
AGD: A Library of
Algorithms for Graph Drawing

, Michael Jünger1, Gunnar W. Klau2, Petra Mutzel3, and René Weiskircher3

1 University of Cologne, Department of Computer Science, Pohligstraße 1,
D-50969 Köln, Germany

2 Konrad–Zuse–Zentrum für Informationstechnik Berlin, Takustraße 7, D-14195
Berlin, Germany

3 Vienna University of Technology, Institute of Computer Graphics and
Algorithms, Favoritenstraße 9–11, A-1040 Wien, Austria

1 Introduction

The development of the AGD software, an object-oriented C++ class library
of Algorithms for Graph Drawing, has started in 1996. AGD is a general
purpose graph drawing tool suited for beginners as well as for advanced users.
It contains a variety of layout algorithms leading to different layout styles.

However, the primary goal of development has been to provide users with
a toolbox for creating their own implementations of graph drawing algorithms
according to their specific needs. Since, in many cases, users want the layouts
to satisfy application-specific requirements that are not foreseen in generic
graph drawing methods. AGD is designed in such a way that it is easy to
add user-specific changes to the layout algorithms.

Another important goal of AGD was to bridge the gap between theory and
practice in the area of graph drawing. E.g., for drawing general graphs, Ba-
tini et al. [3,2] suggested a method based on planarization which often leads
to good drawings for many applications. However, until 1996, no publically
available software layout tool used the planarization method. The reason for
this was twofold: On the one hand, a lot of expertise is necessary concerning
planarity testing algorithms, combinatorial embeddings, planar graph draw-
ing algorithms, and (often NP-hard) combinatorial optimization problems.
On the other hand, great effort is needed to implement all necessary algo-
rithms and data structures, since the planarization method consists of various
phases that require complex algorithms.

Recently, major improvements have been made concerning the use of
the planarization method in practice (e.g., [33,19,26–28]). Today, there exist
some (publically available) software libraries using the planarization method
successfully for practical graph layout [1,22,23]. In AGD, the planarization
method is implemented in a modular form, so that it is easy to experiment
with different approaches to the various subtasks of the whole approach.
This enables experimental comparisons between various algorithms in order
to study and understand their impact on the final drawing. Not only in graph

2 M. Jünger et al.

drawing, the empirical study of combinatorial algorithms is getting increasing
attention.

Also the Sugiyama-style method for drawing graphs with preferred direc-
tion is rather a methodological frame than a fixed algorithm. For each phase
layer assignment, crossing minimization, and coordinate assignment, a vari-
ety of possible implementations exists. AGD allows users to simply switch
among a variety of implementations, and gives software programmers the
possibility to introduce new algorithms.

Another reason for building AGD was our intention to show how mathe-
matical methods can help to produce good layouts. Many of the optimization
problems in graph drawing are NP-hard. However, this does not mean that
it is impossible to solve them in practice. AGD shows that problem instances
can often be solved to provable optimality within short computation time by
using polyhedral combinatorics and branch-and-cut algorithms.

2 Applications

We can distinguish two groups of users of AGD: The first group uses only
the algorithms that are already implemented without making any changes or
extensions while the second group writes new modules in order to change the
behavior of the drawing algorithms already contained in AGD. The first group
only needs the executables of the demo programs. The agd demo executable
contains only algorithms working without additional software packages while
agd opt demo contains the exact optimization algorithms that only work on
systems where ABACUS [35] and CPLEX are installed.

Both demo programs have graphical user interfaces that are based on
the class graph win of the LEDA-library [43]. This class already contains
methods for loading and storing graphs in different formats and also for
creating and manipulating them. The demo programs extend the menus of
graph win by the methods implemented in AGD for generating and drawing
graphs. Since graph win allows drawings to be exported in Postscript format,
drawings generated using AGD algorithms can easily be used as illustrations
in documents.

The demos thus constitute a very general graph drawing environment.
Data we collected from people who downloaded the demos show a diverse
range of applications. In the field of biology, AGD is used to visualize metabolic
networks, protein interactions, gene regulatory networks, and plant distribu-
tions. In social science, uses include drawing genealogical trees, collective
labor agreements and net structures in cognitive models. Other applications
include the visualization of neural networks, electrical grids, flowcharts and
the dependency graph of university courses.

The disadvantage of the generality of the demos is that they are not
suitable for applications where the drawings have to meet a very restrictive
set of requirements. Therefore, the second group of users writes new modules

AGD: A Library of Algorithms for Graph Drawing 3

or classes that are derived from AGD-classes to modify the behavior of the
algorithms that already exist in the library. In this way, users can address
their specialized layout needs.

AGD is also used as a platform for research in the area of graph drawing,
e.g., [15,38]. Because of its modular construction, researchers can concentrate
on the innovative part of their drawing algorithm while leaving standard tasks
to the algorithms implemented in AGD. One example is the comparison of
different methods for the compaction of orthogonal drawings done by Klau,
Klein, and Mutzel [38]. It was only necessary to implement the different
compaction methods that should be compared as AGD-modules, while the
computation of the orthogonal representation for each graph and the visual-
ization of the computed drawing was left to the corresponding classes already
implemented in AGD. This enabled the authors to save more than half of the
programming work compared to starting the project from scratch.

3 Algorithms

AGD contains a variety of implementations of methods for drawing graphs
with the planarization method (see Section 3.1). A basic ingredient to the
planarization method are planar graph drawing methods. AGD includes im-
plementations of many different planar graph drawing algorithms, some of
which can be combined with the planarization method (see Section 3.2).
Relatively new are orthogonal planar drawing methods for clustered graphs
(see Section 3.3). For Sugiyama-style layout, AGD contains many different
implementations of the phases layer assignment, crossing minimization, and
coordinate assignment (see Section 3.4).

3.1 Algorithms for Planarization

In this section we will mainly focus on the planarization method and its im-
plementation in AGD. General graphs can also be drawn using force-directed
methods. Indeed, most available software tools for graph drawing use force-
directed methods. These are especially useful for drawing very sparse, tree-
like graphs. AGD contains implementations of the spring-embedder algorithm
by Fruchterman and Reingold [20], and the algorithm by Tutte [51]. How-
ever, for many applications, e.g., data base visualization or software design,
the planarization method leads to much nicer layouts. E.g., in general the
planarization method leads to grid drawings having a small number of edge
crossings.

