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Kurzfassung

Für viele Geschäftsmodelle in der Mobilitätsbranche wird eine optimale Verteilung von
Servicestellen für eine Kundengemeinschaft benötigt. Beispiele dafür sind Ladestationen
oder Batterietauschstationen für elektrische Fahrzeuge, Fahrradverleihsysteme oder Re-
paraturstellen für Fahrzeuge. Zwei grundsätzliche Probleme sind dabei die Erhebung
der notwendigen Daten, um die Kundennachfrage abzuschätzen, sowie das Identifizieren
von optimalen Orten zum Platzieren von Servicestellen anhand der erhobenen Daten.
Üblicherweise werden diese zwei Probleme separat gelöst. Allerdings ist das Erheben von
Kundeninformation auf diese Art von Grund auf unvollständig und so gut wie immer
fehleranfällig, da hier etliche Aspekte auf komplexe, nicht offensichtliche Weise zusam-
menspielen und deren Einfluss mit den üblichen Modelliermethoden oft nicht erfasst
werden kann.

In dieser Arbeit präsentieren wir Lösungsansätze die beide Probleme, das Erheben der
Daten sowie die Optimierung der Orte für Servicestellen, auf einmal lösen. Die Ansätze
basieren auf einer Zusammenarbeit eines Präferenz-basierten Optimierungsalgorithmus
und der Kundengemeinschaft. Anstatt die Anforderungen der Kunden auf die übliche
Art und Weise im Voraus zu erheben, werden die Kunden direkt in den Optimierungs-
prozess eingebunden, indem diese ihre Präferenzen zu geeigneten Orten für Servicestellen
kundgeben können. Dadurch kann Kundenwissen über lokale Gegebenheiten besser be-
rücksichtigt. Vorteile dieser Methode sind eine schnellere und billigere Erfassung von
Kundeninformation, die direkte Einbindung von Kunden in den Planungsprozess, eine
stärkere emotionale Verbindung zwischen den Kunden und dem Produkt sowie besser
akzeptierte Optimierungsergebnisse.

Ein spezielles Problem, das in so einem kooperativen Ansatz berücksichtigt werden muss
ist, dass der Beitrag von einzelnen Kunden von Grund auf egoistisch ist. Daher werden
spezielle Techniken benötigt, um individuelles Feedback zu verarbeiten und allgemein
gültige Schlüsse daraus zu ziehen.

Ein anderer wichtiger Aspekt ist, dass Benutzer nur mit einfachen Fragen, deren Antworten
aber zeitgleich stark richtungsweisend für das Zielsystem sein sollen, konfrontiert werden
sollen. Ein bedeutender Nachteil von interaktiven Algorithmen ist, dass deren Performance
stark von der Qualität der Kunden, die mit dem System interagieren, abhängt. Stetige
Benutzerinteraktion führt schlussendlich zu einer Erschöpfung der Benutzer, wodurch
ihre Fähigkeiten, zuverlässiges Feedback zu geben, stark beeinflusst werden. Aus diesem
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Grund soll Benutzerinteraktion nicht nur als zeitaufwendig, sondern auch als knappe
Ressource angesehen werden. Schließlich muss auch noch entschieden werden, wie das
erhaltene Feeback in der Optimierung berücksichtigt wird. Die Kernoptimierung ist
typischerweise bereits ein herausforderndes Problem. Daher erhöht die Berücksichtigung
von Kundenfeedback in der Optimierung zusätzlich die Komplexität des Problems.

In dieser Arbeit werden drei verschiedene Probleme erforscht. Als Einführung zum
Thema Verteilen von Servicestellen für Mobilitätsanwendungen, behandelt das erste
Problem das Identifizieren von optimalen Orten für Servicestellen unter der Annahme,
dass die benötigte Kundeninformation bereits bekannt ist. Im Speziellen betrachten wir
das Problem zum Verteilen von Batterietauschstationen für elektrische Scooter, deren
Batterien in ein paar einfachen Schritten ausgetauscht werden können. Entladene Batterien
werden an den Tauschstationen wieder aufgeladen und, sobald sie wieder voll sind, den
Kunden wieder zur Verfügung gestellt. Unser Ziel ist nicht nur das Identifizieren von
optimalen Orten für diese Tauschstationen, sondern auch das Ermitteln ihrer Kapazität,
um eine gewisse Menge an Kundennachfrage mit minimalen Kosten erfüllen zu können. Das
problem wird als gemischt ganzzahliges Problem formuliert und eine large neighborhood
search wird entwickelt zum Lösen von entsprechenden Instanzen, abgeleitet von realen
Taxidaten von Manhattan.

Die zweite Problemformulation, die in dieser Arbeit erforscht wird, ist allgemeiner
formuliert, berücksichtigt dafür aber Benutzerinteraktion zum Erheben der Kundenanfor-
derungen verwoben mit dem Opimierungsprozess. Daher berücksichtigen wir in diesem
Problem neben der eigentlichen Optimierung auch, wie Kundeninformation erfasst werden
kann. Zu diesem Zweck präsentieren wir in dieser Arbeit einen kooperativen Optimie-
rungsansatz zum Verteilen von Servicestellen für Mobilitätsanwendungen. Dieser Ansatz
ist iterativ und optimiert an welchen Orten Servicestellen errichtet werden sollen, indem
eine Optimierungskomponente mit Benutzerinteraktion groß angelegt kombiniert wird.
Eine machine learning Komponente stellt dazu die Auswertungsfunktion von Lösungen
während der Optimierung bereit. In jeder Iteration des Algorithmus werden Kandida-
tenlösugen generiert und den Kunden vorgeschlagen, die machine learning Komponente
wir neu trainiert und die Optimierung wird benutzt, um eine neue Lösung, die den
Benutzerbedürfnissen entspricht, zu finden. Wir stellen das Framework unseres koope-
rativen Ansatzes, welches in der Lage ist eine Vielzahl von Mobilitätsproblemen zu
lösen, vor. Zusätzlich diskutieren wir verschiedene machine learning Modelle, um die
erhaltenen Benutzerdaten zu verarbeiten, sowie verschiedene exakte und heuristische
Optimierungsansätze zum Lösen des zugrunde liegenden Problems.

Schließlich betrachten wir auch ein anderes Optimierungsproblem, welches ebenso essen-
tiell ist, um einen effektiven Mobilitätsservice zu etablieren. Im Speziellen betrachten
wir die Betriebsfähigkeit des Services. Wir untersuchen das Problem des Planens von
elektrischen Fahrzeugen an einer Ladestation, sodass die zeitlichen Verfügbarkeiten der
Fahrzeuge sowie die maximal verfügbare Ladeleistung an der Station berücksichtigt
wird. Unter Berücksichtigung von zeitlich abhängenden Energiepreisen sollen die Kosten
zum Laden der Fahrzeuge minimiert werden. Ein besonderer Aspekt, den wir hierbei



untersuchen ist, dass die maximale Ladeleistung, mit der ein Fahrzeug geladen werden
kann, vom aktuellen Ladezustand des Fahrzeuges abhängt. Wir schlagen zwei Methoden
vor, um das Problem zu lösen. Der erste Ansatz ist ein cutting plane Ansatz, der die
konvexe Hülle der im allgemeinen nicht konkaven Kurve des Ladezustands ausnutzt. Der
zweite Ansatz basiert auf einer stückweisen Linearisierung der Kurve des Ladezustands
und wird mittels branch-and-bound gelöst. Beide Ansätze werden in experimentellen
Untersuchungen evaluiert anhand künstlich erstellter Testinstanzen, welche teilweise von
realen Daten abgeleitet wurden.





Abstract

For many business models in the mobility domain an optimal distribution of service points
in a customer community is needed. Examples are charging stations of electric vehicles
(EVs), bicycle sharing stations, battery swapping stations, or repair stations. Two main
challenges are to get the necessary data about the community and environment in order
to estimate user demands, local constraints of potential locations, and other properties
and to identify optimal service station locations based on these data. Traditionally,
these two tasks are considered in a separated fashion. Obtaining input data for the
optimization step in a classical way essentially always is inherently incomplete and error
prone for larger practical scenarios since manifold aspects play roles in complex, often
non-obvious ways, and not all of them can be captured with appropriate estimations of
their impacts.

In this work we present approaches for solving both challenges, the data acquisition and
the optimization, in a combined way by a cooperation of a preference-based optimization
algorithm and customers. Instead of estimating customer demands upfront, customers
are incorporated directly into the optimization process, i.e., users can interact with the
optimization algorithm by expressing their preferences for where to best place service
points. Potential customers further know local situations and their particular properties,
including also special aspects that cannot be easily captured in a classical data acquisition
approach. The expected benefits of such an approach are a faster and cheaper data
acquisition, the direct integration of users into the whole planning process, possibly a
stronger emotional link of the users to the product, and ultimately better and more
accepted optimization results.

A particular challenge to be considered for such a cooperative approach is that the
input from each individual user is inherently egoistic. Hence special techniques are
necessary for aggregating, interpolating, and extrapolating individual user feedback in
order to derive more globally valid aspects. Another important aspect is that users must
be confronted with easy questions or tasks whose answers at the same time provide
strong guidance for the target system. A major disadvantage of interactive algorithms
is that their performance strongly depends on the quality of the feedback given by
the interactors. Continuous user interactions will eventually result in user exhaustion,
negatively influencing the reliability of the obtained feedback. Therefore, user interactions
should not only be considered time consuming but users also need to be treated as a
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scarce resource. Finally, one has to decide how to incorporate the obtained user feedback
into the optimization. The core optimization problems are typically already challenging
to solve. Hence, considering user feedback during the optimization adds an additional
layer of complexity that needs to be addressed.

In this thesis three different problems are investigated. As an introduction to distributing
service points for mobility applications, the first problem focuses on the challenge
of identifying optimal service station locations under the assumption that demand
information is already known. Specifically, we investigate the problem of setting up
battery swapping stations for electric scooters. For the considered electric scooters,
batteries can be swapped quickly in a few simple steps. Depleted batteries are recharged
at these swapping stations and provided again to customers once fully charged. Our
goal is to identify optimal battery swapping station locations as well as to determine
their capacities appropriately in order to cover a specified level of assumed demand at
minimum cost. The problem is formulated as a Mixed Integer Linear Program (MILP)
and a Large Neighborhood Search (LNS) is developed for solving instances derived from
real-world taxi data of Manhattan.

The second problem is more generic but therefore considers user interaction for obtaining
demand information interleaved with the optimization. As core concept of this thesis we
present a Cooperative optimization Approach (COA) for distributing service points of
mobility applications. This approach is an iterative algorithm that optimizes the location
of service points by combining an optimization component with user interaction on a
large scale and a machine learning component that provides the objective function for
the optimization. In each iteration candidate solutions are generated and suggested to
the future potential users for evaluation, the machine learning component is (re-)trained
on the basis of the collected feedback, and the optimization is used to find a new solution
fitting the needs of the users as well as possible. We propose a framework for COA that
is suitable for solving a large range of mobility applications, such as charging stations of
electric vehicles or vehicle sharing systems. Additionally, we discuss different approaches
for implementing the components of COA. Specifically, we propose different machine
learning models for processing the obtained user feedback and different optimization
techniques for solving the underlying problem w.r.t. the current user information including
mixed integer programming as well as heuristic methods.

Finally we consider a different optimization problem which is also crucial for establishing
an effective electric mobility service. Specifically, the operability of the service. We
investigate the problem of scheduling the charging of EVs at a single charging station
such that the temporal availability of each EV as well as the maximum available power at
the station are considered. The total costs for charging the vehicles should be minimized
w.r.t. time-dependent electricity costs. A particular aspect we investigate in this context
is that the maximum power at which a vehicle can be charged depends on the current
state of charge (SOC) of the vehicle. Two methods for solving the scheduling problem
are proposed. The first one is a cutting plane method utilizing a convex hull of the
in general nonconcave SOC-power curves. The second method is based on a piecewise



linearization of the SOC-energy curve and is effectively solved by branch-and-cut. All
proposed approaches are vigorously experimentally evaluated on artificial benchmark
scenarios partly derived from real world data.
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CHAPTER 1
Introduction

Traveling in an urban environment has undergone many changes within the last decades
due to continuous progress in the automotive industry as well as a trend towards more
environmentally friendly means of transportation. Nowadays, in most cities there exists a
growing number of alternative modes of transportation to traveling by classical gasoline
powered vehicles. The number of people replacing their gasoline powered vehicle with an
electric vehicle (EV) has strongly increased in recent years and is expected to increase even
further in the future [1]. Additionally, vehicle sharing projects have become increasingly
popular in many cities around the world [2, 3, 4]. A crucial requirement for establishing a
new mobility service in an area is the installation of the necessary infrastructure. A major
part of this process also includes the installation of service points at selected locations in
the respective area. For example, certain types of vehicle sharing services require service
points for picking up and returning vehicles. Furthermore, batteries of EVs need to be
recharged or exchanged regularly at corresponding stations.

Naturally, a major challenge to overcome for a mobility service to be successful is the
proper placement of such service points. Service points should be placed in such a way
that the utility of the service system is maximized while taking into account limitations,
such as financial budgets or inaccessible areas. We refer to such problems generally as
service point distribution problems (SPDPs). Two main challenges for solving SPDPs
are to first get the necessary data about the community and environment in order to
estimate user demands, local constraints of potential locations, and other properties and
to then identify optimal service station locations based on these data. Traditionally, in
the literature the data acquisition and the optimization step are considered in a separated
fashion, e.g., [5, 6, 7, 8] for setting up vehicle sharing systems or [9, 10, 11, 12] for setting
up charging stations for EVs.

The first part of this thesis is dedicated to the second challenge, identifying optimal
locations for service points under the assumption that user demands have already been
acquired a priori. For this purpose we discuss the problem of setting up battery swapping
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1. Introduction

stations for electric scooters in an urban area. The goal is to identify optimal battery
swapping station locations as well as to determine their capacities appropriately in order
to cover a specified level of assumed demand at minimum costs. However, as battery
swapping stations only have a limited capacity one has to consider how users behave
when their preferred stations are not available. Moreover, an additional aspect that
needs to be considered is that depleted batteries are recharged at these swapping stations
and provided again to customers once fully charged. While there already exists work
for setting up a system of battery swapping stations, e.g. [13, 14], to the best of our
knowledge, there is no previous work that considers specifically the aspect of recharging
and reusing returned batteries and its implications concerning station capacities when
optimizing station locations and configurations. We formulate the problem as a Mixed
Integer Linear Program (MILP) and present a Large Neighborhood Search (LNS) for
solving it. The performance of the LNS is compared to the performance of the MILP on
artificial instances as well as instances derived from real-world taxi data of Manhattan.
More specifically, instances are derived from a large set recorded taxi trips between the
taxi zones of Manhattan.

In the second part of this thesis, we investigate SPDPs under the assumption that user
demands are not completely known a priori. Obtaining input data for the optimization
in a classical way essentially always is inherently incomplete and error prone for larger
practical scenarios since manifold aspects play roles in complex, often non-obvious ways,
and not all of them can be captured with appropriate estimations of their impacts. For
example, some customers might use multiple modes of transport for a single trip [15, 16].
Consequently, some more distant service stations might be acceptable to a customer if
they are well connected by public transport used for an additional last leg.

Therefore, we propose an approach for solving both challenges, the data acquisition and
the optimization, in a combined way by a cooperation of a preference-based optimization
algorithm and a larger base of customers. Users are able to continuously provide feedback
during the optimization, allowing them to express their preferences in a more direct way
than in a classical data acquisition approach. The expected benefits of such a cooperative
approach are a faster and cheaper data acquisition, the direct integration of users into
the whole planning process, a stronger emotional link of the users to the product, and
ultimately better and more accepted optimization results. Potential customers further
know local situations and their particular properties, including also special aspects that
are not foreseen to consider in a classical data acquisition approach. For example, if
public transport between two locations is not reliable, e.g. due to frequent delays, users
may wish for an alternative travel method. We first specify a class of Cooperative Service
Point Distribution Problem (CSPDP) in which we define how users can provide feedback.
Afterwards, we present a framework for a Cooperative optimization Approach (COA)
for solving such problems. This framework consists of three main components, one for
obtaining information from users, one for processing the obtained information, and one
for generating optimized solutions based on the processed user feedback. Note that in
this thesis, the focus is put on the core principles and the interaction of the different
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components of COA. More work will be needed to actually apply COA in a real-world
application. Further challenges concern a suitable user interface and a corresponding
distributed implementation for obtaining user feedback where also psychological aspects
of users need to be considered.

Depending on the concrete problem to be solved, these components might be realized
in different ways, especially in regard to how the obtained user feedback is processed.
Therefore, we investigate two different CSPDPs and show how these can be solved with
the COA framework.

In one of the investigated CSPDPs users are considered independent of each other. For
each combination of users and potential locations for service points individual machine
learning models are used for processing user feedback and for making predictions about
unknown user information. Initially, these machine learning models are simple linear
regression models. We use an approach inspired by [17] in which a machine learning
model is incrementally upgraded to higher complexity ones when the error of the model
exceeds a certain threshold. Hence, as more and more user feedback is obtained during
the course of COA, each model is upgraded, e.g., a feedforward neural network, to
make more accurate predictions about users and appropriate service point locations. To
generate optimized solutions for this problem we propose and compare two heuristic
approaches, a variable neighborhood search as well as a population based iterated greedy
approach. Our results show that our ensemble of machine learning models is able to learn
the non-trivial user behavior of all our benchmark scenarios reliably and the optimization
is able to find solutions with only small remaining optimality gaps.

The second CSPDP we investigate is modeled based on the assumption that given a
sufficiently large number of customers there are users which have similar preferences
about suitable locations for service points. To exploit this assumption in COA, we
make use of a matrix factorization based machine learning model which is a popular
approach used in recommender systems for suggesting products to users [18]. Users
are asked to provide values for how suitable a service point location is to their specific
needs. Based on these suitability values a matrix factorization model is used to estimate
the suitability of so far unrated locations for each individual users. Moreover, for this
problem COA always asks users for feedback about their most suitable service point
locations. Therefore, the user information is not missing at random and tends to be
biased towards more suitable service point locations. To consider this aspect, we make
use of an advanced machine learning model proposed by [19] that allows us to add a bias
towards so far unknown user information. Optimized solutions are obtained via heuristic
and mixed integer programming techniques. Specifically, an LNS is developed which uses
a MILP for repairing destroyed solutions. Further, the LNS makes use of a special graph
data structure to efficiently update our rather complicated objective function. In our
results we can observe that the matrix factorization based surrogate model is able to
learn preferences of individual users from users with similar interests. Additionally, using
the advanced matrix factorization model yields a significant improvement in the quality
of the solutions. Moreover, the results show that at the cost of a slight deterioration of
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1. Introduction

usually not more than one percent in the quality of the solutions, the LNS can outperform
the MILP w.r.t. to computation times by orders of magnitudes.

The COA framework is evaluated on completely artificial instances as well as instances
derived form real-world data. Specifically, we derive locations for service points from bus
stop shelter station data of Manhattan and user preferences are based on taxi data of
Manhattan.

At this point it should be noted that setting up service points is not the only challenging
aspect for successfully establishing a mobility service. Once the service infrastructure
has been established, maintaining and maximizing the operability of the service points is
another crucial challenge. Service points usually can handle only a limited amount of
customers at a time, e.g., vehicle sharing stations can become partly unusable if they
become full or empty. Moreover, charging stations for EVs usually have limitations w.r.t.
how many customers can charge at once and how fast the vehicles can be charged. Hence,
in the case of vehicle sharing systems, the service points need to be constantly rebalanced,
ensuring that each station has the right amount of vehicles. On the other hand, charging
stations require a proper scheduling strategy such that their utility can be maximized.

Therefore, the last part of this thesis is dedicated to this aspect and we consider specifically
the task of finding a charging schedule for an EV fleet from the perspective of a charging
station. The schedule must minimize the overall charging costs under time-dependent
electricity costs while respecting each vehicle’s temporal availability, its state of charge,
as well as the charging station’s maximum charging power. A special focus is put on the
aspect that each vehicle’s maximum charging power is limited by a function that depends
on the vehicle’s state of charge, which is particularly important for fast-charging. In
related literature, e.g. [20, 21], it is typically assumed that the maximum charging power
of an EV remains constant over the planning horizon. However, in practice the maximum
charging power depends on the state of charge (SOC) of the EV’s battery. The exact form
of the charging power curve does not only depend on the type of battery and its charging
controller but also on other factors like the ambient temperature or the state of health of
the battery [22]. In most cases the curve is highly nonlinear. Frendo et al. [23] conclude
from numerical experiments that under the constraint of a limited total charging power,
up to 21% more energy can be charged if the SOC-dependent maximum charging power
is considered in the planning. Considering an SOC-dependent maximum charging power
for a discretized time horizon is not trivial as the maximum charging power of an EV may
also change during time steps. To deal with this issue, we instead consider the maximum
energy by which an EV can be charged within a time step. We propose and compare two
MILP based approaches for solving the scheduling problem and evaluate these approaches
in extensive numerical experiments. The first one is a cutting plane method utilizing
a convex hull of the in general nonconcave SOC-power curves. The second method is
based on a piecewise linearization of the SOC-energy curve and is effectively solved by
branch-and-cut. The proposed approaches are evaluated on benchmark instances, which
are partly based on real-world data. To deal with EVs arriving at different times as
well as charging costs changing over time, a model based predictive control strategy is
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1.1. Structure of the Thesis

usually applied in such cases. Hence, we also experimentally evaluate the performance of
our approaches for such a strategy. The results show that optimally solving problems
with general piecewise linear maximum power functions requires high computation times.
However, problems with concave, piecewise linear maximum charging power functions
can efficiently be dealt with by means of linear programming. Approximating an EV’s
maximum charging power with a concave function may result in practically infeasible
solutions, due to vehicles potentially not reaching their specified target SOC. However,
our results show that this error is negligible in practice.

1.1 Structure of the Thesis
In the next chapter we give an overview of the methodological concepts based on which
the approaches in this thesis were developed.

In Chapter 3 the distribution of battery swapping stations for electric scooters is discussed.
The chapter first gives an extensive overview of related problems in the literature. The
problem is formally defined as a MILP, an LNS is presented for solving the problem.
Afterwards, it is described how the test instances are generated and, based on these
instances, the LNS is evaluated and compared to the MILP. The chapter is based on the
publication

T. Jatschka, F. F. Oberweger, T. Rodemann, and G. R. Raidl, “Distributing battery
swapping stations for electric scooters in an urban area,” in Optimization and Appli-
cations, Proceedings of OPTIMA 2020 – XI International Conference Optimization
and Applications (N. Olenev, Y. Evtushenko, M. Khachay, and V. Malkova, eds.),
vol. 12422 of LNCS, pp. 150–165, Springer, 2020.

Chapter 4 is dedicated to solving SPDPs in a cooperative way. First, related problems
in the literature are discussed and it is shown how demand information for various
Service Point Distribution Problem (SPDP)s have been obtained so far. The next section
defines the class of CSPDPs and the way in which users can interact with the COA
framework which is presented afterwards. Then, two concrete CSPDPs are defined and it
is shown how these problems can be solved within the COA framework. For each of the
problems it is described how the components of the COA framework are implemented
and the performance of the resulting approaches is tested on artificial instances as well
as real-world inspired instances. The chapter is based on the publications

• T. Jatschka, T. Rodemann, and G. R. Raidl, “A cooperative optimization approach
for distributing service points in mobility applications,” in Evolutionary Computa-
tion in Combinatorial Optimization (A. Liefooghe and L. Paquete, eds.), vol. 11452
of LNCS, pp. 1–16, Springer, 2019

• T. Jatschka, T. Rodemann, and G. R. Raidl, “VNS and PBIG as optimization
cores in a cooperative optimization approach for distributing service points,” in
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1. Introduction

Computer Aided Systems Theory – EUROCAST 2019, vol. 12013 of LNCS, pp. 255–
262, Springer, 2020

• T. Jatschka, T. Rodemann, and G. R. Raidl, “Exploiting similar behavior of
users in a cooperative optimization approach for distributing service points in
mobility applications,” in The 5th International Conference on machine Learning,
Optimization and Data science – LOD 2019 (G. Nicosia, P. Pardalos, G. Giuffrida,
R. Umeton, and V. Sciacca, eds.), LNCS, pp. 738–750, Springer, 2019

• T. Jatschka, G. R. Raidl, and T. Rodemann, “A general cooperative optimization
approach for distributing service points in mobility applications,” Algorithms, vol. 14,
no. 8, 2021

• T. Jatschka, T. Rodemann, and G. R. Raidl, “A large neighborhood search for a
cooperative optimization approach to distribute service points in mobility applica-
tions,” in Metaheuristics and Nature Inspired Computing (B. Dorronsoro, F. Yalaoui,
E.-G. Talbi, and G. Danoy, eds.), vol. 1541 of CCIS, pp. 3–17, Springer, 2022.

In Chapter 5 we discuss the scheduling of EVs at charging stations. Again, an overview
of related literature is given and afterwards the problem is described in more detail.
Additionally, it is shown how to derive the maximum charging energy from the maximum
charging power in an exact as well as an approximate way. Then, it is shown how
to solve the scheduling problem for concave maximum energy function with a linear
program. Afterwards, a more general approach is described for non-concave, piecewise
linear energy function. Then, it is explained how the benchmark instances are generated
and experimental results are presented. The chapter is based on the publications

• B. Schaden, T. Jatschka, S. Limmer, and G. R. Raidl, “Smart charging of electric
vehicles considering SOC-dependent maximum charging powers,” Energies, vol. 14,
no. 22, 2021

• B. Schaden, “Scheduling the charging of electric vehicles with soc-dependent maxi-
mum charging power,” Master’s thesis, TU Wien, 2021. Supervised by G. R. Raidl
and T. Jatschka.

Finally, Chapter 6 concludes this thesis and discusses future work.
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CHAPTER 2
Methodologies

In this chapter we give a detailed description of the concepts on which the approaches
presented in this thesis are based on. First, we introduce basic mathematical definitions.
The second part is dedicated to mathematical programming approaches, specifically,
linear programming and mixed integer linear programming. After giving formal defi-
nitions, we briefly describe the most important approaches for solving (mixed integer)
linear programming models. Next, relevant (meta)heuristics are discussed, specifically,
greedy construction heuristics, local search, population-based iterated greedy, variable
neighborhood search, as well as large neighborhood search. Another important area
for this thesis is machine learning. We give a brief introduction to machine learning in
general and then present relevant machine learning approaches, such as linear regression,
neural networks, and matrix factorization in more detail.

2.1 Basic Definitions
Vectors and matrices we follow the notation of [32]. We refer to an element of Rn as a
vector of size n. To better distinguish vectors form scalar values, vectors are highlighted
in bold font. Let

x =

x1
...
xn

 (2.1)

be a vector of size n. Then xi refers to the element of ith element of x.

Given dimensions n,m ∈ N, a matrix W ∈ Rm×n is an m · n tuple of elements, i.e.,

W =


w11 w12 . . . w1n
w21 w22 . . . w2n
...

...
...

wm1 wm2 . . . wmn

 (2.2)
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2. Methodologies

where wij refers to the element of row i and column j. Just as vectors, matrices are
highlighted in bold font as well.

The transpose of a vector x and a matrix W is denoted by x′ and W′, respectively.

2.2 Mathematical Programming
The goal of mathematical programming is to find a minimum or maximum value of a
real valued function subject to a set of constraints. For this thesis we only focus on
mathematical programs that can be expressed with a linear optimization function as well
as linear constraints. Moreover, as maximization problems can easily be transformed into
minimization problems and vice versa in the following, only minimization problems are
discussed. This overview is based on [33, 34, 35], and [36].

2.2.1 Linear Programming

In [33, p. 3] a Linear Program (LP) is defined as follows:

min c′x (2.3)
s.t. ai

′x ≥ bi ∀i ∈M1 (2.4)
ai
′x ≤ bi ∀i ∈M2 (2.5)

ai
′x = bi ∀i ∈M3 (2.6)

xj ≥ 0 ∀j ∈ N1 (2.7)
xj ≤ 0 ∀j ∈ N2 (2.8)

or in a more compact form

min c′x (2.9)
s.t. Ax ≥ b (2.10)

x ∈ Rn (2.11)

The goal of an LP is to find an assignment of the decision variables x = (x1, . . . , xn)
such that the objective function of the problem (2.3), i.e., a dot product of the decision
variables x and a cost vector c, is minimized and all Constraints (2.4) - (2.8) are satisfied.
In linear programming a constraint can generally be seen as a comparison between a
dot product of the decision variables x with a vector ai to a scalar bi. A solution to an
LP is referred to as feasible if all of the LP’s constraints are satisfied w.r.t. the variable
assignment of the solution and as infeasible otherwise. Additionally, if a solution is not
only feasible but also minimizes the objective function, the solution is also called optimal.

The constraints of a linear program can be expressed as either equalities or inequalities.
The domain of a decision variable, i.e., the set of values that can be assigned to the
variable, can either be restricted or free.
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2.2. Mathematical Programming

As previously mentioned, a minimization problem can be transformed into a maximization
problem and vice versa:

min c′x = max −c′x

From a geometrical point of view, the feasible region, i.e., the set of all feasible solutions,
of an LP can also be described by a polyhedron:

Definition 1 ([33, p. 42]). A polyhedron is a set that can be described in the form
{x ∈ Rn : Ax ≥ b}, where A is an m× n matrix and b is a vector in Rm.

Generally, LPs are in P and can therefore be solved in polynomial time. Polynomial
time algorithms include the ellipsoid method [37] and interior point methods [38]. In
practice, the preferred approaches for solving LPs are usually the simplex method [39]
and variations of it which have exponential worst case complexity.

The basic idea of the simplex method is to travel between the extreme points of the
polyhedron of an LP along the polyhedron’s edges. More specifically, consider first the
following definition of an active vector:

Definition 2 ([33, p. 48]). If a vector x∗ satisfies ai
′x ≤ bi for some i in M1, M2, or

M3 the corresponding constraint is referred to as active or binding at x∗.

Definition 3 ([33, p. 50]). Consider a polyhedron P defined by equality and inequality
constraints, and let x∗ be an element of Rn.

(a) The vector x∗ is a basic solution if:

(i) All equality constraints are active;
(ii) Out of the constraints that are active at x∗, there are n of them that are

linearly independent.

(b) If x∗ is a basic solution that satisfies all of the constraints, we say that it is a basic
feasible solution.

As there is usually only a finite number of linear inequality constraints, the number of
basic feasible solutions is finite as well. Moreover, note the following relation between
vertices, extreme points and basic feasible solutions:

Theorem 1 ([33, p. 50]). Let P be a nonempty polyhedron x∗ ∈ P . Then the following
are equivalent:

(a) x∗ is a vertex;

(b) x∗ is an extreme point;

(c) x∗ is a basic feasible solution.
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If a polyhedron is nonempty and bounded, it has at least one extreme point. Additionally,
if there exists at least one optimal solution to a linear program, then there exists an
optimal solution that is an extreme point of the associated polyhedron. Therefore, we
can solve LPs by exploring only the extreme points of the associated polyhedron. If an
extreme point is adjacent to more than one extreme point, the algorithm chooses the
most cost reducing direction (w.r.t. minimization problems).

2.2.2 Mixed Integer Linear Programming

In [33, p. 452] a Mixed Integer Linear Program (MILP) is defined as follows:

min c′x + d′y (2.12)
s.t. Ax + By ≤ b (2.13)

x,y ≥ 0 (2.14)
x ∈ Zn (2.15)

In contrast to an LP, the domains of some of the variables are sets of integers. Such
variables are referred to as integer variables. A special case of integer variables are so
called 0-1 or binary variables which must always be either zero or one. Note that solving
MILPs is NP-hard, even when limited to binary variables only [40].

Most state of the art approaches for solving MILPs are based on Branch-and-Bound
(BB) and cutting plane methods. Branch-and-bound divides the set of feasible solutions
into subproblems and computes upper and lower bounds to decide whether a subproblem
should be refined or discarded. Note that for minimization problems upper and lower
bounds are usually referred to as primal and dual bounds. For maximization problems
upper and lower bounds are usually referred to as dual and primal bounds. A primal
bound is usually derived from a feasible but not necessarily optimal solution. Dual
bounds are often derived from the linear programming relaxation of a MILP:

Definition 4 ([33, p. 462]). Given a MILP

min c′x + d′y
s.t. Ax + By ≤ b

x,y ≥ 0
x ∈ Zn

its linear programming relaxation is defined as

min c′x + d′y
s.t. Ax + By ≤ b

x,y ≥ 0,

where the requirements that x is a vector of integers was relaxed.
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2.2. Mathematical Programming

While every feasible MILP solution is also a feasible solution to its LP-relaxation, the
other way is usually not true. Clearly, an optimal solution to the LP-relaxation is a dual
bound to the optimal solution of its original MILP.

The LP-based Branch-and-Bound (LP-BB) procedure, described in Algorithm 2.1, uses
the LP-relaxation for deriving dual bounds for its subproblems and is one of the most
common ways for solving MILPs. At the beginning, LP-BB initializes a primal bound z

Algorithm 2.1: LP-based Branch-and-Bound, [35, p. 113]
Input: Problem: min{c′x | x ∈ S}

1: x∗ ← primal heuristic;
2: z̄ ← obj(x∗);
3: L← {S};
4: while L 6= ∅ do
5: S′ ← select problem from L;
6: xLP ← solve LP relaxation w.r.t. S′;
7: if xLP is infeasible then prune by infeasibility;
8: z ← obj(xLP);
9: if z ≥ z̄ then prune by bound;

10: else if xLP ∈ S then
11: x∗ ← xLP;
12: z̄ ← z;
13: prune by optimality;
14: end if
15: else
16: xj ← choose fractional value from xLP;
17: S′1 ← {x ∈ S′ | xj ≤ bxLP

j c};
18: S′2 ← {x ∈ S′ | xj ≥ dxLP

j e};
19: L← L ∪ {S′1, S′2};
20: end if
21: end while
22: return x∗;

for the problem to be solved using either some heuristic approach or just some trivial
bound such as ±∞. Afterwards, for a list of subproblems L the LP relaxations are
sequentially solved and based on the obtained solutions it is decided whether the current
subproblem should be further divided into new subproblems or whether it should be
pruned. For LP-BB a subproblem can be described as a set of solutions S′ over which an
optimized solution should be derived. If no solution xLP to the LP relaxation w.r.t. S′
can be obtained, the current subproblem is discarded. If the objective value z of xLP is
larger or equal to z, the subproblem is discarded as well since it is not possible to achieve
a solution better than the current incumbent solution x∗ w.r.t. S′. However, in case xLP

is also a feasible solution to the original (non relaxed) formulation with z < z, a new
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2. Methodologies

incumbent solution as well as primal bound is found and updated correspondingly. Just
as in the previous cases, the subproblem is pruned. Finally, in the case that z < z and
xLP is not a feasible solution to the original formulation new subproblems are added to
L. A subproblem S′ is divided into two new subproblems by first selecting one of the
integer variables xj whose value in the LP solution w.r.t. S′ is fractional and then setting
fixing the value of this variable to bxLP

j c and dxLP
j e, respectively. When L is empty it is

guaranteed that x∗ is an optimal solution, assuming that the problem has an optimal
solution.

Note that the performance of the LP-based branch and bound algorithm can be strongly
influenced by choosing good strategies for choosing the next subproblem on the list as well
as choosing on which variable to branch. For both of these problems multiple strategies
have been investigated. Commonly used strategy for choosing the next subproblem as
described in [35] are the depth-fist search strategy and the best-node first strategy. The
goal of the depth-first strategy is to find a good feasible solution by descending the
enumeration tree in order to have a good lower bound for pruning. On the other hand,
the best-node first strategy aims to minimize the total number of nodes evaluated in the
tree by always choosing the subproblem with the best upper bound. A popular strategy
for deciding on which variable to branch next is to always choose the most fractional
variable, i.e., for binary variables the one whose value is closest to 1

2 is chosen.

Another commonly used approach for solving MILPs are cutting plane approaches.
Cutting plane approaches are based on the idea that often a small subset of the problem’s
constraints is sufficient for finding an optimal (and feasible) solution. Hence, these
approaches initially solve a relaxed version of the MILP by discarding some of its
constraints. Should the optimal solution s to this relaxation be feasible w.r.t. to the
original formulation then s is also an optimal solution to the original MILP. Otherwise,
there is at least one of the previously discarded constraint that is not satisfied. In this
case, one or more of these violated constraints are added again to the current relaxation
and the relaxation is solved anew. Finding constraints that are violated is also referred
to as separation problem. This procedure is repeated until an optimal solution to the
original MILP is obtained.

