [7]; on these in-
stances, d = 5. Again, the GA was run 50 times with each
crossover on each instance. Performance was reported as
the average percentage gap between the weights w(S) of the



best trees found and the smallest weights known w∗. Table 2
summarizes these tests in the same way as Table 1.

On both the TSP and the d-MSTP, all the weight-biased
crossover variants performed significantly better than did
the random variants RX1/2. With the latter crossovers,
the GA slowly identified generally poor solutions, and its
performance deteriorated rapidly as the problem instances
became larger and more difficult.

On the six TSP instances, the greedy crossovers GX1/2
were clearly the most effective. With one or the other of
them, the GA found shorter tours more quickly than with
any other crossover, except on pr136, after having gener-
ated 1000n = 136, 000 new chromosomes. Of the remaining
crossovers, IX2, which selects edges according to probabili-
ties inversely proportional to their weights and favors edges
that appear in both parents, is better, though not in general
competitive with the greedy crossovers. Figure 2 plots the
GA’s average performance with each crossover variant on
the 100-city instance kroA100. The figure’s graphs clearly
show the superiority of the greedy variants and the ineffi-
ciency of random edge-selection.

In contrast, on the d-MSTP, the purely greedy crossover
variants are best only on the relatively simple instances
crd100 and shrd30. On the four misleading instances, the
GA identifies the shortest trees with TX2, which selects
edges in 2-tournaments with replacement and favors edges
that appear in both parents. On these instances, the TX
variants provide better performance than do the IX vari-
ants, which in turn provide better performance than do the
GX variants, and crossovers that favor edges belonging to
both parents outperform those that do not. Figure 3 plots
the GA’s average performance with each crossover on the
100-node instance m100n1.

These results suggest that greedy strategies might be best on
Euclidean and other “easy” instances of graph problems like
TSP and d-MSTP or when the running time is limited, but
that edge-selection in tournaments provides better results
on “misleading” instances.

Finally, note that greedy edge-selection (GX1/2) and selec-
tion according to probabilities inversely proportional to edge
weights (IX1/2) are computationally more expensive than
random edge-selection (RX1/2) or edge-selection in tourna-
ments (TX1/2). This difference is small in a GA for TSP,
where the number of edges in F cannot exceed four, but
it can be significant in a GA for d-MSTP. On the d-MSTP
instance m400n1, the GA took up to five times as long using
IX1/2 than when using RX1/2 or TX1/2.

6. CONCLUSION
Genetic algorithms are often used to seek structures of min-
imum total weight in weighted graphs. This paper has de-
scribed an investigation of edge-selection strategies in the
crossover operators of such GAs, as applied to the travel-
ing salesman problem and the degree-constrained minimum
spanning tree problem. Crossovers that favor low-weight
edges allowed a GA to identify shorter tours and trees in
fewer evaluations than did operators that select edges at
random from those that satisfy the problem’s constraints.
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Figure 2: The percentage by which the shortest tour
lengths exceeded the length of an optimal tour with
each crossover variant on the TSP instance kroA100.
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Figure 3: The percentage by which the shortest tree
lengths exceeded the length of the known best so-
lution, with each crossover variant on the 5-MSTP
instance m100n1.

A purely greedy strategy was most effective when the GA
sought short structures in the Euclidean plane. Misleading
instances of the d-MSTP were better served by a less aggres-
sive strategy that chooses edges in tournaments. Crossovers
that favor edges common to both parents provided slightly
better performance than those that do not.



Table 1: Average percentages by which the best tours the GA found exceeded the known optimal tour
lengths, with each crossover variant on six TSP instances, after the generation of n, 10n, 100n, and 1000n new
candidate tours.

Problem Evaluations RX1 RX2 GX1 GX2 IX1 IX2 TX1 TX2

e50 50 224.8 223.7 62.7 64.9 157.9 160.8 159.7 158.9
n = 50 500 166.6 158.1 9.9 8.9 51.8 42.4 52.5 44.9

w∗ = 425 5000 86.5 40.1 2.2 1.3 12.0 4.2 7.8 3.4
50000 12.0 2.4 0.7 0.7 1.2 1.3 1.0 1.3

s(50000) 4.66 1.17 0.50 0.47 0.89 0.90 0.78 0.87
e75 75 299.3 299.0 72.4 78.1 206.8 83.9 66.3 210.0

n = 75 750 239.8 231.6 6.3 6.9 66.5 30.6 74.1 63.3
w∗ = 535 7500 144.6 97.2 0.9 1.0 23.0 6.1 19.8 7.2

75000 70.2 4.5 0.6 0.4 1.5 2.1 1.7 2.6
s(75000) 8.0 1.6 0.2 0.6 1.0 1.3 1.2 1.3

kroA100 100 582.2 578.0 118.1 120.3 329.4 332.5 378.2 381.49
n = 100 1000 571.6 467.4 11.0 11.4 91.0 78.7 134.3 118.9

w∗ = 21282 10000 405.5 239.4 3.2 2.3 41.7 9.6 62.7 15.1
100000 283.7 10.1 1.4 0.3 2.0 1.5 3.0 1.9

s(100000) 12.0 4.4 0.4 0.5 1.6 1.2 1.7 1.3
pr136 136 643.8 643.9 109.0 114.3 358.8 357.3 417.6 410.0

n = 136 1360 544.5 536.8 15.3 15.4 102.1 88.2 147.5 129.6
w∗ = 96772 13600 366.5 312.4 9.0 8.7 59.3 19.3 78.1 27.0

136000 246.2 104.9 7.0 6.6 11.3 3.7 15.0 4.5
s(136000) 8.9 24.5 2.0 2.0 5.4 1.3 8.0 1.6

kroA150 150 744.3 745.4 128.8 128.1 402.8 410.1 476.5 478.3
n = 150 1500 629.7 624.0 12.6 13.2 110.2 95.9 171.9 153.2

w∗ = 26524 15000 441.7 385.6 3.8 3.9 62.1 16.8 96.9 32.0
150000 306.3 156.3 2.1 2.2 4.9 2.8 15.3 3.7

s(150000) 10.0 24.9 0.6 0.8 4.9 1.6 11.1 1.3
kroA200 200 920.1 921.3 142.7 144.1 477.9 483.8 576.5 575.6
n = 200 2000 798.9 796.8 15.3 15.2 130.6 112.0 211.9 189.2

w∗ = 29368 20000 584.5 536.6 3.7 2.9 82.8 29.8 131.5 56.4
200000 435.5 300.9 1.6 1.0 21.7 2.7 62.7 4.1

s(200000) 7.3 26.3 0.8 0.5 14.4 0.9 14.5 1.2

These results suggest, first, that the most effective edge-
selection strategy depends on the target problem and in-
stance and, second, that on instances of unknown or difficult
structure, tournament edge-selection should be used for its
simplicity, efficiency, and robustness.
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