AGD contains a very flexible implementation of the planarization method
(PlanarizationGridLayout). So far, all planar layout routines in AGD gen-
erate grid drawings, i.e., the computed coordinates are integer. This is sup-
ported with the GridLayoutModule. The AGD modules involved in the pla-
narization method are shown in Fig. 1.

4 M. Jünger et al.

LayoutModule

CompactionModule

PostCompactionModule

OptCompaction

TurnRegularityCompaction

PlanarizationGridLayout
planar_layouter

planarizer

PureOrthogonalLayout
compactor

post_compactor

QuasiOrthogonalLayout
compactor

post_compactor

GiottoLayout
compactor

post_compactor

OrthogonalLayout
compactor

post_compactor

<no_crossings>

<no_crossings>

LongestPathCompaction

FlowCompaction

PlanarizerModule

SubgraphPlanarizer
subgraph

inserter

ShortestPathInserter
embeddings

remove_reinsert

OneEdgeMinCrossInserter

embeddings

SubgraphModule

PlanarSubgraph
runs

SPQRTree
OptPlanarSubgraph

<planar>

<planar>

<<uses>>

EdgeInsertionModule

GridLayoutModule

Fig. 1. Modules for the planarization method

In the planarization phase, any procedure transforming the given graph G
into a planar graph G′ is allowed. One can imagine that a method generating
a random or a force-directed layout and then substituting the crossings by
artificial vertices could be a PlanarizerModule. AGD offers the possibility of
adding and creating any new method for planarizing a graph via substituting
edge crossings by artificial vertices.

Our experiments have shown that, in order to keep the number of crossings
small, it is advantageous to use planarization via edge removal (Subgraph
Planarizer). AGD contains a heuristic PlanarSubgraph [30] based on PQ-
trees that achieves good results in practice, and a branch-and-cut algorithm
OptPlanarSubgraph to solve this NP-hard problem to optimality [33]. Any
other planar subgraph heuristic can easily be added to AGD.

For the edge re-insertion phase, AGD contains the standard procedure
ShortestPathInserter described in Algorithm 2, Section [TF4.3], as well
as the optimal embedding re-insertion algorithm OneEdgeMinCrossInserter
(Algorithm 3, Section [TF4.3]) [28]. All edge insertion modules provide op-
tional heuristics that can improve the quality of the solution significantly. The
two algorithms that fix an embedding allow calling the algorithm for several
randomly generated embeddings and select the best solution. The number

AGD: A Library of Algorithms for Graph Drawing 5

of embeddings is controlled by the parameter embeddings. Generating ran-
dom combinatorial embeddings requires computing the SPQR-tree for each
biconnected component [9]. AGD provides a linear-time implementation of
SPQR trees [27] in the class SPQRTree. Experiments show that significant
improvements are achieved if, in a postprocessing step, a set S of edges is
removed from the graph and reinserted [34,53]. In each such step, the number
of crossings can only decrease. All three edge insertion algorithms support
this heuristic that is controlled by the parameter remove reinsert. Possi-
ble settings are none (skip postprocessing), inserted (apply postprocessing
with all reinserted edges), and all (apply postprocessing with all edges in
the graph).

0

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

49

(a) Fixed embedding

0

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

4344

45

46

47

48

(b) Optimal embedding

Fig. 2. The influence of the combinatorial embedding

Figure 2(a) shows a graph for which the standard iterative edge insertion
leads to 14 crossings if a random combinatorial embedding is chosen. In this
case the drawing has a grid size of 22×22. However, when taking the optimum
one edge insertion module and adding the remove and reinsert algorithm for
all edges, the resulting drawing has only 11 crossings and has size 16×22 (see
Fig. 2(b)). This is a good example that shows how the size of the drawing
increases with the number of crossings.

6 M. Jünger et al.

3.2 Planar Graph Drawing Algorithms

The planarization phase leads to a planar graph G′ that contains artificial
vertices. Now, any planar graph drawing algorithm may be used for G′. Re-
placing all artificial vertices with edge crossings in a drawing of G′ results
in a drawing of the input graph G. We prefer to use orthogonal or quasi-
orthogonal algorithms because, in this case, an edge crossing is drawn as two
crossing horizontal and vertical line segments.

In orthogonal graph drawing, an important goal is to keep the number
of bends small. Many minimum cost flow-based algorithms are available for
this task (see Fig. 1. In a first step (bend minimization) a flow in an un-
derlying network determines the shape of the orthogonal drawing. A second
step (compaction) deals with assigning the coordinates to the vertices and
bends. The library contains Tamassia’s classical bend-minimizing algorithm
(see [TF4.4]) [49] that is applicable if the maximum degree of the input
graph is at most four (PureOrthogonalLayout). For graphs with vertices of
higher degree, AGD contains three extensions of Tamassia’s algorithm: Giotto
(GiottoLayout) [50] and two variations of the quasi-orthogonal drawing algo-
rithm presented in [39] (QuasiOrthogonalLayout and OrthogonalLayout).

Quasi-orthogonal drawings. In the following we will describe the algo-
rithm for generating quasi-orthogonal drawings. First, we introduce the quasi-
orthogonal drawing model. Furthermore we present an extension of Tamas-
sia’s algorithm that constructs drawings in this model.

In the quasi-orthogonal model, vertices are represented by grid points.
This implies that we can no longer stick to pure orthogonal grid embeddings.
Unlike in the Kandinsky model (see [TF4.4])), vertices and edges share a
common grid in the quasi-orthogonal model. These two requirements enforce
some edges to leave the grid lines. We require, however, that 4-planar sub-
graphs are still drawn according to the pure orthogonal standard. We call
vertices with degree greater than four high-degree vertices. Our proposal is to
allow the first segment of any edge leaving a high-degree vertex to run diago-
nally through the grid. The following definition provides a formal description
of the quasi-orthogonal standard:

A quasi-orthogonal grid embedding of a planar graph G = (V, E) is a
function Γ that maps V to points in the grid and E to sequences of segments
whose endpoints lie on the grid. The following properties hold:

(Q1) Γ (v) 6= Γ (w) for v, w ∈ V, v 6= w.
(Q2) The endpoints of Γ (e) are Γ (v) and Γ (w) for all e = (v, w) ∈ E.
(Q3) For two different edges e1 and e2 the paths Γ (e1) and Γ (e2) do not

intersect except possibly at their endpoints.
(Q4) Γ (G− {v ∈ V | δ(v) > 4}) is an orthogonal grid embedding.