This method can also be embedded into a BB procedure yielding the branch and cut
procedure. Branch and cut generates cutting planes for each of its subproblems, in order
to generate stronger dual bounds. For more details regarding cutting plane approaches
as well as branch and cut procedures we refer to [35].

2.3 Heuristic Methods
A major disadvantage of exact approaches, such as mathematical programming, is that
in general generating optimal solutions for large instances of hard problems is a time
consuming process. While finding a high quality solution already requires a lot of effort,
exact approaches also have to provide some kind of guarantee that the found solution
is indeed optimal, i.e., via exhaustive enumeration or by comparing dual and primal
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bounds. Therefore, for most problems exacty approaches are only applicable to small
size instances which are rarely relevant in practical scenarios. However, often good,
non-optimal solutions might already be sufficient, especially if they can be generated
quickly. Procedures for generating promising solutions without quality guarantee are
referred to as heuristics. The advantage of heuristics often is that in comparison to
exact approaches, they not only are able to generate solutions quicker but they also
scale better to large size instances. In this section we will discuss a selection of heuristic
approaches. First, we briefly discuss construction heuristics which often serve as basis
for other heuristics that aim to improve incumbent solutions. Then iterated greedy
algorithms are presented and finally local search based (meta)heuristics are introduced.
The review of heuristic methods is based on [41, 42, 43, 44, 36].

2.3.1 Construction Heuristics

The idea of construction heuristics is to rather quickly generate solutions from scratch.
A classical approach is to build solutions step by step, i.e., to extend a partial solution
iteration wise until a feasible complete solution is obtained. There are multiple strategies
for deciding on how to extend a partial solution. A frequently used strategy is to extend
partial solutions in a greedy way by always adding the component to a partial solution that
results in the best objective value w.r.t. the currently known information. This strategy
is referred to as greedy construction heuristic. Algorithms that require multiple initial
solutions often make use of randomized greedy heuristics in which partial solutions are
extend by making stochastic decisions. Algorithm 2.2 shows a classical randomized greedy
approach that is commonly used in greedy randomized adaptive search procedures [41].
A solution is element-wise created. In each iteration the element that is added to the

Algorithm 2.2: Randomized Greedy Heuristic, [41, p. 285]
1: s← ∅;
2: while s is not complete do
3: RCL ← build restricted candidate list;
4: e← select random element from RCL;
5: s← s ∪ {e};
6: end while
7: return s;

solution is chosen from a so called restricted candidate list (RCL). The RCL is typically
constructed by selecting the elements with the cheapest induced costs when added to the
current partial solution. From the RCL a random element is then chosen and added to
the solution. The RCL is generated in anew in each iteration w.r.t. the current partial
solution. This procedure is repeated until a complete solution is obtained.
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2.3.2 Iterated Greedy

Iterated greedy is an iterative procedure consisting of three steps in each iteration.
Algorithm 2.3 shows a basic pseudocode of iterated greedy. First, a current incumbent
solution is partially destroyed, typically by freeing a subset of the decision variables and
fixing the other to their current values. Afterwards, the destroyed solution is repaired
by applying a greedy construction heuristic. Finally, it is decided whether the previous
solution or the repaired one should be kept. A common strategy is to keep the solution
with the better objective. However, to prevent the algorithm from converging too quickly
to a non optimal value, accepting the worse solution with some probability might be a
viable strategy. A specific implementation of this strategy is the Metropolis criterion [45]
in which a worse solution can be accepted to some probability in dependence of its quality
and a temperature value that decreases in each iteration of the algorithm. The lower the
temperature value, the smaller is the likelihood of accepting a worse solution. The destroy
and repair procedures are repeated until some termination criterion, e.g., a time limit or
a certain number of iterations in which no improved solution was found, is reached.

Algorithm 2.3: Iterated Greedy, [41, p. 552]
1: s← GenerateInitialSolution;
2: s∗ ← s;
3: while termination criteria not met do
4: s′ ← destroy(s);
5: s′ ← repair(s′);
6: s← accept(s, s′);
7: if s is better than s∗ then s∗ ← s;
8: end while
9: return s∗;

An alternative way for controlling the diversification/intensification behavior of iterated
greedy is to use a Population-Based Iterated Greedy (PBIG) [46]. Instead of a single
solution, a population, i.e., a set of solutions, is considered. The size of the population is
decided by a parameter and is fixed throughout the iterations of the algorithm. In each
iteration new solutions are derived by applying the destroy and repair procedure to each
individual of the population and the accepted solutions form the new population for the
next iteration.

2.3.3 Local Search

In contrast to a construction heuristic, local search does not generate solutions from
scratch. Instead, the goal of local search procedures is to improve the quality of an
already existing solution.

Local search forms the basis of a multitude of metaheuristics, such as variable neigh-
borhood search and large neighborhood search. The local search procedure consists
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of three components. The first component is the neighborhood function which assigns
to a solution s a set of neighbors N(s). Instead of explicitly defining the function, a
neighborhood is usually defined by some operation which, applied to s, generates all
neighbors of s. The goal of local search is to find a local optimum, i.e., a solution s
whose quality is not worse than any other solution in N(s). Hence, a local optimum is a
solution which is optimal w.r.t. some neighborhood. A solution s can be improved by
replacing it with a solution s′ in N(s) s.t. the quality of s′ is higher than the quality of s.
By repeating this procedure as long as possible one eventually reaches a local optimum.

The second local search component is the step function that decides which solution in
N(s) replaces the original solution s. One possibility is the so called first improvement
method, which replaces s with the first found solution that has higher quality. Another
way to replace s is the best improvement method, which replaces s with the solution
that has the highest quality in N(s). Moreover, one can also just pick a single random
neighbor and replace the current solution if this leads to an improvement. Note that the
choice of the most suitable step function is problem specific.

The last local search component is the termination criterion which decides when to
terminate the local search. Ideally, the local search continues until a local optimum has
been reached. However, sometimes this may be too time consuming and then a different
termination criterion like the number of iterations or the time may be used. A local
optimum of a neighborhood cannot always be found in reasonable time. Therefore, we
prematurely terminate the local search if a specific criterion is met.

Algorithm 2.4 shows a basic pseudocode for the local search procedure.

Algorithm 2.4: Local Search
Input: initial solution s

1: while termination criteria not met do
2: s′ ← step function(N(s));
3: if s′ is better than s then
4: s← s′;
5: end if
6: end while
7: return s;

Variable Neighborhood Descent (VND) is an extension of local search in which the
local optimum over a set of neighborhoods is determined. Algorithm 2.5 shows the
basic procedure of VND. Starting with some initial solution s, a new solution shall
be generated w.r.t. a neighborhood Nk(s). If the respective step function does not
yield a better solution, the procedure is repeated and the next neighborhood Nk+1(s) is
considered. VND terminates when no neighborhood is able to yield an improved solution.
However, once an improved solution is found, in the next iteration the first neighborhood
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Algorithm 2.5: Variable Neighborhood Descent, [43, p. 64]
Input: initial solution s, , neighborhood structures {N1, . . . , Nkmax}

1: k ← 1;
2: while k ≤ kmax do
3: s′ ← step function(Nk(s));
4: if s′ is better than s then
5: s← s′;
6: k ← 1;
7: end if
8: else k ← k + 1;
9: end while

10: return s;

is considered again. Therefore, when VND terminates, the obtained solution is a local
optimum w.r.t. all considered neighborhoods.

Basic Variable Neighborhood Search (VNS) [47] extends VND by a nondeterministic
component. Algorithm 2.6 shows the basic VNS pseudocode. Basic VNS is almost
identical to VND. However, at the beginning of each iteration a random solution s′ is
randomly chosen from the current neighborhood Nk(s). This process is also referred to
as shaking.

Algorithm 2.6: Basic Variable Neighborhood Search, [43, p. 67]
Input: initial solution s, neighborhood structures {N1, . . . , Nkmax}

1: while termination criteria not met do
2: k ← 1;
3: while k ≤ kmax do
4: s′ ← random element of Nk(s);
5: s′ ← LocalSearch(Nk(s′));
6: if s′ is better than s then
7: s← s′;
8: k ← 1;
9: end if

10: else k ← k + 1;
11: end while
12: end while
13: return s;

Finally, General Variable Neighborhood Search (GVNS) further extends the basic VNS
by not only introducing an additional dedicated set of shaking neighborhoods but by
also applying a complete VND instead of a single step function in each iteration. In each
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iteration of GVNS a new solution is obtained by choosing a random element from the
current shaking neighborhood Nk. Afterwards this solution is optimized with VND w.r.t.
to a different set of neighborhoods {N ′1, . . . , N ′lmax

}.

Algorithm 2.7: General Variable Neighborhood Search, [43, p. 68]
Input: initial solution s, neighborhood structures

{N1, . . . , Nkmax}, {N ′1, . . . , N ′lmax
}

1: while termination criteria not met do
2: k ← 1;
3: while k ≤ kmax do
4: s′ ← random element of Nk(s);
5: s′ ← VND(s′, {N ′1, . . . , N ′lmax

}) ;
6: if s′ is better than s then
7: s← s′;
8: k ← 1;
9: end if

10: else k ← k + 1;
11: end while
12: end while
13: return s;

2.3.4 Large Neighborhood Search

Large Neighborhood Search (LNS) [44] is a prominent metaheuristic for addressing
difficult combinatorial optimization problems, which builds upon effective lower-level
heuristics. A basic LNS in essence follows a classical local search framework, but usually
much larger neighborhoods are considered in each iteration. The key idea is to search
these neighborhoods not in a naive enumerative way but to apply some “more clever”
problem-specific procedure to solve the subproblem induced by each neighborhood in order
to obtain the best or a promising heuristic solution from the neighborhood. Frequently,
LNS follows a destroy and recreate scheme: A current incumbent solution is partially
destroyed, typically by freeing a subset of the decision variables and fixing the others
to their current values, and then repaired again by finding best or at least promising
values for the freed variables. Note that the basic LNS procedure is similar to the
procedure of iterated greedy as described in Algorithm 2.3. However, in contrast to
iterated greedy, LNS typically does not make use of construction heuristics for repairing
destroyed solutions. Instead more sophisticated methods are frequently used for efficiently
identifying a promising solution within a specified neighborhood for example dynamic
programming or MILP-based approaches.
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2.4 Machine Learning Methods
In this section we give a short overview of supervised machine learning and afterwards
explain the machine learning models relevant to this thesis in more detail. The review of
machine learning methods is based on [48, 32, 49, 50, 51, 52].

Machine learning has become increasingly popular in the recent years. While machine
learning and its concepts have already been investigated in the 1950s [53], it is thanks
to the recent increase in computing power that these concepts can today be applied in
reasonable time also on huge sets of data and for more advanced applications. In [48]
machine learning is defined as a computer program being able to learn from experience
by performing tasks evaluated by some performance measure. More generally, the goal of
machine learning is to train an algorithm with a set of known sample data in order to
either make approximations about unknown data or to detect new patterns within the
input data.

Machine learning is often divided into supervised and unsupervised learning. In supervised
learning algorithms are trained from labeled data, i.e., for every input data an associated
output label is provided. The most common types of supervised learning are regression and
classification. For both the goal is to predict an output value for some (unknown) input.
While for regression the output can be a real-valued number or vector, classification is
used when the output is restricted to a set of integers representing categories. Figure 2.1
shows an example for a regression as well as a classification problem. The goal of
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(a) Regression: Fitting a curve via linear re-
gression to predict unknown data points.
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(b) Classification: Fitting a function to separate
two different sets of data.

Figure 2.1: Examples of supervised machine learning problems.

unsupervised learning on the other hand, is to identify patterns or similarities within data.
It is often applied for clustering data into groups or for estimating the distribution of
the data from which the input was sampled from. In this thesis only supervised learning
algorithms are used. Note that problems involving learning from a small set of labeled
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data and a large set of unlabeled data are also categorized as semi-supervised learning.
For further reading on unsupervised or semi-supervised learning, we refer to [49, 54].

In supervised learning a machine learning model can be defined as a predictor

fΘ : RD → R (2.16)

mapping an D-dimensional input vector to some real-valued output. Note that the
output may also be multi-dimensional. However, for simplicity we restrict ourselves
to one dimensional outputs. The predictor has a set of parameters Θ. The idea of
supervised learning is to find suitable parameter values Θ∗ so that fΘ∗ fits the input
data well, i.e.,

fΘ∗(xi) ≈ yi, ∀i ∈ {1, . . . , n} (2.17)

where {(x1, y1), . . . , (xn, yn)} is the input data, also referred to as ground truth.

Measuring how well Θ∗ fits the data is done by a loss function E(y, ŷ) comparing the
ground truth labels y = {yi}i∈{1,...,n} to the predicted labels ŷ = {ŷi}i∈{1,...,n} with

ŷi = fΘ∗(xi), ∀i ∈ {1, . . . , n}. (2.18)

There are multiple ways in which E can be realized. A common loss function is the mean
squared error (MSE):

MSE(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2. (2.19)

Naturally, the better Θ∗ fits the data, the smaller the loss reported by E. Therefore
finding good parameter values is a minimization problem

min
Θ′∈T

E((y1, . . . , yn), (fΘ′(x1), . . . , fΘ′(xn))) (2.20)

where T is the domain of the parameters of f . Solving this problem is usually not trivial.
Hence in many cases gradient descent based approximation approaches are employed in
order to quickly compute good parameters for f .

Note however that the primary objective of supervised machine learning is not to find a
model that fits the already known data but a model that also fits unknown data, i.e.,
values for the parameters so that the expected loss over the whole population from which
the input is sampled from is minimized. While using known data to make predictions
about unknown data is a reasonable approach, there is also the risk of overfitting, i.e.,
the predictor fitting too closely to the input data and not generalizing well to unknown
data. To address this problem, often a parameter bias, referred to as regularization term,
is additionally considered, i.e.,

min
Θ′∈T

E((y1, . . . , yn), (fΘ′(x1), . . . , fΘ′(xn))) + λρ(Θ′). (2.21)

Here λ determines the influence of the regularization term ρ. Introducing a regularization
term to the minimization problem is an effective way for countering ill-posed parameter
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configurations. However, the success of regularization depends on setting a proper value
for λ that can often only be determined experimentally. Let Θ′ = {θ1, . . . , θm}, then the
two most prominent regularization methods are the L1 regularization

min
Θ′∈T

E((y1, . . . , yn), (fΘ′(x1), . . . , fΘ′(xn))) + λ
m∑
i=1
|θi| (2.22)

as well as the L2 regularization

min
Θ′∈T

E((y1, . . . , yn), (fΘ′(x1), . . . , fΘ′(xn))) + λ
m∑
i=1

θ2
i . (2.23)

In the remainder of this section, we focus only on the machine learning models used in
this thesis.

2.4.1 Linear Regression

As previously mentioned, regression deals with predicting the outcome of some observation
x = (xi)i∈{1,...,D} using some predictor fΘ with learned parameter values Θ. One of the
simplest regression models is the linear model which combines input variables in a linear
fashion, i.e.,

fΘ(x) = θ0 + θ1x1 + . . .+ θDxD. (2.24)

A linear regression model for D-dimensional training data, has D+1 trainable parameters,
i.e., Θ = {Θi}i∈{0,...,D}, where θ0 is also referred to as bias. By adding a dummy input
x0 = 1, the model can also be written in the more compact vector form as

fΘ(x) = x′Θ. (2.25)

While one can also use gradient descent based approaches for fitting the linear model to
a set of training data, a more effective approach in conjunction with the MSE as loss
function is to fit the model using the method of least squares. Using this method Θ is
chosen in such way that the residual sum of squares is minimized, i.e.,

min
n∑
i=1

(yi − x′iΘ)2 (2.26)

Let y = {yi}i∈{1,...,n} and X = {xi,j}i∈{1,...,n},j∈{0,...,D} where xi,j refers to the jth variable
of xi. Then the solution of this quadratic equation is characterized by

(y−XΘ)′(y−XΘ) (2.27)

By differentiating w.r.t. Θ we get

X′(y−XΘ) = 0. (2.28)
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Then, if X′X is invertible, a unique solution exists, which is given by

Θ̂ = (X′X)−1X′y. (2.29)

Similar to other machine learning models, linear regression can also be regularized.
Adding the L1 regularization term, the new model is referred to as lasso regression and
as ridge regression when adding the L2 regularization term.

2.4.2 Feedforward Neural Networks

The perceptron is the simplest neural network and can be interpreted as a generalization
of a linear regression model. The basic model of a perceptron is given by

fΘ(x) = Φ(θ0 + θ1x1 + . . .+ θDxD) (2.30)

where Φ is referred to as activation function. The activation function used for a perceptron
is typically the sign function, mapping real values to {-1,+1}. Similar to before, we
introduce a dummy variable x0 = 1 to represent the perceptron in a more compact form,
i.e.,

fΘ(x) = Φ(x′Θ). (2.31)

Notice that if Φ is the identity function, the perceptron corresponds to a linear regression
model.

The generalization of a perceptron is the multilayer perceptron consisting of three parts:
an input layer, an output layer, as well as a specified number of hidden layers in between
the input and output layers. The basic building block is referred to as a neuron which is
similar to a perceptron, however, the activation function is a more general function. Each
neuron feeds its output to the neurons of the next layer. As data is only fed from output
to input, we refer to such neural networks as feedforward networks. In the standard
architecture of a feedforward network all neurons of one layer are connected to all neurons
of the following layer. Figure 2.2 shows an illustration of a feedforward network.

Assume that a neural network has k hidden layers, where layer i has pi neurons. Then,
the transformation of a D-dimensional input x can be described recursively as follows

h1 = Φ(W′
1x) (2.32)

hi+1 = Φ(W′
i+1hi) ∀i ∈ {1, . . . , k − 1} (2.33)

o = Φ(W′
k+1hk) (2.34)

The learnable parameters of the input layer are given by a matrix W1 with size D × p1.
For a hidden layer i, the matrix Wi is of size pi × pi+1. The kth + 1 layer is the output
layer and its parameter matrix Wk+1 is of size pk × o, where o is the number of outputs.
Note that Θ is the matrix formed by all Wi for i ∈ 1, . . . , k + 1.

The proper choice of the activation function of a network’s neurons is a crucial part of
a neural network’s design. Figure 2.3 gives on overview of commonly used activation
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Figure 2.2: Example of a feedforward neural network.
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Figure 2.3: Commonly used activation functions.
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functions in the hidden layer. For the hidden layer a common activation function is the
Rectified Linear Unit (ReLU) activation function. While the ReLU activation function
works well in practice, it sometimes can get “stuck”, i.e., always returning zero as output.
Therefore, in such a case the leaky ReLU activation function may provide a feasible
alternative.

For regression problems the output layer usually uses the identity activation function,
while for classification problems the softmax function

Φi(x) = exi∑o
j=1 e

xj
(2.35)

is a popular choice as activation function. The softmax function is applied vector-wise,
such that the sum of all outputs is one. For a more comprehensive list of activation
functions we refer to [51].

Parameters Θ can again be learned by minimizing some loss function E. Multi-layer
perceptrons are usually trained via backpropagation consisting of two phases. In the
forward phase training data is fed into the neural network w.r.t. the current parameter
values Θ. Afterwards, the final output as well as the derivative of the loss function w.r.t.
the output is calculated. In the backward phase, the gradient of the loss function w.r.t.
Θ is learned and based on this gradient Θ is updated, i.e.,

Θ← Θ− α∇E(y, ŷ) (2.36)

where α is referred to as learning rate.

A popular approach for training multi-layer perceptrons is the Stochastic Gradient
Descent (SGD) approach. In contrast to the standard gradient descent approach, Θ is
updated in each iteration w.r.t. only a single data point (xi,yi), i.e.,

Θ← Θ− α∇E(yi, ŷi). (2.37)

The period in which all training data are fed to the perceptron is called epoch. In each
epoch the training data are fed to the perceptron in random order. The perceptron is in
general trained over multiple epochs until the loss converges. Note however, that the loss
might not converge if the data are not linearly separable.

Note that there also exist other training algorithms besides SGD such as Adam [55],
an adaptive learning rate method which derives an individual learning rate for each
parameter.

2.4.3 Matrix Factorization

Matrix factorization is a collaborative filtering technique which is frequently used in
recommender systems [52]. The idea of collaborative filtering is to make recommendations
for users based on the preferences of similar users, which means in our context to estimate
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some user demand for a use case by the feedback already provided by other users for
similar use cases. Matrix factorization is based on singular value decomposition which
decomposes a matrix into two smaller matrices. Unknown values can then be estimated
my multiplying the corresponding rows and columns of the decomposed matrices [52].

Given an incomplete matrix containing ratings R = (wi,j)i∈U, j∈P for a set of users U over
a set of products P , the idea behind matrix factorization is to decompose this matrix into
two smaller matrices, a user/feature matrix ξ ∈ R|U |×Φ and a product/feature matrix
ν ∈ R|P |×Φ, such that the product of these two matrices approximates the original matrix.
The parameter Φ refers to the number of features that should be extracted and is chosen
by the user. An unknown rating, i.e., a rating not contained in the original matrix R,
can then be estimated as the dot product of the corresponding feature vectors in matrix
ξ and matrix ν, respectively.

Traditionally, the rating matrix R is factorized by solving the optimization problem

min
ξ,ν

∑
i,j|wi,j∈R

E(wij , ξiν ′j) + λρ(ξ,ν) (2.38)

where E is again a loss function for measuring the error between the actual and the
predicted ratings and ρ is a regularization term.

The two most popular techniques for decomposing a matrix with missing values are SGD
[56] and Alternating Least Squares (ALS) [57]. ALS is usually only preferred over SGD
for parallelization [18].
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CHAPTER 3
Distributing Battery Swapping
Stations for Electric Scooters

This chapter deals with identifying optimal locations for service points under the assump-
tion that user demands are completely known in advance. Even though the demands
of the users are already known, one has to also take into account the behavior of the
users, once the system is operational. Demand information can only be obtained to
a certain degree. However, it is difficult to estimate which service point a user will
choose once the user’s most preferred service points are no longer available, e.g., if their
capacity is exhausted at the moment. An approach to overcome this problem is to have
users assigned by some system to appropriate service points. This requires the users
to specify their needs of service points in advance, e.g., via some mobile app before a
trip. However, for such an approach one needs to consider that customers cannot be
arbitrarily assigned to service points due to a potential unwillingness to accept large
detours. We will investigate this aspect specifically for distributing battery swapping
stations for electric scooters in an urban area. Due to the compactness of electric scooter
batteries, depleted ones can easily be exchanged by charged ones at battery swapping
stations. Exchanging such batteries can be done within a few minutes and is therefore
much faster than waiting for the recharge of batteries.

We propose a Mixed Integer Linear Program (MILP) formulation for this problem that
models the customer demand over time in a discretized fashion and also considers battery
charging times. Moreover, we propose a Large Neighborhood Search (LNS) for addressing
larger problem instances for which the MILP model cannot practically be solved anymore.
The approaches are tested on artificial instances as well as instances derived from real-
world taxi and bus stop shelter data of Manhattan. Part if this chapter was published
as:

T. Jatschka, F. F. Oberweger, T. Rodemann, and G. R. Raidl, “Distributing battery
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swapping stations for electric scooters in an urban area,” in Optimization and Appli-
cations, Proceedings of OPTIMA 2020 – XI International Conference Optimization
and Applications (N. Olenev, Y. Evtushenko, M. Khachay, and V. Malkova, eds.),
vol. 12422 of LNCS, pp. 150–165, Springer, 2020.

Moreover note that this problem of distributing battery swapping stations was studied
as part of a collaboration with Honda R&D Co., Ltd., Japan.

3.1 Introduction
Recharging the batteries of electric vehicles is usually a time-consuming process that
hinders the large-scale adoption of such vehicles, especially when their range without
reloading is too limited. An alternative possibility is to build electric vehicles in which the
batteries can be replaced with charged ones. Batteries for electric scooters are compact
enough to be replaced directly by any customer in a few simple steps. Replacement
batteries are provided in exchange for the used ones at swapping stations. Returned
batteries are recharged at these stations, and once fully charged, they are again provided
for exchange.

We aim at investigating how to best distribute such battery swapping stations in a given
urban area and how many battery slots and corresponding batteries are required at each
station. Our optimization goal is to minimize the setup costs for stations in dependence
of their numbers of slots and required batteries in order to cover a specified amount of
user demand over multiple consecutive time periods. It is assumed that customers who
want to change batteries specify their trip data (origin, destination, approximate time)
online and are automatically assigned to an appropriate station for the exchange (if one
exists). This way, a better utilization of the swapping stations can be achieved. However,
such an automated assignment also needs to consider a certain customer dropout as not
every customer is willing to travel to a predestined station if the detour is long. We
assume that all scooters in our system are homogeneous and therefore require the same
batteries and have the same range. Moreover, since the scooters are operating in an
urban area, it is safe to assume that a scooter’s range is usually larger than the length
of a customer’s single trip. Hence, we do not consider multiple battery swapping stops
for a single trip. In fact, a scooter battery is typically exchanged after multiple trips
only. We model this problem as a MILP. Smaller problem instances can be solved by
directly applying a state-of-the-art MILP solver. To address the aspect of scalability to
larger instances, where the MILP solver does not yield satisfactory solutions anymore, an
LNS is proposed. The approaches are experimentally evaluated on artificial benchmark
scenarios as well as one instance derived from real-world yellow taxi trip data and bus
stop shelter station data of Manhattan.

The remainder of this chapter is structured as follows. Section 3.2 reviews relevant
related work. Section 3.3 presents the problem formalization in the form of a MILP.
The LNS heuristic is described in Section 3.4. Section 3.5 explains how the benchmark
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scenarios are generated. Experimental results of the proposed solution methods are given
in Section 3.6. Finally, Section 3.7 concludes this article and gives an outlook on future
work.

3.2 Related Work
In general, our problem can be classified as a location-allocation optimization problem [58].
Specifically, our problem is closely related to the Capacitated Multiple Allocation Fixed
Charge Facility Location Problem (FLP) [59] in which customers need to be assigned to
facilities in order to satisfy their demand while minimizing costs for building facilities
and serving customers. Moreover, the customer demand can be split arbitrarily between
multiple facilities. When allocating customers to facilities from the perspective of the
facility provider without considering the customers’ preferences, one frequently has to
expect a certain amount of customer dropout which we model with the help of a decay
function as done in, e.g., [60, 61, 62]. Facility location problems with time dependent
parameters are also referred to as multi-period FLPs [59]. One example for a multi-period
FLP can be found in [63], where the dynamic maximal covering problem is considered.

Hodgson [64] introduced the Flow Capturing Location Model (FCLM) which is an
adaptation of the Maximal Covering Location Model [65] for covering demand along
paths in an underlying given graph. Customer demand is given as an origin-destination
pair (O/D pair) and it is assumed that a shortest path is chosen to get from the origin
to the destination. For each specified path there is a set of facilities that can capture the
respective flow/demand. Hodgson as well as Berman et al. [61] argue that in order to
cover the most demand, these facilities should be placed directly at the nodes of a path
to also cover the demand of other paths going through the same node.

Moreover, our problem exhibits similarities with the Capacitated Deviation-Flow Refueling
Location Model (CDFRLM) introduced in [66], which is an extension of the Flow Refueling
Location Model (FRLM) introduced by Kuby and Lim [67]. The FRLM aims to locate
a fixed amount of refueling stations to maximize the total flow volume refueled. In its
original form, this approach for the FRLM is computationally expensive and can only be
applied to small instances. More efficient formulations of the FRLM that can deal with
larger instances are described in [68, 69]. Moreover, instead of placing a fixed number of
stations to maximize the total flow covered, the goal in [69] is to cover all demands with
as little costs as possible. Several extensions of the FRLM have been proposed in the
last years, such as the capacitated FRLM [70] in which the demand a station can satisfy
is limited. The Deviation Flow Refueling Location Model (DFRLM) [62] relaxes the
FRLM by allowing customers to deviate from their shortest O/D pair paths in order to
go to a refueling station. Moreover, it is assumed that the number of customers willing
to take a deviation from the shortest path is exponentially decreasing with the length of
the deviation.

In [71] a system of car charging stations shall be built gradually over time. For this
purpose the model proposed in [69] is extended to a multi-period optimization model.
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Existing stations cannot be relocated in later time periods.

Literature on planning gas filling station locations is surprisingly sparse. In [72] a MILP
model is presented concerning the selection of filling stations to provide with unleaded
fuel.

While there already exists work for setting up a system of battery swapping stations, e.g.,
[13], [14], to the best of our knowledge, there is no previous work that considers specifically
the aspect of recharging and reusing returned batteries and its implications concerning
station capacities when optimizing station locations and configurations. However, there
is work dedicated to minimizing the charging costs at a battery swapping station. For
example [73] deals with obtaining an optimal charging policy while ensuring a certain
level of quality of service at a battery swapping station. In [74] a mixed integer non-linear
programming formulation for setting up battery charging stations for electric vehicles is
presented in which also the waiting time for a free charging slot at a station is considered.

3.3 Problem Definition
In this section we formalize the problem of setting up battery swapping stations for
electric scooters in an urban area. The Multi-Period Battery Swapping Station Location
Problem (MBSSLP), as we call it, minimizes the costs for setting up battery swapping
stations to satisfy a requested expected total demand over a whole day. To be able
to consider battery charging times, we consider a day in a discretized fashion as a set
of equally long consecutive time intervals given as a set of the start times T of the
intervals; w.l.o.g., we assume T = {1, . . . , tmax}. We make the simplifying assumption
that charging any battery always takes the same time and only completely recharged
batteries are provided to customers again. Moreover, as trips in an urban environment
are usually rather short, we further assume that trips start and end in the same time
interval. Additionally, we make the assumption that a customer will always be able to
reach a battery swapping station before his or her battery is depleted.

Let G = (V,A,w) be a weighted directed graph with node set V corresponding to
all relevant geographic locations, arc set A ⊆ V × V , corresponding to shortest paths
between locations, and arc weights w : A → R+ representing the respective travel
times. We assume battery swapping stations can be set up at a subset of locations
L = {1, . . . , n} ⊆ V . Moreover, each location l ∈ L has associated a maximal number
of possible battery charging slots sl ≥ 0, fixed setup cost cl for setting up a station at
this location, and building costs per slot cs

l ≥ 0. Customer travel demands are given by
origin-destination (O/D) pairs Q ⊆ V × V ; let m = |Q|. The expected number of users
that need to change batteries on trip q ∈ Q during a time interval t ∈ T is denoted as
dtq. The minimal amount of expected total customer demand that shall be satisfied over
all time intervals in T is denoted by dmin. Moreover, we are given a maximum detour
length wdetour

max by which a feasible path including a battery swap for some q ∈ Q may be
longer than a shortest path from the origin to the destination of q. Finally, the number
of time intervals required for completely recharging a battery is referred to as tc.
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It is assumed that customers would always take a shortest possible path pq for an O/D pair
q = (u, v) ∈ Q, except when they have to make a detour for swapping batteries. Let the
set of arcs of a shortest path puv from node u ∈ V to node v ∈ V be A(puv) ⊆ A and its
length w(puv) =

∑
e∈A(puv)w(e). Moreover, we consider for an O/D pair q = (uv) ∈ Q a

shortest path that includes a certain location l ∈ L as intermediate stop and denote it by
plq. The combination of a shortest path from u to l and a shortest path from l to v forms
such a shortest path plq, and its length is w(plq) = w(pul) + w(plv). Let Lq be the set of
locations l ∈ L for which w(plq) ≤ w(pq) + wdetour

max for q ∈ Q, i.e., the locations that may
be used for battery swaps for O/D pair q.

A solution to the MBSSLP is primarily given by a pair of vectors x = (xl)l∈L ∈ {0, 1}n
and y = (yl)l∈L with yl ∈ {0, . . . , sl}, where xl = 1 indicates that a swapping station is
to be established at location l and yl is the respective number of battery slots. Moreover,
let atql denote the part of the expected demand of O/D pair q ∈ Q which we assign to
a location l ∈ Lq during time period t ∈ T . Note that variables atql are continuous as
the refer to the expected demand assigned to a station. Similarly to [62], we consider
the loss of users in dependence of the detour length by applying a penalty coefficient
g(q, l) to atql in order to obtain the actually expected satisfied demand ãtql of O/D pair
q at location l. As suggested in [75, 62] we use the sigmoid function for this penalty
coefficient, i.e., g(q, l) = 1/(1 + αeβ(w(pl

q)−w(pq))−δq ), where w(plq)− w(pq) is the detour
distance for going to the swapping station, δq is a reference distance, and α and β are
parameters that determine the shape of the function.

Based on the variables x,y,a, and ã the MBSSLP can be expressed as the following
MILP.

min
∑
l∈L

(clxl + cs
lyl) (3.1)

xl · sl ≥ yl ∀l ∈ L (3.2)
ãtql = g(q, l) · atql ∀t ∈ T , q ∈ Q, l ∈ Lq (3.3)∑
l∈Lq

atql ≤ dtq ∀t ∈ T , q ∈ Q (3.4)

t∑
t′=max(1,t−tc)

∑
q∈Q|l∈Lq

ãt
′
ql ≤ yl ∀t ∈ T , l ∈ L (3.5)

tmax∑
t=1

∑
q∈Q

∑
l∈Lq

ãtql ≥ dmin (3.6)
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xl ∈ {0, 1} ∀l ∈ L (3.7)
yl ∈ {0, . . . , sl} ∀l ∈ L (3.8)
0 ≤ atql, ãtql ≤ sl ∀t ∈ T , q ∈ Q, l ∈ Lq (3.9)

The goal of the objective function (3.1) is to find a feasible solution that minimizes the
setup costs for stations and their battery slots. Inequalities (3.2) ensure that battery
slots can only be allocated to a location l ∈ L if a station is opened there. For better
readability equalities (3.3) introduce variables ãtql by applying the penalty coefficients
g(q, l) to variables atql. Constraints (3.4) enforce that the total demand assigned from
an O/D pair q to locations does not exceed dtq for all t ∈ T . Inequalities (3.5) ensure
the required capacity yl at all locations over all time intervals. Note that by using ãtql
instead of atql in (3.5), we “overbook” stations to consider the expected case, similarly as
in [76]. Inequalities (3.5) also model that swapped batteries can be reused after tc time
intervals. The minimal satisfied demand to be fulfilled over all time intervals is expressed
by inequality (3.6). Finally, the domains of the variables are given in (3.7)–(3.9).

3.4 Large Neighborhood Search
In this section we propose an LNS for solving the MBSSLP making use of a MILP in
the repair step. We first show how to construct an initial solution in a fast greedy way.
Afterwards, the search and destroy operators of our LNS are described.

3.4.1 Greedy Construction Heuristic

The construction heuristic generates a solution station-wise. In each iteration of the
algorithm a new station is opened and demand is allocated to it. In order to decide at
which location to open a station next, we first calculate how much additional demand a
new station at each so far unused location could satisfy w.r.t. the already opened stations.
The location with the highest ratio of additionally satisfied demand to corresponding
building costs is then chosen for opening the next station.

To calculate the amount of demand a station l ∈ L can satisfy, demand is assigned from
each q ∈ Q | l ∈ Lq for all time periods t ∈ T to l until either the station’s maximum
capacity is exhausted or all demand has been assigned. The iteration order of Q is hereby
decided by the decay function g such that O/D pairs with lower decay value w.r.t. l are
considered first.

The construction algorithm terminates when one of the following conditions is met: at
least dmin demand is satisfied, stations are opened at all possible locations, or no more
demand can be assigned to a station anymore.

3.4.2 Destroy and Repair Operators

Let (x,y,a) be a solution to the MBSSLP. Moreover, let L(x) ⊆ L be the set of locations
for which xl = 1. In a first step we create an undirected graph GL = (V,E) where
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(u, v) ∈ E for u, v ∈ V if and only if {u, v} ⊆ Lq for at least one O/D pair q ∈ Q.

We then derive a set of locations Lrepair that are considered for repairing via an (r, k)-
repair operator. The operator iteratively adds k random node sets to Lrepair where each
node set is generated by choosing a random vertex v ∈ V as well as r random neighbors
of v in GL (less if the degree of v is less than r). Afterwards, k random locations from
L(x) are added to Lrepair. Should, during the generation of Lrepair, a randomly selected
vertex already be in Lrepair the repair operator chooses a new random vertex if possible.
From Lrepair we derive the set Ldestroy = Lrepair ∩ L(x), and close all stations at these
locations.