Note that property (Q4) of this definition ensures pure orthogonal grid
embeddings for 4-planar graphs. This implies that every orthogonal grid em-

AGD: A Library of Algorithms for Graph Drawing 7

bedding is also a quasi-orthogonal grid embedding. Figure 3 shows an example
for a drawing respecting the properties of the above definition.

Fig. 3. Quasi-orthogonal grid embedding of a 6-planar graph with 7 bends

In the following we describe an algorithm that computes quasi-orthogonal
grid embeddings for planar graphs, see also [39] and [37]. Similar to the
related Giotto algorithm, high-degree vertices v are replaced by faces fv with
δ(fv) = δ(v). The vertices on the boundary of such a representative face
fv correspond to the adjacencies of the former vertex v, reflecting the order
of the neighbours. We call these special faces cages, in a later phase of the
algorithm every high-degree vertex will be placed in its corresponding cage.
Unlike in Giotto, we do not prescribe on which side of fv the edges adjacent
to v have to leave. We refer to the transformation as T1 (see Algorithm 1 and
Figure 4).

Algorithm 1: Transformation T1

Data : Planar graph G = (V, E), vertex v ∈ V

Result : Transformed graph G (v is replaced by a cage)

for all edges e = (v, w) ∈ E adjacent to v do
split edge (v, w);

end
for all faces f adjacent to v do

link pair of new vertices in f by an edge;
end
delete v and incident edges;

After applying T1(G, v), the newly created face fv represents the former
vertex v. Note that v has been replaced by a structure of δ(v) vertices, each
of which has exactly three neighbours. Let G̃ be the graph that results from
applying T1 to every high-degree vertex in G. In the following analysis, Vi

8 M. Jünger et al.

fv
vv

w1 w2

w3

w4
w5

wδ(v)
wδ(v)

w1 w2

w3

w4
w5

Fig. 4. Transformation T1: Replacing a high-degree vertex v by a cage fv

denotes the set {v ∈ V | δ(v) = i}. It is obvious that T1 does not change
the planarity of the graph and that the resulting number of vertices of G̃ is
in O(|V |) since T1 introduces for each edge in E at most two new vertices.
Furthermore one can easily verify that the inverse operation of transformation
T1 results in the original graph.

Now we can apply Tamassia’s algorithm for 4-planar graphs to G̃. Since
|Ṽ | = O(|V |), the asymptotical notion of running time does not change.

If we, however, do not distinguish between cages and normal faces, the
result is a pure orthogonal grid embedding in which the cages have arbitrary
rectilinear shape. Since we want to place the high-degree vertices inside their
corresponding cages, it would not be a good idea to let the shapes of the cages
get too complicated. Therefore we force cages to be of rectangular shape by
modifying the network of Tamassia’s original algorithm. We then show that
our modifications indeed achieve the desired results and that our formulation
always provides a solution meeting our constraints.

A rectilinear polygon Π has rectangular shape if neither of the angles
inside Π exceeds 180◦. We exploit this fact to formulate a modification of
network N as introduced in Section [TF4.4]. Consider the set of elements R =
{r ∈ H(f)|f is a cage}. For every element r ∈ R we must ensure ar ≤ 180 and
sr = 0∗. These two constraints guarantee that there will be neither a concave
angle nor a concave bend in a cage. In [11] a similar method is proposed
resulting in drawings according to the Giotto standard. In this approach the
angles ar are forced to be equal to 180◦; this leads to an increased total edge
length compared to our approach.

Note that the first requirement (ar ≤ 180◦) is automatically satisfied.
Each vertex v bounding a cage has degree δ(v) = 3 and thus can only form
angles of at most 180◦. We formulate the second constraint by deleting certain
arcs in N . We have to avoid a flow χ(ug,uf) in the case that f represents a
cage. Deleting the arc (ug, uf) makes such a flow impossible.

We have now modified the network of Tamassia’s algorithm for 4-planar
graphs so that each legal flow in it corresponds to an orthogonal representa-
tion with rectangular cages. The following lemma states that these modifica-
tions have no influence on the feasibility of the minimum cost flow problem:

AGD: A Library of Algorithms for Graph Drawing 9

Lemma 1. The minimum cost flow in the modified network corresponds to
an orthogonal representation with the minimum number of bends under the
constraint that every cage has a rectangular shape.

Proof. Let N be the modified network. The modification concerns only the
arcs in AF . To prove the lemma we only have to show that the conservation
rule at nodes uf ∈ UF still holds. Therefore we consider three cases:

1. Face f is a cage.
The incoming flow is

∑
uv

χ(uv,uf), the outgoing flow is
∑

ug
χ(uf ,ug).

There are exactly four angles of 90◦ in the cage occurring either at vertices
or at bends. Thus

|{uv | χ(uv,uf) = 1}|+
∑
ug

χ(uf ,ug) = 4 .

We get
∑
uv

χ(uv,uf) −
∑
ug

χ(uf ,ug) = 2δ(f)− |{uv | χ(uv,uf) = 1}| −
∑
ug

χ(uf ,ug)

= 2δ(f)− 4 = buf
.

2. Face f is the neighbor of a cage.
According to their construction, cages can never be neighbors to other
cages, neither can they enclose other faces. For this reason the demand
of uf can be satisfied by adjacent normal faces.

3. Face f is neither a cage nor a neighbor of a cage.
In this case there is no difference from the unmodified network. Conser-
vation is guaranteed. ut

We now construct an initial orthogonal embedding Γ for the auxiliary
graph G̃ with one of the methods for the compaction phase of the topology-
shape-metrics method (see Section [TF 4.4]). During this step we ensure that
both the height and the width of a cage measure at least two grid units which
can easily be incorporated in any of the compaction methods. At this point,
we want to reverse the changes of transformation T1. Therefore, we define
a second transformation T2 (see Alg. 2) that operates on grid embeddings
and places the high-degree vertices in their cages. The aim is to minimize
the number of bends arising at the boundary of a cage during the process of
connecting a high-degree vertex v with its adjacent edges. Let w1, . . . , wδ(v)

be the vertices on the boundary of the corresponding cage fv and let Γ (fv)
characterize the set of grid points covered by fv. Using straight line edges for
the connection of v with its neighbors, we can save at most four bends. For
the detailed and somewhat tedious description of finding the best grid point
for v, see [37]. A final compaction step might help to further reduce the area
of the drawing.

10 M. Jünger et al.

Algorithm 2: Transformation T2

Data : Orthogonal drawing Γ , cage fv with boundary w1, . . . , wδ(v)

Result : Γ in which fv is replaced by the appropriate vertex v

place v in Γ (fv); // creating a minimum number of bends in Γ (fv)
for i = 1 to δ(v) do

connect v with wi;
end

The whole method is summarized in Alg. 3. The procedure tamassia mod
refers to the modified bend minimizing algorithm of Tamassia (see [TF4.4]
for a description of the original algorithm) where each cage is forced to be of
rectangular shape.

Algorithm 3: Quasi-orthogonal drawing algorithm
Data : Planar graph G = (V, E) with planar embedding P

Result : Quasi-orthogonal grid embedding Γ of G

eG = G;
while ∃ vertex v ∈ eV with δ(v) > 4 do

eG = T1(eG, v);
end
eΓ = tamassia mod(eG, eP); Γ = eΓ ;

for all faces f ∈ eF if f is a cage do
Γ = T2(Γ, f);

end
return Γ ;

Compaction algorithms. The AGD library contains several algorithms for
the compaction phase within the topology-shape-metrics approach. Construc-
tion heuristics assign coordinates to vertices and bends of a given orthogonal
representation that encodes the shape of a planar orthogonal drawing. Im-
provement heuristics operate directly on a layout and try to decrease its total
edge length and area. This division is reflected in the library: The user chooses
a construction method (from CompactionModule or PostCompactionModule)
and optional improvement heuristics (from PostCompactionModule). The
former transforms the orthogonal representation by introducing artificial ed-
ges and vertices. By changing the options of the compaction algorithms, there
are different techniques available for this transformation. AGD’s constructive
heuristics include longest path-based or flow-based compaction with rectan-
gular dissection (LongestPathCompaction and FlowCompaction) [49] and
two variants of a flow-based compaction technique based on the property
of turn-regularity (TurnRegularityCompaction) [4]. For the improvement
phase, AGD offers iterative application of compaction with longest path or

AGD: A Library of Algorithms for Graph Drawing 11

flow computations (LongestPathCompaction and FlowCompaction) as used
in the area of VLSI-design, see, e.g., [41]. In addition, AGD provides an im-
plementation of the integer linear programming-based approach by Klau and
Mutzel (OptCompaction) [40] that produces an optimum drawing in terms of
minimum total length or maximum edge length.

The modular design of the compaction phase proved very useful in a recent
experimental study [38]. All combinations of constructive and improvement
heuristics could easily be compared against each other and against the op-
timum values provided by the integer linear programming-based algorithm.
One of the main insights of this study has been that flow-based compaction
should always be used as an improvement method. Figure 5 shows the output
of two different compaction strategies and a corresponding optimum solution.

(a) Longest-path (b) Flow-based (c) Optimal

Fig. 5. The influence of different compaction algorithms

Alternative planar drawing algorithms. In addition to the orthogo-
nal and quasi-orthogonal planar drawing algorithms described above, the
following planar drawing algorithms are contained in AGD (the corresponding
AGD modules are shown in Fig. 6).

AGD contains an implementation of the Kandinsky algorithm Kandinsky
Layout) (see [TF4.4]) [19] that is not yet available as a module in the pla-
narization method, but can be used for planar graphs with arbitrary vertex
degrees. Unlike other flow-based orthogonal drawing methods, the Kandinsky
algorithm places vertices and bends as points on a coarse grid and routes the
edges in a finer grid as sequences of horizontal and vertical line segments. A
variant of the algorithm uses a common grid for vertices and edges. Vertices
are represented as boxes whose size is bounded by the vertex degree.

Probably, the best known planar graph drawing algorithm is the one by
de Fraysseix et al. [8]. This seminal paper shows that a planar graph with

12 M. Jünger et al.

LayoutModule

GridLayoutModule

VisibilityRepresentation

ConvexLayout

CanonicalOrder

ConvexDrawLayout

KandinskyLayout

FPPLayout

SchnyderLayout

MixedModelLayout
augmenter

PlanarStraightLayout
augmenter

PlanarDrawLayout
augmenter

<planar biconnected><no_crossings>

LEDAMakeBiconnected

PlanAug

OptPlanAug

AugmentationModule

<planar biconnected>

<<uses>>

<<uses>>

Fig. 6. Modules for drawing planar graphs

n vertices can always be drawn without bends and crossings on a grid of
size polynomially bounded in n. The idea is to first augment the graph by
additional edges in order to obtain a triangulated planar graph. Then, a so-
called canonical ordering for triangulated planar graphs is computed, and
finally, the vertices are placed iteratively according to this ordering. The-
oretically, the straight-line planar drawing problem was solved. However,
the drawings do not look nice, especially not after the deletion of edges
added in the augmentation step. Also, the angular resolution is not good.
Recently, some work has been done to improve the aestetic quality of the
drawings. Generalizing the canonical ordering to triconnected [36] and to
biconnected planar graphs [25] already leads to a big improvement. AGD
provides implementations of all three canonical orderings (CanonicalOrder)
and the corresponding placement algorithms (FPPLayout, ConvexLayout, and
PlanarStraightLayout). The algorithms of this paragraph run in linear
time.

The problem of the angular resolution has been solved by introducing
some bends within the edges, leading to pleasant polyline drawings [36,26].
AGD contains a linear implementation of the mixed-model algorithm by
Gutwenger and Mutzel [26] (MixedModelLayout). Figure 11 on page 20 shows
a screenshot of AGD displaying a graph drawn with the mixed-model algo-
rithm.

In order to apply the drawing algorithms to planar graphs that are not
necessarily biconnected, augmentation algorithms are used for augmenting
a planar graph to a biconnected planar graph. The augmentation problem
consisting of adding the minimum number of edges is NP-hard. AGD provides
a simple heuristic using depth-first-search (LEDAMakeBiconnected), the 5/3-
approximation algorithm by Fialko and Mutzel [18] (PlanAug) that in most

AGD: A Library of Algorithms for Graph Drawing 13

cases yields a solution that is very close to an optimum solution, and a branch-
and-cut algorithm for exact optimization (OptPlanAug) [44,31,17].