When repairing the solution, one needs to consider how much more demand needs to
be satisfied in order to make the solution feasible again and how much demand from
which O/D pairs is still available to be assigned to a station. Recall that variables a
refer to demand of an O/D-pair assigned to a station while variables ã refer to demand
that is not only assigned to a station but also satisfied, i.e., the fraction of customers
that is expected to actually arrive at their assigned station. Let D′ = (d′tq)t∈T,q∈Q be the
demand not yet assigned to any opened location in the destroyed solution, i.e.,

d′
t
q = dtq −

∑
l∈L(x)\Ldestroy

atql. (3.10)

Moreover, let dsat be the amount of total demand satisfied in the partially destroyed
solution, i.e.,

dsat =
∑

l∈L(x)\Ldestroy

tmax∑
t=1

∑
q∈Q

ãtql. (3.11)

Hence, the goal of the repair function is to assign at least d′min = dmin − dsat demand
from D′ to the locations L′ = Ldestroy ∪ Lrepair. For this purpose, let I(L′, D′, d′min)
be the residual MBSSLP instance in which L, D = (dtq)t∈T,q∈Q, and dmin are replaced
with L′,D′, and d′min. We determine a promising heuristic solution to I(L′, D′, d′min)
using a relaxation of the MILP (3.1)–(3.9): Allowing the yl variables to be continuous,
i.e., replacing (3.8) by 0 ≤ yl ≤ sl, ∀l ∈ L, while still keeping the xl variables integral
significantly speeds up the solving of the MILP. Obtained fractional values for yl are
finally rounded up to obtain a feasible solution to the original MBSSLP again, assuming
one exists.

Note that the described solving of the relaxation of the MILP followed by rounding can
also be used as a standalone heuristic for the original MBSSLP, which is applicable as
long as the instance is not too large. We refer to this approach as y-Relaxed MILP
Heuristic (RMHy). Additionally, we also considered solving the full linear relaxation
of the original MILP, i.e., the linear program in which all xl as well as yl variables
are continuous, and rounding up obtained fractional xl as well as yl values to the next
integers; we call this heuristic Linear Programming Heuristic (LPH). In Section 3.6 we
compare these approaches to each other, showing that the RMHy heuristic is a better
choice for repairing solutions than the LPH heuristic.
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3.5 Test Instances
As no real problem instances are available to us we created artificial test instances with
characteristics that might be expected in real scenarios. Additionally, we derived one
problem instance from real-world taxi trip and bus stop data of Manhattan.

In this section we give an overview of how our instances have been generated. For a
detailed description see Appendix A.

3.5.1 Random Instances for the MBSSLP

The instances are simplified scenarios modeled after a typical work day where people go
to work in the morning and return home in the evening. Battery swapping stations as
well as origin and destination locations of customers are located within a square area. The
length of the square is decided in dependence of n such that there is an average distance
of 800 meters between the station locations. Following the procedure of [66, 68] we first
generate a graph by sampling random points from the square and then constructing an
euclidean spanning tree from the complete graph induced by the set of sampled nodes.
Afterwards randomly chosen edges are added to the graph.

The set of potential battery swapping station locations is generated by choosing random
nodes from the generated graph. Costs for building a station at a location are random
while costs for adding a battery slot as well as the maximum number of battery slots is
the same for all stations.

Origin and destination locations are again chosen from the nodes of the previously
generated graph. Note however, that only a subset of the nodes is considered to speed up
the computation time. Using a log-normal distribution, to each of the considered nodes
popularity values are assigned, i.e., nodes with higher weights have higher incoming and
outgoing traffic. Additionally, we also assume the length of a trip made by a scooter to
be log-normal distributed as well with a mean length of five kilometers. We therefore
use the probability density function of this distribution for assigning weights to trips, in
dependence of the length of the trip. The total demand of a trip is then the product of
the popularity values of the respective origin and destination and the weight of the trip.
Depending on the specified number of O/D pairs m, only the m trips with the highest
total demand are then kept as O/D pairs for the problem instances.

Afterwards, the total demand of an O/D pair is distributed over 24 time intervals. We
assume, according to working behavior in Austria, each customer to travel twice on his
corresponding path, once in the morning to get to work and once in the evening to travel
back home, and we assume that customers need to swap batteries once per trip counted
here as demand. Therefore, we use two normal distributions, one with mean at eight and
one with mean at eighteen to determine the demand for each time interval.

The maximal deviation distance of the users, wdetour
max , is set to 400 meters and the

parameters of the distance decay function are set in such a way that the decay value
becomes zero at approximately 400 meters. Figure 3.1 shows the decay value g(q, l) in
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3.5. Test Instances

dependence of the deviation distance w(plq)− w(pq) with the chosen parameterization of
the distance decay function.
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Figure 3.1: Decay g(q, l) in dependence of the deviation distance w(plq)− w(pq).

Eight groups of test instances for different combinations of n and m have been generated
this way and each group consists of thirty instances. In Section 3.6 we evaluate the
instances with dmin being set either to 30% or to 80% of the total swapping demand.

3.5.2 Manhattan Instance

Next to artificial benchmark instances we also derived an instance from real-world yellow
taxi trip data and bus stop shelter data of Manhattan, which we call here Manhattan
instance. The underlying street network of the instance corresponds to the street network
graph of Manhattan provided by the Python package OSMNX1. Origin/Destination
pairs of our instance correspond to trips between the taxi zones2 of Manhattan. The
partitioning of Manhattan into taxi zones is shown in Figure 3.3. For each taxi zone one
random origin and one random destination location were chosen from the set of nodes of
the network graph that are associated with the corresponding taxi zone.

The set of O/D-pairs and their corresponding demands have been derived from the 2016
Yellow Taxi Trip Data3. The taxi data set was first preprocessed and all trips with
invalid data as well as trips made on a weekend have been removed from the data set.
Furthermore, we have also removed all trips which do not start and end in Manhattan.
The preprocessed data set then consisted of 4498 unique pickup/drop-off taxi zone pairs
which also constitute the instance’s set of O/D pairs Q. The demand of the O/D pairs has
been derived from passenger counts of trips between the respective taxi zones aggregated
hourly. Figure 3.2 shows on the left how the total demand over all O/D pairs is distributed
over the time intervals. Figure 3.2 shows on the right how the lengths of the O/D pairs

1https://github.com/gboeing/osmnx
2https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
3https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/

k67s-dv2t
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are distributed. Similarly to our benchmark instances, the trip lengths (given in meters)
are approximately log-normal distributed with a mean between ln(5000) and ln(6000).
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(a) Distribution of total daily demand.
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Figure 3.2: Distributions of demand and trip lengths of the O/D pairs from the real-world
data based instance.

For the distance decay function and wdetour
max we use the same parameters as for the

artificial benchmark instances.

The set of potential battery swapping station locations L is derived from the bus stop
shelters 4 of Manhattan by selecting 500 locations randomly. Figure 3.3 shows the
distribution of the stations.

Figure 3.3: Taxi zones of Manhattan and potential locations for swapping stations.

4https://data.cityofnewyork.us/Transportation/Bus-Stop-Shelters/qafz-7myz
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3.6. Computational Results

As shown in Figure 3.2 left the demand at each hour is quite high. Therefore we choose a
capacity limit of 200 for each battery swapping station, The costs for building a station
as well for adding a battery charging slot are chosen as for the artificial instances.

3.6 Computational Results
All algorithms were implemented in Julia5 1.4.2. All test runs have been executed on an
Intel Xeon E5-2640 v4 2.40GHz machine in single-threaded mode with a time limit of
thirty minutes. Gurobi6 8.1.0 was used for solving the MILPs.

First, we investigate the performance of the standalone MILP model given by Equa-
tions (3.1)–(3.9) as well as the standalone RMHy and the LPH approach. Afterwards,
the results of the LNS are discussed. Finally, in Section 3.6.3 we present the results on
the instance derived from real-world data for the LNS approach as well as the MILP
models. All instances are evaluated with dmin being set either to 30% or to 80% of
the total swapping demand. Hence, let dmin[%] refer to dmin as percentage of the total
swapping demand.

3.6.1 MILP Approaches

All MILP models were solved with Gurobi 8.1.0. In case no optimal solution was found
within the time limit, the solver returned the best found feasible solution if it exists.

Table 3.1 shows a summary of the performance of the exact MILP approach, RMHy and
LPH for each instance group in our benchmark set. Column “gap[%]" shows the average
optimality gaps for each instance group, the median computation times are shown in
column “time[s]", and column “|L(x)|" lists the average number of opened stations in the
solutions. Note that the gaps listed for RMHy and LPH are determined also w.r.t. the
lower bounds obtained by the original MILP.

Overall, with the exact MILP solving was aborted due to the time limit for almost all
instances. However, for each instance at least one feasible solution was found. Instances
with up to 1000 potential battery swapping stations and 2000 O/D-pairs can be solved
by the MILP almost to optimality with a gap of less than 1%. For larger instances
the optimality gaps deteriorate. Compared to the results of the original MILP model,
RMHy yields in general better average optimality gaps for the three largest instance
groups. The LPH approach was able to solve all instances to optimality w.r.t. the
linear relaxation of the original MILP in less than 5 minutes on average. However, the
derived feasible MBSSLP solutions are significantly worse than the solutions generated
by RMHy especially for dmin[%] = 30. For instances nearly solved to optimally, we
can also observe that the number of opened stations in the solutions are as expected.
RMHy solutions require a marginally smaller number of opened stations than the MILP

5https://julialang.org/
6https://www.gurobi.com/
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Table 3.1: Results of the original MILP, the RMHy heuristic, and the LPH.

(a) MILP results for dmin[%] = 30.

MILP RMHy LPH

n m gap[%] time[s] |L(x)| gap[%] time[s] |L(x)| gap[%] time[s] |L(x)|
250 500 0.05 1800 25 2.61 91 25 18.62 2 81

1000 0.02 1800 38 1.59 125 38 10.38 4 103
500 1000 0.03 1800 46 2.54 287 46 18.12 5 149

2000 0.08 1800 72 1.60 686 71 10.06 12 190
1000 2000 0.24 1800 89 2.54 1295 88 17.95 20 279

4000 2.69 1800 192 1.77 1800 129 9.78 47 346
2000 4000 9.09 1800 382 3.67 1800 166 18.01 81 532

8000 6.78 1800 531 8.60 1800 535 10.92 238 660
(b) Results for dmin[%] = 80.

MILP RMHy LPH

n m gap[%] time[s] |L(x)| gap[%] time[s] |L(x)| gap[%] time[s] |L(x)|
250 500 0.03 1800 47 1.09 47 47 4.98 2 86

1000 0.02 1800 72 0.32 536 72 2.47 5 121
500 1000 0.02 1800 84 1.01 464 84 4.85 7 158

2000 0.08 1800 138 0.31 1800 137 2.37 18 226
1000 2000 0.12 1800 160 1.04 1800 159 4.78 25 294

4000 1.92 1800 305 0.35 1800 260 2.33 64 425
2000 4000 3.64 1800 488 1.40 1800 316 4.81 95 559

8000 29.54 1800 1248 0.49 1800 515 2.31 236 815

solutions. Solutions generated from the LPH approach, on the other hand, require a
much higher number of opened stations than the other approaches. Hence, LPH does
not seem to be a good choice as repair procedure for the LNS.

Figure 3.4 provides a more detailed comparison of the optimality gaps of the MILP,
RMHy and LPH solutions. The figure shows boxplots of the optimality gaps for each
instance group and approach and confirms our previous observations. Note that for
a better comparison between the approaches Figure 3.4b is cut off and only shows
optimality gaps up to 7% since solutions to the instances with n = 1000,m = 4000 as
well as n = 2000,m = 8000 generated by the MILP feature optimality gaps up to 45%.
For the largest instances with n ≥ 1000 and m ≥ 4000, RMHy starts to produce better
results than the MILP while LPH does not seem to be able to compete with RMHy for
any instance group. However, since RMHy requires solving a large MILP as well, this
approach also has its limits concerning scalability. Therefore, in the next section we
investigate the LNS that uses in each iteration RMHy to (re-)optimize only a comparably
small part of a solution.
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Figure 3.4: Optimality gaps of the MILP, RMHy and LPH solutions.

3.6.2 Large Neighborhood Search

For the size parameters of the (r, k)operator we consider here, after preliminary tests
r = 4 and k ∈ {4, 14, 20}. These values are promising as the MILPs corresponding
to the repair subproblems can usually be solved to a small remaining optimality gap
within seconds. As the Large Neighborhood Search (LNS) is a heuristic approach, it also
does not make much sense to solve the MILPs always to proven optimality; instead we
terminated the MILP solver when a solution with an optimality gap of at most 0.0005%
has been reached. Each LNS run was terminated after 30 minutes. The results of the
LNS are shown in Table 3.2. For each considered minimum demand coverage dmin and
each neighborhood size parameter k, the average number of iterations “iter” and the
average optimality gap “gap[%]” (w.r.t. the lower bounds obtained by the original MILP).

Table 3.2: Results of the LNS.

dmin[%] = 30 dmin[%] = 80

k=4 k=14 k=20 k=4 k=14 k=20

n m gap[%] iter gap[%] iter gap[%] iter gap[%] iter gap[%] iter gap[%] iter

250 500 1.05 2549 1.62 385 1.70 217 0.57 3222 0.75 520 0.79 270
1000 0.83 1465 1.14 207 1.21 117 0.32 1843 0.23 263 0.25 117

500 1000 1.31 2094 1.64 418 1.83 207 0.72 2305 0.77 559 0.81 299
2000 1.06 982 1.22 230 1.29 132 0.48 1115 0.33 282 0.31 156

1000 2000 1.72 1177 1.95 399 2.05 241 1.00 1375 1.02 482 1.03 317
4000 1.41 604 1.44 203 1.45 132 0.78 606 0.46 214 0.42 128

2000 4000 2.58 698 2.64 292 2.69 211 1.59 720 1.46 331 1.39 251
8000 3.28 306 3.10 128 3.06 93 2.00 280 1.11 128 1.06 87

The table shows that, naturally, the LNS can perform less iterations the larger k is. For
instances with dmin[%] = 30 we can see that the solutions tend to deteriorate as k is
increasing. However, this is not the case for instances with dmin[%] = 80 where we can
see no such pattern. Moreover, as the instances become larger, the LNS with k = 20
starts to outperform the LNS with k = 4. Hence, for dmin[%] = 80 an LNS with even
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Figure 3.5: Comparison of the optimality gaps of the LNS solutions to the solutions of
the other approaches.

larger values for k might yield better results in theory. However, the larger k is chosen
the worse the scalability of the LNS becomes as the MILP that needs to be solved in the
repair procedure takes longer to solve for larger values of k.

Figure 3.5 compares the optimality gaps of solutions obtained by the LNS to the optimality
gaps of the MILP and RMHy solutions. Note that for a better comparison between the
approaches Figure 3.5b is cut off and only shows optimality gaps up to 7%. For instances
with dmin[%] = 30 we can see that the LNS is on average on all instance groups able to
produce better solutions than RMHy. This particularly holds for the largest instance
group, where the gap of RMHy deteriorates to over 8% but the LNS’ gaps are still within
4%. For instances with dmin[%] = 80, both, the LNS as well as RMHy, perform quite
well with gaps usually less than 2%. The LNS solutions are here slightly worse than the
RMHy solutions for larger instances.

Overall, we can say that the LNS works reasonably well over all considered benchmark
instances, and it is reasonable to expect it to scale much better to even larger instances
than RMHy or solving the original MILP directly.

3.6.3 Results on the Manhattan Instance

In this section we show how well the MILP approaches as well as the LNS were able
to deal with the real-world data based Manhattan instance. While the size of n and m
is similar to some of our benchmark instances, the Manhattan instance is much harder
to solve than our benchmark instances due to the shape of Manhattan as well as the
instance’s geographic distribution of demand.

Tables 3.3 and 3.4 show respective results. Each solution approach was applied to the
instance six times with different values for dmin[%]. For each approach the tables lists the
total costs of the solutions, the corresponding optimality gaps (always w.r.t. the lower
bounds obtained from the linear relaxation of the original MILP), and the computation
times in seconds. The direct MILP approach was only able to find (non optimal) solutions
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for the lowest levels of dmin[%]. RMHy and LPH could obtain feasible solutions for all
cases except with dmin[%] = 60. Concerning RMHy and LPH, one can see that, as one
might expect, gaps of LPH are usually significantly larger than those of RMHy, but LPH
is much faster and is, in contrast to RMHy, also able to yield a feasible solution for
dmin[%] = 50.

Table 3.4 shows the results obtained by the LNS with r = 3 and different values for
k. Listed are total costs of the solutions, the corresponding optimality gaps (if a lower
bound is known from the MILP), and the number of destroy and repair iterations. Most
importantly, in contrast to the above MILP/LP approaches, the LNS could also find a
feasible solution for dmin[%] = 60. Moreover, except for the lowest level of dmin[%] = 10,
the LNS was able to find the best solutions. The number of performed destroy and repair
iterations stays approximately the same for increasing levels of dmin[%]. However, as
expected, the number of iterations decreases the larger the value for k.

Table 3.3: LPH, RMHy, and MILP results for the Manhattan instance.

LPH RMHy MILP

dmin[%] costs gap[%] time[s] costs gap[%] time[s] costs gap[%] time[s]

10 155797 1.27 179 153886 0.04 1801 153886 0.04 1801
20 325775 2.90 140 321773 1.69 1801 320168 1.20 1801
40 692976 1.06 196 689600 0.57 1801 - - -
50 892035 0.77 704 - - - - - -
60 - - - - - - - - -

Table 3.4: LNS results for the Manhattan instance.

k = 4 k = 7 k = 14

dmin[%] costs gap[%] iter costs gap[%] iter costs gap[%] iter

10 153900 0.05 92 153890 0.05 19 154025 0.13 2
20 319769 1.07 87 319334 0.94 43 318939 0.82 19
40 688298 0.39 87 687769 0.31 42 687983 0.34 16
50 890049 0.55 83 888920 0.43 44 887926 0.32 24
60 1095190 - 89 1093898 - 43 1095097 - 15

3.7 Conclusions and Future Work
We presented the new Multi-Period Battery Swapping Station Location Problem for
distributing battery swapping stations in an urban area. On our benchmark instances,
directly solving the proposed MILP model is reasonable for instances with up to 1000
stations and 2000 O/D-pairs, where solutions with small gaps could be obtained. For
larger instances solving the MILP model becomes quickly infeasible and heuristics need
to be employed to find approximate solutions. Relaxing the y variables and rounding
obtained fractional values, i.e., our RMHy, is a viable approach by which significantly
larger instances can be solved reasonably well, nevertheless it also has its limits. We
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therefore proposed an LNS that effectively utilizes RMHy and provides better scalability.
This can in particular be seen in the results for the real-world data based Manhattan
instance.

We remark that the proposed LNS still has room for improvement. For example, different
strategies for selecting the nodes to be removed or considered for addition may be
investigated. Moreover, adaptive mechanisms for choosing among different destroy and
re-create methods may be useful. Last but not least, there are also alternative ways to
address the scalability issue, for example by approaches based on (hierarchical) clustering
and iterative refinement.

In future work the MBSSLP model should also be further refined to reflect real-world
aspects in a more realistic way. For example, battery swapping stations are usually not
extended slot by slot but by modules which consist of multiple new battery slots. So far,
we also have not yet considered a pricing model for customers or costs for maintaining
the battery swapping stations and the batteries.
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CHAPTER 4
Cooperative Optimization

Approaches for Distributing
Service Points in Mobility

Applications

In the previous chapter it was assumed that the user demands have already been acquired
in advance of the optimization. Deriving such demands is an intricate problem by itself,
though, for which a magnitude of solutions have been proposed in literature. So far the
user demand acquisition as well as the optimization step have always been considered
in a separated fashion. In the approaches proposed in literature first the user demands
are derived based on some given data, afterwards service point locations are optimized
based on these estimated demands. In this chapter a Cooperative optimization Approach
(COA) for solving SPDPs is proposed that allows users to express their preferences during
the course of the optimization.

The basic concept of COA was initially presented at the 19th European Conference on
Evolutionary Computation in Combinatorial Optimisation, and published as:

T. Jatschka, T. Rodemann, and G. R. Raidl, “A cooperative optimization approach
for distributing service points in mobility applications,” in Evolutionary Computa-
tion in Combinatorial Optimization (A. Liefooghe and L. Paquete, eds.), vol. 11452
of LNCS, pp. 1–16, Springer, 2019

In this original work, a Basic Variable Neighborhood Search (VNS) is used as optimization
core to generate new solutions and an adaptive surrogate function [17] to process feedback.
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At the 17th International Conference on Computer Aided Systems Theory a Population-
Based Iterated Greedy (PBIG) was presented as improved optimization core and compared
to the VNS:

T. Jatschka, T. Rodemann, and G. R. Raidl, “VNS and PBIG as optimization
cores in a cooperative optimization approach for distributing service points,” in
Computer Aided Systems Theory – EUROCAST 2019, vol. 12013 of LNCS, pp. 255–
262, Springer, 2020.

These first realizations of COA exhibit severe limitations in the scalability to larger
numbers of potential service point locations and/or users, in particular as all users are
considered independently of each other. Therefore, the COA framework was substantially
revised, building upon the observation that in a larger user base there are typically users
sharing the same or similar needs or preferences. This further developed framework was
presented at the 5th International Conference on Machine Learning, Optimization, and
Data Science:

T. Jatschka, T. Rodemann, and G. R. Raidl, “Exploiting similar behavior of
users in a cooperative optimization approach for distributing service points in
mobility applications,” in The 5th International Conference on machine Learning,
Optimization and Data science – LOD 2019 (G. Nicosia, P. Pardalos, G. Giuffrida,
R. Umeton, and V. Sciacca, eds.), LNCS, pp. 738–750, Springer, 2019.

In successive development the solution approach was extended towards applications in
which the satisfaction of demand typically relies on the existence of suitable pairs or more
generally tuples of service stations, such as in the case of bike or car sharing systems
where a vehicle is first picked up at a rental station near the origin and returned at a
station within easy reach of the destination. This approach was published as:

T. Jatschka, G. R. Raidl, and T. Rodemann, “A general cooperative optimization
approach for distributing service points in mobility applications,” Algorithms, vol. 14,
no. 8, 2021.

Finally, we further improved the scalability of the optimization component of COA by
developing a Large Neighborhood Search (LNS) as optimization core. While the earlier
developed VNS and PBIG considered the core problem as black box model, the LNS
exploits more specific knowledge in order to efficiently generate new solutions. The LNS
was presented at the 8th International Conference on Metaheuristics and Nature Inspired
Computing and published as:

.
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4.1. Introduction

Based on these publications we define in the following a class of problems referred to as
cooperative service point distribution problems (CSPDPs) that we aim to solve with COA.
Then we describe COA and its component in detail and afterwards present different
realizations of COA for two CSPDPs. The performance of COA w.r.t. to these problems
is evaluated on artificial as well as real-world inspired instances. Finally, we also provide
a comparison for solving the same problem scenario with COA formulated as each of the
two CSPDPs.

4.1 Introduction
A fundamental ingredient for optimizing the locations of service points in mobility
applications, such as charging stations for electric vehicles or pickup and drop-off stations
for car/bike sharing systems, is the distribution of existing customer demand to be
potentially fulfilled in the considered geographical area. While there exists a vast
amount of literature regarding setting up service points for mobility applications, such as
vehicle sharing systems ([5, 6, 7, 8]) or charging stations for electric vehicles [9, 10, 11, 12],
estimations of the existing demand distribution are usually obtained upfront by performing
customer surveys, considering demographic data, information on the street network and
public transport, and not that seldom including human intuition and political motives.
However, such estimations are frequently imprecise and a system built on such assumptions
might not perform as effectively as it was originally hoped for. For example in [77] GPS-
based travel survey data of fossil fueled cars is used for setting up charging stations for
electric vehicles. However, as pointed out by Pagany et al. [78], it cannot be assumed
that the driving behavior of customers remains unchanged when switching from fossil
fueled cars to electric vehicles. Furthermore, Pagany et al. [78] present a survey of 119
publications for locating charging stations for electric vehicles in which they also discuss
further problems with the above mentioned demand estimation methods.

A more frequent usage of a service system by a customer will in general depend not only
on the construction of a single service point on a particular location but more globally on
non-trivial relationships of the customer’s necessities and preferences in conjunction with
larger parts of the whole service system. For example in the case of bike/car sharing
systems, a well placed rental station close to the origin of a trip might be worthless
if there does not also exist a suitable location near the destination for returning the
vehicle. Furthermore, some customers might use multiple modes of transport for a single
trip [15]. Consequently, some more distant service station for returning the vehicle might
be acceptable if this place is well connected by public transport used for an additional
last leg [16]. Thus, there also might be alternatives for fulfilling demand that cannot all
be exactly specified by potential users. The example with an additional leg by public
transport also illustrates that geographical closeness is not always the deciding factor.

To possibly improve this situation, we propose a Cooperative optimization Approach
(COA) that incorporates potential customers on a large scale and more tightly into
the data acquisition as well as optimization process. Instead of only acquiring demand
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information from potential users upfront and evaluating candidate solutions on this basis
during the optimization, we confront the potential users with certain location scenarios
and ask them how these would suit their needs and how possibly these scenarios can be
improved to fulfill more of their demands.

This feedback is used to incrementally gain more knowledge about how much demand may
be fulfilled under which conditions. New, more promising candidate location scenarios
can then be derived and again be presented to the users. The process is iterated on a large
scale with many potential users and many rounds until a satisfactory solution is reached.
Here, clearly many psychological aspects also come into play, which, however, shall not
be our focus. For simplicity, we assume the ideal situation of perfectly reasonable and
cooperative potential users who always provide a consistent and precise feedback to above
basic questions.

Expected benefits of COA are a faster and cheaper data acquisition, the direct integration
of users into the whole planning process, a stronger emotional link of the users to
the product, and ultimately better and more accepted optimization results. Potential
customers further know local situations and their particular properties, including also
special aspects that are not foreseen to consider in a classical data acquisition approach.

However, for developing such a cooperative optimization approach, several issues need
to be addressed. Most crucially, one needs to consider how to interact with the users.
It needs to be assumed that the input from each individual user is inherently egoistic.
Hence, it is necessary to employ different techniques for aggregating, interpolating, and
extrapolating individual user feedback in order to derive globally valid aspects.

Another challenging aspect is that the interaction with users cannot be treated as an
unlimited resource. It is a well known problem that users tend to fatigue when confronted
with too many questions, substantially impacting the quality of obtained feedback [79].
Moreover, a complete direct questioning of the user would not only be extremely time
consuming but users would easily be overwhelmed by the large number of possibilities,
resulting in incorrect information. For example, users easily tend to only rate their
preferred options as suitable and might not consider certain alternatives as also feasible
although they actually might be on second thought when no other options are available.
Hence, interaction with users needs to be kept to a minimum and should be done wisely to
extract as much meaningful information as possible. Moreover, users must be confronted
with easy questions whose answers at the same time provide strong guidance for the
target system.

Finally, there need to be appropriate ways to consider the obtained customer information
in the optimization. Since a heuristic approach usually generates hundreds to thousands
of intermediate solutions, that all need to be evaluated, it is not an option to evaluate all
these solutions via user interaction. A typical way to overcome this issue is to process
the obtained user feedback via some machine learning technique to eventually derive a
surrogate function. The surrogate function can then be used to estimate the quality of a
solution without user interaction.
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The remainder of this chapter is structured as follows: The next section gives an overview
of related work. Afterwards, the in Section 4.3 we formally define the class of cooperative
SPDPs. Section 4.4 introduces COA and gives a detailed description of its framework and
its components. The next two sections, Section 4.5 and 4.6 then introduce two specific
problems of the cooperative SPDP class and it is shown how they can be solved with
COA. Finally, the section concludes with an outlook to promising future work.

4.2 Related Work
To the best of our knowledge no cooperative approach for distributing service points
for mobility applications has been studied in literature so far. However, for cooperative
optimization concepts a rich body of literature exists. Therefore, related work for different
aspects of cooperative optimization as well as the distribution of service points is discussed
in this section.

4.2.1 Distribution of Service Points in Mobility Applications

Service Point Distribution Problems (SPDPs) can be classified as a variant of the
Capacitated Multiple Allocation Fixed Charge Facility Location Problem (FLP). In
the FLP a set of potential facility sites and a set of demand points is given. The task
is to select a subset of these sites in order to serve the demand points w.r.t. some
optimization goal subject to a set of constraints. For a survey on FLPs see [80], for a
more comprehensive book on location theory see [81]. More specifically, SPDPs are closely
related to the uncapacitated FLPs [82] in which each facility can satisfy an arbitrary
amount of demand.

SPDPs cover a large range of mobility applications. A frequently researched subclass of
SPDPs are vehicle sharing systems (VSS) in which vehicles are shared among multiple
users. For an overview of VSS see [5]. VSS can be realized in different operation modes.
For one-way VSS a vehicle can be picked up and returned at an arbitrary station while
for two-way VSS the vehicle must be picked up and returned at the same station. While
one-way VSS provide a greater flexibility to the user, it is also necessary to regularly
rebalance the vehicles at all stations [83]. Finally, in recent years free-floating, i.e.,
stationless, VSS have become popular offering the greatest flexibility but also requiring a
high rebalancing effort. For an overview of various optimization problems for VSS, see
[84].

Regarding the acquisition of demands for VSS, one can find multiple approaches in
literature. In some work where the main focus is the optimization part, e.g., [85, 86, 6],
the demands are assumed to be known in advance of the optimization, however it is not
addressed how these demands can be obtained in real word scenarios.

Frade et al. [87] provide an overview of different demand estimation techniques for bike
sharing systems. Early approaches identified so called generator and attractor points
([88]) which are then used to derive trip frequencies between these points. A different
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approach is to derive demand from user surveys. In [89] trip frequencies are derived based
on a user survey asking about preferred modes of transport, acceptable walking and
waiting times, as well as acceptable associated traveling cots. Another popular method for
deriving demands is geographic information system analysis ([90]). Additionally, Frade
et al. [87] also suggest to estimate demand for a bike sharing system in the Portuguese
city Coimbra based on the experience of similar services in other countries. Specifically,
they propose a model considering the purpose of the trip, the associated distance and
the slope between origin and destination. However, not all parameters in the proposed
model can be derived from experience. Some parameters still need to be estimated by
surveys or other benchmarking methods.

In [91] a stochastic model for planning a bike sharing system is proposed. Similar to [89],
a survey is used for deriving customer demands. The survey included questions about
the user’s trips, preferences for a bike sharing service, maximum walking distances, as
well as demographic questions related to sex, income, and age. In [92, 93] a model for a
one-way car sharing system in Lisbon is proposed. User demands are estimated from
mobility surveys. Only trips with a certain Euclidean distance, duration, and at a certain
time interval are considered. In [94] a model for a one-way electric car sharing system
is proposed for supporting operational decisions of already existing service provider in
Nice, France. The demand data has been provided by the service operator. However,
such an approach is only possible if a VSS exists already in the targeted area and the
service provider is willing to share their data.

The problem of optimizing the distribution of service points is not only relevant for
VSS but also for EVs in general, as they require stations at which their batteries can
either be recharged or exchanged. For these problems different ways for determining
the potential customer demands can be found. Chen et al. [95] substitute charging
demand with parking demand in order to identify good locations for public charging
stations. The parking demand is derived from parking information of a travel survey. In
[96], a maximal covering model [65] for identifying charging stations is proposed. The
demands are estimated using regression analysis based on surveys on the number of cars
per household, the average travel distance of cars, the estimated range of an EV etc. In
[12], the charging demand of a location is modeled as the expected duration of charging
all drivers that need to charge their EV at this location. The number of drivers in a
location is derived from a mobility survey as part of a case study of the city of Coimbra,
Portugal. In [97] charging stations for an on-demand bus system are located using taxi
probe data of Tokyo. On-demand bus systems are an SPDP in which users can request
vehicles to pick them up and drop them off at designated locations. On-demand bus
systems can also be combined with traditional bus services, traveling on predetermined
tours. For example, in [98] a bus system with mandatory and optional stops is proposed.
Whereas the mandatory stops are visited by each bus, the optional stops are only visited
when requested by a customer.

Ciari et al. [99] recognize the difficulties in making demand predictions for new transport
options based on estimated data and therefore propose to use an activity-based microsim-
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ulation technique for the modeling of car sharing demand. The simulation is done with
help of the travel demand simulator MATSim [100].

There also exist some works that take user preferences into account, e.g., in [93] a car
sharing system is designed based on different assumptions on the behavior of users. The
authors come to the conclusion that providing real-time information to customers can
greatly improve the service level of a system if users are willing to visit a different station
if their preferred one does not have a vehicle available.

In conclusion, there exists a large amount of different ways for estimating customer
demands to be used by the actual optimization algorithm. There does not seem to be
a consensus on which method is superior. Additionally, in many cases the necessary
input data is not easy or cheap to obtain. Therefore, a cooperative approach offers an
attractive alternative demand acquisition method, as it does not require any previous
data, is cheap to implement and can easily be transferred to other application scenarios
and locations.

4.2.2 Interactive Optimization

Interactive Optimization is a well researched area and many different approaches are
proposed in the literature. Generally speaking, interactive algorithms give users the
possibility to interact with the algorithm to guide the algorithm towards a satisfactory
solution. Meignan et al. [101] point out several obstacles than can be handled more easily
with a human in the loop: Users can consider more complex aspects which are possibly
difficult to express or calculate in an optimization problem. Moreover, including users in
the optimization process results in more accepted solutions than completely automated
processes. For a survey on interactive optimization algorithms see [102] and [101].

Note that in literature interactive algorithms are usually designed for a single interactor
only. For example, in [103] an interactive genetic algorithm for designing dresses is
proposed. Instead of explicitly defining a fitness function, the fitness of a solution is
decided by a user. In [104] a preference-based evolutionary algorithm for multi-objective
optimization is proposed. The idea is that in each iteration a decision maker is asked
to specify a reference point w.r.t. to their desired values of the objective terms. This
information is then used by an evolutionary algorithm to generate solution focused in an
area around the specified reference point.

However, while scarce, there also exists some literature concerning the interaction with
multiple users. For example, Cheng et al. [105] propose an interactive approach for
a many-objective optimization problem solved via an evolutionary algorithm that can
accept multiple reference vectors as input. The reference vectors are used to partition
the search space into subspaces. Note however, that these reference vectors cannot be
modified by a user during the algorithm. In [101], Meignan et al. also briefly discuss
crowd-solving problems, i.e., complex optimization problems that are solved via crowd-
sourcing. One of the most popular among these approaches is Foldit [106] in which users
have to solve puzzles in order to find special protein structures.
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A crucial part of interactive algorithms is the way in which users are able to get feedback
and interact with the algorithm. While in this work we do not touch upon this subject,
we refer to [107] in which nine recommendations are suggested for designing interactive
optimization tools.

Finally, our approach also exhibits similarities to so-called interactive machine learning
approaches [108, 109]. Such methods are typically used when the number of training
samples is not sufficient to properly train a machine learning model. To compensate
this problem, a human is used as a guide to reduce the search space during the learning
phase [110]. One way to reduce the search space is to reduce the number of features
considered during the learning phase [111].

4.2.3 Surrogate Assisted Optimization

A major disadvantage of interactive algorithms is that their performance strongly depends
on the quality of the feedback given by the interactors. Continuous user interactions
will eventually result in user exhaustion [79], negatively influencing the reliability of
the obtained feedback. Therefore, user interactions should not only be considered time
consuming but users also need to be treated as a scarce resource – the interaction
should be kept to a required minimum. A common way to overcome this problem is to
combine interactive optimization algorithms with a surrogate-based approach [112, 113].
Surrogate models are typically used as a proxy of functions which are either unknown
or extremely time consuming to compute. Classic candidates for such surrogates are
machine learning models. In [114] a survey of popular surrogate functions is provided,
ranging from polynomial regression [115] to more sophisticated techniques such as neural
networks [116] and support vector regression [117]. For continuous optimization problems
Gaussian process models, such as Kriging, are widely used as they also give information
about the approximation error which can be used to improve the surrogate function,
see [114].

Moreover, we also make use of matrix factorization [18] for deriving a surrogate function.
Matrix factorization is a collaborative filtering technique which is frequently used in
recommender systems [52]. The idea of collaborative filtering is to make recommendations
for users based on the preferences of similar users. Matrix factorization is based on singular
value decomposition which decomposes a matrix into two smaller matrices. Unknown
values can then be estimated my multiplying the corresponding rows and columns of the
decomposed matrices [52]. The two most popular techniques for decomposing a matrix
with missing values are SGD [56] and Alternating Least Squares (ALS) [57]. ALS is
usually only preferred over SGD for parallelization [18].

4.3 Cooperative Service Point Distribution Problems
In this section we formally define the class of problems that we aim to solve in a
cooperative way. We refer to such problems as Cooperative Service Point Distribution
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Problems (CSPDPs). Similar to classical SPDPs, CSPDPs are associated with a set
of locations V = {1, . . . , n} at which service points may be set up, as well as a set of
potential users U = {1, . . . ,m} that are going to be served by the service points. Besides
V and U , CSPDPs may have further contextual properties Q, such as costs for setting
up stations or information about users.