In addition, AGD contains linear implementations of two algorithms for
producing convex drawings of triconnected planar graphs (ConvexLayout [36]
and ConvexDrawLayout [6]), generalizations of these algorithms to general
planar graphs [25] (PlanarDraw Layout), and an algorithm for producing
weak visibility representations [47] (VisibilityRepresentation).

3.3 Algorithms for Planar Cluster Drawings

Recently, we integrated planar cluster drawing algorithms into the library. In
the following we describe our approach in more detail. We use the notation
of sections [TF2.5] and [TF3.3]. A grid drawing of a clustered graph is called
orthogonal if the underlying graph is drawn orthogonal and the cluster regions
are drawn as rectangles where the corners lie on integer grid points.

Given a c-planar embedding of C = (G,T) (e.g., obtained via the clus-
ter planarity algorithm described in [16]), we apply a modified version of
Tamassia’s algorithm to obtain an orthogonal grid drawing of C.

To make use of Tamassia’s algorithm, we generate the graph G′ from C as
follows: We start with a c-planar embedding of C. Beginning with the leaves
of T , we traverse the cluster tree from bottom to top (level order traversal).
For a non-trivial cluster ν ∈ T we insert an artificial vertex on every incident
edge of ν and afterwards connect the artificial vertices by virtual edges along
the cluster boundary (see Fig. 7). This information is given by the c-planar
embedding. It is obvious that this operation preserves the given c-planar
embedding.

Fig. 7. Generation of the graph G′ from the clustered graph C

Then we apply the modified algorithm of Tamassia to G′. In order to
achieve rectangular regions in the final drawing, we need to modify the flow
network. Note that the representation of the regions of the cluster in G′ are
very similar to the cages that have been introduced in the description of the
quasi-orthogonal drawing algorithm (see Section 3.2). We can use almost the
same modification of Tamassia’s network in order to guarantee the minimum

14 M. Jünger et al.

number of bends with the additional requirement that the clusters are drawn
as rectangular regions.

Finally, we construct an orthogonal grid drawing of C from the orthogonal
grid drawing of G′. It is obvious that we can use the positions of the original
vertices and edges of C that are not incident to clusters of C. In the drawing,
we replace each path containing artificial vertices and representing an original
edge of G incident to a cluster with the drawing of a single edge. We also
replace the virtual edges representing the cluster boundaries by rectangles.
Since the corners of these rectangles correspond to bends in the virtual edges,
they are positioned on integer grid points. The result is an orthogonal grid
drawing of C. An example is shown in Fig. 8.

C5

C1

C2

C3

C6

C4

Fig. 8. Example for a drawing of a clustered graph produced by the algorithm

Let h(T) be the height of the cluster hierarchy T . Then the running time
of the drawing algorithm is O(ñ

7
4
√

log ñ) where ñ = O(nh(T)).

3.4 Algorithms for Sugiyama-Style Layout

AGD provides a flexible implementation of the Sugiyama algorithm [48] rep-
resented by the module SugiyamaLayout that consists of three phases. For
each phase, various methods have been proposed in the literature. The avail-
able AGD modules and their dependencies are shown in Fig. 9.

In the first phase, handled by modules of type RankAssignment, the ver-
tices of the input graph G are assigned to layers. If G is not acyclic, then we

AGD: A Library of Algorithms for Graph Drawing 15

TwoLayerCrossMin

SplitHeuristic

SifitingHeuristic

BarycenterHeuristic

MedianHeuristic

WeightedMedianHeuristic

GreedyInsertHeuristic

GreedySwitchHeuristic

OptCrossMin

HierarchyLayoutModule

FastHierarchyLayout

OptCompCoord

LayoutModule

SugiyamaLayout
ranking

cross_min
comp_coord

runs
transpose SubgraphModule

LEDAMakeAcyclic

OptAcyclicSubgraph

GreedyCycleRemoval

<maximal acyclic>

<maximal acyclic>

RankAssignment

DfsRanking

LongestPathRanking
subgraph

OptNodeRanking
subgraph

CoffmanGrahamRanking
subgraph

Fig. 9. Modules for Sugiyama-style layout

compute a maximal acyclic subgraph and reverse the edges not contained in
the subgraph. AGD contains two linear-time heuristics for solving the NP-
hard maximal acyclic subgraph problem (LEDAMakeAcyclic based on depth-
first-search and a greedy algorithm (GreedyCycleRemoval) [13]), as well as
a branch-and-cut algorithm (OptAcyclicSubgraph) [24] that is able to solve
the problem to provable optimality within short computation time.

Currently, AGD contains the following algorithms for computing a layer
assignment for an acyclic graph in which the edges are directed from ver-
tices on a lower level to vertices on a higher level. LongestPathRanking is
based on the computation of longest paths and minimizes the number of
layers (height of the drawing), OptNodeRanking minimizes the total edge
length [21] (here the length of an edge is the number of layers it spawns),
CoffmanGrahamRanking computes a layer assignment with a predefined maxi-
mum number of vertices on a layer (width of the drawing) [7], and DfsRanking
simply uses depth-first-search and handles general graphs (see [TF4.2]). If
edges spawn several layers, they are split by inserting additional artificial
vertices such that edges connect only vertices on neighboring layers.

The second phase determines permutations of the vertices on each layer
such that the number of edge crossings is small. SugiyamaLayout contains
a sophisticated implementation that uses further improvements like calling
the crossing minimization several times (controlled by the parameter runs)
with different starting permutations, or applying the transpose heuristic
described in [21].

AGD provides implementations of the barycenter heuristic (see [TF4.2])
[48], median heuristic (see [TF4.2]) [14], weighted median heuristic [21], sift-
ing heuristic [42], split heuristic [12], greedy switch heuristic [12], and greedy
insert heuristic [12]. Furthermore, a branch-and-cut algorithm for optimum
solutions based on [32] is implemented (OptCrossMin).

16 M. Jünger et al.

X X

X

X

n11

XXXXXXXX

n13

XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX

n15

XXXX

XXXX

n16

n17

XXXXX

XXXXX

n20

n21

XXXX

n26 n28n30n32

XXX

XXX

XXXX

XXXXX

XXXXX

XXXXX

XXXXX

n53 n54

n7

input9

n8

XXXXXXXXX

n57

XXXXXXXXX

n59n61

n62

XX

n63

n64

XXXX

XXXXX

n55 n56

X XXXX

X

X

n92

n94

n95 XXXXXX

n101n102

n103

XXXX

XXXXXXX

n104n109

n140

n110

n142

n118

n119

XXXX

XXXXX

n120

XXXXXX

n121n125

n126

n127

n128

XXXX

n129

n152

n136n138

n141 n143

n146 n148

n153

XXXX

n169 n170

XXX X

n172 n171

n174 n175

X XXXXX

n176 n177

n2

input3XXXXX X

n72

XXXXX X

n73

XXXXX X

n74

XXXXX X

n75

XXXXXX

n76

XXXXXX

n77

XXXXXX XXXXXX

input86

-XXXXX-

X

X XX

X

X

XX X XX

X XX X

X XX XX

-XXX-

X

X XX

X

X

XX X

-XXX-

X XX

XXXXX

XXXXX

X XX X

X XXXXX

X XX X

X X

X

X

n11

XXXXXXXX

n13

XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX

n15

XXXX

XXXX

n16

n17

XXXXX

XXXXX

n20

n21

XXXX

n26 n28n30n32

XXX

XXX

XXXX

XXXXX

XXXXX

XXXXX

XXXXX

n53 n54

n7

input9

n8

XXXXXXXXX

n57

XXXXXXXXX

n59n61

n62

XX

n63

n64

XXXX

XXXXX

n55 n56

X XXXX

X

X

n92

n94

n95 XXXXXX

n101n102

n103

XXXX

XXXXXXX

n104n109

n140

n110

n142

n118

n119

XXXX

XXXXX

n120

XXXXXX

n121n125

n126

n127

n128

XXXX

n129

n152

n136n138

n141 n143

n146 n148

n153

XXXX

n169 n170

XXX X

n172 n171

n174 n175

X XXXXX

n176 n177

n2

input3XXXXX X

n72

XXXXX X

n73

XXXXX X

n74

XXXXX X

n75

XXXXXX

n76

XXXXXX

n77

XXXXXX XXXXXX

input86

-XXXXX-

X

X XX

X

X

XX X XX

X XX X

X XX XX

-XXX-

X

X XX

X

X

XX X

-XXX-

X XX

XXXXX

XXXXX

X XX X

X XXXXX

X XX X

Fig. 10. Two Sugiyama-style layouts of the same graph drawn with different mo-
dules for the coordinate assignment phase

AGD: A Library of Algorithms for Graph Drawing 17

AGD contains two implementations for the final coordinate assignment
phase. The first (OptCompCoord) tries to let edges run as vertical as possi-
ble by solving a linear program (see [TF4.2]), the second (FastHierarchy-
Layout) proposed by Buchheim, Jünger, and Leipert [5] guarantees at most
two bends per edge and draws the whole part between these bends vertically.
Figure 10 shows two Sugiyama-style layouts of the same graph for which dif-
ferent algorithms for the coordinate assignment phase have been used: the
method proposed in [5] (top), and the LP-based approach (bottom).

Some more specific classes of graphs require algorithms that exploit their
special structure. E.g., trees can be drawn nicely in AGD using the algorithm
by Reingold and Tilford [46] and Walker [52] (see [TF4.1]). Moreover, st-
planar graphs can be drawn by the algorithm suggested in [10].

4 Implementation

AGD [1] is an object-oriented C++ class library, which is based on the two
libraries LEDA [43] and ABACUS [35]. LEDA provides basic data types and
algorithms, e.g., the data type for the representation of graphs. ABACUS
is a framework for the implementation of branch-and-cut algorithms. The
ABACUS library is only used by branch-and-cut algorithms, whereas the
whole basic functionality of AGD is independent of ABACUS. Therefore,
we split the library into two parts, the basic part AGD and the part AGDopt
that contains all ABACUS dependent classes. This makes it possible to use
a subset of the algorithms in AGD without having an ABACUS installation
– a LEDA installation is sufficient in this case.

The most important design feature in AGD for algorithm engineering is
the representation of algorithms as classes that provide one or more meth-
ods for calling the algorithm. Thus, a particular instance of an algorithm
is an object of that class, which can also maintain optional parameters of
the algorithm as member variables. Algorithms providing basically the same
functionality (e.g., computing a subgraph or drawing a graph) are derived
from a common base class, which we call the type of the algorithm, i.e., al-
gorithms of the same type support a common call interface. This allows to
write generic functions that only know the type of an algorithm. The type is
rather general, but can be refined by declaring a precondition (e.g., the input
graph has to be biconnected or planar) and a postcondition (e.g., the pro-
duced drawing is straight-line and contains no crossings). The precondition
specifies how the algorithm can be applied safely.

We call an instance of an algorithm together with its pre- and postcondi-
tion a module. Pre- and postconditions are sets of basic properties (e.g., prop-
erties of graphs like planar, acyclic or biconnected, or properties of drawings
like orthogonal or straight-line). AGD maintains dependencies between these
properties, such as “biconnected implies connected”, or “a tree is a connected
forest”, in a global rule system.

18 M. Jünger et al.

AGD provides a general concept for modeling subtasks of algorithms as
exchangeable modules. Such a subtask is represented by a module option that
knows the module type, a guaranteed precondition (which always holds when
the algorithm is called), and a required postcondition (which must hold for
the output of the algorithm). The current module itself is stored as a pointer.
In order to set a module option, a particular module is passed and automat-
ically checked if it satisfies the requirements, i.e., it has the correct type,
the guaranteed precondition implies its precondition, and its postcondition
implies the required postcondition. These implications are checked using the
global rule system for properties.

Graph drawing algorithms that are tightly connected with a particular
visualization component (e.g., a graph editor) or use very specialized data
structures for representing a drawing (e.g., with many graphical attributes
like line styles, text fonts, . . .) are of limited use because it is difficult to
integrate them into an application program. Each application is forced to
support at least the same set of graphical attributes. Therefore, we decided
to define a basic set of attributes which are required by graph drawing al-
gorithms. An application must support these basic attributes, but can also
use many more. Basic attributes of a node are the width and height of a
rectangular box surrounding its graphical representation and the position of
the center of this representation. Considering only the rectangular outline is
convenient and sufficient for graph drawing algorithms. Basic attributes of
an edge are simply the bend points of its line representation and the two
anchor points connecting the line to its source and target nodes. The graph
drawing algorithms in AGD access the basic attributes using a generic layout
interface class. For a particular visualization component, an implementation
is derived from the generic class and some virtual functions are overridden.
The implementation class is responsible for storing the attributes. When a
graph drawing algorithm is called, an object of this implementation class is
passed and used by the algorithm to produce the layout.