In contrast to SPDPs, CSPDPs have no a priori information of usage preferences of users
towards specific service points. User preferences for a specific service point not only
depend on the concrete location of said service point but also on which other service points
are opened at the moment. For example, when considering vehicle sharing applications, a
well placed service point near the destination of a user’s trip might be worthless if there
are no suitable service points at the origin of the trip. In the same way, if more than
one suitable service point exists at the origin, one service point might be preferred over
the other and hence be higher valued by the user. Additionally, for some users it might
also be acceptable to use public transport for an additional last leg. Consequently, even
service points not in proximity to a user’s origin or destination might also be relevant to
a user. Thus, for a set of available service point locations S ⊆ V , henceforth referred to
as location scenario, demand information for a specific service point location v ∈ S can
only be “exactly” determined by directly asking the users. For this purpose, for CSPDPs
user interaction is defined as a function

w : U × V × 2V ×Q→ R (4.1)

which returns demand information of a user u ∈ U for a location v in a location scenario
S w.r.t. to some other problem specific properties q ∈ Q. Depending on the concrete
problem, demand information can be defined in multiple ways. Specifically, users may be
asked to provide a potential usage frequency, ranking, or rating for a specified location.
Moreover, it might also be advantageous to ask users to also consider other circumstances
q while evaluating service point locations. For example, one might be interested in how
relevant a service point location is to a user for traveling to a specific destination, e.g.,
the user’s place of work. Figure 4.1 shows an example from the perspective of a user of
how w might be evaluated.

As previously mentioned, the quality of the feedback obtained from users might sub-
stantially deteriorate when asking too much information from the users. However, for
CSPDPs we do not impose any restrictions on interacting with users. Instead, it is
assumed that user feedback is always accurate and we evaluate the performance of COA
by considering how much user interaction is necessary for obtaining a solution.

A solution to a CSPDP is given by a subset X ⊆ V and its quality is determined by
some objective function f(X). Note that in contrast to a solution, a location scenario
is simply a set of service point locations and does not necessarily have to be a feasible
solution. However, every solution is also a location scenario. Therefore, with the above
considerations in mind, a CSPDP is formally defined as a quintuple Π(V,U,Q, w, f).
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Figure 4.1: Exemplary evaluation of a location scenario by a user: A location scenario in
form of a map with highlighted locations is presented and the user can then evaluate the
highlighted locations in the form of ratings.

4.4 The Cooperative Optimization Framework
In this section we present the general framework of our Cooperative optimization Approach
(COA) for solving CSPDPs. Figure 4.2 shows the basic methodology: In each iteration
the algorithm first generates location scenarios for a subset of users to evaluate. Based
on the users’ feedback to these scenarios, a surrogate objective function is continuously
updated over the iterations. The CSPDP instance with the current surrogate objective
function is then solved, yielding a solution. In the next iteration, this solution is a basis
for deriving further meaningful location scenarios to be presented to users again. The
surrogate objective function thus learns to represent the users’ needs better and better
and the solutions obtained from the optimization will become more precise over time.

From a technical point-of-view, the COA framework consists of a Feedback Component
(FC), an Evaluation Component (EC), an Optimization Component (OC), and a Solution
Management Component (SMC). Figure 4.3 provides a visualization of the COA process
and shows how the framework components interact with each other.

At the start of each iteration, the FC is responsible for collecting information from the
user, i.e., users can interact with the framework at this stage of the algorithm. User
information is collected by generating individual location scenarios S ⊆ V for each user
which are presented to the user in order to obtain his/her feedback. A user u ∈ U then has
to provide feedback w(u, v, S,q) for locations v of location scenarios S presented to them
w.r.t. some problem specific context q. Additionally, if necessary, in the first iteration
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Figure 4.2: Basic methodology of the COA framework.
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Figure 4.3: Components of COA and their interaction.

the FC also provides the possibility for users to register to provide more information
about themselves. For an example of how this can be utilized, see Section 4.6.

The feedback obtained from the users is processed in the EC. As previously mentioned,
user interactions should be kept to a required minimum. Hence, the EC maintains and
continuously updates a surrogate suitability function w̃Θ approximating the evaluation
function w. Using this surrogate suitability function a surrogate objective function
f̃ is derived, making it possible to approximately evaluate solutions without user in-
teraction. The function w̃Θ is realized by a machine learning model with parameters
(weights) Θ. Based on this surrogate function, the EC also provides a surrogate problem
Π(V,U,Q, w̃Θ, f̃), i.e., an approximation of the original problem Π(V,U,Q, w, f), which
can be solved without user interaction. Therefore the surrogate problem can be evalu-
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ated faster than the original problem, as there are no more waiting times for users to
provide feedback. This fast approximate evaluation is in particular important during
the optimization process at which a multitude of intermediate candidate solutions are
generated. The respective learning mechanism of the surrogate objective function is also
part of the EC.

A call of the OC is supposed to determine an optimal or close-to-optimal solution to the
EC’s current surrogate problem Π(V,U,Q, w̃Θ, f̃). Note that the surrogate problem f̃
never changes during a call of the OC, only in each major iteration of the framework after
having obtained new user feedback. With the exception of the first call, the optimization
procedure of the OC is warm-started with the current best solution X̃∗ as initial solution
to possibly speed up the optimization process.

Finally, the SMC efficiently stores and manages information on all candidate solutions
that are relevant for more than one of the above components and in particular also the
location scenario evaluations provided by the users so far as well as the solutions χOC
returned by the OC.

The whole process is repeated until some termination criterion is reached, e.g., the
discrepancy of user feedback and the results of the EC is small enough or a maximum
number of user interactions has been reached. In the end, COA returns a solution with
the highest surrogate objective value of all of the so far generated solutions.

Note that there are multiple ways in which the components of COA can be realized.
Depending on the concrete underlying CSPDP and its specific properties different
approaches within the components may be necessary. Therefore, in the following we
introduce two concrete CSPDPs as well as two concrete COA implementations for solving
these problems.

4.5 The Independent Service Point Distribution Problem
First, we consider the Independent Service Point Distribution Problem (ISPDP). Charac-
teristic properties of the ISPDP are that there exists no additional information about the
users. Hence, as basis for the surrogate function an ensemble of machine learning models
is used where each model is responsible for learning the preferences of one user each.

4.5.1 Problem Formulation

In ISPDP we are given a set of locations V = {1, . . . , n} at which service points may
be built and a set of potential users U = {1 . . . ,m}. The fixed costs for setting up a
service point at location v ∈ V are cv ≥ 0 and this service point’s maintenance over a
defined time period is supposed to induce variable costs zv ≥ 0. The total construction
costs must not exceed a maximum budget B > 0. Erected service stations may satisfy
customer demand, and for each unit of satisfied customer demand a prize q > 0 is earned.
A solution to the ISPDP is given by a set X ⊆ V containing all locations where service
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points are to be set up. The evaluation function is defined as w(u, v,X, {}), in short
w(u, v,X), which specifies the demand of user u ∈ U fulfilled at location v ∈ V in
solution/scenario X. Note that the degree of demand fulfilled not only depends on the
location v but also on other opened stations in X.

Recall that the evaluation function can only be solved “exactly" by directly asking the
corresponding user. Clearly, the number of candidate solutions that are evaluated in this
interactive way are a major concern. We cannot confront each user with hundreds or
thousands of evaluation requests. Instead, we carefully have to select the solutions to be
evaluated by each user in an individual fashion, avoiding redundancies as far as possible.

Naturally, the demand fulfilled at any location must always be non-negative and can only
be positive when a service point is set up there, i.e.,

w(u, v,X) ≥ 0, v 6∈ X → w(u, v,X) = 0 u ∈ U, v ∈ V. (4.2)

A solution X is feasible if its total fixed costs do not exceed the maximum budget B, i.e.,

c(X) =
∑
v∈X

cv ≤ B. (4.3)

The objective is to find a feasible solution that maximizes the prizes earned for satisfied
customer demands reduced by the variable costs for maintaining the service points

f(X) = q ·
∑
u∈U

∑
v∈X

w(u, v,X)−
∑
v∈X

zv. (4.4)

4.5.2 Cooperative Optimization Approach

This section gives a detailed description of the components of COA for solving the
ISPDP, henceforth also referred to as COA[ISPDP]. Algorithm 4.1 describes the general
interaction of the components. In the following we describe each component’s functionality
in more detail.

Solution Management Component

Next to storing all considered candidate solutions, the SMC also maintains for each
candidate solution the users for which the exact fulfilled demand is already known, and
for each user u ∈ U a set of so far identified relevant locations Vu, which includes any
location for which the user has indicated positive demand in at least one solution. Note
that the complete set of relevant locations in general is unknown. However, it is the task
of the FC to choose the solutions presented to the users in such a way that as many
relevant locations as possible are identified.

Another important task of the SMC is to derive a user’s demand for scenarios where this
can be efficiently achieved through logical implications from previous scenario evaluations.
For example, any scenario that is a superset of a scenario with some maximum fulfillable
demand will also achieve this maximum.
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Algorithm 4.1: Basic Framework
Input : an instance of the ISPDP
Output: best solution X̃∗ ⊆ V found

1: χOC = {V } // initial solution;
2: while no termination criterion satisfied do
3: Feedback Component:
4: for u ∈ U do
5: determine set of scenarios Su to be evaluated by u from χOC and

further data in the SMC;
6: let user u evaluate Su, update the SMC with evaluated solutions from

Su;
7: end for
8: Evaluation Component:
9: train surrogate objective function f̃(X) with data from the SMC;

10: re-evaluate all solutions stored in the SMC with the new surrogate
objective function;

11: Optimization Component:
12: adopt so far best solutions from the SMC as initial solutions;
13: χOC ← perform optimization using the EC’s surrogate objective

function f̃(X);
14: when possible, calculate exact f(X) for X ∈ χOC ;
15: store the solution(s) from χOC in the SMC;
16: end while
17: return overall best found solution X∗ w.r.t. f̃ ;

Feedback Component

In each major iteration of Algorithm 4.1, the FC generates for each user u ∈ U an
individual set of location scenarios to evaluate. It is assumed here that any user u
evaluates each solution in a completely rational way so that the total fulfilled demand is
maximal.

It appears natural that a scenario presented to a user should be similar to the best
solutions identified so far by the OC or, otherwise, provide substantial information gain
on locations that are potentially interesting for the user. Next to finding new relevant
locations for a user, it is also necessary to gain information on the relationship between
relevant locations. Note that location scenarios are different from solutions in the sense
that location scenarios do not need to be feasible.

We apply the following combination of strategies for compiling a set of at most κ solutions
presented to each user u ∈ U , where κ is a strategy parameter and is set to 15 in the
experiments performed for this chapter:1

1All parameter values stated in the text have been tuned in comprehensive preliminary tests.
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• Best solution strategy: Select the γ1 best feasible solutions w.r.t. to f and the γ2 best
feasible solutions w.r.t. the surrogate function f̃ for which no exact total fulfilled
demand is known yet for user u. Hereby, γ1 and γ2 are strategy parameters, which
are both set to 2 in the experiments performed for this chapter. This strategy clearly
focuses on getting exact evaluations for the currently most promising solutions.

• Relevant locations strategy: This strategy focuses purely on finding new relevant
locations for a user u, which might lead to good alternative solutions. For this
purpose a scenario in which the locations in V \ Vu are selected is generated.

• Best solution mutation strategy: This strategy is a combination of the previous
strategies and tries to gain information on the relationship between locations by
replacing a subset of S ∩Vu of a scenario S obtained from the best solution strategy
for a user u with a set of locations for which it is so far unclear if they are relevant:
A new scenario is constructed from a copy of an existing scenario S by removing a
location v ∈ S ∩ Vu from S with a certain probability ξ for each v, where ξ is a
strategy parameter which is set to 0.5 in the experiments throughout this chapter.
Afterwards, we add a location v to S for n′ uniformly at random chosen locations
v ∈ V \ S with n′ being chosen uniformly at random from {0, . . . , |V | − |S|}.

Note that the number of solutions generated with the best solution strategy as well
as the relevant locations strategy is limited and yield at most five scenarios in total.
Therefore, the best solution mutation strategy is applied until no more new scenarios
can be generated or the threshold κ is reached.

Evaluation Component

The EC provides the means for evaluating solutions, in particular also temporary solutions
generated within the OC. Within the OC the objective value of a solution is estimated by
a surrogate objective function f̃(X), which is defined in accordance to f(X) but makes
use of estimated fulfilled demands

w̃Θ(u, v,X) =
{

0 if v 6∈ Vu ∨ v 6∈ X
max(0, gΘ,u,v(X)) else

(4.5)

for each user u ∈ U and each location v ∈ V , where gΘ,u,v(X) represents a machine
learning model trained by all solutions so far evaluated by user u. Note that our
definition of w̃Θ(u, v,X) ensures that Conditions (4.2) are always fulfilled and gives
function gΘ,u,v(X) more freedom in the sense that it may return negative values, which
are mapped to zero, and arbitrary values in case of v 6∈ X. Furthermore, for any location
v for which user u has so far never indicated any positive fulfilled demand in any solution,
i.e., for any so far not relevant location v ∈ V \ Vu, gΘ,u,v(X) = 0 is assumed and no
machine learning model needs to be maintained.

Similarly to [17], we use an adaptive surrogate function in the sense that the machine
learning model for each gΘ,u,v(X) is initially simple and is upgraded to a higher complexity
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model during the course of the algorithm when the error of the model – measured in
terms of the usual MSE of w̃(u, v,X) – exceeds a certain threshold τ . In this way we
stay as efficient as possible from a computational perspective and substantially reduce
problems with overfitting. Our initial choice for gΘ,u,v(X) is the linear regression model

gLM
u,v (X) = ωu,v +

∑
v′∈(Vu∩X)\{v}

ωu,v,v′ . (4.6)

Ridge regression with a penalization factor of one is used for determining the weights
ωu,v and ωu,v,v′ . This model is sufficient for covering simple scenarios where users have
independent demands that can be fulfilled at specific locations. Furthermore, it can even
accurately represent the case where for a user one demand can be fulfilled at a specific
primary location or, with a possibly reduced amount, at one alternative location if no
service station is set up at the primary location. More complex dependencies, including
in particular more than one alternative location, are, however, beyond the capability of
the linear regression model.

In this case, which is detected by a remaining MSE of w̃(u, v,X) larger than a threshold
τ = 0.075, we turn to a neural network, starting with a single layer perceptron with a
leaky Rectified Linear Unit (ReLU) activation function [118]. This simple neural network
realizes the function

gNN
Θ,u,v(X) = φ

(
gLM
Θ,u,v(X)

)
with φ(S) =

{
S if S ≥ 0
ε · S else.

(4.7)

The leaky ReLU activation function φ serves as an extension of the linear regression
model in the sense that this perceptron takes actively into account that satisfied demands
cannot be negative. Due to this non-linearity, it can accurately represent scenarios in
which for a user a demand can be fulfilled at an arbitrary number of ordered alternative
locations, where a service station at one of these locations will only fulfill a certain
amount of the demand when no station is set up at any of the preceding alternative
locations in the order. We use here the leaky ReLU function with parameter ε = 0.01
which returns small negative values in case the sum S is negative.

While the above perceptron is already more powerful, it is still limited when a user
has more than one demand that can be fulfilled partly at the same locations, or more
generally, when the different demands are related in some way, i.e., when a location can
cover multiple mobility demands of a user. Again, we detect the insufficiency of the
perceptron by an MSE that exceeds τ and turn in this case to a more complex feedforward
neural network with one hidden layer that contains initially two hidden neurons. These
neurons again make use of the leaky ReLU activation function, while the single output
layer neuron corresponds to a simple summation of the inputs. Initially, we use two
hidden neurons and increase this number until, after training, either the MSE does not
exceed τ anymore or a maximum of λ = 6 hidden neurons is reached.

Note that the solutions used for training the models are not required to be feasible, since
user evaluations do not consider the budget at all.
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Optimization Component

A proper choice of optimization algorithm and corresponding configuration is vital for
COA to work. The optimization algorithm should not only provide close-to-optimal
solutions but should also not need too many candidate solution evaluations as they are
rather time-expensive and the OC needs to be repeatedly performed. For this purpose
we consider two different metaheuristics – a VNS and a PBIG – as OC for COA[ISPDP].

The VNS follows the classical scheme from [47]. An initial solution is generated via
the randomized construction heuristic that considers all locations in random order and
sets up a station at a location as long as the budget is not exceeded. Our local search
uses an exchange & complete neighborhood following a first improvement strategy. In
the first step of the neighborhood, a location in the solution is replaced by an unused
location, i.e., a location at which no service point exists. As this exchange might decrease
the current budget of the solution, we afterwards add further unused locations in a
random order to the solution as long as the budget allows it. The k-th shaking removes k
randomly selected locations from the solution and then iteratively adds unused locations
in a uniform random order until no more locations can be added. Note that the VNS
considers only feasible solutions.

For the general principles of the PBIG we refer to Chapter 2. An initial population of
solutions is generated via the same randomized construction used for generating the
initial solution of the VNS. Then, in each major iteration a new solution is derived from
each solution in the current population by applying a destroy & recreate operation. The
best solutions from the joint set of original and newly derived solutions are accepted as
new population for the next iteration. Our destroy & recreate operation first removes a
number of selected locations from the solution and then again iteratively adds unused
locations in a uniform random order, such that the solution stays feasible and no more
stations can be added. We reuse the exchange & complete neighborhood as well as the
shakings operators of the VNS as destroy & recreate operations of the PBIG. Hence,
the PBIG also considers only feasible solutions. Note that the PBIG returns its final
population while the VNS only returns a single solution as result of the optimization.

4.5.3 Test Instance Generation

COA[ISPDP] is tested in a proof-of-concept manner on artificial benchmark scenarios
using an idealized simulation of all user interaction.

The primary parameters for our benchmark scenarios are the number of potential locations
for service stations n and the number of users m, and we consider here the combinations
n = 50, 60, . . . , 100 with m = 50 and n = 50 with m = 50, 60, . . . , 100. The n locations
correspond to points in the Euclidean plane with coordinates chosen uniformly at random
from the grid {0, . . . , L − 1}2, where L = d10

√
ne is the underlying width and height.

The fixed costs cv as well as the variable costs zv for setting up a service station at
each location v ∈ V are uniformly chosen at random from {50, . . . , 100}. The budget
is assumed to be B = d7.5 · ne so that about 10% of the stations with average costs
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can be set up. We assume each of the m users u ∈ U has ρu so-called use cases, where
ρu is chosen randomly according to a shifted Poisson distribution with offset one and
expected value three. Each of these use cases i = 1, . . . , ρu is associated with a particular
geographical location ru,i ∈ {0, . . . , L − 1}2 and a respective demand d∗u,i that could
ideally be fulfilled there. This demand can, for example, be the expected number of
usages of a service point in a time period. Here, we choose each d∗u,i uniformly at random
from {5,. . . ,50}. In a real scenario, the locations where demand arises will clearly not
be uniformly distributed over the whole considered geographic area. There will be more
popular regions as well as less popular ones. We want to consider this aspect and therefore
first choose nα attraction points A with uniform random coordinates from {0, . . . , L− 1}2
and then derive the location for each use case from a uniformly selected attraction point
(ax, ay) ∈ A by

ru,i = (bN (ax, 20)c mod L, bN (ay, 20)c mod L), (4.8)
where N (·, ·) denotes a random value sampled from a normal distribution with the
respectively given mean value and standard deviation.

For each use case i = 1, . . . , ρu of each user u ∈ U , demand is always only fulfilled at
the closest location vclst

u,i (X) ∈ V w.r.t. the Euclidean distance where a service station is
set up in the current candidate solution X (ties are broken according to the locations’
natural order) and when a maximum distance, chosen here as 12, is not exceeded. We
further assume an exponential decay of the fulfilled demand in dependence of the distance
and round down to the closest integer, obtaining

wi(u, v,X) =
{
bd∗u,i · e−||ru,i−vclst

u,i (x)||/10c if v = vclst
u,i (X) ∧ ||ru,i − v|| ≤ 12

0 else,
(4.9)

where || · || denotes the L2 norm. These fulfilled demands for each use case i are finally
summed up in order to obtain the overall fulfilled demands w(u, v,X) =

∑
i=1wi(u, v,X)

for each user u ∈ U and location v ∈ V under candidate solution X. Finally, the prize
earned for each unit of fulfilled demand in our objective function is assumed to be p = 50.

For each combination of n and m 30 independent scenarios were created, and they are
available at https://www.ac.tuwien.ac.at/research/problem-instances.
The benchmarks were also specifically designed with the ability in mind to calculate
proven optimal solutions to which we will compare the solutions of our framework.
Exploiting the complete knowledge of the data and specific structure in a “white-box”
manner allows the problem to be expressed as MILP model, which we solved with the
MILP-solver Gurobi2.

4.5.4 Computational Results

The OC was implemented in C++, compiled with GNU G++ 5.5.0, while the remaining
components of the framework were realized in Python 3.7. All test runs were executed
on an Intel Xeon E5-2640 v4 with 2.40GHz machine.

2http://www.gurobi.com/
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Initially, we determined the parameter configurations of standalone variants of the VNS
and the PBIG, in which it is naively assumed that users can evaluate all intermediate
solutions, i.e., using w directly as surrogate function instead of w̃Θ. The parameters have
been determined with irace [119] on a separate set of benchmark instances and have been
tuned with the goal to minimize the number of iterations it takes the metaheuristics to
generate near optimal solutions, i.e., solutions with an optimality gap of 0.5%. For the
VNS we obtained to best use shaking neighborhoods k ∈ {1, 2}, for PBIG k ∈ {1, . . . , 10}
with a population size of 100. The termination criteria of the metaheuristics have been
chosen according to the number of iterations that were necessary on average to find the
close-to-optimal solutions, which was 60 iterations without improvement for the VNS,
and 300 iterations (or three generations) without improvement for PBIG. Table 4.1 shows
a comparison of the standalone variants of the metaheuristics using above parameter
configurations. The table shows for each instance group with n locations and m users
the average optimality gap (gap[%]) and their corresponding standard deviation (σ%-gap)
of the metaheuristics. Moreover, the table also shows the iteration in which the best
solution has been found on average (nbest

it ) and the median of the total computation
times (t[s]).

Table 4.1: VNS vs. PBIG.

VNS PBIG

n m gap[%] σ%-gap n
best
it t[s] gap[%] σ%-gap n

best
it t[s]

50 50 0.26 0.48 29 3 0.28 1.22 696 8
50 60 0.20 0.61 35 4 0.31 1.36 656 9
50 70 0.00 0.02 32 4 0.10 0.42 634 8
50 80 0.31 0.74 31 4 0.09 0.28 631 9
50 90 0.14 0.42 32 4 0.37 1.01 648 11
50 100 0.37 1.03 33 4 0.01 0.07 706 15
60 50 0.25 0.64 43 4 0.07 0.34 862 9
70 50 0.34 0.62 54 5 0.28 0.57 1113 17
80 50 0.43 0.54 56 6 0.24 0.51 1389 23
90 50 0.30 0.42 64 7 0.19 0.60 1628 30
100 50 0.37 0.47 65 9 0.42 0.82 1754 39

Table 4.2: COA[VNS] vs. COA[PBIG].

COA[VNS] COA[PBIG]

n m gap[%] σ%-gap nit t[s] gap[%] σ%-gap nit t[s]

50 50 0.28 0.70 11 2259 0.20 0.45 10 2662
50 60 0.73 1.27 9 2343 0.06 0.18 9 2643
50 70 0.14 0.37 10 3107 0.09 0.44 10 3764
50 80 0.19 0.36 10 3588 0.04 0.15 10 3919
50 90 0.42 0.68 10 3596 0.19 0.71 9 4516
50 100 0.12 0.26 10 4391 0.02 0.08 10 4995
60 50 0.48 0.72 11 2460 0.05 0.11 10 2944
70 50 0.46 0.66 11 2533 0.13 0.43 10 3658
80 50 0.22 0.58 12 2864 0.11 0.28 11 4810
90 50 0.37 0.52 11 2910 0.26 0.65 11 5435
100 50 0.49 1.02 12 3460 0.07 0.15 11 7197

PBIG produces slightly better optimality gaps but also needs significantly more time
than the VNS. Moreover, it takes PBIG much more iterations to find the best solution
as opposed to the VNS.

Next, we tested COA[ISPDP] in conjunction with the VNS (denoted as COA[VNS])
and the PBIG (denoted as COA[PBIG]), respectively, as OC. Further tests have shown
that COA[PBIG] yields slightly better results when using the so far best found solutions
stored in the SMC as initial population. In case there are not enough solutions available,
the remaining solutions are generated by the randomized construction heuristic. The
other parameters remain unchanged. Independent of the implementation of the OC,
COA[ISPDP] terminated after five iterations without improvement or after two hours.
The comparison can be seen in Table 4.2. The table shows again the average optimality
gaps (gap[%]) and their corresponding standard deviations (σ%-gap). Moreover, the table
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also shows the average number of COA iterations (nit) and the median of the total
computation times (t[s]).

While the optimality gaps in Table 4.1 are somewhat comparable between the VNS and
the PBIG, COA[PBIG] clearly outperforms COA[VNS] w.r.t. the optimality gaps. This
difference can be explained by the number of solutions returned by the VNS and the
PBIG. While the OC of COA[VNS] only returns one solution in every COA iteration, the
OC of COA[PBIG] returns 100 solutions in every iteration. A higher number of solutions
in the SMC results in more diversified solutions not only in the FC but also in the EC.
Hence, the accuracy of the surrogate function increases w.r.t. larger areas of the search
space, whereas for less diversified training data the accuracy of the surrogate function
usually only increases in a small part of the search space. Moreover, the high number of
shakings in the PBIG additionally increases the diversity of the solutions returned by
the OC. Note however that COA[PBIG] does not scale so well w.r.t. computation times,
especially for an increasing number of locations. The reason for this is the generous
termination criterion of the PBIG in comparison to the VNS, since it takes the PBIG
much more time to find a near optimal solution.

Figure 4.4 shows the computation times of the individual components of the COA
framework. The total computation time is primarily split between the EC and the OC
while the FC has barely any impact. Moreover, the figure also shows that the computation
time of the EC mainly depends on the number of users, while the computation time of
the OC primarily scales with the number of service point locations. Finally, Figure 4.4
also shows large differences in computation times between COA[VNS] and COA[PBIG].

Finally, Figure 4.5 shows the distribution of the model sizes of the surrogate function’s
underlying machine learning models at the final iteration of COA. A model size of zero
refers to linear regression models, size one to perceptrons, and larger sizes to neural
networks with the respective number of neurons in the hidden layer. The distribution
shown in Figure 4.5 is typical for all instances tested. It shows that the majority of
machine learning models is made up of linear regression models and perceptrons. Larger
size neural networks are rarely needed. However, the figure also shows a small peak at
the largest neural network with six neurons in its hidden layer. This peak is caused
by unpopular service point locations resulting in training data in which most customer
demands are zero. The neural networks often fail to properly learn such data, however,
on the other hand, as these locations are the least popular service point locations, they
usually have no large impact on the final solution.
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Figure 4.4: Median computation times of the COA components for each instance set
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Figure 4.5: Model Distribution of an exemplary run with n = 100 and m = 50

4.6 The Generalized Service Point Distribution Problem
The Generalized Service Point Distribution Problem extends the ISPDP by considering
more information about the users. COA can exploit this information by identifying
similar preferences for service points between the users and deriving a surrogate function
based on these preferences. Additionally, to make it easier for the user to give feedback
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to service point locations we also introduce the concept of use cases. Use cases in our
context are just labels and are not directly associated with specific geographic locations.
This separation is intentionally done in order to keep flexibility: Some use cases like
shopping or the visit of a fitness center may possibly be realized at different places, and
as already mentioned occasionally a service station farther away from a specific target
location may also be convenient if some other mode of transportation is used as additional
leg. Users have to specify approximate maximal usage frequencies of the service points in
the system w.r.t. their use cases in advance. Afterwards, when evaluating service points
users are now asked to rate the suitability of the locations w.r.t. to a specific use case.
The idea is, that the more suitable a location is, the more often a user is going to use this
location when a service point is built there. Additionally, in some application scenarios,
such as vehicle sharing, more than one service point is required for satisfying the demand
of a user’s use case. As a user may have different preferences at which locations these
service points should be placed, use cases are further divided into so called service point
requirements.

4.6.1 Problem Formulation

In the Generalized Service Point Distribution Problem (GSPDP) we are given a set of
locations V = {1, . . . , n} at which service points may be set up and a set of potential
users U = {1, . . . ,m}. The fixed costs for establishing a service point at location v ∈ V
are zfix

v ≥ 0, and this service point’s maintenance over a defined time period is supposed
to induce variable costs zvar

v ≥ 0. The total setup costs of all stations must not exceed
a maximum budget B > 0. We make the simplifying assumption that opened service
stations are able to satisfy an arbitrary amount of customer demand. For each unit of
satisfied customer demand a prize q > 0 is earned.

A solution to the GSPDP is a subset X ⊆ V of all locations where service points are to
be set up. A solution X is feasible if its total fixed costs do not exceed the maximum
budget B, i.e.,

zfix(X) =
∑
v∈X

zfix
v ≤ B. (4.10)

Given the set of users U , we assume that each user u ∈ U has a certain set of use cases
Cu, such as going to work, to a recreational facility, or shopping. Each use case c ∈ Cu is
associated with a demand Du,c > 0 expressing how often the use case is expected to be
frequented by user u within some defined time period such as a week or a month. The
demand of each use case can possibly be satisfied by different service points or subsets
of service points to different degrees, depending on the concrete application and the
customer’s preferences. We assume to have no a priori knowledge about the use cases of
the users and suitable service station locations. In an initialization phase each user u
just lists his or her expected use cases Cu in the form of arbitrary labels and specifies
respective demands Du,c, c ∈ Cu.
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Depending on the actual application and characteristics of a use case, demand may be
fulfilled by a single service station, e.g., when charging batteries of an electric vehicle, or
a suitable combination of multiple service stations may be needed, such as when renting
a vehicle at one place and returning it somewhere else. To model this aspect formally, we
associate each use case c of a user u with a set of service point requirement (SPR) Ru,c.
Similar to use cases these SPRs are not directly associated with geographic locations
but are an abstract entity like “place within easy reach of home to rent a vehicle” or
“place close to a supermarket to return a vehicle” with which a user can express the
dependency on multiple service points to fulfill the needs of one use case. Thus, the
demand of such a use case can only be satisfied if a service point exists at a suitable
location for each of the use case’s SPRs. Note that multiple use cases of a user may also
share the same SPR(s). For example a use case referring to a trip from home to work
and one from home to a supermarket may share the SPRs “place within easy reach of
home to rent a vehicle”. We denote the set of all different SPRs over all use cases of a
user u by Ru =

⋃
c∈Cu

Ru,c. Moreover, let R =
⋃
u∈U Ru be the set of all SPRs over all

users. Note that in this notation, different users never share the same SPR, although
SPRs of different users can be similar.

The evaluation function of the GSPDP is given by w(u, v, {}, r), or w(r, v) as the user u
is already implied by his or her SPR r. The function returns a value in [0,1] and indicates
the suitability of a service point at location v ∈ V to satisfy the needs of user u ∈ U
concerning SPR r ∈ Ru,c in use cases c ∈ Cu. A value of w(r, v) = 1 represents perfect
suitability while a value of zero means that location v is unsuitable; values in between
indicate partial suitability. Note that this way the evaluation of a location is independent
of other existing service points.

The objective of the GSPDP is to maximize

f(X) = q ·
∑
u∈U

∑
c∈Cu

Du,c · min
r∈Ru,c

(
max
v∈X

w(r, v)
)
−
∑
v∈X

zvar
v , (4.11)

In the first term of this objective function, the obtained prize for the expected total
satisfied demand is determined by considering for each user u, each use case c, and each
SPR r a most suitable location v ∈ V at which a service point is to be opened (v ∈ X).
Over all SPRs of a use case, the minimum of the obtained suitability values is taken
so that the full demand is only fulfilled when for each SPR an ideally suited service
station is planned, and no demand is fulfilled as soon as one of the SPRs does not have
an appropriate service point. The second term of the objective function represents the
total maintenance costs for the service stations.

Overall, a crucial assumption we intend to exploit in our approach is that in a larger user
base some users typically share use cases and/or their SPRs. Identifying and exploiting
these similarities just on the basis of the specified “sampling-based” user interaction
is not trivial but may reduce the required interaction per user to obtain a good final
solution.
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By linearizing the above objective function, the GSPDP can be formulated as a MILP
with the following variables. Binary variables xv indicate whether or not a service point
is deployed at location v ∈ V , i.e., the binary vector x = (xv)v∈V is the incidence vector
of a corresponding solution X ⊂ V . Additional variables hr,v are used to indicate the
actually used location v ∈ V for each SPR r ∈ R. The degree to which a use case c ∈ Cu
of a user u ∈ U can be satisfied is expressed by continuous variables yu,c ∈ [0, 1]. The
GSPDP is then stated as follows.

max q ·
∑
u∈U

∑
c∈Cu

Du,c yu,c −
∑
v∈V

zvar
v xv (4.12)

∑
v∈V

zfix
v xv ≤ B (4.13)

∑
v∈V

hr,v ≤ 1 ∀r ∈ R (4.14)

∑
v∈V

w(r, v) · hr,v ≥ yu,c ∀u ∈ U, c ∈ Cu, r ∈ Ru,c (4.15)

hr,v ≤ xv ∀v ∈ V, r ∈ R (4.16)
xv ∈ {0, 1} ∀v ∈ V (4.17)
0 ≤ yu,c ≤ 1 ∀u ∈ U, c ∈ Cu (4.18)
0 ≤ hr,v ≤ 1 ∀r ∈ R, v ∈ V (4.19)

In correspondence to the definition of f , the objective value is calculated in (4.12) as
the sum of the prizes earned for fulfilled demand minus the costs for opening service
stations. Inequality (4.13) ensures that the budget is not exceeded. Inequalities (4.14)
ensure that at most one location is selected for each SPR. As our objective is to maximize
the revenue it is ensured that always a suitable service point location with the highest
suitability value for each SPR is chosen. Inequalities (4.15) determine the degrees to
which the use cases are satisfied, considering that the actually fulfilled demand of a use
case is assumed to be proportional to the minimum suitability value of the locations
selected for the SPRs of the use case. Last but not least, Inequalities (4.16) ensure that
only locations at which service points are to be opened can be used for SPRs and, thus,
to satisfy demand of use cases. The size of this model in terms of the number of variables
as well as the number of constraints is in O(n |R|+ |C|) where C refers to the set of all
use cases over all users, i.e. C =

⋃
u∈U Cu.

Theorem 2. The GSPDP is NP-hard.

Proof. NP-hardness of the GSPDP is proven by providing a reduction from the well
known NP-hard Maximal Covering Location Problem (MCLP) [65] in the variant stated
by [120]. Given are a set of possible facility locations J , a maximum number p of facilities
to be opened, and a set of demand nodes D. Moreover, each demand node i ∈ D is
associated with a demand ai ≥ 0 and a subset of facilities Fi ⊆ J of which each is able
to cover the node’s full demand. The goal of the MCLP is to select up to p locations for
opening facilities in order to maximize the total demand covered.
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Given an instance to the MCLP we construct a corresponding GSPDP instance in which
the set of locations V corresponds to the set of facilities J and the set of users U
corresponds to the set of demand nodes D. Moreover, each user u ∈ U only has a single
use case with a single SPR and demand ai with u = i. Building costs zfix

v for a location
v ∈ V are set to one while the maintenance costs zvar

v are zero. The budget of the GSPDP
instance is set to p, and the prize for a unit of covered demand q is set to one. The
suitability value w(r, v) is set to one for v ∈ V and r ∈ R if facility i can satisfy the
demand of demand node j, i.e., j ∈ Fi, and zero otherwise.

Let (x,y,h) be a feasible solution to this derived GSPDP instance. A corresponding
feasible solution to the MCLP is obtained by opening facilities at all locations j ∈ J for
which xv = 1. Due to the budget constraint (4.13), at most p facilities are opened in the
MCLP instance, and thus, there is a bijective mapping of feasible GSPDP solutions to
feasible MCLP solutions.

Since each user in the GSPDP instance only has one use case and each use case only
consists of one SPR, the sets U , C, and R all contain the same elements. By our
definitions, variables yu,c indicating the covered SPRs therefore also indicate the covered
demand nodes of the MCLP instance. More generally, we also have a bijective mapping
of covered SPRs in the GSPDP instance to covered demand nodes in the MCLP instance.
Last but not least, due to our definitions of the suitability values w(r, v), the fixed and
variable costs for opened stations, and the prize per unit of fulfilled demand, the objective
values of corresponding GSPDP and MCLP solutions also correspond. Since all applied
transformations require polynomial time, it follows that the GSPDP is NP-hard.

4.6.2 The Cooperative Optimization Algorithm

In this section the COA framework for solving GSPDP instances, henceforth referred
to as COA[GSPDP] is described. In contrast to the COA[ISPDP], for COA[GSPDP]
the FC starts with an initialization phase on its first call by asking each user u ∈ U to
specify the user’s use cases Cu, associated SPRs Ru,c, as well as corresponding demands
Du,c, c ∈ Cu. Afterwards, the FC is again responsible for collecting information from the
user, i.e., users can interact with the framework at this stage of the algorithm.

Figure 4.6 gives a summary of the whole COA procedure for solving GSPDP instances
and of the main tasks of each of the components of COA. In the following we describe
each component’s functionality in more detail.

Solution Management Component

The SMC stores and manages so far considered solutions and evaluations by the users.
The solutions obtained from the OC in all major iterations is stored in a set we denote
by X . For each solution X ∈ X the SMC keeps track of its current surrogate objective
value f̃(X). Hence, the surrogate objective values of the solutions in X are updated in
each major COA iteration whenever the EC updates the surrogate suitability function.
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Figure 4.6: Components of COA for GSPDP instances.

The current best solution in X , i.e., the solution with the highest surrogate objective
value, is denoted by X̃∗.

All feedback obtained from the users via the presented location scenarios is collected and
stored in the SMC in a hash map: Its set of keys, which we denote by K, is the set of
pairs (r, v) with r ∈ R, v ∈ V for which suitability values w(r, v) have been obtained
from the users, and the respective values are the w(r, v).

Last but not least, through the FC we are also able to obtain upper bounds on suitability
values w(r, v), with v ∈ V, r ∈ R, as will be explained below. These upper bounds are
stored in the SMC as wUB

r,v ∈ [0, 1].

Feedback Component

Let S ⊆ V be a location scenario provided to a user u in respect to one of the user’s SPRs
r ∈ Ru. It is then assumed that the user returns as evaluation of the scenario S either
a best suited location vr,S ∈ S and the corresponding suitability value w(r, vr,S) > 0 or
the information that none of the locations of the scenario S is suitable. The latter case
implies that w(r, v) = 0 for all v ∈ S. In case multiple locations are equally well suited,
we assume that the user selects one of them at random. It is assumed here that the
suitability of a location w.r.t. an SPR can be specified by the user on a five-valued scale
from zero, i.e., completely unsuitable, to one, i.e., perfectly suitable; a more fine grained
evaluation would not make much practical sense.

Clearly, this definition of user interaction is simplified and idealized, in particular as
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we assume here that all users always give precise answers. In a real application, the
uncertainty of user feedback and the possibility of misbehaving users who intentionally
give misleading answers also need to be considered among other aspects. Moreover, it
would be meaningful to extend the possibilities of user feedback. For example, users
could be allowed to optionally rate more than one suitable locations for an SPR in one
scenario or to make suggestions which locations to additionally include in a scenario.

In each iteration of COA, users get presented individual sets of location scenarios Sr for
their service point requirements r ∈ R. These scenarios are compiled according to the
following strategies.

Remember that location suitability values obtained from the users are later used in the
EC for training the surrogate function w̃Θ. Moreover, by enforcing that each user is
required to select a best suited service point location in a presented location scenario
for an SPR r, a suitability value indicated by the user for some location vr,S also serves
as upper bound on the suitability values of all other locations in the location scenario
S; thus, wr,vr,S ≥ w(r, v), ∀v ∈ S. By wUB

r,v , the SMC maintains for each SPR r ∈ R,
and each location v ∈ V the so far best obtained upper bound on each w(r, v); initially,
wUB
r,v = 1.

Let Vw(r) = {v | w(r, v) > 0} be the initially unknown set of locations that are actually
relevant to a user u ∈ U w.r.t. an SPR r ∈ Ru. A straight-forward strategy to identify
this set is to iteratively present the user scenarios SV

r = {v ∈ V | (r, v) 6∈ K}, containing
all locations v ∈ V for which no entry (r) ∈ K exists yet, i.e., locations for which no
suitability values are known yet w.r.t. r. Following this strategy, it can be ensured to
identify a new location of Vw(r) in every iteration of COA. Note, however, that it can
only be guaranteed that Vw(r) is completely known once the user returns that none
of the locations in the last scenario SV

r are suitable for r. Consequently, Vw(r) will be
completely known after |Vw(r)|+ 1 user interactions.

Hence, an upper bound IUB
u on the total number of required interactions with user u for

completely identifying all relevant locations for all of his/her use cases is

IUB
u =

∑
r∈Ru

(|Vw(r)|+ 1) . (4.20)

While this value is unknown in a real-world scenario, it allows us to establish a measure
of quality on how well our strategy for presenting scenarios to users performs within our
testing environments.

As strategies for generating scenarios we adapt strategies developed for COA[ISPDP],
specifically the best solutions strategy as well as the relevant locations strategy: The first
strategy generates scenarios S∗r = {v ∈ X̃∗ | (r, v) 6∈ K} containing all locations from the
current best solution that have not been rated yet w.r.t. r. The second strategy generates
scenarios according to the approach described above, i.e., SV

r = {v ∈ V | (r, v) 6∈ K}.
Note that for users generally only a fraction of the service point locations in V is
actually relevant to one of their SPRs. Hence, when presenting a user u ∈ U two
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scenarios for each of the user’s SPRs every iteration the number of user interactions
would quickly exceed IUB

u . Therefore, in the first COA iteration a scenario SV
r is generated

for each r ∈ R, but in successive iterations, scenarios are only generated for subsets of
R. More specifically from the second iteration onward, ςV and ς∗ percent of the SPRs
RK = {r ∈ R | ∃v ∈ V : (r, v) 6∈ K} are randomly selected for generating scenarios
according to SV

r and S∗r , respectively, with ςV and ς∗ being strategy parameters.

Evaluation Component

The exact objective function f from (4.11), which is based on the mostly unknown
suitability values w(r, v) with r ∈ R, v ∈ V , is approximated by the surrogate objective
function f̃ , making use of the following surrogate suitability function

w̃Θ(r, v) =
{
w(r, v) if (r, v) ∈ K
max(0,min(wUB

r,v , gΘ(r, v))) else.
(4.21)

Generally speaking, gΘ is here a learnable function with weight parameters Θ approxi-
mating w(r, v) for all unknown pairs (r, v) 6∈ K. The above definition thus ensures that
w̃Θ always returns known values w(r, v) and otherwise respects lower bounds zero and
upper bounds wUB

r,v , giving function g more freedom. Upper bounds wUB
r,v are initially set

to one. The SMC is then responsible for deriving tighter upper bounds.

Suitability values are approximated by exploiting similarities of SPRs among users. In
general we cannot expect that there exist users having the same needs in all respects,
i.e., the users have the very same use cases with the same demands. However, given a
sufficiently large user base it is realistic that there are users having similar SPRs and
associated preferences concerning suitable locations.

A popular collaborative filtering technique for exploiting similarities among user prefer-
ences is matrix factorization [18], which we also apply here. Given an incomplete matrix
containing ratings R = (wi,j)i∈U, j∈P for a set of users U over a set of products P , the
idea behind matrix factorization is to decompose this matrix into two smaller matrices, a
user/feature matrix ξ and a product/feature matrix ν, such that the product of these
two matrices approximates the original matrix. An unknown rating, i.e., a rating not
contained in the original matrix R, can then be estimated as the dot product of the
corresponding feature vectors in matrix ξ and matrix ν, respectively.

Moreover, we also want to exploit the fact that only a small fraction of the locations in
V is typically relevant for the SPR of a user and that unknown ratings are not missing
at random. In our problem users are always asked to rate the most suitable location of a
scenario. Therefore, known ratings tend to be biased towards more positive values while
unrated locations are likely to have a low suitability for a user w.r.t. an SPR. A matrix
factorization approach that takes such considerations into account has been suggested by
[19]. Traditionally, the rating matrix R is factorized by solving the optimization problem

min
ξ,ν

∑
i,j|wi,j∈R

E(wij , ξiν ′j) + ρ(ξ,ν) (4.22)
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where E is a loss function for measuring the error between the actual and the predicted
ratings and ρ is a regularization term. In [19] this minimization problem is expanded by
adding a bias term for unknown ratings towards a certain value ŵ, i.e.,

min
ξ,ν

∑
i,j|wi,j∈R

E(wi,j , ξiν ′j) + α
∑

i,j|wi,j 6∈R
E(ŵ, ξiν ′j) + ρ(ξ,ν). (4.23)

Parameter α controls the impact of this new term in the optimization. The authors show
for selected loss functions how this new optimization problem can be solved in the same
time complexity as the traditional optimization problem.

In order to apply matrix factorization for approximating suitability values w(r, v) in
our case, we start from the sparsely filled matrix W = (w(r, v))(r,v)∈K containing all
so far known suitability values. By factorizing W along the r dimension and the v
dimension on the basis of a feature set F = {1, . . . , φ}, we obtain an SPR/feature matrix
ξ = (ξr,i)r∈R, i∈F with ξr,i ∈ R and a location/feature matrix ν = (νv,i)v∈V, i∈F with
νv,i ∈ R. Feature vectors ξr describe the SPR r in terms of abstract features, while
feature vectors νv reflect the characteristics of locations v. In general, it is expected that
SPRs with similar needs will have similar feature vectors in ξ, and locations with similar
suitability characteristics will have similar feature vectors in ν. The number of features
φ is hereby a parameter that is chosen, e.g., in dependence of an estimation of the overall
number of different service point requirements, and we assume it is considerably smaller
than the overall number of SPRs as well as the number of locations n. As unknown
suitability values are more likely zero than being greater than zero, we set the bias target
ŵ = 0.

Having obtained matrices ξ and ν, an unknown value of W is approximated by the
dot product of the respective feature vectors rounded to the nearest of the five discrete
suitability values we defined, i.e.,

gΘ(r, v) = b4 · ξrν ′v + 0.5c/4. (4.24)

The trainable parameters of gΘ are therefore Θ = (ξ,ν).
Our loss function for the matrix factorization is

min
∑

(r,v)∈K

(w(r, v)− ξrν′
v)2 + α

∑
(r,v)6∈K

(ξrν′
v)2 + λ(‖ξr‖2 + ‖νv‖2), (4.25)

and randomized block coordinate descent [121] is used to minimize it.

Optimization Component

Recall that the OC is performed in each major iteration of the framework and makes
use of the current surrogate objective function f̃ provided by the EC. The surrogate
objective function does not change during each individual call of the OC. The OC is
thus supposed to return an optimal or close-to-optimal solution to our problem w.r.t. the
current surrogate objective function.
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A potential exact optimization approach is to apply a general purpose MILP solver to the
MILP formulation already presented in Section 4.6.1, Equations (4.12)–(4.19), however
suitability values are approximated by the surrogate suitability function w̃Θ.

Note that for improved scalability, a metaheuristic approach might be more suitable
as optimization core as it is not necessary to find an optimal solution in each iteration.
Therefore, we propose an LNS as optimization core. In our LNS a solution to a GSPDP
instance is destroyed in a uniform random fashion by adding kdest new locations to the
solution, where kdest is a parameter that is varied.

To repair a solution X, we make use of a randomized greedy approach: Let ∆(v,X) denote
by how much the objective value of a solution X would decrease when removing location
v from X. Note that, it is discussed later how ∆(v,X) can be efficiently calculated for
all v ∈ X. In each iteration we first generate a restricted candidate list of krep locations
v ∈ V for which ∆(v,X) is lowest, i.e., the candidate list contains the locations that have
the lowest impact on objective value of X. Hereby, krep is another strategy parameter.
Ties are broken randomly. A location is then chosen uniformly at random from this
restricted candidate list and removed from X. The greedy procedure terminates once
the solution is feasible, i.e., the associated budget is no longer exceeded.

To construct an initial solution in the first iteration of COA, we also make use of the repair
heuristic, starting from X = V and then sequentially removing locations from X for
which ∆(v,X) is lowest until the solution becomes feasible, i.e. krep = 1 for constructing
an initial solution. In subsequent iterations of COA, the LNS is warm-started with COA’s
current best solution X̃∗.

Our LNS makes use of two destroy operators with kdest = 10 and kdest = 20, respectively,
and two repair operators with krep = 2 and krep = 4, respectively. These settings have
shown to yield a robust convergence behavior across the kinds and sizes of instances in
our benchmark sets. In each iteration a repair and destroy operator is chosen uniformly
at random. Moreover, each LNS run terminates after 40 iterations without improvement.

A crucial aspect for developing an effective heuristic for solving the GSPDP is that
computing the surrogate objective value f̃ of a solution in a straight-forward way from
scratch is time consuming. Hence, in order to accelerate this task we maintain for a
GSPDP instance a directed graph G = (LL∪SL∪CL∪{lobj}, ALL∪ASL∪ACL) referred
to as evaluation graph. This graph represents the objective function calculation and
stores intermediate results for a current solution, allowing for an effective incremental
update in case of changes in the solution. The evaluation graph consists of four layers of
nodes, which are the location layer (LL), the SPR layer (SL), the use case layer (CL),
and the evaluation layer containing a single node lobj. The location layer contains n nodes
corresponding to the locations in V , i.e., LL = {llv | v ∈ V }. The use case layer consists
of one node for each use case Cu of each user u ∈ U , i.e., CL = {lcc | c ∈ Cu, u ∈ U}, and
the SPR layer contains one node for each SPR in ∈ Ru,c, for each use case c ∈ Cu and
user u ∈ U , i.e., SL = {lru,r | r ∈ Ru,c, c ∈ Cu, u ∈ U}.
There exists an arc in G from a node of the location layer llv to a node of the SPR layer lru,r
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if w̃Θ(v, r) > 0, i.e., ALL = {(llv, lru,r) | llv ∈ LL, lru,r ∈ SL, w̃Θ(v, r) > 0}. A node of the
SPR layer is connected to a node of the use case layer if the corresponding SPR is an SPR of
the corresponding use case, i.e., ASL = {(lru,r, lcc) | lru,r ∈ SL, lcc ∈ CL, r ∈ Ru,c}. Finally,
each node lc of the use case layer is connected to lobj, i.e., ACL = {(lcc, lobj) | lcc ∈ CL}.
The location layer gets as input a binary vector (xv)v∈V with xv = 1 if v ∈ X and xv = 0
otherwise, w.r.t. a solution X. Figure 4.7 shows the structure of an evaluation graph.
Moreover, each node in G has an activation function α() that decides its output value

x1 →

x2 →

x3 →

xn−1 →

xn →

ll1

ll2

ll3

lln−1

lln

lr1,1

lr1,2
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lrm,|Cm|−2

lrm,|Cm|−1

lrm,|Cm|

lc1

lc|C|−1

lc|C|
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Location
Layer

SPR
Layer

Use Case
Layer

Figure 4.7: Structure of an evaluation graph where |C| refers to the total number of use
cases over all users.

which is propagated to its successor nodes in the next layer as their input, i.e.,

αLL(llv, X) =
{

1 if v ∈ X
0 otherwise,

∀llv ∈ LL, (4.26)

αSL(lru,r, X) = max
(llv ,lru,r)∈ALL

(αLL(llv, X) · w̃Θ(v, r)) ∀lru,r ∈ SL, (4.27)
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αCL(lcc, X) = min
(lru,r,l

c
c)∈ASL

αSL(lru,r, X) ∀lcc ∈ CL, (4.28)

αeval(lobj, X) =
∑

(lcc,lobj)∈ACL

αSL(lcc, X)−
∑
v∈X

zvar
v . (4.29)

The evaluation graph stores all output of the activation functions from the last evaluated
solution and is therefore especially efficient for evaluating subsequent solutions that only
differ in a single location v ∈ V as not everything needs to be calculated from scratch but
just the modified value v w.r.t. the current solution X needs to be propagated. Note that
ALL needs to be updated in each iteration of COA as the EC recalculates the surrogate
suitability values w̃Θ in each iteration with newly obtained user feedback.

Additionally, the evaluation graph also makes it possible to efficiently keep track of how
much each location v contributes to the objective value of a solution. For this purpose, we
introduce the following new notations. Let X be a current solution and c ∈ Cu be a use
case of a user u ∈ U that is satisfied (to some degree) in X, i.e., for each r ∈ Ru,c there
exists at least one location v ∈ X such that w̃Θ(r, v) > 0. Let vmax(r,X) refer to a location
in the solution for which w̃Θ(r, vmax(r,X)) = maxv∈X w̃Θ(r, v). For the sake of readability
we further refer to w̃Θ(r, vmax(r,X)) as w̃max

Θ (r,X). Additionally, let w̃fallback
Θ (r,X)

denote the second highest suitability value for an SPR r w.r.t. to the locations in X, i.e.,
w̃fallback

Θ (r,X) = max{w̃Θ(r, v) | v ∈ {X \{vmax(r,X)}}∪{0}}. Note that w̃fallback
Θ (r,X)

is zero if X \ {vmax(r,X) is empty. Finally, let w̃min
Θ (u, c,X) = minr∈Ru,c w̃

max
Θ (r,X).

From the definition of the surrogate objective function, it follows that the degree to
which a use case c is satisfied in a solution X is only determined by the set of locations
{vmax(r,X) | r ∈ Ru,c}. Hence, let ∆(u, c, v,X) denote by how much the degree to which
a use case c ∈ Cu of a user u ∈ U is satisfied w.r.t. a solution X would decrease when
removing v from X, i.e.,

∆(u, c, r,X) =
{
q ·Du,c · (w̃max

Θ (r,X)− w̃fallback
Θ (r,X)) w̃fallback

Θ (r,X) < w̃min
Θ (u, c,X)

0 otherwise
(4.30)

∆(u, c, v,X) = max ({∆(u, c, r,X) | r ∈ Ru,c, v = vmax(r,X)} ∪ {0}) (4.31)

Generally speaking, the removal of a location v from a solution X only has an impact on
a use case c ∈ Cu if it results in a change of w̃min

Θ (u, c,X). Additionally, note that the
GSPDP also allows cases in which one service point location can be associated to multiple
SPRs of the same use case. Such a case would for example correspond to situations in
which a customer returns a vehicle at the same station at which the vehicle was picked
up. Therefore, the removal of a location from X may affect a use case w.r.t. more than
one of its SPRs. However, only the change that affects w̃min

Θ (u, c,X) the most is relevant
for calculating by how much the degree to which a use case is satisfied changes.

Hence, the amount ∆(v,X) by how much the objective value of a solution would decrease
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when removing location v from X is calculated as

∆(v,X) = −zvar
v +

∑
u∈U

∑
c∈Cu

∆(u, c, v,X). (4.32)

Note that the time required for determining wmax, wfallback, and wmin is negligible if the
domain of the rating scale by which users can specify suitability values is small. Moreover,
∆(v,X) does not need to be calculated from scratch every time a location is added or
removed from the solution. Let X ◦ {v} refer to the modification of a solution, by either
adding or removing a location v ⊆ V to/from X. Then ∆(v′, X ◦ {v}) with v′ ∈ X can
be determined from ∆(v′, X) as follows:

∆(v′, X ◦ {v}) = ∆(v′, X)−
∑
u∈U

∑
c∈Cu

∆(u, c, v′, X) + ∆(u, c, v′, X ◦ {v}). (4.33)

Additionally, ∆(v,X) needs to be updated only w.r.t. use cases that are actually affected
by the modification of the solution, i.e., only if w̃max

Θ , w̃fallback
Θ , or w̃min

Θ of a use case
change. Finally, for each use case c ∈ Cu at most 2 · |Ru,c| locations need to updated in
the worst case.

4.6.3 Test Cases

In the following it is described how test instances for evaluating COA have been generated.

Similar to COA[ISPDP], user interaction is simulated in an idealized manner in certain
test cases in order to analyze the strengths and weaknesses of the framework with a focus
on the algorithmic aspects. The considered test instances are of three groups. The first
two groups are purely artificial test instances inspired by the location planning of stations
for electric vehicle charging, denoted by EVC, and for (station-based) car sharing systems,
denoted by CSS, respectively. While in group EVC each use case has one SPR, there
are always two SPRs per use case in CSS. The third group of test instances is designed
similarly to group CSS, also addressing the car sharing scenario, but the instances are
generated from real-world taxi trip data of Manhattan; this group is therefore called
MAN. Note that COA intentionally does not make use of geographic information in any of
its components. Therefore, modeling preferences of users for our instances in dependence
of the proximity to service point locations does not provide COA any advantage for
finding an optimized solution.

All of our benchmark instances are available online at https://www.ac.tuwien.ac.
at/research/problem-instances/#spdp.

Artificial Test Instance Groups EVC and CSS

Test instances from the groups EVC and CSS are generated with the same approach and
is based on the approach used for generating instances to the ISPDP. The n possible
locations for service stations are randomly distributed in the Euclidean plane with
coordinates coord(v), v ∈ V , chosen uniformly from the grid {0, . . . , L − 1}2, with
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L = d10
√
ne. The fixed costs zfix

v as well as the variable costs zvar
v for setting up a service

station at each location v ∈ V are uniformly chosen at random from {50, . . . , 100}. The
budget is assumed to be B = d7.5 · ne so that roughly 10% of the stations with average
costs can be expected to be opened.

The number of use cases for each user u ∈ U is chosen randomly according to a shifted
Poisson distribution with offset one, expected value three, and a maximum value of five,
i.e., values are generated anew if they exceed five. Hence, the number of use cases never
exceeds five. Each of these use cases c ∈ Cu is associated with an individual demand
Du,c randomly chosen from {5,. . . ,50} and, depending on the benchmark group, with
one (EVC) or two (CSS) SPRs.

Each SPR r ∈ Ru,c of a use case c also is associated with a particular geographic location
qr ∈ {0, . . . , L− 1}2. In order to model similarities in the users’ SPRs, these locations
are selected in the following correlated way. First nα attraction points A with uniform
random coordinates are selected from {0, . . . , L− 1}2. Then, each use case location is
derived by randomly choosing one of these attraction points (ax, ay) ∈ A and adding a
small individual offset to the coordinates, i.e.,

qr = (bN (ax, σv)c, bN (ay, σv)c), (4.34)

where N (·, ·) denotes a random value sampled from a normal distribution with the
respectively given mean value and standard deviation σv. If obtained coordinates are not
in {0, . . . , L− 1}2 a new attraction point is chosen and the deviation is re-sampled.

A service point location v ∈ V receives a rating w.r.t. an SPR r according to a sigmoidal
decay function applied to the Euclidean distance, and is also perturbed by a Gaussian
noise with a standard deviation of σr:

w′r,v = N
( 1

1 + 6e0.5||qr−coord(v)||−6 , σr

)
. (4.35)

The parameters of the sigmoid function are chosen so that w′r,v decreases as the distance
between v and qr increases and becomes approximately zero at a distance larger than
twelve. Additionally, we discretize the rating w′r,v by rounding to the closest value in
{0, 0.25, 0.5, 0.75, 1}, obtaining w(r, v). Hence, w(r, v) = b4 ·min(1,max(0, w′r,v))+0.5c/4.

Manhattan Test Instances

Next to the above described purely artificial benchmark instances we also derive bench-
mark instances from real-world yellow taxi trip data of Manhattan. As in CSS, MAN
instances have two SPRs per use case. The underlying street network G of the instances
corresponds to the street network graph of Manhattan provided by the Julia package
LightOSM3. Taxi trips have been extracted from the 2016 Yellow Taxi Trip Data4. The

3https://github.com/DeloitteDigitalAPAC/LightOSM.jl
4https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/

k67s-dv2t
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taxi data set was first preprocessed by removing all trips with invalid data and trips
made on a weekend. Furthermore, we have also removed all trips which do not start as
well as end in Manhattan. For taxi trips within the months January to July geographic
pickup and drop-off coordinates of customers are recorded in the data set. Each of
these coordinates has been extracted and mapped to the geographically closest vertex
in G, resulting in a list of pairs of vertices Q ⊆ V (G) × V (G). Next, as the similarity
of users in our instances depends on their geographic proximity, we have reduced Q by
considering only the ten taxi zones with the highest total number of pickups and drop-offs
of customers, resulting in a total of approximately two million taxi trips. Geographic
information of the taxi zones of Manhattan has been obtained from https://data.
cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc. The left
side of Figure 4.8 provides a visualization of the selected taxi zones.

The set of potential service point locations V has been chosen randomly from vertices
of G that are located in the considered taxi zones. The fixed costs zfix

v as well as the
variable costs zvar

v for setting up a service station at each location v ∈ V are uniformly
chosen at random from {50, . . . , 100}.
The number of use cases for each user u ∈ U is again chosen randomly according to
a shifted Poisson distribution with offset one, expected value three, and a maximum
value of five. Each of these use cases c ∈ Cu is associated with an individual demand
Du,c randomly chosen from {5, . . . , 50} and the two SPRs representing the origin and
destination of a trip chosen from Q uniformly at random. A rating for an SPR r is
calculated for each v ∈ V via the sigmoidal decay function

w′r,v = 1
1 + 10e0.01sp(r,v)− 6

, (4.36)

where sp(r, v) refers to the length of the shortest path between location v and the SPR r
in the street network graph G. The parameters of this function have been chosen in such
a way that service point locations within a distance of approximately 600 meters to r are
relevant for the SPR. Finally, the discretized suitability value w(r, v) is again obtained
by w(r, v) = b4 ·min(1,max(0, w′r,v)) + 0.5c/4. The right side of Figure 4.8 shows the
distribution of SPR locations as well as potential service point locations for an example
instance.

The MAN benchmark group consists of 30 instances in total with each instance having
100 potential service point locations and 2000 users. Additionally, each instance will
be evaluated with different budget levels b [%] ∈ {30, 50, 70} such that about b percent
of the stations considering average costs can be opened, i.e, the actual budget for each
instance is calculated as B = db · 0.75 · ne.
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Figure 4.8: Left: The considered ten taxi zones of Manhattan with the highest number of
pickups and drop-offs. Right: Exemplary distribution of SPR locations (black triangles)
and potential service point locations (white points).

4.6.4 Results

The COA framework including the FC was implemented in Python 3.8. For the matrix
factorization of the EC we adapted the C++ implementation of [19] provided on Github5.
Gurobi 9.16 was used to solve the MILP models in the OC while the LNS was written in
Julia 1.67

Six sets of 30 benchmark instances were generated for EVC as well as CSS. As detailed
in Table 4.3, these sets consider n ∈ {100, 200, 300} potential service point locations in
combination with different numbers of users and two different settings for the standard
deviations of the Gaussian perturbations σv and σr. For each instance the number of
attraction points nα is ten. In the following we will denote instance sets primarily by the
pair (n,m).

The parameterization of the COA[GSPDP] components have been determined through
preliminary tests on an independent set of instances. For all test runs the weighting for
unknown suitability values α of the matrix factorization has been set to one. Moreover,
the number of features considered in the matrix factorization is set to ten for all test runs.
The parameters ςV and ς∗ for controlling the number of scenarios generated according to
each strategy in the FC have been set to 0.5 and 0.1, respectively.

In each COA[GSPDP] iteration a time limit of ten minutes has been set for solving
the MILP. If the MILP was not solved to optimality within this time limit, the best
found solution was used. All test runs have been executed on an Intel Xeon E5-2640 v4
2.40GHz machine in single-threaded mode with a global time limit of four hours per run.
Note however, that all runs terminated within this time limit once all relevant locations

5https://github.com/rdevooght/MF-with-prior-and-updates
6https://www.gurobi.com/
7https://www.julialang.org/
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Table 4.3: Main parameters of the EVC and CSS instance sets of groups EVC and CSS.
Each row represents a set of 30 instances.

(n,m) σv σr

(100, 500) 3.0 0.03
(100, 1000) 5.0 0.15
(200, 1000) 3.0 0.03
(200, 2000) 5.0 0.15
(300, 1500) 3.0 0.03
(300, 3000) 5.0 0.15

had been discovered. Since we have full knowledge of our test instances, we are also able
to calculate optimal reference solutions for each instance. Hence, by f(xopt) we denote
the objective value of a respective optimal solution xopt.

To characterize the amount of user interaction performed by COA[GSPDP], we consider
the total number of scenarios evaluated by a user u ∈ U in relation to the upper
bound of required interactions IUB

u . Let Iu be the number of user interactions of user
u ∈ U performed within COA[GSPDP] to generate some solution. Then, I = 100% ·
(
∑
u∈U Iu/I

UB
u )/m, refers to the relative average number of performed user interactions

relative to IUB
u over all users. Note that since scenarios are presented only to a fraction

of users in every iteration, the average number of user interactions at each iteration
of COA varies even for instances within the same benchmark group. Hence, in order
to reasonably study results for each of our benchmark groups, we aggregate respective
results to our instances at various interaction levels ψ by selecting for each instance the
COA iteration at which I is largest but does not exceed ψ. Note that for some instances
smaller levels of ψ are already exceeded in the first iteration of COA[GSPDP]. Hence, in
the following we only consider interaction levels for an instance group for which results
to all corresponding instances exist.

Note further that the user interaction levels can also be interpreted as the average
information known about a user. This interpretation allows us to draw a direct comparison
to traditional approaches for distributing service points in which information about the
demands of the users is determined in advance. Each result at a certain interaction level
can also be interpreted as the result of such a traditional approach with a certain level
of knowledge about the users. However, to the best of our knowledge there exists no
data about suitability values in other work. Additionally, for a fair comparison between
COA[GSPDP] and other approaches from literature one would have to also take into
account the costs required for obtaining said information about the users. Therefore,
comparing COA[GSPDP] to other approaches from literature seems to be not possible
without an extensive study on suitability values of users or a complex simulation of
users based on various assumptions that can heavily influence the outcome of such a
comparison.
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First we discuss results for COA[GSPDP] with the MILP as optimization core. Afterwards,
we evaluate the OC in more detail by comparing the performance of the LNS throughout
COA to the performance of the MILP. Finally, we also compare the COA[GSPDP] to
COA[ISPDP].

Results for the MILP as optimization core

First, we want to show how the quality of incumbent solutions develops as the number of
user interactions increases during a COA[GSPDP] run. For this purpose, we calculate
the optimality gap for a solution x obtained from COA[GSPDP] as

gap = 100% · (f(xopt)− f(x))/f(xopt). (4.37)

Figure 4.9 shows the average optimality gaps of solutions to each of our benchmark sets
against the interaction levels ψ. The results are grouped by σv and σr to additionally
compare instances groups with similar user behavior.

Recall that the number of attraction points is the same for all EVC and CSS instances.
Therefore, for instances with a higher number of users it is generally easier to find better
solutions as there are more users that prefer the same locations. The plots show that in all
cases solutions generally improve quickly with an increasing interaction level and close to
optimal solutions can be obtained well before identifying all the users’ relevant locations.
Specifically, at a user interaction level of 50% the solutions generated by COA[GSPDP]
feature optimality gaps of 1.45% on average. An exception of this observation are the
MAN instances with b = 30%. For these generated solutions do not reach an optimality
gap below 1% before ψ = 80% on average. Moreover, the figure also shows that the
solutions to MAN instances generally converge notably slower than the solutions to
EVC and CSS instances. This behavior is likely caused by the weaker correlation of
user preferences in the MAN instances and the way how the FC generates scenarios
presented to the users, specifically the aspect that locations important to the individual
users are tried to be identified first. Locations important to individual users might not
necessarily be the best locations to add to a solution, especially if there is a lower number
of users with similar preferences. Consequently, the strategies based on which scenarios
are generated may still have some room for improvement for such cases. Instead of
primarily identifying locations important to users, targeting locations in relation to the
current best solution with a higher emphasis might be a more expedient approach here.

Note that an increased number of user interactions does not only imply a larger training
set for the surrogate function but also results in better upper bounds wUB

r,v for locations
v ∈ V w.r.t. to an SPR r ∈ R. Therefore, to gain a better understanding of how much
the surrogate function actually contributes to finding an optimized solution, we study
what happens when the learning surrogate suitability function w̃Θ is replaced by the
naive function with no learning capabilities

w̃bl(r, v) =
{
w(r, v) if (r, v) ∈ K
0 else.

(4.38)

78



4.6. The Generalized Service Point Distribution Problem

25 35 45 55 65 75 85 95
interaction level [%]

0

1

2

3

4

ga
p[

%
]

v = 3, r = 0.03
(n,m)
(100, 500)
(200, 1000)
(300, 1500)

EVC

25 35 45 55 65 75 85 95
interaction level [%]

0

2

4

6

ga
p[

%
]

v = 5, r = 0.15
(n,m)
(100, 1000)
(200, 2000)
(300, 3000)

EVC

25 35 45 55 65 75 85 95
interaction level [%]

0

2

4

6

8

ga
p[

%
]

v = 3, r = 0.03
(n,m)
(100, 500)
(200, 1000)
(300, 1500)

CSS

25 35 45 55 65 75 85 95
interaction level [%]

0

5

10

15

20

ga
p[

%
]

v = 5, r = 0.15
(n,m)
(100, 1000)
(200, 2000)
(300, 3000)

CSS

25 35 45 55 65 75 85 95
interaction level [%]

0

5

10

15

ga
p[

%
]

MAN
b[%]

30
50
70

Figure 4.9: Development of average optimality gaps with an increasing number of user
interactions for each benchmark instance set.

In the following we refer to our original COA implementation with the surrogate function
w̃Θ as COA[w̃Θ] and denote the implementation with the naive function w̃bl as COA[w̃bl].
A comparison between COA[w̃Θ] and COA[w̃bl] is shown in Table 4.4. Each table cell
shows the average optimality gaps of solutions to the respective instance group at the
specified interaction levels ψ. The better results among COA[w̃Θ] and COA[w̃bl] are
printed bold. Additionally, as the standard deviations w.r.t. the optimality gaps are quite
large, see Figure 4.10, we have also applied a one-sided Wilcoxon signed-rank test to
determine for each group whether the difference in optimality gaps is significant or not.
Instance groups for which the Wilcoxon test has assessed at a 95% confidence interval
that either COA[w̃Θ] or COA[w̃bl] has produced better optimality gaps are marked with
an asterisk.

The table shows that especially for the CSS and MAN instances COA[w̃Θ] generates
significantly better results at almost all interaction levels ψ than COA[w̃bl]. While
for the EVC instances the average optimality gaps w.r.t COA[w̃Θ] are lower than the
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average optimality gaps w.r.t. COA[w̃bl], there are instance groups for which no significant
difference between the optimality gaps can be determined. However, there is no instance
group for which COA[w̃bl] produced significantly better results than COA[w̃Θ] over all
user interaction thresholds. It can be observed that at very low levels of user interaction
COA[w̃Θ] and COA[w̃bl] seem to be equally strong. However, as the amount of collected
of user feedback increases, COA[w̃Θ] quite quickly outperforms COA[w̃bl].

Table 4.4: Average optimality gaps obtained by COA using the surrogate suitability
functions with (w̃Θ) and without learning capabilities (w̃bl) at different interaction levels.

EVC

(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl]

30% 4.31 4.03 - - 0.99 0.99 - - 0.30 0.32 1.93 1.94
40% 1.71 2.00 4.42 4.95 0.57 0.62 1.84 2.06 0.23 0.23 1.17* 1.31
50% 0.73* 1.11 2.72 3.03 0.41 0.46 1.01* 1.44 0.16 0.16 0.68* 0.86
60% 0.31* 0.69 1.27* 1.66 0.23* 0.29 0.58* 0.91 0.10 0.09 0.36* 0.49
70% 0.12* 0.42 0.53* 0.90 0.11 0.14 0.33* 0.50 0.04* 0.06 0.16* 0.30
80% 0.11* 0.18 0.22* 0.53 0.04* 0.08 0.11* 0.21 0.02 0.04 0.05* 0.10
90% 0.05 0.11 0.03* 0.13 0.01 0.03 0.02* 0.06 0.00* 0.01 0.01* 0.02

CSS

(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl]

30% 8.02 7.60 20.92 19.11* 2.15 2.31 - - 0.81 0.82 - -
40% 2.98* 4.28 9.57 9.52 1.21* 1.63 2.81* 3.78 0.51 0.52 2.36* 2.64
50% 1.50* 2.41 4.72 4.41 0.62* 0.99 1.90* 2.77 0.31* 0.38 1.27* 1.80
60% 0.63* 1.51 2.29* 3.76 0.36* 0.63 1.20* 1.83 0.20* 0.26 0.72* 1.15
70% 0.27* 0.51 1.61* 2.36 0.12* 0.37 0.47* 1.09 0.11* 0.15 0.28* 0.59
80% 0.18* 0.43 0.92* 1.44 0.05* 0.12 0.18* 0.46 0.04* 0.07 0.15* 0.29
90% 0.01* 0.14 0.08* 0.65 0.02* 0.06 0.05* 0.15 0.01 0.02 0.03* 0.07

MAN

b 30% 50% 70%

ψ COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl]

30% 15.61 14.93 7.02 7.28 2.13 2.13
40% 6.25* 7.53 3.01* 3.46 1.12 1.18
50% 3.34* 4.33 1.63* 2.14 0.67* 0.77
60% 2.10* 2.80 0.93* 1.32 0.39* 0.48
70% 1.20* 1.86 0.46* 0.80 0.22* 0.28
80% 0.52* 1.04 0.18* 0.33 0.07* 0.09
90% 0.24* 0.38 0.04* 0.10 0.01 0.01

Figure 4.10 gives a visual comparison between COA[w̃Θ] and COA[w̃bl] for selected
instance groups and not only shows average optimality gaps but also respective standard
deviations around the mean values as shaded areas. The figure confirms that the average
gaps produced by COA[w̃Θ] are generally lower than those of COA[w̃bl] but also shows
that the standard deviations are quite large in general for both approaches. But as COA
progresses and the quality of the solutions improves, the standard deviations decrease as
well.