An implementation of the generic layout interface for LEDA’s graph editor
GraphWin is already part of AGD, as well as a simple data structure for
storing a layout. The latter is particularly useful for testing algorithms when
it is not necessary to display the computed layout. AGD comes with the demo
programs, agd demo, agd opt demo, cluster demo und spqr viewer based
on GraphWin, that realize a graph editor with sophisticated layout facilities.
The programs allow to experiment with the various algorithms of AGD, i.e.,
changing options and using different algorithms for subproblems. They can
also be extended and adapted by developers, since their source code is part of
AGD. The program agd server, written by Stefan Näher is also part of the
AGD package. The server allows to use AGD algorithms via a file or socket
interface. The program reads the graph in GML format [29] from a given
input file and loads the AGD options that specify the layout algorithm from

AGD: A Library of Algorithms for Graph Drawing 19

a second file. Then, the selected algorithm is applied and the result is written
back to the input file, again in GML format.

The following code fragment gives a programming example with AGD. It
shows how to set the planarizer option for the planarization layout.

OptPlanarSubgraph optSub;
OneEdgeMinCrossInserter optInsert;
optInsert.removeReinsert(EdgeInsertionModule::all);

SubgraphPlanarizer planarizer;
planarizer.set_subgraph(optSub);
planarizer.set_inserter(optInsert);

PlanarizationLayout plan;
plan.set_planarizer(planarizer);

We use a subgraph planarizer called planarizer and set its subgraph
option to a module for computing an optimal planar subgraph and its edge
insertion option to the OneEdgeMinCrossInserter with the removeReinsert
option set to all. Finally, we call the planarization layout algorithm plan for
a graph myGraph with the layout information myLayout (containing informa-
tion on the size of the vertices, the position of the vertices, and the position
of the bend points):

plan.call(myGraph,myLayout);

5 Examples

Figure 11 shows a screenshot of AGD displaying a graph with 62 vertices
and 89 edges drawn with the planar mixed model drawing algorithm (see
Section 3.2).

Figure 12 shows a quasi-orthogonal drawing (see Section 3.2) of a data
base graph from the literature [45] generated by AGD.

6 Software

AGD is freely distributed for non-commercial use to Universities and aca-
demic institutions from the AGD home page (http://www.ads.tuwien.ac.
at/AGD/) as platform-dependent binary packages containing precompiled li-
braries and executable demos. The demos can be used without any additional
software or tools. The same holds for the AGD server. This program is com-
mand line based and reads a graph from a file. Depending on the parameters
given in the command line, a new layout is computed and written into an
output file. The library is based on LEDA (currently versions 4.1 and 4.3) [43].

20 M. Jünger et al.

Fig. 11. A screenshot of AGD showing a mixed-model drawing and its options

The AGD library comes in two versions, a standard version that fits the
need of most users, and the version agd opt with additional layout and opti-
mization algorithms that need special purpose optimization software, namely
ABACUS (version 2.3) and the LP-solver CPLEX (http://www.ilog.com).
ABACUS is currently distributed via OREAS (http://www.oreas.com) and
will soon become open source. The following list shows the currently available
distributions.

Linux

• Standard AGD-R: g++ 2.95.3, LEDA 4.1
• AGD-R OPT: g++ 2.95.3, LEDA 4.1, ABACUS 2.3, CPLEX 6.5+
• The AGD server program
• Demo programs

Windows 95/98/NT

• Standard AGD-R: MS Visual C++ 6.0 (multi-threaded), LEDA 4.1
• The AGD server program
• Demo programs

AGD: A Library of Algorithms for Graph Drawing 21

contract

person

product stock

product event commission

condition stock

normal contract

contract holder /

contract

representative /

event

mediator /

event

commission /

product event

structure

BS contract

contract holder

price mediator

booking

ZV contract

account event

representative

KL contract

EL contractestate agent

UK contract

DL contract

RL contract

Fig. 12. A quasi-orthogonal drawing of a data base graph

References

1. AGD User Manual (Version 1.2), 2000. Max-Planck-Institut Saarbrücken,
Technische Universität Wien, Universität zu Köln, Universität Trier. See also
http://www.ads.tuwien.ac.at/AGD/.

2. C. Batini, E. Nardelli, and R. Tamassia. A layout algorithm for data-flow
diagrams. IEEE Trans. Soft. Eng., SE-12(4):538–546, 1986.

3. C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of entity
relationship diagrams. J. Syst. and Softw., 4:163–173, 1984.

4. S. Bridgeman, G. Di Battista, W. Didimo, G. Liotta, R. Tamassia, and L. Vis-
mara. Turn-regularity and optimal area drawings of orthogonal representations.
Computational Geometry: Theory and Application, 16(1):53–93, 2000.

5. C. Buchheim, M. Jünger, and S. Leipert. A fast layout algorithm for k-level
graphs. In J. Marks, editor, Graph Drawing 2000, volume 1984 of LNCS, pages
229–240. Springer-Verlag, 2000.

6. M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs.
Internat. Journal on Comput. Geometry and Applications, 7(3):211–224, 1997.

7. E. G. Coffman and R. L. Graham. Optimal scheduling for two processor sys-
tems. Acta Informatica, 1:200–213, 1972.

8. H. De Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a
grid. Combinatorica, 10(1):41–51, 1990.

9. G. Di Battista and R. Tamassia. On-line planarity testing. SIAM J. Comput.,
25(5):956–997, 1996.

10. G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry
display of planar upward drawings. Discrete Comput. Geom., 7:381–401, 1992.

11. M. Doorley. Automatic Levelling and Layout of Data Flow Diagrams. PhD
thesis, University of Limerick, Ireland, 1995.

12. P. Eades and D. Kelly. Heuristics for reducing crossings in 2-layered networks.
Ars Combinatoria, 21(A):89–98, 1986.

22 M. Jünger et al.

13. P. Eades and X. Lin. A new heuristic for the feedback arc set problem. Aus-
tralian Journal of Combinatorics, 12:15–26, 1995.

14. P. Eades and N. Wormald. The median heuristic for drawing 2-layers networks.
Technical Report 69, Dept. of Comp. Sci., University of Queensland, 1986.