To further investigate the learning capabilities of the surrogate function, we now look at
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Figure 4.10: Average optimality gaps with standard deviations as shaded areas obtained
by COA using the surrogate suitability functions with learning capabilities (w̃Θ) and
without (w̃bl) plotted over the interaction level.

the MSE of w̃Θ in respect to the known exact values w. The left plots in Figure 4.11
show the development of this MSE calculated over all suitability values that are not
known yet by COA for all instance groups. It can be seen that the MSE is generally small
and approaches zero rather quickly. The reason for such small values can be found in the
matrix factorization model used in the EC, which adds a bias for unknown suitability
values towards zero as users typically only have a small number of locations with positive
suitability values for each of their SPRs. Consequently, the MSE is distorted by the large
number suitability values that are zero.

Therefore, the plots on the right side of Figure 4.11 show average mean squared errors
calculated only over all positive suitability values that are not known yet; we denote this
error by MSE+. This measure gives a clearer picture on how the surrogate function
continuously improves in all cases with an increasing amount of gained knowledge. At
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Figure 4.11: Development of average MSEs of w̃Θ over all so far unknown suitability
values (left) and all so far unknown positive suitability values (right) for all benchmark
sets.

the start of the algorithm the MSEs of the benchmark groups are between 0.2 and 0.3 on
average and go towards zero almost linearly with the interaction level. Note that neither
the size of an instance nor the given budget seem to have a significant impact on the size
of the errors. Additionally, the figure also highlights how the instance parameters σv and
σr impact the similarity of user preferences as the MSEs for instances with σv = 5 and
σr = 0.15 are generally larger than the MSEs for instances with σv = 3 and σr = 0.03.

Finally, in Table 4.5 we evaluate how the predictions of the matrix factorization change due
adding a bias for unknown ratings. For this purpose, let COA[w̃Θ] refer to COA[GSPDP]
using the matrix factorization model with α = 1 and let COA[w̃′Θ]refer to COA[GSPDP]
using the matrix factorization model with α = 0.

Each table cell shows the average optimality gaps of solutions to the respective instance
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set at the specified interaction level ψ. The better results among COA[w̃Θ] and COA[w̃′Θ]
are printed bold. A one-sided Wilcoxon signed-rank test was used to determine for each
instance set whether the difference in optimality gaps is significant or not. Entries for
which the Wilcoxon test has assessed at a 95% confidence level that either COA[w̃Θ] or
COA[w̃′Θ] has produced better optimality gaps are marked with an asterisk. It can be
observed that for lower levels of user interaction, solutions generated by COA[w̃′Θ] exhibit
extremely high optimality gaps. However, the higher the number of user interactions, the
more COA[w̃′Θ] can catch up with COA[w̃Θ]. Most of the time, though, COA[w̃Θ] still
dominates COA[w̃′Θ]. Summarizing, it can be concluded that the new matrix factorization
model is a significant improvement over our previous model w̃′Θ resulting in COA[w̃Θ]
generating better solutions with fewer user interactions than COA[w̃′Θ] most of the time.

Table 4.5: Average optimality gaps of solution from COA[w̃Θ] and COA[w̃′Θ], where
the latter utilizes the former surrogate function w̃′Θ from [27]. COA[w̃Θ] refers to
COA[GSPDP] using the matrix factorization model with α = 1 and COA[w̃′Θ]refers to
COA[GSPDP] using the matrix factorization model with α = 0.

EVC

(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ]

30% 81.89 4.31* - - 85.20 0.99* - - 82.14 0.30* 95.53 1.93*
40% 16.07 1.71* 34.82 4.42* 3.22 0.57 32.79 1.84* 9.08 0.23 23.21 1.17*
50% 1.95 0.73* 3.91 2.72* 0.35* 0.41 1.51 1.01* 0.13* 0.16 0.87 0.68*
60% 0.62 0.31* 2.20 1.27* 0.24 0.23 0.76 0.58* 0.09 0.10 0.48 0.36*
70% 0.46 0.12* 0.70 0.52 0.13 0.11 0.45 0.33* 0.04 0.04 0.24 0.16*
80% 0.22 0.11* 0.31 0.22 0.06 0.04* 0.17 0.11* 0.02 0.02 0.11 0.05*
90% 0.09 0.05 0.09 0.03* 0.02 0.01 0.05 0.02* 0.01 0.00 0.02 0.01*

CSS

(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ]

30% 80.12 8.02* 98.68 20.92* 86.58 2.15* - - 69.78 0.81* - -
40% 13.80 2.98* 24.73 9.57* 1.38 1.21 13.93 2.81* 3.84 0.51 6.17 2.36*
50% 2.34 1.50 7.31 4.72* 0.77 0.62 2.66 1.90* 0.33 0.31 4.73 1.27
60% 1.83 0.63* 2.53 2.29 0.49 0.36* 1.56 1.20* 0.22 0.20 0.83 0.72
70% 0.66 0.27* 1.91 1.61 0.21 0.12 0.74 0.47* 0.12 0.11 0.59 0.28*
80% 0.12 0.18 0.99 0.92 0.10 0.05* 0.42 0.18* 0.04 0.04 0.23 0.15*
90% 0.08 0.01* 0.45 0.08* 0.04 0.02 0.20 0.05* 0.02 0.01 0.13 0.03*

MAN

b 30% 50% 70%

ψ COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ]

30% 99.78 15.61* 99.83 7.02* 99.83 2.13*
40% 13.84 6.25* 3.97 3.01* 1.15 1.12
50% 8.46 3.34* 1.93 1.63* 0.63 0.67
60% 3.18 2.10* 0.89 0.93 0.35 0.39
70% 1.86 1.20* 0.64 0.46* 0.26 0.22
80% 1.15 0.53* 0.34 0.18* 0.12 0.07*
90% 0.47 0.24* 0.14 0.04* 0.03 0.01*
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Results for the LNS as optimization core

We compare our COA with the LNS, denoted in the following as COA[LNS], to the
COA that uses the MILP (4.12)–(4.19) as optimization core and henceforth denoted
as COA[MILP]. First, we provide some general information about the performance of
COA[LNS]. Table 4.6 shows for each instance group at different interaction levels the
average number of performed destroy and repair iterations niter, the average time in
seconds required for finding the best solution t∗[s], and the average total time in seconds
until the LNS terminated t[s]. We can see that the LNS terminates within 43 to 80

Table 4.6: Results of COA[LNS].

CSS

(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s]

40 50 0.21 0.87 62 0.96 2.08 60 0.21 0.61 76 1.37 2.31 59 0.35 0.66 75 1.32 1.99
50 51 0.27 1.09 67 1.18 2.82 67 0.48 1.05 68 1.03 2.42 65 0.50 0.94 71 1.32 2.34
60 46 0.22 1.17 58 1.09 3.09 58 0.41 1.17 59 1.01 2.74 66 0.61 1.19 65 1.47 2.96
70 47 0.25 1.39 53 0.79 3.09 50 0.30 1.27 58 1.18 3.07 64 0.56 1.22 64 1.45 3.27
80 45 0.18 1.51 48 0.44 2.78 45 0.16 1.16 50 0.59 2.80 56 0.47 1.33 59 1.14 2.98
90 43 0.10 1.48 44 0.25 2.64 45 0.17 1.19 49 0.60 2.73 46 0.22 1.17 44 0.43 2.51

MAN

b 30% 50% 70%

ψ niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s]

40 78 2.19 3.85 74 1.58 3.35 59 0.65 1.76
50 80 3.70 6.12 75 2.76 5.25 55 1.10 3.30
60 78 4.22 8.20 72 3.72 7.21 63 2.00 5.02
70 65 3.40 8.18 64 3.10 7.74 54 1.51 5.62
80 55 2.62 7.65 58 2.93 8.12 54 1.93 6.74
90 49 1.40 7.24 48 1.27 7.35 46 0.73 6.09

iterations on average and usually terminates within three seconds for the CSS instances
and within eight seconds for the MAN instances. While the total number of iterations
is relatively low, we later show in Table 4.7 that the solutions generated by the LNS
are almost optimal w.r.t. the presented instances. The number of iterations performed
tends to decrease as the number of performed user interactions increases while the total
runtime increases in each iteration for the MAN instance but stays almost constant for
the CSS instances. The decreasing number of iterations can be explained by the LNS
being warm-started with the so far best found solution X̃∗. Moreover, as the number of
user interactions increases, COA is able to identify more locations relevant to the SPRs
of the use cases of the users, resulting in a higher number of arcs between the nodes in
the service point layer and the nodes in the SPR layer of the respective evaluation graph.
Therefore, the number of iterations until the LNS converges decreases while the time for
performing one iteration increases.
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Next, we investigate COA runs in which we apply in each iteration both, the LNS and
the MILP, for solving the exact same GSPDP instances w.r.t. w̃Θ as well as the initial
solution X̃∗. The MILP solver is able to find optimal solution in all cases, but at the
expense of typically much longer running times. Note however that only the solution
generated by the LNS is further used for the next iteration in COA. Table 4.7 shows
the average percentage gaps between the objective values of the best solutions found
by the LNS and respective optimal solutions w.r.t. f̃ , denoted by gapf̃ [%], the average
total running times in seconds of the LNS t[s], the average times t◦M[s] needed by the
MILP solver required for reaching a solution with at most the same objective value as
the solution obtained by the LNS, as well as the average total times tM[s] in seconds of
the MILP solver for determining a proven optimal solution. Bold values indicate best
times w.r.t. t, t◦M, and tM. First, we can see that the solutions generated by the LNS
are on average only about 1% worse than an optimal solution for most instance groups.
Next, the table shows that for CSS instances with a n/m ratio of 1/10, the MILP solver
needs significantly more time for finding good solutions. Note that these instances have
been designed in such a way that users behave less similar resulting in more complex
instances. Nonetheless, the LNS significantly outperforms the MILP w.r.t. all instance
groups. For all instance groups the LNS requires significantly less time on average to
terminate than the MILP needs to reach a solution of the same quality as the solution
obtained by the LNS. Additionally, Table 4.7 especially highlights how much more time
the MILP requires for improving a solution at the same quality as the best found LNS
solution to a provable optimal solution. Moreover, further tests have shown that most of
the time the LNS is able to identify its best found solution while the MILP solver has
still not yet solved the root relaxation in the same amount of time.

Finally, we want to compare independent COA[MILP] and COA[LNS] runs, and thus the
impact of the in general slightly worse intermediate solutions of the LNS on the overall
results of the two COA variants. For this purpose Table 4.8 shows for each interaction
level the average optimality gaps between the best found solution during the optimization
to an optimal solution w.r.t. the original objective f for COA[LNS] (gapL[%]) as well as
COA[MILP] (gapM[%]). The table shows that small differences in the solution quality
w.r.t. f̃ translate to slightly larger differences w.r.t. f . With the exception of the MAN
instance group with b[%] = 30, the solutions generated by COA[LNS] are usually at most
3% off from the values obtained by COA[MILP]. In most cases, the average differences
are around 1% or less. Hence, in general it can be concluded that the LNS substantially
outperforms the MILP in terms of computation time while still being able to generate
almost optimal solutions.

Comparison between COA[ISPDP] and COA[GSPDP]

As previously mentioned, depending on the concrete CSPDP, the components of COA
need to be implemented in a different way. For example, as the ISPDP does not provide
any information about the use cases of the users, we are not able to apply the matrix
factorization model used for deriving a surrogate function for the GSPDP. Hence, it is
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Table 4.7: Average times required by the LNS, times the MILP solver needed to obtain a
solution with at least the same quality as the solution of the LNS, as well as the total
time required by the MILP to find a proven optimal solution. Additionally, the optimality
gaps between the LNS solutions and respective optimal solutions are also shown.

CSS

(100, 500) (200, 1000) (300, 1500)

ψ t[s] t◦M[s] tM[s] gapf̃ [%] t[s] t◦M[s] tM[s] gapf̃ [%] t[s] t◦M[s] tM[s] gapf̃ [%]

40 0.87 4.58 6.50 0.91 0.61 2.41 3.90 0.65 0.66 2.97 4.01 0.08
50 1.09 4.03 7.68 0.90 1.05 3.60 5.27 0.27 0.94 3.59 4.31 0.10
60 1.17 5.50 7.47 0.78 1.17 3.32 5.12 0.19 1.19 3.67 4.62 0.07
70 1.39 6.65 8.10 0.64 1.27 3.75 4.81 0.12 1.22 3.14 3.74 0.07
80 1.51 5.74 7.04 0.44 1.16 4.48 5.97 0.08 1.33 3.28 4.40 0.04
90 1.48 5.48 6.73 0.33 1.19 4.11 5.06 0.06 1.17 4.58 5.30 0.03

CSS

(100, 1000) (200, 2000) (300, 3000)

ψ t[s] t◦M[s] tM[s] gapf̃ [%] t[s] t◦M[s] tM[s] gapf̃ [%] t[s] t◦M[s] tM[s] gapf̃ [%]

40 2.08 21.87 37.42 2.15 2.31 32.79 92.15 1.24 1.99 26.04 85.61 0.81
50 2.82 28.03 50.51 1.97 2.42 37.61 90.11 1.07 2.34 39.84 101.52 0.57
60 3.09 35.60 59.04 1.45 2.74 36.47 126.67 0.89 2.96 38.34 130.05 0.47
70 3.09 42.95 67.34 1.74 3.07 40.48 111.96 0.84 3.27 43.41 136.93 0.36
80 2.78 43.57 69.94 1.83 2.80 40.98 120.07 0.90 2.98 43.78 137.76 0.37
90 2.64 40.09 74.98 1.37 2.73 41.33 123.32 0.78 2.51 63.56 149.78 0.37

MAN

30% 50% 70%

ψ t[s] t◦M[s] tM[s] gapf̃ [%] t[s] t◦M[s] tM[s] gapf̃ [%] t[s] t◦M[s] tM[s] gapf̃ [%]

40 3.85 67.21 326.46 2.15 3.35 17.24 53.54 0.87 1.76 6.36 10.71 0.21
50 6.12 80.31 328.53 1.36 5.25 16.76 95.43 0.59 3.30 10.20 15.29 0.11
60 8.20 131.28 368.28 1.19 7.21 24.36 89.15 0.43 5.02 14.59 21.54 0.07
70 8.18 140.34 375.46 1.06 7.74 24.86 108.59 0.35 5.62 13.22 21.73 0.06
80 7.65 160.13 414.39 1.12 8.12 27.70 108.01 0.34 6.74 18.00 24.43 0.05
90 7.24 154.44 411.55 1.29 7.35 43.43 102.70 0.27 6.09 13.03 17.46 0.03

not possible to solve ISPDP instances with the COA[GSPDP] framework. However, it
is possible to solve GSPDP instances with the COA[ISPDP] framework. Therefore, in
this section, using the CSS instance set, we compare the performance of COA[GSPDP]
to COA[ISPDP]. However, as COA[ISPDP] is not as efficient as COA[GPSPD] w.r.t.
computation times, we use a different benchmark set with a only 100 potential service
point locations. Specifically, we consider benchmark scenarios with n = 100 locations
and m ∈ {500, 1000, 1500} users. For each combination we derive three groups of 30
independent instances with different parameters nα ∈ {10, 17, 25}, σv ∈ {5, 7, 10}, and
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Table 4.8: Quality of solutions generated by COA[LNS] and COA[MILP].

CSS

(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%]

40 3.46 2.98 11.92 9.57 1.64 1.21 4.34 2.81 0.54 0.51 2.81 2.36
50 2.06 1.50 7.34 4.72 0.81 0.62 2.86 1.90 0.43 0.31 1.87 1.27
60 1.62 0.63 4.31 2.29 0.45 0.36 2.21 1.20 0.30 0.20 1.31 0.72
70 1.20 0.27 4.11 1.61 0.22 0.12 1.56 0.47 0.19 0.11 0.81 0.28
80 0.66 0.18 2.72 0.92 0.15 0.05 1.30 0.18 0.09 0.04 0.58 0.15
90 0.43 0.01 1.95 0.08 0.08 0.02 0.95 0.05 0.06 0.01 0.44 0.03

MAN

b 30% 50% 70%

ψ gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%]

40 8.61 3.46 3.58 3.46 1.32 3.46
50 5.14 1.88 2.19 1.88 0.77 1.88
60 3.32 1.14 1.41 1.14 0.46 1.14
70 2.53 0.63 0.86 0.63 0.25 0.63
80 2.03 0.26 0.54 0.26 0.12 0.26
90 1.77 0.10 0.33 0.10 0.05 0.10

σr ∈ {0.03, 0.1, 0.15}.
In the following experiments, for COA[ISPDP] the VNS was used as optimization core.
For COA[GSPDP] the number of features of the matrix factorization was set in accordance
to the number of attraction points nα of the test instances. Moreover, for the matrix
factorization model, the parameter α is set to 0. Further, both COA implementations
were terminated after five major iterations or when a CPU-time limit of 7200s has been
reached and returned as the overall best solution X̃∗, i.e., the solution with the highest
surrogate objective value at the end.

Table 4.9 shows the obtained results. Each line lists, for COA[GSPDP] as well as
COA[ISPDP], the average number of iterations nit, the average optimality gap “gap[%]”
between the objective value of x̃∗ and the optimal solution, the average percentage error
of the surrogate function values of the final solutions %-∆f̃ , with %-∆f̃ = 100% · |f̃(x̃∗)−
f(X̃∗)|/f(X̃∗), the average ratio of locations the users had to rate during the course of
the algorithm per use case and their relevant locations per use case ρ, and the median
computation times in seconds t[s].

The results clearly show that COA[GSPDP] is able to converge to very reasonable
solutions with small remaining optimality gaps of typically less than 2.3% within only
five major iterations. For %-∆f̃ , we can observe that the percentage errors decrease as
the number of users increases. This is especially evident for the hardest instance groups
C, F, and I where %-∆f̃ decreases from 8.17% to 4.42% on average. This documents
that, given a sufficient amount of users, the surrogate function is able to approximate the
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real objective function at the end well in the relevant parts w.r.t. the returned solution.
The table also shows that not all runs have been completed with five iterations, i.e.,
COA[GSPDP] was aborted due to the time limit for 9 instances from the instance groups
H and I. Column ρ of COA[GSPDP] also shows that in general users do not need to rate
more locations than their total number of relevant locations for each of their use cases.

COA[ISPDP] is significantly outperformed by COA[GSPDP] in all aspects. COA[GSPDP]
is able to generate better solutions in less time for all instance groups. In many cases
COA[ISPDP] exceeded the time limit of 7200s already in the first or second iteration which
explains the large difference in performance between COA[GSPDP] and COA[ISPDP]. It is
not quite easy to compare ρ between COA[GSPDP] and COA[ISPDP] since COA[ISPDP]
was not able to perform as many iterations as COA[GSPDP]. However, in general we can
observe that users are required to evaluate significantly more locations with COA[ISPDP]
than with COA[GSPDP].

Table 4.9: Average results of COA[GSPDP]and COA[ISPDP].

COA[GSPDP] COA[ISPDP]

Inst. m nα σv σr φ nit gap[%] %-∆f̃ ρ t[s] nit gap[%] %-∆f̃ ρ t[s]

A 500 10 5 0.03 10 5.00 0.35 2.28 0.86 751 1.97 16.40 28.07 0.82 7172
B 500 17 7 0.10 17 5.00 1.18 5.19 0.88 888 2.43 18.37 21.44 1.24 7168
C 500 25 10 0.15 25 5.00 2.23 8.17 0.84 1033 2.07 14.61 26.54 0.89 7190
D 1000 10 5 0.03 10 5.00 0.39 1.94 0.84 1540 2.90 16.93 22.63 1.53 7180
E 1000 17 7 0.10 17 5.00 1.61 4.73 0.83 2407 2.30 13.34 21.91 1.07 7181
F 1000 25 10 0.15 25 5.00 1.52 5.72 0.86 3383 2.53 16.98 20.86 1.32 7191
G 1500 10 5 0.03 10 5.00 0.26 1.73 0.85 2579 2.83 14.78 14.81 1.50 7189
H 1500 17 7 0.10 17 4.90 1.18 3.81 0.82 4478 1.77 17.78 28.88 0.65 7179
I 1500 25 10 0.15 25 4.73 1.63 4.42 0.80 5605 1.97 18.08 26.13 0.83 7189

4.7 Conclusion and Future Work
In this chapter we proposed a COA framework for distributing service points within
a geographical area in mobility applications under incomplete information. Instead of
estimating user demands by combining a variety of more or less reliable sources, our
method directly incorporates potential customers in the optimization process. COA offers
an attractive, alternative demand acquisition method, as it does not require any previous
data, is cheap to implement and can easily be transferred to other application scenarios
and locations.

We have evaluated two different implementations of COA for two concrete cooperative
service point distribution problems. For the first problem, the ISPDP, we refer to the
corresponding COA implementation as COA[ISPDP]. We could show for COA[ISPDP]
that the machine learning models in our EC are able to learn the non-trivial user
behavior of all our benchmark scenarios reliably after relatively few user interactions, and
the optimization is able to indeed find solutions with only small remaining optimality
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gaps. The careful derivation of the candidate solutions to be presented to the users
in the feedback component also plays a particularly important role. However, a major
disadvantage of COA[ISPDP] is the bad scalability of the approach towards more potential
locations and more users due to the large number of machine learning models that need
to be solved in each iteration.

This issue was addressed in the second COA implementation for solving the GSPDP.
We refer to the respective COA implementation as COA[GSPDP]. COA[GSPDP] uses a
matrix factorization model as new surrogate function in the EC. More specifically, we
made use of an advanced matrix factorization model which takes into account that user
data is not missing at random. Moreover, we also abandoned the previous black box
optimization model of the OC and use a MILP and an LNS instead. With experiments
on artificial instances as well as instances derived from real-world data, we could clearly
observe that the matrix factorization based surrogate model is able to learn preferences of
individual users from users with similar interests. Additionally, using the advanced matrix
factorization model yielded a significant improvement in the quality of the solutions. The
new surrogate function as well as the new optimization core of COA[GSPDP] resulted
in a major speedup and improvement in the scalability compared to COA[ISPDP].
Moreover, COA[GSPDP] also requires a significantly lower number of user interactions
than COA[ISPDP].

Additionally, we also presented an LNS to be used as optimization core for COA[GSPDP].
While the LNS follows the traditional destroy and repair principle, a major challenge
was to effectively guide the repair heuristic to produce promising new solutions and
to efficiently calculate the surrogate objective function for modified solutions in an
incremental way. Both was achieved by introducing the evaluation graph, which stores
relevant intermediate results allowing efficient updates when stations are added to or
removed from the current solution. In particular, the evaluation graph provides an
effective way to keep track of how much impact each location in the solution has on its
respective objective value. The efficient update possibility also allows to consider a larger
amount of locations during the destroy procedure. The performance of the LNS within
COA was tested on artificial instances as well as instances derived from real-world data
and was compared to the original COA with its MILP-based optimization core. Results
show that at the cost of a slight deterioration of usually not more than one percent in
the quality of the solutions, the LNS can outperform the MILP w.r.t. to computation
times by orders of magnitudes.

There is still potential left for future improvements. In both of our COA implementations,
the strategies by which scenarios for users are generated favor the selection of unrated
locations that may be important for individual users but not necessarily for a global
optimal solution. In order to quickly find a good solution by the optimization it is
important for our surrogate function to have higher accuracy for locations that have the
potential to actually appear in a globally optimal solution. Otherwise, finding a near
optimal solution requires a larger amount of user interactions as we have observed in
our results on the Manhattan instances. In order to improve the scenario generation
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strategies, it seems natural to enrich the FC with knowledge not only from the EC
but also from the OC. As the OC finds optimized solutions via a MILP, utilizing dual
solution information such as reduced costs or performing a sensitivity analysis might be
a promising direction.

It would also be interesting to further improve the scalability of COA, e.g., by using
hierarchical clustering and multilevel refinement strategies as applied in the context of
planning a bike sharing system in [6].

Finally, we also want to emphasize that the focus was on the algorithmic and computa-
tional aspects of COA and its components. Clearly, further challenges concern a suitable
user interface and a corresponding distributed implementation of at least the feedback
component, in which also psychological aspects of users need to be considered. Moreover,
the performed experiments are based on the assumption of perfect user feedback, which
does not hold in practice. The impacts of not entirely reliable evaluation results need to
be studied, and robust variants of certain components of COA devised.

90



CHAPTER 5
Smart Charging of Electric

Vehicles Considering
SOC-Dependent Maximum

Charging Powers

While the main topic of this thesis is the installation of service points for mobility
applications, there are also other challenges that need to be overcome for establishing
a mobility service. One such challenge is to successfully run a mobility service in the
sense of using one’s resources as efficiently as possible while maximizing the system’s
utilization. For example, charging stations are not only limited by the number of vehicles
they can serve at the same time but also by the maximal power they can provide to the
vehicles for charging. Additionally, vehicles are only temporarily available at a station
and electricity costs frequently change during a day. Therefore, a proper charging strategy
is a crucial requirement for running a charging station. Hence, this chapter is dedicated
to the problem of scheduling the charging of electric vehicles at a single charging station
such that the temporal availability of each EV as well as the maximum available power at
the station are considered. The total costs for charging the vehicles should be minimized
w.r.t. time-dependent electricity costs. An additional challenge we investigate in this
context is that the maximum power at which a vehicle can be charged is dependent on
the current state of charge (SOC) of the vehicle. Such a consideration is particularly
relevant in the case of fast charging.

Considering an SOC-dependent maximum charging power for a discretized time horizon
is not trivial as the maximum charging power of an EV may change during time steps.
To deal with this issue, we instead consider the maximum energy by which an EV can
be charged within a time step. For this purpose, we show how to derive the maximum
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charging energy in an exact as well as an approximate way.

Two methods for solving the scheduling problem are proposed. The first one is a cutting
plane method utilizing a convex hull of the in general nonconcave SOC-power curves.
The second method is based on a piecewise linearization of the SOC-energy curve and
is effectively solved by branch-and-cut. The proposed approaches are evaluated on
benchmark instances, which are partly based on real-world data. To deal with EVs
arriving at different times as well as charging costs changing over time, a model based
predictive control strategy is usually applied in such cases. Hence, we also experimentally
evaluate the performance of our approaches in such a context. The results show that
optimally solving problems with general piecewise linear maximum power functions
requires high computation times. However, problems with concave, piecewise linear
maximum charging power functions can efficiently be dealt with by means of linear
programming. Approximating an EV’s maximum charging power with a concave function
may result in practically infeasible solutions, due to vehicles potentially not reaching their
specified target SOC. However, our results show that this error is negligible in practice.

The approaches have been published in:

B. Schaden, T. Jatschka, S. Limmer, and G. R. Raidl, “Smart charging of electric
vehicles considering SOC-dependent maximum charging powers,” Energies, vol. 14,
no. 22, 2021

which is based on the master thesis of Benjamin Schaden:

B. Schaden, “Scheduling the charging of electric vehicles with soc-dependent maxi-
mum charging power,” Master’s thesis, TU Wien, 2021. Supervised by G. R. Raidl
and T. Jatschka.

5.1 Introduction
The number of EV is rapidly increasing. At the end of 2020, there were around 10
million EVs on the world’s roads and the number of EV registrations increased by
41% in 2020 [122]. The uncontrolled charging of this rising number of EVs, together
with an increasing share of renewable energy, imposes significant challenges for the
stable operation of the power grid in terms of power quality, voltage stability, peak
demand, and reliability [123]. Besides further measures, like time-of-use prices [124]
or dynamic pricing schemes [125], smart charging [126, 127] is considered a promising
strategy to mitigate these issues. Smart charging refers to the coordination of the charging
of a number of EVs in an intelligent way. Numerous approaches for smart charging,
considering different objectives and different constraints, are proposed in the literature
[128, 129, 130, 131, 132, 133, 134, 135].

These approaches typically assume that the maximum charging power of an EV remains
constant over the planning horizon. However, in practice the maximum charging power
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Figure 5.1: Maximum charging power of a Hyundai Kona Elektro in dependence of the
EV’s SOC; data obtained from Fastned [136].

depends on the SOC of the EV’s battery. Typically, with an increasing SOC, the
maximum charging power is regulated down by the battery controller. For slow AC
charging, the decrease of the maximum power is usually only marginal and can be
neglected for most applications. For modern fast DC charging, however, the effect of
the decreasing maximum power can be substantial as can be seen from the exemplary
SOC-power curve shown in Figure 5.1. The exact form of the curve does not only depend
on the type of battery and its charging controller but also on other factors like the ambient
temperature or the state of health of the battery [22]. In most cases the curve is highly
nonlinear, making it difficult to consider it in MILP approaches, which are frequently
used for charging planning. However, not considering the SOC-dependent maximum
charging power in the charging planning is likely to result in suboptimal or even infeasible
charging schedules, especially in the case of fast charging. For example, Frendo et al.
[23] conclude from numerical experiments that under the constraint of a limited total
charging power, up to 21% more energy can be charged if the SOC-dependent maximum
charging power is considered in the planning, compared to not considering it. Frendo et
al. also point out that in the literature on smart charging, the integration of nonlinear
SOC-power curves is frequently mentioned as future work. However, to date the number
of works, which actually address this issue, is still strongly limited.

We assume a basic use case of smart charging with the objective of minimizing the energy
cost under time-varying electricity prices and with the constraint of a limited total charging
power per time step. In order to allow a better integration of nonlinear SOC-power
curves, we formulate the scheduling problem in terms of planning the charging energy
instead of the charging power. Therefore, we consider two approaches for converting the
SOC-power curves to SOC-energy curves. The first approach is an exact approach, but
it can only guarantee that the average total charging power does not exceed the limit in
a time step. The second approach is an approximate approach, which guarantees that
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the total charging power never exceeds the limit, but it might lead to suboptimal costs.

We propose two methods for solving the resulting problems. The first one is an extension
of a cutting plane method proposed by Korolko and Sahinoglu [20] and utilizes a convex
hull of the in general nonconcave SOC-power curves. The second method makes use of a
piecewise linearization of the SOC-energy curve and is accelerated by branch-and-cut.
In extensive numerical experiments, we evaluate and compare the proposed approaches.
The key contributions of this chapter are

• a reformulation of the scheduling problem in terms of the control of charging energy,
which facilitates the integration of SOC-dependent maximum charging power,

• a proposal of two transformations of SOC-power curves into SOC-energy curves,

• and a proposal and evaluation of two mixed integer linear programming based
solution methods that consider SOC-dependent maximum charging powers.

The rest of the chapter is organized as follows. The next section discusses related work.
In Section 5.3 our EV charging scheduling problem is formalized. Additionally, it is
shown how to derive the exact as well as an approximate maximum charging energy
function from the maximum charging power function. Next, Section 5.4 presents the
different problem solving approaches. Section 5.5 explains how we generated problem
instances for the empirical evaluation, and respective experimental results are presented
in Section 5.6. Finally, Section 5.7 concludes this chapter and outlines promising future
research directions.

5.2 Related Work
Some works consider a SOC-dependent maximum charging power by integrating nonlinear
physical battery models in the charging schedule optimization. Sundström and Binding
[137] compare the use of a linear and a quadratic approximation of such a model in the
optimization of EV schedules with the goal of minimizing charging costs. They conclude
that although the linear approximation results in small violations in SOCs requested by
the EV drivers, the benefit of the quadratic approximation does not justify the increase
in computation time. Morstyn et al. [138] propose a nonlinear battery circuit model and
integrate it in an optimization model in form of a second-order cone program. They
consider the maximization of charged energy taking into account network constraints and
the constraints of a limited total charging power. It is shown that problem instances with
up to 500 vehicles can be solved within less than 100 seconds. In practice, the behavior
of the battery (controller) can significantly differ from an idealized battery model. Thus,
other works – including the present work – abstract from a specific battery model.

Different battery model-free heuristic approaches for smart charging with SOC-dependent
maximum power can be found in the literature. Cao et al. [139] propose a rule-based
approach for EV charging control with the objectives of energy cost reduction and load
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flattening, respecting the SOC-dependent maximum charging powers of EVs. Frendo et
al. [23] describe the use of a data-driven approach for the prediction of power curves of
EVs. The authors propose a rule-based control, which schedules the charging of the EVs
with the objective of a fair distribution of the available energy taking into account the
predicted power curves.

El-Bayeh et al. [140] propose a model-free exact approach. They approximate a nonlinear
power curve with a piecewise linear function. Subsequently, they draw a comparison
between the charging costs resulting from charging with a constant maximum charging
power and the charging costs resulting from charging with a vehicle specific SOC-
dependent piecewise linear function. For solving the optimization problem, they use
mixed integer nonlinear programming, which distinguishes their approach from our
problem solving techniques. Han, Park, and Lee [21] consider a problem setting similar
to that considered in this chapter. The authors assume that the charging station has
limited grid capacity, which may be exceeded at the price of paying penalty costs. They
present a MILP formulation of the problem, which integrates nonlinear power curves
with help of a discretization of SOC levels. In contrast to the present work, it is assumed
that EVs can only charge with maximum or zero power, which is quite restrictive and
hardly the case in practice. Two network flow approaches in Schaden’s Master thesis [31]
extend the MILP formulation from [21] with the possibility to charge with power levels
from a discrete set of values. However, we refrain from considering these approaches here
as they have been found to be uncompetitive, primarily due to the much larger memory
requirements even when the number of EVs is low.

A further model-free exact approach is proposed by Korolko and Sahinoglu [20]. They
assume a problem setting similar to that considered in [21] but with continuous charging
power values. A nonlinear problem formulation is presented and is solved as a series
of linear problems with the help of a cutting plane approach. The described approach,
however, requires the power curve to be concave. Our approaches partly build upon this
work.

The approaches proposed in this chapter, are model-free linear exact approaches for a
continuous power modulation, which are applicable to concave and nonconcave power
curves. None of the previous works considers the issue that the variable maximum
charging power varies within a time step of the planning horizon. To the best of our
knowledge, we are the first considering this aspect in more detail.

5.3 Problem Description
The EV charging scheduling problem with SOC-dependent maximum charging power
(EVS-SOC) we consider formalizes the task of scheduling the charging of a number of
EVs at a single charging station such that the total charging costs are minimized. The
charging schedule is preemptive, which means that the charging process of an EV may be
interrupted an arbitrary number of times. It is assumed that electricity costs change over
time and that they are known in advance. Discrete finite time steps T = {0, . . . , tmax}
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are used to model the considered time horizon. Each of these represents a time interval
of constant duration ∆t.

The charging is controlled by a single central entity, the so-called aggregator. The total
power that can be used from the grid at any time is limited by P gridmax > 0. Electricity
costs per unit of consumed energy are given by ct individually for each time step t ∈ T .
Note that these costs may also be negative in practice.

The set of EVs to be considered is V = {1, . . . , n}, and they are all assumed to be
currently connected to the charging station, i.e., immediately available for charging.
Each vehicle is associated with an initial state of charge sv,0 ∈ [0, 1], i.e., the SOC
at the beginning of time step zero, and a minimum required state sdep

v ∈ [sv,0, 1] that
must be reached at the vehicle’s known departure time tdep

v ∈ T . Additionally, for each
vehicle v ∈ V the energy capacity Cv > 0 of its battery is known as well as a function
Pmax
v : [0, 1] 7→ R+ for the battery’s maximum charging power given its SOC. Note

that Pmax
v must be strictly positive for any SOC less than one and is zero for SOC one.

Otherwise we do not restrict this function in any way, in particular it does not necessarily
have to be concave or continuous. Note that we neglect the effect of minor further factors
like the battery temperature and its state of health on the maximum charging power.
Furthermore, we assume a charging efficiency of 100%.