15. T. Eschbach, W. Günther, R. Drechsler, and B. Becker. Crossing reduction by
windows optimization. In M.T. Goodrich and S.G. Kobourov, editors, Graph
Drawing (Proc. GD ’02), LNCS, pages 285–294. Springer-Verlag, 2002.

16. Q.-W. Feng, R.-F. Cohen, and P. Eades. Planarity for clustered graphs. In
P. Spirakis, editor, Algorithms – ESA ’95, Third Annual European Symposium,
volume 979 of LNCS, pages 213–226. Springer-Verlag, 1995.

17. S. Fialko. Das planare Augmentierungsproblem. Master’s thesis, Universität
des Saarlandes, Saarbrücken, 1997.

18. S. Fialko and P. Mutzel. A new approximation algorithm for the planar augmen-
tation problem. In Proc. Ninth Annual ACM-SIAM Symp. Discrete Algorithms
(SODA ’98), pages 260–269, San Francisco, California, 1998. ACM Press.

19. U. Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend
numbers. In F.J. Brandenburg, editor, Graph Drawing ’95, volume 1027 of
LNCS, pages 254–266. Springer, 1996.

20. T. Fruchterman and E. Reingold. Graph drawing by force-directed placement.
Softw. – Pract. Exp., 21(11):1129–1164, 1991.

21. E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo. A technique for
drawing directed graphs. IEEE Trans. Softw. Eng., 19(3):214–230, 1993.

22. Graph Drawing Toolkit: An object-oriented library for handling and drawing
graphs. http://www.dia.uniroma3.it/~gdt.

23. N. Gelfand and R. Tamassia. Algorithmic patterns for orthogonal graph draw-
ing. In S. Whitesides, editor, Graph Drawing ’98, volume 1547 of LNCS, pages
138–152. Springer-Verlag, 1998.

24. M. Grötschel, M. Jünger, and G. Reinelt. On the acyclic subgraph polytope.
Mathematical Programming, 33:28–42, 1985.

25. C. Gutwenger and P. Mutzel. Grid embedding of biconnected planar graphs.
Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1997.

26. C. Gutwenger and P. Mutzel. Planar polyline drawings with good angular
resolution. In S. Whitesides, editor, Graph Drawing ’98, volume 1547 of LNCS,
pages 167–182. Springer-Verlag, 1998.

27. C. Gutwenger and P. Mutzel. A linear-time implementation of SPQR-trees.
In J. Marks, editor, Graph Drawing 2000, volume 1984 of LNCS, pages 77–90.
Springer-Verlag, 2000.

28. C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar
graph. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’2001), pages 246–255, Washington, DC, 2001. ACM Press.

29. M. Himsolt. GML: A portable graph file format. Technical report, Universität
Passau, 1997. See also http://www.uni-passau.de/Graphlet/GML.

30. M. Jünger, S. Leipert, and P. Mutzel. A note on computing a maximal planar
subgraph using PQ-trees. IEEE Trans. on Computer-Aided Design, 17(7), 1998.

31. M. Jünger and P. Mutzel. The polyhedral approach to the maximum pla-
nar subgraph problem: New chances for related problems. In DIMACS Graph
Drawing ’94, volume 894 of LNCS, pages 119–130. Springer, 1994.

32. M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: Perfor-
mance of exact and heuristic algorithms. J. Graph Algorithms and Applications
(JGAA) (http://www.cs.brown.edu/publications/jgaa/), 1(1):1–25, 1996.

AGD: A Library of Algorithms for Graph Drawing 23

33. M. Jünger and P. Mutzel. Maximum planar subgraphs and nice embeddings:
Practical layout tools. Algorithmica, 16(1):33–59, 1996.

34. M. Jünger and P. Mutzel. Automatic graph drawing: Exact optimization helps!
MPS-SIAM Series on Optimization, 2003. to appear.

35. M. Jünger and S. Thienel. The ABACUS system for branch-and-cut and price
algorithms in integer programming and combinatorial optimization. Software
– Practice and Experience, 30:1325–1352, 2000.

36. G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
Special Issue on Graph Drawing, 16(1):4–32, 1996.

37. G. W. Klau. Quasi–orthogonales Zeichnen planarer Graphen mit wenigen
Knicken. Master’s thesis, Universität des Saarlandes, Saarbrücken, 1997.

38. G. W. Klau, K. Klein, and P. Mutzel. An experimental comparison of orthog-
onal compaction algorithms. In Graph Drawing 2000, LNCS. Springer, 2001.

39. G. W. Klau and P. Mutzel. Quasi-orthogonal drawing of planar graphs. Tech-
nical Report MPI-I-98-1-013, Max–Planck–Institut f. Informatik, Saarbrücken,
1998.

40. G. W. Klau and P. Mutzel. Optimal compaction of orthogonal grid drawings.
In G. P. Cornuéjols, R. E. Burkard, and G. J. Woeginger, editors, Integer Pro-
gramming and Combinatorial Optimization (IPCO ’99), volume 1610 of LNCS,
pages 304–319. Springer, 1999.

41. T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John
Wiley & Sons, New York, 1990.

42. C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer crossing
minimization. In J. Kratochvil, editor, Graph Drawing ’99, volume 1731 of
LNCS, pages 217–224. Springer, 1999.

43. K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and Geo-
metric Computing. Cambridge University Press, 1999.

44. P. Mutzel. A polyhedral approach to planar augmentation and related prob-
lems. In Paul Spirakis, editor, Algorithms – ESA ’95, Third Annual European
Symposium, volume 979 of LNCS, pages 494–507. Springer, 1995.

45. O. Rauh and E. Stickel. Fallstudien zum Datenbankentwurf. Th. Gabler, Wies-
baden, 1997.

46. E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. Softw. Eng.,
SE-7(2):223–228, 1981.

47. P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orien-
tations of planar graphs. Discrete Comput. Geom., 1(4):343–353, 1986.

48. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109–125,
1981.

49. R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput., 16(3):421–444, 1987.

50. R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing and
readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-18(1):61–79,
1988.

51. W. T. Tutte. How to draw a graph. Proc. London Mathematical Society,
13(3):743–768, 1963.

52. J. Q. Walker II. A node-positioning algorithm for general trees. Software –
Practice and Experiments, 20(7):685–705, 1990.

53. T. Ziegler. Crossing Minimization in Automatic Graph Drawing. PhD thesis,
Max-Planck-Institut für Informatik, Saarbrücken, 2000.