We remark that in practice, the domain of Pmax
v is often not defined on the entire SOC

interval [0, 1] but just for some restricted [smin
v , smax

v ], 0 ≤ smin
v < smax

v ≤ 1. In the
following, we will regard this issue as an implementation detail and assume the domain
of Pmax

v to be [0, 1].

The goal of EVS-SOC is to find a feasible charging schedule that minimizes the total
charging costs while charging each vehicle v from SOC sv,0 to (at least) SOC sdep

v by
time step tdep

v such that the total power used from the grid at any time does not exceed
P gridmax > 0.

Since the maximum charging power function Pmax
v depends on the SOC, it is in general

not constant within a single time step of duration ∆t. This may lead to the problem
that a charging power value set for a time step is not allowed throughout the whole
charging interval. The vehicle’s charging controller will then dynamically adjust (reduce)
the actually used power to never exceed the SOC-dependent maximum power. One
may argue that the resulting error may be reduced by increasing the resolution of the
time discretization until it becomes negligible. A larger number of time steps, however,
directly affects the problem size and practical solvability. Therefore, we refrain here from
decreasing ∆t only because of this reason.

Instead, we turn from considering the charging power to considering the energy by which
an EV may actually be charged in a time step, taking care of the above aspects. We
propose alternative approaches for deducing an (approximate) maximum energy function
Emax
v (s) : [0, 1] 7→ R+ from Pmax

v that states the maximum energy by which EV v with
SOC s can be charged within duration ∆t.
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In Section 5.3.1 we give an exact way for deducing Emax
v , referred to as Emax-ex

v . However,
using Emax-ex

v , we are in general only able to express that the maximum grid power is
not exceeded on average within a time step, since we consider the time horizon in a
discretized fashion. While this might be sufficient for some applications, like limiting
peak load charges, it may be a too weak condition for other applications, like limiting
transformer loads. Therefore, in Section 5.3.2 we also show how to deduce a lower bound
Emax-lb
v to Emax

v that never overestimates the real maximum power at which charging
can take place.

5.3.1 Exact Maximum Energy

We determine the maximum charging energy Emax-ex
v that is achieved when applying the

dynamic charging power Pmax
v throughout a whole time step. Considering an EV v ∈ V

with initial SOC sv,t ∈ [0, 1] at some time step t ∈ {0, . . . , tdep
v − 1}, the time needed to

charge the EV to some SOC s′ ∈ [sv,t, 1] using the dynamic maximum charging power is

Tmin-ex
v (sv,t, s′) = Cv ·

∫ s′

sv,t

1
Pmax
v (s) ds. (5.1)

The maximum energy by which the EV can be charged during a time step of duration
∆t is then

Emax-ex
v (sv,t) = Cv · (s′ − sv,t) s.t.

{
Tmin-ex
v (sv,t, s′) = ∆t for Tmin-ex

v (sv,t, 1) > ∆t
s′ = 1 else.

(5.2)
Hereby we consider in the else case that charging always stops when SOC value one is
reached. While calculating the integral for 1

Pmax
v (s) might be nontrivial from a theoretical

point-of-view for some power functions, it is in practice not difficult to efficiently determine
approximate values for Emax-ex

v (sv,t) computationally by conventional numerical integra-
tion methods. As previously mentioned, the problem with the usage of Emax-ex

v (sv,t) is
primarily that it is hard to express the maximum grid power constraint since within a
time step the actually used power may vary for each EV substantially, i.e., we will only
be able to express that the maximum grid power is not exceeded on average within a
time step.

5.3.2 Lower Bound for Maximum Energy

To address the aforementioned problem, we consider the largest power that can be
constantly applied throughout a whole time step of duration ∆t without requiring the
charging controller to reduce the power. The time needed to charge the EV to some SOC
s′ ∈ [sv,t, 1] using the maximum power that can be constantly applied is

Tmin-lb
v (sv,t, s′) = Cv · (s′ − sv,t)

mins∈[sv,t,s′] P
max
v (s) . (5.3)
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The maximum energy by which the EV can be charged during a time step of duration
∆t is then again obtained by Eq. (5.2) but in conjunction with the above Tmin-lb

v (5.3)
instead of Tmin-ex

v (5.1). We refer to this variant by Emax-lb
v .

By avoiding to set for a time step a power that will have to be reduced by the charging
controller at some point of time, the maximum energy Emax-lb

v is a lower bound for the
actually obtainable energy Emax-ex

v . Using Emax-lb
v in our whole problem setting means

that an obtained solution will guarantee that indeed all EVs are charged to the desired
departure SOCs. As we may occasionally use a more restricted charging power than
could actually be applied, the schedule might not be optimal in the original sense, and a
solution’s objective value will be an upper bound for the real optimum.

We want to point out the following relationships between Pmax
v and its corresponding

maximum energy functions.

• If Pmax
v is a piecewise linear function, then Emax-lb

v is piecewise linear as well. On
the contrary, Emax-ex

v might not be a piecewise linear function, even if Pmax
v is

piecewise linear.

• If Pmax
v is a concave function, so are Emax-lb

v and Emax-ex
v .

To give the reader an impression how Emax-lb
v and Emax-ex

v relate to each other, Figure 5.2
shows these functions for different ∆t values for a Hyundai Kona Elektro. Note that the
area between Emax-lb

v and Emax-ex
v decreases with smaller ∆t values. Hence, as we will

also see in Section 5.6, the smaller ∆t is chosen, the smaller will be the size of the error
introduced by Emax-lb

v in general.
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Figure 5.2: Emax
v functions for a Hyundai Kona Elektro for ∆t ∈ {5, 10} minutes.

In the following sections we will pursue Emax-ex
v and Emax-lb

v and investigate the pros
and cons of each in comparison. We will use the notation Emax

v as a placeholder for any
specific energy function from {Emax-ex

v , Emax-lb
v }.
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5.3.3 Converting Energy Back to Power

In practice, the charging aggregator usually regulates the maximum charging power
instead of the maximum charging energy. Consequently, when scheduling with energy
values we have to convert back energy values to power values. For schedules created with
Emax-lb
v , the computed energy values of a schedule can be simply divided by ∆t to obtain

charging power values that can be constantly applied throughout a single time step.

For schedules created with the exact Emax-ex
v , due to the possible interference of the EV’s

charging controller it is in general not obvious which power value Pv,t should be provided
to the charging aggregator in order to actually charge a certain amount of energy xv,t in a
next time step t. Considering Pmax

v (s), this value Pv,t can be determined computationally
by numerically solving the equation

Cv ·
∫ sv,t+xv,t/Cv

sv,t

1
min(Pmax

v (s), Pv,t)
ds = ∆t, (5.4)

where the left side corresponds to the time needed for charging xv,t when applying as
power always the minimum of Pmax

v (s) and Pv,t. Still there remains the issue that in
a solution to our scheduling problem

∑
v∈V Pv,t ≤ P gridmax is not guaranteed anymore

and either P gridmax may be exceeded or some Pv,t needs to be reduced to avoid this
problem. Note that Equation (5.4) is well defined for all xv,t ∈ [0, Cv(s′ − sv,t)] where s′
is determined according to Equation (5.2).

Therefore, schedules created with Emax-ex
v mainly serve here as comparison for schedules

created with Emax-lb
v to give an idea about the size of the error introduced by time

discretization.

5.3.4 Nonlinear Model

We now formally define EVS-SOC by the following nonlinear program, where variables
xv,t represent the energy by which EV v ∈ V is charged in time step t = 0, . . . , tdep

v − 1.
Variables sv,t indicate the SOC of each EV v ∈ V at the beginning of each time step
t = 0, . . . , tdep

v .

min
∑
v∈V

tdep
v −1∑
t=0

ct · xv,t (5.5)

xv,t ≤ Emax
v (sv,t) v ∈ V, t = 0, . . . , tdep

v − 1 (5.6)∑
v∈V |0≤t<tdep

v

xv,t ≤ ∆t · P gridmax t ∈ T (5.7)

sdep
v ≤ s

v,tdep
v

v ∈ V (5.8)

sv,t = sv,t−1 + xv,t−1/Cv v ∈ V, t = 1, . . . , tdep
v (5.9)

xv,t ≥ 0 v ∈ V, t = 0, . . . , tdep
v − 1 (5.10)

0 ≤ sv,t ≤ 1 v ∈ V, t = 0, . . . , tdep
v (5.11)
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The objective function (5.5) minimizes the sum of the costs for the total consumed energy
over all time steps. Inequalities (5.6) ensure that the energy by which each EV is charged
during each time step does not exceed the SOC-dependent maximum energy. Note that
this inequality is in general nonlinear. Constraints (5.7) limit the total energy consumed
from the grid during each time step to ∆t ·P gridmax. The departure SOCs are enforced by
Inequalities (5.8). Equalities (5.9) determine the SOC at the beginning of each time step
t = 1, . . . , tdep

v for each EV v. Thereunto the previous state of charge sv,t−1 is considered
together with the charging rate of the previous time slot xv,t−1 and the total battery
capacity Cv. Variable domains are defined in (5.10) and (5.11). Due to the domain of
variable xv,t, an EV may not discharge.

5.4 Problem Solving Approaches
In the following we study different ways to deal with the nonlinear maximum charging
energy constraints (5.6). We first consider the simpler case that the maximum power
function is concave, where we essentially can solve the problem with a LP formulation
or a cutting plane approach. Afterwards, we consider a more general approach that
does not make any assumptions on the concavity of the maximum power function. The
approach is based on a piecewise linearization of the SOC-energy curve and is accelerated
by branch-and-cut.

5.4.1 Concave Maximum Energy Functions

As already mentioned before, if Pmax
v is concave, it follows that also Emax

v ∈ {Emax-ex
v , Emax-lb

v }
is concave as well. For nonconcave Pmax

v , we now determine the convex hull to obtain a
concave approximation of the original Pmax

v for deriving the respective maximum energy
function.

In the following, we will further assume that Emax
v is differentiable. We are aware

that, depending on Pmax
v , this assumption might not be completely valid in practice.

Actually, Emax
v might have breakpoints, in which the left-sided and right-sided limits of

the differential do not coincide. Nevertheless, we will treat Emax
v as if it were differentiable

at any SOC of its domain, since differing left-sided and right-sided limits will not affect
the results of the following modeling approach.

Due to the assumed properties of Emax
v , we can replace the nonlinear Inequality (5.6)

from EVS-SOC with the combination of the infinite set of linear inequalities

xv,t ≤ Emax
v

′(ŝ) ·(sv,t− ŝ)+Emax
v (ŝ) v ∈ V, t = 0, . . . , tdep

v −1, ŝ ∈ [sv,0, sdep
v ] (5.12)

where Emax
v

′ is the first derivative of Emax
v . We call the resulting linear programming

model EVS-SOC-LIN.

Note that if Pmax
v is a piecewise linear function, then so is Emax-lb

v . The set of inequalities
reduces then to a finite one where we have one inequality corresponding to each linear
function segment.
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In the spirit of [20], who essentially consider a similar kind of inequalities, we can solve
EVS-SOC-LIN by a cutting plane approach. Thereby the relaxation of EVS-SOC-LIN
without Inequalities (5.12) is first solved. Then, Inequalities (5.12) that are violated
by the current LP solution are iteratively determined, added, and the LP problem is
re-solved. The process is repeated until no more Inequalities (5.12) are violated.

The separation of a violated inequality for a current solution (xLP, sLP) to the relaxed EVS-
SOC-LIN works as follows. For all v ∈ V, t = 0, . . . , tdep

v −1, we check if xLP
v,t > Emax

v (sLP
v,t ).

In this case we add the violated Inequality (5.12) for vehicle v, time step t, and ŝ = sLP
v,t .

Note that for one vehicle, multiple inequalities for different time steps can be added
within a single cutting plane iteration. This separation procedure is performed for all
vehicles v ∈ V and as long as any violated inequalities are found, the augmented LP
problem is then re-solved.

An alternative to the above is the following. Whenever xLP
v,t > Emax

v (sLP
v,t ) for some EV v

and time step t, one can add the violated Inequality (5.12) not only for time step t but
for all time steps t′ = 0, . . . , tdep

v − 1. The intention here is to possibly reduce the number
of needed resolving iterations, but clearly the size of the LP formulation increases more
quickly. Preliminary experiments indicated that indeed this variant performs better in
practice in most cases. Therefore, we apply it in all our experiments documented in the
remainder of this chapter.

We also compared this variant with the approach presented in [20], where in one iteration
cuts are only added for the smallest time steps that violate Inequality (5.12). We found
that our variant usually performs slightly better at least in case of our problem instances.

5.4.2 General Piecewise Linear Maximum Energy Functions

In the following model, we assume for each EV v ∈ V that the maximum charging energy
function Emax

v is a piecewise linear function or is approximated by such. In contrast
to EVS-SOC-LIN, we do not make assumptions on the concavity of Emax

v . We assume
that we are given a finite set of SOC values {Sv,k | k = 1, . . . , kmax

v } in increasingly
sorted order, with Sv,1 = 0 and Sv,kmax

v
= 1 and the values in between representing the

breakpoints of the piecewise linear function. These values are pairwise distinct and can
be unevenly distributed among the SOC interval [0, 1]. For each Sv,k we know the value
of the maximum charging energy Emax

v (Sv,k).

We model the piecewise linear function as suggested in Chapter 10.1 of [141]. Thereunto,
we use continuous variables αv,t,k to express the SOC sv,t as a convex combination of
Sv,k and αv,t,k. The variables αv,t,k are also used to represent the maximum charging
energy function as a convex combination of Emax

v (Sv,k) and αv,t,k.

Furthermore, we introduce additional binary variables βv,t,k, which are used to ensure
that at most two consecutive αv,t,k and αv,t,k+1 variables are nonzero. By replacing
Constraints (5.6) in formulation (5.5–5.11) with the following Constraints (5.13–5.21),
we obtain a MILP model, which we refer to as EVS-SOC-GLIN.
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sv,t =
kmax

v∑
k=1

Sv,k · αv,t,k v ∈ V, t = 0, . . . , tdep
v (5.13)

xv,t ≤
kmax

v∑
k=1

Emax
v (Sv,k) · αv,t,k v ∈ V, t = 0, . . . , tdep

v − 1 (5.14)

kmax
v∑
k=1

αv,t,k = 1 v ∈ V, t = 0, . . . , tdep
v (5.15)

kmax
v −1∑
k=1

βv,t,k = 1 v ∈ V, t = 0, . . . , tdep
v (5.16)

αv,t,0 ≤ βv,t,0 v ∈ V, t = 0, . . . , tdep
v (5.17)

αv,t,k ≤ βv,t,k−1 + βv,t,k v ∈ V, t = 0, . . . , tdep
v , k = 2, . . . , kmax

v − 1 (5.18)
αv,t,kmax

v
≤ βv,t,kmax

v −1 v ∈ V, t = 0, . . . , tdep
v (5.19)

0 ≤ αv,t,k ≤ 1 v ∈ V, t = 0, . . . , tdep
v , k = 1, . . . , kmax

v (5.20)
βv,t,k ∈ {0, 1} v ∈ V, t = 0, . . . , tdep

v , k = 1, . . . , kmax
v − 1 (5.21)

Equations (5.13) link the SOC values sv,t with the continuous weight variables αv,t,k.
The charging energy xv,t of EV v at time slot t is limited by Inequalities (5.14) to the
maximum charging energy. Constraints (5.15) set the sum of the continuous weights
αv,t,k over all discrete SOC levels k = 1, . . . , kmax

v to one. Equations (5.16) ensure that
exactly one βv,t,k variable is active for each EV v and time slot t. The αv,t,k variables are
linked with the βv,t,k variables by Inequalities (5.17–5.19). Altogether, (5.16–5.19) are
the so-called adjacency constraints, which ensure that at most two consecutive variables
αv,t,k and αv,t,k+1 are nonzero. Constraints (5.20–5.21) define the domains of αv,t,k and
βv,t,k, respectively.

As we will see in Section 5.6, the previously introduced EVS-SOC-LIN formulation,
which requires Emax

v to be concave, performs remarkably well. Therefore, we propose
a branch-and-cut approach for solving EVS-SOC-GLIN, in which we initially work on
the convex hull of {(Sv,k, Emax

v (Sv,k)) | k = 1, . . . , kmax
v } ∪ {(Sv,1, 0), (Sv,kmax

v
, 0)}. To

obtain this relaxation, we consider the original EVS-SOC-GLIN formulation with all
its variables and constraints except the linking constraints (5.17–5.19). Then, whenever
a solution candidate is found, we check for all v ∈ V, t = 0, . . . , tdep

v − 1 whether xv,t
exceeds the actual Emax

v value at SOC sv,t, i.e., if xv,t > Emax
v (sv,t). If this is the case, a

cut is added that links all nonzero αv,t,k variables with their respective βv,t,k variables,
as we did in Constraints 5.17–5.19. Such cuts are separated and added until for all
v ∈ V, t = 0, . . . , tdep

v − 1 it holds that xv,t ≤ Emax
v (sv,t).
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Table 5.1: Used EV types with battery capacity Cv, Pmax
v domain [smin

v , smax
v ] and the

number of linear pieces of Pmax
v .

EV Name Cv (kWh) smin
v smax

v #Pmax
v -lin. pieces

Energica Ego 21.5 1.1 99.9 53
MINI Cooper Electric 32.6 12.1 93.8 34
BMW i3 42.2 15.1 96.0 26
Hyundai Kona Elektro 67.5 10.1 94.9 28
Tesla Model 3 Long Range 82.0 11.1 99.0 35
Mercedes-Benz EQC 85.0 2.1 97.8 24
Jaguar I-Pace 90.0 8.0 100.0 29
Audi e-tron 95.0 3.1 99.8 44

5.5 Benchmark Instances
Due to the lack of pure real-world problem instances we randomly generate benchmark
instances and use real-world data as far as possible. Specifically, battery capacities and
maximum power functions are adopted from real-world data. We first consider individual
EVS-SOC instances that represent snapshot scenarios at certain times with a specific
number of vehicles that are assumed to have arrived at the charging station following
a homogenous Poisson process. Afterwards, in Section 5.5.2, we will consider whole
model based predictive control scenarios with a rolling horizon in which vehicles arrive
at different times of a day.

All of the benchmark instances are available at https://www.ac.tuwien.ac.at/
research/problem-instances/.

5.5.1 Individual EVS-SOC Instances

We distinguish between three types of problem parameters, depending on whether the
parameter is set by the user, randomly generated, or based on real-world data. To the
input provided by the user, we count the number n of EVs, the length ∆t of a time step,
and the grid’s power capacity P gridmax. We generate 30 instances for each combination
of n ∈ {10, 20, 50, 100}, ∆t ∈ {1, 5, 10} minutes, and P gridmax ∈ {10n, 25n, 40n}.
We consider eight different types of real EVs shown in Table 5.1. The EV’s battery
capacities were taken from the EV Database1. The respective maximum power functions
Pmax
v were manually extracted from plots found on the website of the Dutch EV charging

station operator FASTNED2. More specifically, 25 up to 70 points of a plot were manually
determined in dependence of notable changes of the gradient, and linear interpolation
was applied in between. All these Pmax

v functions are shown in Figure 5.3. Observe that
the maximum power function’s available domain of definition [smin

v , smax
v ] varies among

1https://www.ev-database.de
2https://fastnedcharging.com
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Figure 5.3: Maximum charging power functions Pmax
v for all considered vehicle types.

the EVs. If a vehicle type supports speed charging, the respective most powerful charging
curve is used.

Since the Pmax
v data extracted from the original plots is quite fine-grained, we additionally

derive simplified piecewise linear approximations with only five and ten linear pieces,
respectively. For this task, we utilized the Python package pwlf [142] to determine
approximately optimal breakpoints automatically.

A comparison between the original Pmax
v and these simpler piecewise approximations

is shown in Figure 5.4 exemplarily for the Hyundai Kona Elektro. Observe that the
approximation of the original Pmax

v function with 10 segments is already quite good for
this rather challenging vehicle type. For Pmax

v of the other vehicle types, see Appendix B.

For each EV v ∈ V in a benchmark instance, one of the above EV types is chosen
uniformly at random. Moreover, we choose an availability duration at the charging
station davail

v randomly according to a normal distribution with a mean value of six hours
and a standard deviation of 1.5 hours.

Next, from the interval (−davail
v /∆t, 0) we select an arrival time tarr

v uniformly at random
and obtain a respective departure time tdep

v = dtarr
v +davail

v /∆te. Considering the available
domains of definition of the maximum power functions, we generally assume that each
vehicle shall be charged from a SOC of 20% at arrival to a SOC of 90% at departure. In
our benchmark instances, we therefore choose the initial SOC proportional to the already
bygone availability time, i.e., for all v ∈ V ,

sv,0 = −tarr
v

davail
v /∆t · 0.7 + 0.2. (5.22)

The departure SOC sdep
v is set to 90% for all EVs.
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Figure 5.4: Exemplary Pmax
v curve with different number of segments.

The end of the time horizon is obtained from the last EV’s departure time, i.e., tmax =
maxv∈V tdep

v . Electricity costs per unit of consumed energy ct are independently chosen
for each time step t ∈ T uniformly at random from [1.9, 3.5) cent/kWh.

5.5.2 Rolling Horizon Benchmark Scenarios

In addition to the individual benchmark instances, we consider rolling horizon simulations
over whole days starting at time 0:00 and ending at 24:00. To deal with such a scenario
in which vehicles arrive at different times at the charging station, the schedule is (re-
)optimized at time 0:00 and then every τ = 10 minutes, always considering only EVs
that are currently available at the charging station. The found charging schedule is then
assumed to be applied for the next τ minutes until a new schedule is determined.

The time is again discretized into equally long time steps of ∆t ∈ {5, 10} minutes.
Electricity costs per unit of consumed energy are chosen as explained in Section 5.5.1
and it is assumed that they are known in advance for the whole charging period. For
the number of vehicles we use n ∈ {10, 20, 50, 100}. Again, we pick each vehicle type
uniformly at random from the set of available vehicle types.

It is assumed that most vehicles arrive around two peak times at 6:00 and 14:00. For
picking the arrival time tarr

v for a vehicle v ∈ V , we therefore first randomly select
with equal probability one of these two peak times and then sample tarr

v from a normal
distribution with the chosen peak time as mean value and a standard deviation of two
hours. Times outside of the considered horizon of 24 hours are re-sampled.

The charging duration davail
v is chosen as described in Section 5.5.1 and tdep

v is derived
correspondingly. Also, sdep

v and P gridmax are set as before. At time 0:00 we set sv,0 = 0.2
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and with each rescheduling we determine sv,0 based on the charging schedule of the
previous iteration.

Thirty independent whole-day scenarios were constructed and are considered in the
experimental evaluation.

Exemplary Solutions

Figure 5.5 exemplarily visualizes optimal solutions for a single individual instance with
n = 5 EVs and ∆t = 5minutes obtained from EVS-SOC-GLIN with decreasing grid
power capacity P gridmax ∈ {50, 125, 200} kW. As maximum energy function we chose
Emax-lb
v based on Pmax

v with five piecewise linear segments. Each sub-figure represents an
optimal charging schedule of a vehicle fleet. Bars specify the energy a vehicle is charged
with in each time step. The corresponding scale is located on the left y-axis. The grid’s
maximum energy supply P gridmax ·∆t is indicated as horizontal line in the plots. Crosses
reveal the electricity costs for each time step and the corresponding scale is located on
the right-sided y-axis.

For P gridmax = 200kW it can be observed in Figure 5.5a that vehicles are charged usually
in parallel within a single time step and cheap electricity costs can be exploited more
effectively. Moreover, at some time steps the charged energy is well below the grid’s power
capacity. Figure 5.5b shows how the charging schedule changes when lowering P gridmax to
125kW. By reducing the grid’s power capacity, more time steps are required for charging
the vehicles to their target SOC, resulting in higher total charging costs. Note however
that in contrast to the solution shown in Figure 5.5a, the charging costs only slightly
increase even though the grid’s power capacity has been almost halved. When reducing
P gridmax even further to 50kW, as shown in Figure 5.5c, the number of time steps required
for charging the vehicles drastically increases. Moreover, in contrast to Figure 5.5a at
most time steps only a single vehicle is charged with usually the maximal possible energy.
Finally, note that independent of the choice of P gridmax the generated solutions always
utilize the time steps at which charging is the cheapest. In summary, Figure 5.5 shows
how the choice of P gridmax affects a respective optimal charging schedule: The smaller
the power capacity of the grid, the more time steps are required for charging the vehicles
and therefore the higher are the total resulting charging costs.

5.6 Experimental Results
All solution approaches were implemented in Julia 1.6.03 using the the optimization
modeling package JuMP v0.21.5 and Gurobi 9.1.04 as LP/MILP solver. Gurobi was
configured to run in single-threaded mode with a time limit of 30 minutes per instance.
All remaining Gurobi parameters were kept at their default values. The experiments
were conducted on an Intel Xeon E5-2640 v4 with 2.40GHz and 16GB memory limit. If

3https://julialang.org
4https://www.gurobi.com
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(a) P gridmax = 200 kW; total charging costs: 290.42 cent.
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(b) P gridmax = 125 kW; total charging costs: 296.91 cent.
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(c) P gridmax = 50 kW; total charging costs: 330.10 cent.

Figure 5.5: Optimal solution for an instance with n = 5, ∆t = 5minutes, P gridmax ∈
{50, 125, 200} kW using EVS-SOC-GLIN.

not stated otherwise we report in the following mean or median results on the 30 problem
instances per instance parameter combination (n,∆t, P gridmax, Emax

v ).

We first show individual results for EVS-SOC-LIN and EVS-SOC-GLIN, respectively.
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Afterwards, solutions generated by both approaches for the same instances w.r.t. the
same configurations are compared to each other in Section 5.6.3. Finally, we present
results for the rolling horizon scenarios.

5.6.1 EVS-SOC-LIN

We compare two variants of EVS-SOC-LIN. Recall that for piecewise linear Emax
v only a

finite set of inequalities as described by (5.12) exists. Hence, next to the variant in which
these constraints are dynamically separated as cuts via the cutting plane approach as
described in Section 5.4.1, we also consider the variant in which all maximum charging
energy constraints (5.12) are statically added to the LP upfront.

Table 5.2: EVS-SOC-LIN runtime comparison for concave maximum power functions
and P gridmax = 25n: solving the static MILP versus the cutting plane method.

n ∆t (min) nseg
Runtime (s) ncuts

Static Cutting Plane Cutting Plane
Mean Median StdDev Median StdDev Mean StdDev

Emax-lb
v

5 1 49 0.07 0.04 1.34 0.26 10423 5209
5 5 46 0.01 0.00 1.04 0.23 574 269
5 10 43 0.01 0.00 1.03 0.24 190 85

10 1 99 0.18 0.15 1.52 0.38 15949 5580
10 5 93 0.02 0.01 1.05 0.28 1243 520
10 10 86 0.01 0.00 1.03 0.26 416 159
20 1 199 0.60 0.30 2.09 0.49 25549 6715
20 5 187 0.05 0.02 1.10 0.25 2593 747
20 10 172 0.02 0.01 1.05 0.25 862 245
50 1 495 2.78 1.02 6.72 2.07 87375 19749
50 5 464 0.16 0.06 1.28 0.31 6499 1167
50 10 427 0.06 0.02 1.10 0.23 2157 335
100 1 994 9.34 2.60 12.84 3.99 193069 27979
100 5 931 0.56 0.22 1.68 0.32 13502 1664
100 10 858 0.13 0.05 1.25 0.27 4367 475

Emax-ex
v

5 1 901 1.19 1.02 1.31 0.38 12800 5986
5 5 901 0.23 0.11 0.90 0.25 1102 542
5 10 901 0.08 0.07 0.97 0.26 322 205

10 1 1802 4.98 3.27 1.65 0.52 25271 9541
10 5 1802 0.59 0.22 1.06 0.24 2341 950
10 10 1802 0.22 0.10 1.01 0.20 757 387
20 1 3605 14.33 8.48 3.29 0.83 60778 18725
20 5 3605 1.21 0.45 1.16 0.27 5117 1547
20 10 3605 0.68 0.20 1.07 0.21 1585 516
50 1 9041 70.69 31.89 9.11 2.66 175979 28195
50 5 9041 4.17 1.58 1.57 0.33 13737 2329
50 10 9041 1.57 0.54 1.15 0.21 3989 858
100 1 18086 280.22 100.87 25.45 9.66 390873 44162
100 5 18086 13.11 4.73 2.11 0.51 27920 3515
100 10 18086 3.80 1.35 1.32 0.34 8126 1419
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The results of this comparison are reported in Table 5.2. As maximum energy function
Emax-lb
v as well as Emax-ex

v are considered. The energy functions are derived from the
convex hull of Pmax

v as described in Section 5.4.1. Moreover, P gridmax is set to 25n for
all shown instances. The table lists for each instance group, identified by n and ∆t, the
average total number of piecewise linear segments nseg of the Emax

v functions over all
vehicles, a comparison of the runtimes between the cutting plane and the static approach,
as well as the average total number of added cuts, denoted by ncuts, for the cutting plane
approach.

Note that all reported instances were solved to optimality w.r.t. both maximum energy
functions. Using Emax-lb

v as maximum energy function, the static approach as well as the
cutting plane approach were both able to solve all instances within few seconds. However,
the static approach is significantly faster than the cutting plane method for all considered
instance groups.

Using Emax-ex
v as maximum energy function, though, the cutting plane method shows its

performance advantages with growing n. Due to how Emax-lb
v and Emax-ex

v are derived, the
number of piecewise linear segments for Emax-ex

v is in general much higher than for Emax-lb
v .

As the number of segments increases we can observe that the cutting plane approach
scales significantly better than the static approach. This improvement is particularly
noticeable if we fix n and consider decreasing ∆t values. Observe that, for a fixed ∆t the
number of cuts increases with larger n values, whereas for a fixed n the number of cuts
increases with smaller ∆t values. Therefore, the results indicate that the cutting plane
technique shows performance benefits when a larger number of cuts has to be separated,
i.e., the maximum charging power condition was not easily fulfilled. Overall, it can be
said that the cutting plane variant outperforms the static model on larger instances and
when nseg is large. We additionally conducted the experiments for P gridmax = 10n and
40n and observed the same trends.

In Figure 5.6 we give a more detailed comparison of the runtimes between the static
approach and the cutting plane approach with Emax-ex

v as maximum energy function.
The figure shows that, when fixing ∆t, the static approach does not scale as well as
the cutting plane approach in terms of computation time with an increasing number of
vehicles. For ∆t ∈ {5, 10} the runtimes of the cutting plane approach barely increase as
n grows. Only for ∆t = 1 minute the runtimes of the cutting plane approach increase
slightly with a growing number of vehicles. In contrast, for the static approach the
computation times increase much stronger than their cutting plane counterparts. As ∆t
decreases the difference in performance becomes more and more obvious.

5.6.2 EVS-SOC-GLIN

Similar to before, we compare two variants of EVS-SOC-GLIN for the general nonconcave
maximum charging power functions. In the first variant we directly solve the static MILP
in which all linking constraints (5.17–5.19) are included from the beginning, whereas the
second approach is the branch-and-cut variant (B&C) in which these linking constraints
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Figure 5.6: EVS-SOC-LIN runtime comparison for directly solving the LP problem versus
the cutting plane approach, corresponding to results of Table 5.2.

are dynamically separated as needed, cf. Section 5.4.2. As maximum energy function we
use Emax-ex

v and Emax-lb
v , both based on the original full resolution Pmax

v functions. For
P gridmax ∈ {10n, 25n, 40n} we report the results in Tables 5.3, 5.4, and 5.5, respectively.
Columns, nseg denote the total number of piecewise linear segments functions Emax

v

consist of, summed over all n vehicles of an instance. Columns nfeas indicate the numbers
of instances per group to which feasible solutions have been found and columns “Runtime”
list the median computation times per group. Again, ncuts refers to the total number of
cuts added within B&C. The last columns indicate the finally remaining optimality gaps
between lower and upper bounds as reported by Gurobi. These gaps are calculated as the
absolute difference between the respective upper and lower bounds divided by the upper
bound. Moreover, for visual representation of the number of feasibly solved instances, the
median runtimes, and the number of added cuts within B&C see Figure 5.7–5.9. Only
gaps of instances with a feasible solution are considered. For parameter combinations
without gaps (marked with “-”), no feasible solution has been found for any instance
within the time limit. For parameter combinations where no runtime is reported, all
corresponding runs terminated due to an out-of-memory error. More detailed results can
be found in Appendix B where also the number of instances solved to optimality as well
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as standard deviations for runtimes and the numbers of cuts are reported.

Opposed to EVS-SOC-LIN, not all instances could be solved by the EVS-SOC-GLIN
variants within the time limit. Considering the results with P gridmax = 10n, one can
notice that the B&C approach shows performance benefits, as the approach was able to
always find feasible solutions to as many or more instances than the static approach. It is
difficult to compare the quality of the solutions obtained by each approach as the static
approach sometimes found fewer feasible solutions. For groups for which both approaches
could obtain feasible solutions to all instances, the quality of the generated solutions is
almost identical. Moreover, except for two instance groups, the B&C approach was either
as fast or faster than the static approach.

For the results with P gridmax = 25n, the runtime performance benefit of B&C is still
noticeable for small n, however it is not as strong as for P gridmax = 10n. Moreover, for
Emax-lb
v the number of feasible solutions found by the static approach is, except for one

group, never worse than for B&C. However, for Emax-ex
v B&C still yielded significantly

more feasible solutions.

A similar observation can be made for P gridmax = 40n. For P gridmax = 40n, the static
approach has a better runtime with almost all parameter configurations.

A possible explanation for this observation seems to be that for P gridmax = 10n the
charging energy of a vehicle v is more limited by P gridmax than by Emax

v . Initial solutions
of B&C will then violate Constraints (5.14) less often, which implies spending less time
for the separation of cuts. This presumption is supported by considering the number of
added cuts. Fixing n and ∆t, one can observe that with growing P gridmax clearly more
cuts are added.

When comparing Emax-lb
v and Emax-ex

v for any fixed P gridmax, n, and ∆t, Emax-ex
v has

more segments than Emax-lb
v due to the nature of its computation. Also, for Emax-lb

v

smaller ∆t values imply a higher number of Emax-lb
v segments. For a fixed n and ∆t

the larger number of Emax-ex
v segments comes with fewer feasible solutions and higher

runtimes for the static approach and the B&C.

In general, regardless of P gridmax, all reported median gaps for both approaches are
below 0.2%. Moreover, while the B&C approach usually finds a higher number of feasible
solutions, the static approach finds generally more optimal solutions, as can be seen in
Appendix B.

In order to see how both solution approaches to EVS-SOC-GLIN perform on instances
with fewer piecewise linear segments in Emax

v , we conduct similar experiments using the
approximations of Pmax

v with five segments. For this we only consider Emax-lb
v , since

the number of Emax-ex
v segments does not depend on the number of Pmax

v segments.
Experimental results for P gridmax = 25n are given in Table 5.6. The table shows again the
total number of piecewise linear segments of Emax-lb

v (nseg), the number of instances for
which a feasible solutions was found within the time limit (nfeas ), the median computation
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Figure 5.7: Visualization of EVS-SOC-GLIN results for solving the static model versus
B&C with Emax-lb

v based on five-segment piecewise linear approximations of the original
Pmax
v functions, P gridmax = 10n.

time (“Runtime”), the total number of cuts added within B&C (ncuts), and optimality
gaps (%-gap) of the generated solutions.

For each parameter group, B&C always finds at least as many feasible solutions as the
static approach. When the static and the B&C approaches find the same number of
feasible solutions, the resulting gaps are almost identical, though, the solutions of the
static variant are typically slightly better than the ones of B&C. In terms of computation
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Table 5.3: EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v

and Emax-ex
v based on the original Pmax

v functions and P gridmax = 10n.

n ∆t (min)
nseg nfeas Runtime (s) ncuts %-gap

Mean Median Median Median
Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 155 30 30 391.75 43.39 1038 0.01 0.01
5 5 139 30 30 6.58 1.43 144 0.00 0.01
5 10 119 30 30 1.67 0.83 56 0.00 0.00
10 1 311 21 29 1800.00 1800.00 4068 0.03 0.03
10 5 279 30 30 79.94 8.84 498 0.01 0.01
10 10 242 30 30 7.04 2.06 194 0.00 0.01
20 1 612 2 11 1800.00 1800.00 8974 0.08 0.19
20 5 553 30 30 500.49 684.63 1846 0.01 0.01
20 10 475 30 30 40.18 13.35 505 0.01 0.01
50 1 1544 0 0 1800.00 1800.00 15910 - -
50 5 1393 26 30 1800.00 1800.00 6106 0.05 0.05
50 10 1192 30 30 307.62 827.59 1930 0.01 0.01

100 1 3095 0 0 1800.00 1800.00 11886 - -
100 5 2796 9 9 1800.00 1800.00 9961 0.08 0.12
100 10 2399 30 30 1800.00 1800.00 4434 0.01 0.03

Emax-ex
v

5 1 901 8 27 1800.00 1800.00 5304 0.03 0.01
5 5 901 30 30 143.42 9.59 820 0.00 0.00
5 10 901 30 30 34.53 2.60 319 0.00 0.00
10 1 1802 1 21 1800.00 1800.00 13982 0.04 0.08
10 5 1802 29 30 1800.00 725.37 2858 0.01 0.01
10 10 1802 30 30 201.32 10.29 680 0.00 0.01
20 1 3605 0 10 1800.00 1800.00 23449 - 0.14
20 5 3605 14 30 1800.00 1800.00 6479 0.07 0.05
20 10 3605 30 30 1038.91 116.59 1507 0.01 0.01
50 1 9041 0 0 1800.00 1800.00 6856 - -
50 5 9041 0 23 1800.00 1800.00 15048 - 0.11
50 10 9041 4 30 1800.00 1800.00 6160 0.18 0.03

100 1 18078 0 0 - 1800.00 0 - -
100 5 18086 0 10 1800.00 1800.00 18944 - 0.08
100 10 18086 0 25 1800.00 1800.00 10750 - 0.06

times, no approach is significantly faster than the other.

Due to the smaller number of segments in the Pmax
v functions and consequently also

simpler Emax-lb
v functions, a higher number of feasible as well as optimal solutions could

generally be found, when comparing Tables 5.6 and 5.4. Moreover, the impact of fewer
Pmax
v segments is also observable when we consider the median runtimes and the number

of added cuts. For almost all parameter combinations of n and ∆t, fewer Pmax
v segments

lead to lower median runtimes and fewer cuts.
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Table 5.4: EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v

and Emax-ex
v based on the original Pmax

v functions and P gridmax = 25n.

n ∆t (min)
nseg nfeas Runtime (s) ncuts %-gap

Mean Median Median Median
Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 155 29 30 1800.00 1800.00 3184 0.02 0.06
5 5 139 30 30 25.52 6.68 422 0.01 0.01
5 10 119 30 30 1.27 1.62 153 0.01 0.01
10 1 312 20 23 1800.00 1800.00 7298 0.10 0.12
10 5 279 30 30 183.39 770.59 1132 0.01 0.01
10 10 242 30 30 17.87 11.88 452 0.01 0.01
20 1 612 4 3 1800.00 1800.00 11938 0.26 0.28
20 5 553 30 30 1800.00 1800.00 2702 0.01 0.05
20 10 475 30 30 60.59 201.06 967 0.01 0.01
50 1 1544 0 0 1800.00 1800.00 22034 - -
50 5 1393 29 30 1800.00 1800.00 6997 0.08 0.11
50 10 1192 30 30 902.21 1800.00 2575 0.01 0.03

100 1 3095 0 0 1800.00 1800.00 29193 - -
100 5 2796 14 7 1800.00 1800.00 11737 0.12 0.18
100 10 2399 30 30 1800.00 1800.00 5340 0.03 0.06

Emax-ex
v

5 1 901 9 25 1800.00 1800.00 15258 0.21 0.20
5 5 901 30 30 448.47 761.59 2153 0.01 0.01
5 10 901 30 30 56.12 16.43 866 0.00 0.01
10 1 1802 1 18 1800.00 1800.00 23328 0.23 0.33
10 5 1802 26 30 1800.00 1800.00 5220 0.04 0.06
10 10 1802 30 30 204.26 233.60 2063 0.01 0.01
20 1 3605 0 2 1800.00 1800.00 17970 - 0.32
20 5 3605 15 29 1800.00 1800.00 10784 0.08 0.12
20 10 3605 29 30 1097.26 1800.00 4647 0.01 0.03
50 1 9041 0 0 1800.00 1800.00 23986 - -
50 5 9041 0 17 1800.00 1800.00 23708 - 0.18
50 10 9041 16 28 1800.00 1800.00 12160 0.04 0.08

100 1 18086 0 0 1800.00 1800.00 0 - -
100 5 18086 0 0 1800.00 1800.00 25754 - -
100 10 18086 0 19 1800.00 1800.00 19752 - 0.09

Charging Cost Differences & Charging Errors

While the simpler approximations of the original Pmax
v functions lead to shorter runtimes,

there is clearly a tradeoff concerning the precision of the model, introduced errors, and
final solution qualities. We have a closer look on these aspects in the following. Specifically,
we are interested in the error made when using Emax-lb

v instead of Emax-ex
v and the error

between the five-segment Pmax
v approximation compared to the original Pmax

v . For this
purpose, we evaluate EVS-SOC-GLIN on four different Emax

v functions: Emax-lb
v and

Emax-ex
v , each based on the five-segment Pmax

v approximation and the original Pmax
v .
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Figure 5.8: Visualization of EVS-SOC-GLIN results for solving the static model versus
B&C with Emax-lb

v based on five-segment piecewise linear approximations of the original
Pmax
v functions, P gridmax = 25n.

Since we want to measure the impact of the different charging curves on the charging
costs, we select a high P gridmax value of 40n as in this case the variable maximum charging
power constraints have higher impact. Only results on instances solved to optimality
are reported. Also, we only consider instances where an optimal solution for all four
Emax
v functions was found. Parameter combinations where no such instances exist are

omitted. The mean charging costs can be found in Table 5.7. The charging cost %-gaps
are calculated by 100% · (|Emax-ex

v − Emax-lb
v |)/Emax-ex

v .
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Table 5.5: EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v

and Emax-ex
v based on the original Pmax

v functions and P gridmax = 40n.

n ∆t (min)
nseg nfeas Runtime (s) ncuts %-gap

Mean Median Median Median
Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 155 29 29 1800.00 1800.00 4476 0.04 0.15
5 5 139 30 30 31.04 55.93 619 0.01 0.01
5 10 119 30 30 2.49 4.05 247 0.01 0.01
10 1 311 20 20 1800.00 1800.00 8161 0.21 0.17
10 5 279 30 30 301.14 1800.00 1410 0.01 0.03
10 10 242 30 30 27.80 36.06 456 0.01 0.01
20 1 612 2 1 1800.00 1800.00 13361 0.27 0.48
20 5 553 30 30 1800.00 1800.00 2863 0.04 0.10
20 10 475 30 30 69.51 571.16 1078 0.01 0.01
50 1 1544 0 0 1800.00 1800.00 25908 - -
50 5 1393 28 28 1800.00 1800.00 7110 0.12 0.21
50 10 1192 30 30 1097.80 1800.00 2748 0.01 0.05

100 1 3095 0 0 1800.00 1800.00 29066 - -
100 5 2796 7 2 1800.00 1800.00 11782 0.22 0.21
100 10 2399 29 30 1800.00 1800.00 5650 0.06 0.10

Emax-ex
v

5 1 901 9 24 1800.00 1800.00 20190 0.23 0.44
5 5 901 30 30 582.18 1800.00 3180 0.01 0.07
5 10 901 30 30 80.12 34.07 1228 0.00 0.01
10 1 1802 1 13 1800.00 1800.00 24450 0.49 0.77
10 5 1802 26 30 1800.00 1800.00 6026 0.02 0.17
10 10 1802 30 30 245.17 1147.26 2161 0.01 0.01
20 1 3605 0 0 1800.00 1800.00 17460 - -
20 5 3605 15 29 1800.00 1800.00 13276 0.14 0.22
20 10 3605 29 30 1437.18 1800.00 5692 0.01 0.08
50 1 9041 0 0 1800.00 1800.00 12253 - -
50 5 9041 0 11 1800.00 1800.00 27617 - 0.21
50 10 9041 14 27 1800.00 1800.00 13538 0.10 0.12

100 1 18083 0 0 - 1800.00 0 - -
100 5 18086 0 0 1800.00 1800.00 31692 - -
100 10 18086 0 11 1800.00 1800.00 23081 - 0.14

Observe that for fixed ∆t and varying n, the charging cost gap between Emax-lb
v and

Emax-ex
v does not change significantly. It seems that the difference in charging costs mainly

depends on ∆t. Specifically, one might notice that the charging cost gaps become smaller
as ∆t decreases. Overall, the largest mean charging cost gap is 0.64%, the differences
therefore seem to be negligible for practical purposes for the considered parameter groups.
Note however that not all instances could be solved to optimality (even when increasing
the time limit) and hence the number of reported instances in some instance groups
varies for each instance group. Therefore, to give a better idea about the distribution
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Figure 5.9: Visualization of EVS-SOC-GLIN results for solving the static model versus
B&C with Emax-lb

v based on five-segment piecewise linear approximations of the original
Pmax
v functions, P gridmax = 40n.

of the charging cost gaps, we additionally provide standard deviations to the charging
cost gaps in Table 5.7. For groups with the same ∆t we can observe that the standard
deviations are quite similar.

When comparing the five-segment Pmax
v approximation to the original Pmax

v , the difference
in charging costs is marginal, even for large instances. For example consider n = 20, ∆t =
10 minutes and Emax-ex

v and observe that the objective value differs on average by about
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Table 5.6: EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v

based on five-segment piecewise linear approximations of the original Pmax
v functions,

P gridmax = 25n.

n ∆t (min)
nseg nfeas Runtime (s) ncuts %-gap

Mean Median Median Median
Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 40 30 30 60.14 19.63 387 0.01 0.01
5 5 46 30 30 2.40 1.98 88 0.01 0.01
5 10 43 30 30 0.64 1.13 42 0.00 0.01

10 1 80 30 30 509.28 1800.00 1162 0.01 0.02
10 5 92 30 30 11.01 8.34 232 0.01 0.01
10 10 87 30 30 1.49 2.68 118 0.01 0.01
20 1 160 12 30 1800.00 1800.00 2488 0.03 0.06
20 5 185 30 30 54.58 61.09 516 0.01 0.01
20 10 174 30 30 5.03 7.45 217 0.01 0.01
50 1 398 0 12 1800.00 1800.00 5598 - 0.24
50 5 459 30 30 640.74 1800.00 1556 0.01 0.02
50 10 433 30 30 37.23 36.95 624 0.01 0.01
100 1 798 0 0 1800.00 1800.00 9312 - -
100 5 921 30 30 1800.00 1800.00 3237 0.01 0.06
100 10 871 30 30 112.16 84.83 1360 0.01 0.01

Table 5.7: Objective value comparison using EVS-SOC-GLIN and different Emax
v functions

based on the five-segment Pmax
v approximation and the original Pmax

v ; P gridmax = 40n.

n ∆t (min) nopt

Charging Costs
Emax-lb
v Emax-ex

v %-gap
Mean Mean Mean StdDev

Original Pmax
v

5 1 2 109.08 108.97 0.10 0.01
5 5 25 209.40 208.83 0.29 0.18
5 10 30 227.10 225.78 0.64 0.40

10 5 11 374.24 372.98 0.34 0.13
10 10 28 447.51 445.05 0.59 0.35
20 10 19 882.53 877.33 0.60 0.30

5-segment approx. Pmax
v

5 1 2 109.10 108.98 0.10 0.01
5 5 25 209.38 208.82 0.29 0.17
5 10 30 227.11 225.77 0.64 0.41

10 5 11 374.14 372.92 0.33 0.13
10 10 28 447.44 445.04 0.57 0.32
20 10 19 882.39 877.26 0.60 0.30
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0.07 cent only between the original Pmax
v and the five-segment approximation. This

insight seems to be particularly relevant, since it shows that approximating Pmax
v with a

lower number of linear pieces is reasonable for practice.

When realizing a charging plan in practice with a different Emax
v function than used

for scheduling, the specified target SOCs sdep
v might not be reached for some vehicles.

We measure this error by generating an optimal charging schedule with Emax-ex
v and

simulating the actual maximum energy function with Emax-lb
v . In the simulation, the

actually charged energy is set to the minimum from the corresponding planned charged
energy and the actual maximum energy function. The resulting mean deviation from
the target SOC in percent, the mean charging error, can be seen in Table 5.8. For a
single instance, we determined the mean charging error over all vehicles, whereas for
an instance group we again report the mean and the standard deviation of these mean
charging errors from the individual instances.

Table 5.8: Charging error comparison when scheduling with Emax-ex
v using EVS-SOC-

GLIN and realizing the schedule with Emax-lb
v ; P gridmax = 40n.

n ∆t (min) nopt

Mean Charging Error (% SOC)
Original Pmax

v 5-seg. approx. Pmax
v

Mean StdDev Mean StdDev
5 1 3 0.23 0.08 0.21 0.08
5 5 25 1.14 0.26 1.06 0.28
5 10 30 2.01 0.58 1.94 0.60
10 5 12 1.14 0.16 1.18 0.18
10 10 29 2.03 0.45 2.03 0.46
20 10 20 2.01 0.29 1.97 0.34

Similarly to before, it seems that the size of the charging error mainly depends on ∆t:
Fixing the number of vehicles n, the mean charging error decreases with smaller ∆t, the
number of vehicles does not seem to influence the mean charging error for fixed ∆t.

5.6.3 Comparison of EVS-SOC-LIN and EVS-SOC-GLIN

Charging cost gaps between solutions of formulation EVS-SOC-LIN and EVS-SOC-
GLIN can be found in Figure 5.10. As before, we only consider instances that were
solved to optimality. For EVS-SOC-LIN we use Emax-lb

v based on the concave Pmax
v ,

whereas for EVS-SOC-GLIN we use Emax-lb
v based on Pmax

v with five segments. The grid
capacity P gridmax is again set to 40n. Charging cost gaps are calculated by dividing the
difference of the EVS-SOC-GLIN objective values from the EVS-SOC-LIN objectives by
the EVS-SOC-GLIN objective values. For n ∈ {50, 100} and ∆t = 1 minute, all mean
charging cost gaps are zero, therefore the respective bars are not shown in the figure.
Comparing the gaps of both formulations, one can notice that the charging costs of
solutions generated by EVS-SOC-LIN are slightly too optimistic, underestimating the
actual costs. In comparison to the more exact EVS-SOC-GLIN, the costs of the solutions
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generated by EVS-SOC-LIN are lower by at most by 0.35%. Moreover, there are no
significant differences between the charging cost gaps when varying n or ∆t values. When
it comes to computation times, both variants of EVS-SOC-LIN are significantly faster
than any EVS-SOC-GLIN variant, as we have seen before in Table 5.2 and Table 5.4.
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Figure 5.10: Mean charging cost gaps of EVS-SOC-LIN and EVS-SOC-GLIN with
P gridmax = 40n. Gaps are given in percent. Whiskers indicate the standard deviations.
Note that for n = 20 and ∆t = 1 only a single instance was solved to optimality and
therefore the corresponding standard deviation is zero.

For the exact same setting as above, we also measure the charging error when scheduling
with the convex Emax-lb

v used in EVS-SOC-LIN and realizing the plan with the, in general,
nonconvex Emax-lb

v used in EVS-SOC-GLIN. The mean charging error is shown in Figure
5.11. It can be said that for a fixed ∆t, the mean charging error does not significantly
change for a varying number of vehicles n. However, for a fixed number n, the mean
charging error grows with decreasing ∆t. An explanation for this behavior seems to be
that on instances with smaller ∆t, solutions tend to be more precise in terms of the
error induced by the time discretization. Therefore the difference between a convex and
nonconvex Emax

v function could have more impact on solutions of instances with small
∆t values. Overall, the mean charging cost difference does not exceed 1.5% SOC for any
n and any ∆t and, thus, may be negligible in practice.

5.6.4 Model Based Predictive Control Simulations

For the rolling horizon scenarios, we conduct experiments using formulations EVS-SOC-
LIN and EVS-SOC-GLIN. We use Emax-lb

v for both formulations, but for EVS-SOC-LIN
the corresponding concave approximation of Pmax

v , whereas for EVS-SOC-GLIN the
five-segment approximation of Pmax

v . P gridmax is set to 40n. Results of the experiments
are shown in Table 5.9. Absolute charging cost differences are determined by subtracting
the EVS-SOC-GLIN objective values from the EVS-SOC-LIN objective values. Relative
charging costs are based on the absolute charging costs divided by the objective values of
EVS-SOC-GLIN.
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Figure 5.11: Mean charging error when scheduling with convex Emax-lb
v and realizing

the plan with nonconvex Emax-lb
v using P gridmax = 40n. Whiskers indicate the standard

deviations.

Similarly to before, for fixed n and ∆t, the charging costs of EVS-SOC-LIN and EVS-
SOC-GLIN only differ marginally. The maximum gap is 0.27% for n = 100 and ∆t = 5
minutes. As expected, the absolute charging cost difference increases with a higher
number of vehicles. The gaps, however, seem to stay in the same order of magnitude for
growing n.

Table 5.9: Rolling horizon charging cost difference for EVS-SOC-LIN vs. EVS-SOC-GLIN
using Emax-lb

v ; P gridmax = 40n.

n ∆t (min)
Charging Cost Difference

Absolute (cent) Relative (%)
Mean StdDev Mean StdDev

5 5 0.97 0.73 0.22 0.16
5 10 0.91 0.60 0.20 0.12
10 5 1.75 0.99 0.20 0.11
10 10 1.78 0.77 0.20 0.08
20 5 3.78 1.34 0.21 0.08
20 10 3.80 1.03 0.21 0.06
50 5 9.14 2.42 0.20 0.05
50 10 9.39 2.64 0.21 0.06

100 5 24.42 2.40 0.27 0.03
100 10 19.96 4.82 0.22 0.05

5.7 Conclusions
We formally introduced the EVS-SOC problem in which we put particular focus on
dealing with vehicle-specific SOC-dependent maximum charging power limitations. We
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addressed the issue that the maximum charging power Pmax
v may be regulated within a

single time step in a time discretized solution approach by turning towards considering
the maximum amount of energy that can be charged in a time step. To this end, we
proposed an exact derivation Emax-ex

v as well as a simpler lower bound Emax-lb
v . One

should keep in mind that the gap between Emax-lb
v and Emax-ex

v decreases with smaller
time step duration ∆t. We recall that charging schedules generated with Emax-lb

v are
guaranteed to be realizable in practice, whereas schedules generated with Emax-ex

v help
us with the estimation of the charging cost differences and charging errors induced by
the time discretization.

Let us recapitulate the most important experimental results. Two different MILP
formulations, EVS-SOC-LIN and EVS-SOC-GLIN, were proposed, where EVS-SOC-LIN
relies on the assumption that Emax

v is concave. When taking a closer look at EVS-SOC-
LIN, both the static as well as the cutting plane variant, are quite fast. Compared to
EVS-SOC-GLIN, EVS-SOC-LIN performs an order of magnitude faster in our experiments.
Considering the runtime difference between the static and the cutting plane approach, a
substantial performance benefit of the latter can be observed. Moreover, we have seen
that the runtime of the cutting plane approach scales better with larger numbers of
vehicles or decreasing ∆t values. Its advantages become even more visible when the
maximum charging energy of a vehicle has to be exploited, i.e., a large number of cuts
has to be separated.

Concerning the static solution approach and the B&C for solving EVS-SOC-GLIN, we
found that B&C performs better for instances with a small number of vehicles. For
larger instances, however, the static variant is usually superior in terms of runtime. It
also shows performance advantages for larger grid capacities. Results of the experiments
indicate that the B&C is slower than the static variant when a large number of cuts has
to be separated. Nevertheless, there are cases where B&C is faster, for example when
Emax
v consists of many linear segments. Additionally, we realized that B&C finds more

feasible solutions in the majority of the experiments, when solving to optimality is not
possible anymore within the runtime limit. Overall, for both EVS-SOC-GLIN solution
approaches it is also worth mentioning that fewer Pmax

v segments usually clearly reduce
the runtime.

Different approximations of the maximum charging power (e.g., piecewise linear ap-
proximation or convex hull approximation), as well as the maximum charging energy
(Emax-lb

v , Emax-ex
v ) have been proposed. We studied the charging cost differences and the

charging errors induced by these approximations. Regarding the charging cost differences,
it turned out that there are only marginal charging cost differences between schedules
generated with Emax-lb

v and schedules generated with Emax-ex
v . The number of vehicles

did not show any noticeable impact on the cost differences for this comparison. Naturally,
a smaller step duration ∆t reduces the charging cost differences. Moreover, in case of our
benchmark instances the approximation of Pmax

v with five piecewise linear segments does
not have any noticeable impact on the charging costs, despite the rather complex original
functions. We also inspected the charging cost differences when generating schedules
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based on the original Pmax
v function and its concave approximation. It turned out that

the charging cost differences are quite small, the mean differences did not exceed 0.35%
for any shown parameter group.

As already mentioned, approximating the maximum charging energy might lead to the
issue that vehicles do not reach their desired target SOCs. To measure this effect, we
generated charging schedules with Emax-ex

v and simulated the actual charging with Emax-lb
v .

Experimental results have shown that the mean charging error does not exceed 2.1%
SOC even for ∆t = 10 minutes. For this experiments, we could also detect a correlation
between the size of ∆t and the charging error, more specifically the mean charging error
decreases with smaller ∆t. In another simulation, we considered the mean charging
error when generating a charging schedule based on a concave Pmax

v approximation and
realizing it with the original Pmax

v . The mean charging error is rather small again, the
mean deviation from the vehicles’ target SOCs were at most 1.5%.

To see whether the concave approximation of Pmax
v accumulates large charging cost differ-

ences in a whole day scenario, we conducted model based predictive control simulations
with the original Pmax

v and its concave approximation. The relative charging cost gaps
were even smaller with a maximum value 0.27% for 100 vehicles and ∆t = 5 minutes.

Overall, where we utilize one of the formulations within a model based predictive control
strategy, we recommend the usage of EVS-SOC-LIN or EVS-SOC-GLIN together with
a reasonably small ∆t value of few minutes, in order to reduce errors introduced by
time discretization. Depending on whether EVS-SOC-GLIN is performant enough for
a given application setting (i.e., it finds a charging schedule within the re-optimization
interval) its usage is advised to reduce the danger of significant charging cost differences
and charging errors. It seems promising to approximate Pmax

v with five to ten piecewise
linear segments to improve runtime in this scenario.

In case EVS-SOC-GLIN does not find charging schedules in reasonable time, one might
fall back to EVS-SOC-LIN and its cutting plane approach to rapidly generate charging
schedules for a concave approximation of Pmax

v . The introduced errors are usually
negligible as we have seen.

In future work it would be interesting to investigate whether the runtime of solving
EVS-SOC-GLIN can be further improved. As we have seen, B&C is frequently slower than
the static variant. A more detailed polyhedral study of the model may reveal additional
strengthening inequalities. Concerning the computational complexity of EVS-SOC, it is
an open question whether or not the problem is NP-hard if Pmax

v is a general nonconcave
function. Another aspect worth pursuing is the question whether known vehicle arrival
times have a significant impact on the charging costs of a rolling horizon schedule. In
the presented scenario, successively arriving vehicles are simulated, however they are not
incorporated into the schedule before arrival at the charging station. One may expect
that arrival times known in advance lead to better exploitation of cheap charging time
slots and therefore come along with cheaper total charging costs.

A further direction of future work should be the consideration of uncertainties, e.g.,
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uncertain power limits or the uncertain occupation of charging stations. Moreover, we
usually do know the Pmax

v curve in advance, but might be able to approximate it over
charging time. Furthermore it would be interesting to study the effect of the rescheduling
interval on charging costs and charging errors in the rolling horizon context. Last but
not least, it would be interesting to consider a problem variant in which discharging of
vehicles is allowed in order to enable mutual charging of EVs. This idea is referred to as
vehicle-to-grid and has already been mentioned in [143], however its impact on the total
charging costs has not yet been studied. One could further extend the model by allowing
the charging station to supply energy to the electricity grid in exchange for monetary
reward.
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CHAPTER 6
Conclusion and Future Work

In the first two parts of this thesis we considered the problem of distributing service
points for mobility applications. In the context of mobility applications a service point
may refer to a charging station or battery swapping station for electric vehicles or a
station of a vehicle sharing system where customers can pick up and return vehicles.
Service points are an important part of a mobility service’s infrastructure and an optimal
placement of these service points is crucial for a fruitful operability. However, deciding
where said service points should be placed is a challenging problem. In the literature
such a problem is usually solved in two phases. In the first phase the necessary data
about the community and environment in order to estimate user demands and other
information, is acquired. In the second phase, based on the obtained demand information
the placement of service points is optimized. Traditionally, the data acquisition and the
optimization step are considered in a separated fashion.

Even when the demand information is completely known, finding optimal locations
for service points still remains a difficult problem. To emphasize this aspect, we have
considered in Chapter 3 the Multi-Period Battery Swapping Station Location Problem
(MBSSLP), a novel problem formulation for placing battery swapping stations for electric
scooters in an urban area. To the best of our knowledge the aspect of recharging
and reusing returned batteries and its implications concerning station capacities when
optimizing station locations and configurations has not yet been investigated in previous
work. Due to various considerations, such as a dropout of customers, capacities of stations,
as well as the rechargeable batteries the problem was too complex to be solved reasonably
well with pure mixed integer programming approaches for instances with more than 1000
stations and 2000 origin-destination pairs. Hence, a Large Neighborhood Search (LNS)
was proposed for solving larger instances. The LNS was realized as a matheuristic, as a
mixed integer linear program was used for repairing solutions. Our LNS was able to find
reasonable solutions for instances with up to 2000 stations and 8000 origin-destination
pairs. In future work it seems promising to improve the strategies of destroying and
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repairing solutions within the LNS. Specifically, the presented strategies are random to a
large degree and do not consider how the remaining/allocated demand is influenced by
locations previously added to the repair and destroy set, respectively. Moreover, adaptive
mechanisms for choosing among different destroy and re-create methods may be useful.
In order to be able to solve even larger instances, extensions utilizing, e.g., (hierarchical)
clustering and multilevel refinement should be considered in future work.

In Chapter 4 a Cooperative optimization Approach (COA) was proposed for solving the
demand acquisition problem as well as the station location problem in a single process.
COA offers an attractive alternative demand acquisition method, as it does not require
any previous data, and can easily be transferred to other application scenarios and
locations and is potentially cheaper than buying data for estimating customer demands.
The COA framework consists of three major components, the feedback component (FC),
the evaluation component (EC), and the optimization component (OC). We have shown
that the individual components can easily be realized in various ways. For example as
optimization approach, one may use white-box or black-box algorithms as well as exact
or heuristic approaches. We specifically have developed a particularly efficient LNS that
outperforms solving a mixed integer linear programming model with a generic solver by
orders of magnitude. This was achieved by to modeling the non-trivial objective function
of the problem to be solved as a graph that makes it possible to efficiently update the
objective value of a solution whenever it was modified.

Additionally, in order to learn users preferences, two different machine learning based
surrogate models were investigated in the EC. In one model users and stations were
considered independently of each other while the other model explicitly tried to exploit
similar preferences of users. Ultimately, it turned out that the latter method was able
learn user preferences significantly better than the former method. Moreover, by also
considering that user feedback is not missing at random, we were able to improve
the learning mechanism even further. However, the advantage of considering users
independently of each other in the surrogate function is that the associated models cannot
only be trained independently of each other but also in parallel. Recall that without
the learning mechanism COA can be compared to a classical approach in the sense that
it optimizes service point locations based on previously derived demand information.
Our results clearly show that using our learning mechanism in COA we can achieve
vastly better results than without it based on the same known demand information.
Additionally, in comparison to classical approaches COA is much more flexible in how
much information can be asked from individual users.

For future work there is still potential left for the further development of COA. An open
problem is to investigate how the way in which user feedback is obtained affects the rate
at which the surrogate function improves over the iterations of COA. Specifically, the
order in which the user feedback is obtained may have a significant impact on how quickly
the surrogate function can improve. Furthermore alternative strategies for generating
location scenarios in the FC may also be considered which utilize knowledge not only
from the EC but also from the OC, such as deriving additional information about the
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importance of locations via a sensitivity analysis of a linear program.

While COA addresses many problems of the classical procedure for distributing service
points, COA also comes with several challenges that need to be properly addressed when
applied in a real-world scenario. The focus of this contribution was on the algorithmic and
computational aspects of COA and its components. The presented problem formulations
that are solved with COA were intentionally still rather general and abstract as the
focus is put on the core principles and the interaction of the different components of the
approach. Clearly, further challenges concern a suitable user interface and a corresponding
distributed implementation of at least the feedback component, in which also psychological
aspects of users need to be considered. Moreover, the performed experiments are based on
the assumption of perfect user feedback, which does not hold in practice. The impacts of
not entirely reliable evaluation results need to be studied, and robust variants of certain
components of COA devised. For example, users might accidentally provide erroneous
feedback. Hence it would be interesting to test the robustness of the EC, investigating
how many and what kind of errors users can make for the surrogate function to still
produce feasible predictions. Alternatively, designing methods that can detect such errors
would make it possible to ignore or even correct erroneous feedback.

So far, interactive optimization algorithms are typically designed for a single person.
Algorithms interacting with a large group of users are quite sparse in literature. Therefore,
the algorithms developed for COA and the COA framework itself may serve as important
basis for similar problems, i.e., problems where preferences or constraints of users are
partially unknown or difficult to model. Such problems seem to be especially relevant in
the domain of personnel scheduling.

In Chapter 5 we turned to the electric vehicle charging scheduling problem with SOC-
dependent maximum charging power (EVS-SOC). We addressed the issue that the
maximum charging power at which a vehicle can be charged is dependent on the current
state of charge (SOC) of the vehicle. Additionally, using a discretized time horizon, the
charging power of an electric vehicle (EV) may be regulated within a single time step.
To deal with this issue, we instead considered the energy by which an EV can be charged
within a time step. For this purpose, we showed how to derive the maximum charging
energy in an exact as well as an approximate way.

We proposed two methods for solving the EVS-SOC. The first one was a cutting plane
method utilizing a convex hull of the in general nonconcave glssoc-power curves. The
second method was based on a piecewise linearization of the glssoc-energy curve and is
effectively solved by branch-and-cut. Our results showed that optimally solving problems
with general piecewise linear maximum power functions requires high computation times.
However, problems with concave, piecewise linear maximum charging power functions
can efficiently be dealt with by means of linear programming. Approximating an EV’s
maximum charging power with a concave function may result in practically infeasible
solutions, due to vehicles potentially not reaching their specified target glssoc. However,
our results showed that this error is negligible in practice.
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6. Conclusion and Future Work

In future work it would be interesting to investigate whether the runtime of solving the
branch-and-cut model can be further improved. A more detailed polyhedral study of the
model may reveal additional strengthening inequalities. Concerning the computational
complexity of EVS-SOC, it is an open question whether or not the problem is NP-hard if
a vehicle’s maximum charging power is a general nonconcave function. A further direction
of future work for the EVS-SOC should be the consideration of uncertainties, e.g., in the
future power limits or in the future occupation of charging stations.

In conclusion, in this thesis we have investigated several practically highly relevant and
challenging aspects regarding a profitable operability of a service point system. As main
part of this thesis we have developed a cooperative approach for distributing service points
that addresses many issues of classical approaches for optimizing service point locations.
We have shown that COA has therefore the potential to be a valuable alternative to these
classical approaches, offering a significantly easier and cheaper way for obtaining user
demand data. Additionally, by incorporating users directly into the optimization process,
COA is able to consider user preferences on a much finer grained level than the standard
approaches. Finally, by allowing users to help creating the service station system, the
resulting solution will ultimately be better accepted by the community.
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APPENDIX A
Generation of MBSSLP Instances

Here we provide a more detailed description of how our MBSSLP benchmark instances
are generated and provide all parameter values used in the generation of the instances.

A.1 Random Instances for the MBSSLP
Battery swapping stations as well as origin and destination locations of customers are
located within a square of length dξ√ne with ξ = 800. We generate a network graph
G = (V,E) following a similar procedure as used in [66, 68] by first sampling |V | = 5n
random points from the square and then constructing an euclidean spanning tree w.r.t.
V . Afterwards, n additional randomly chosen edges (u, v) ∈ V × V are added to E.

The set of potential battery swapping station locations L is generated by choosing n
random nodes from V . Costs for building a station are chosen uniformly at random from
{50, . . . , 70} for each station. Costs for adding a battery slot to a station are set to 40.
Each battery swapping station can have at most 70 battery slots.

Origin and destination locations are chosen from a random subset V ′ ⊆ V with |V ′| =
min(m2 , 5n). To each v ∈ V ′ a random weight γv is assigned according to a log-normal
distribution with mean µ = ln(100) and standard deviation σ = 0.5. Moreover, we
also assign weights γq to each OD-pair q = (u, v) ∈ V ′ × V ′ such that γq corresponds
to fPDF(w(pq), µ, σ) with fPDF being the probability density function of a lognormal
distribution with mean µ = ln(5000) and standard deviation σ = 0.2. The total demand
dtotal
q of an O/D-pair q = (u, v) is then calculated as dtotal

q = γu · γv · γq. We then set Q
to be the set of m O/D-pairs q of V ′ × V ′ for which dtotal

q is highest.

The swapping demand of each O/D-pair is distributed over 24 time periods, T =
{1, . . . , 24} and recharging a battery requires one time period, i.e., tc = 1. We assume
each customer to travel twice on his corresponding path, once in the morning to get to
work and once in the evening to travel back home, and we assume that customers need
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A. Generation of MBSSLP Instances

to swap batteries once per trip counted here as demand. The demand during each time
period t ∈ T is determined by two normal distributions Nmorning(8, 1) and Nevening(18, 2),
respectively. From each distribution 100 samples t are generated and transformed to
valid integral values by t := (dte mod tmax) + 1. Afterwards, dtotal

q is distributed over
T according to the frequency in which the time periods t ∈ T appear in the generated
samples.

The maximal deviation distance of the users, wdetour
max , is set to ξ/2 and the parameters

of the distance decay function are set to α = 100, β = 0.1, and δq = wdetour
max /10 for all

q ∈ Q.

Eight groups of test instances for different combinations of n and m have been generated
as described in Section 3.5, and each group consists of thirty instances.

A.2 Manhattan Instance
Next to artificial benchmark instances we also derived an instance from real-world yellow
taxi trip data and bus stop shelter data of Manhattan, which we call here Manhattan
instance. The underlying street network of the instance corresponds to the street network
graph of Manhattan provided by the Python package OSMNX1. Origin/Destination
pairs of our instance correspond to trips between the taxi zones2 of Manhattan. The
partitioning of Manhattan into taxi zones is shown in Figure 3.3. For each taxi zone one
random origin and one random destination location were chosen from the set of nodes of
the network graph that are associated with the corresponding taxi zone.

The set of O/D-pairs and their corresponding demands have been derived from the 2016
Yellow Taxi Trip Data3. The taxi data set was first preprocessed and all trips with
invalid data as well as trips made on a weekend have been removed from the data set.
Furthermore, we have also removed all trips which do not start and end in Manhattan.
From the preprocessed data set we then extracted for each trip the pickup time, the
pickup zone, the drop-off zone, as well as the passenger count. Each pickup time was
rounded down to the nearest hour and afterwards an average daily passenger count for
each triple (pickup hour, pickup zone, drop-off zone) was calculated. In total, the final
table contains 4498 unique pickup/drop-off zone pairs which also constitute the instance’s
set of O/D pairs Q. These passenger counts correspond to the hourly demands dtq of the
O/D pairs q ∈ Q.

For the distance decay function and wdetour
max we use the same parameters as for the

artificial benchmark instances.
1https://github.com/gboeing/osmnx
2https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
3https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/

k67s-dv2t
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A.2. Manhattan Instance

The set of potential battery swapping station locations L is derived from the bus stop
shelters 4 of Manhattan by selecting 500 locations randomly.

As shown in Figure 3.2 left the demand at each hour is quite high. Therefore we choose a
capacity limit of 200 for each battery swapping station, The costs for building a station
as well for adding a battery charging slot are chosen as for the artificial instances.

4https://data.cityofnewyork.us/Transportation/Bus-Stop-Shelters/qafz-7myz
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APPENDIX B
EVS-SOC-GLIN - Additional

Results

In Figure B.1 a comparison between the original Pmax
v and the simpler piecewise approx-

imations is shown for all vehicle types used in the benchmark instances.

Tables B.1, B.2, B.3, and B.4 give more detailed information to the results provided in
Tables 5.3, 5.4, 5.5, and 5.6, respectively. Shown here are also the numbers of optimally
solved instances in each instance groups as well as standard deviations to the runtimes
and the numbers of cuts.
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B. EVS-SOC-GLIN - Additional Results
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Figure B.1: Comparison of Pmax
v curves with different numbers of segments.
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B. EVS-SOC-GLIN - Additional Results
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