B Informatics

Computational Optimization
Approaches for Distributing
Service Points for Mobility
Applications and Smart Charging
of Electric Vehicles

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften
eingereicht von

Dipl.-Ing. Thomas Jatschka, BSc
Matrikelnummer 00928678

an der Fakultat fir Informatik

der Technischen Universitat Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Gunther Raidl
Zweitbetreuung: Dr.rer.nat. Tobias Rodemann

Diese Dissertation haben begutachtet:

Luca Di Gaspero Kenneth Sérensen

Wien, 30. Mai 2022

Thomas Jatschka

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

B Informatics

Computational Optimization
Approaches for Distributing
Service Points for Mobility
Applications and Smart Charging
of Electric Vehicles

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of
Doktor der Technischen Wissenschaften
by

Dipl.-Ing. Thomas Jatschka, BSc
Registration Number 00928678

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Ginther Raidl
Second advisor: Dr.rer.nat. Tobias Rodemann

The dissertation has been reviewed by:

Luca Di Gaspero Kenneth Sérensen

Vienna, 30" May, 2022

Thomas Jatschka

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

Erklarung zur Verfassung der
Arbeit

Dipl.-Ing. Thomas Jatschka, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. Mai 2022

Thomas Jatschka

Acknowledgements

I want to express my sincere gratitude to Giinther Raidl for supervising me during these
last four years. I am grateful for his guidance and him always taking the time to support
me in my research whenever I was stuck. I also appreciate the many opportunities
provided for collaborating on various interesting projects.

I would also like to thank my second supervisor, Tobias Rodemann. I greatly enjoyed the
fruitful collaboration with him and Honda Research Institute Europe GmbH (HRI EU)
and am thankful to Tobias and Giinther for giving me this opportunity. Besides Tobias,
I also want to thank Viktor Losing and Martin Heckmann from HRI for the interesting
discussions in our advisory meetings.

Next, I want thank Steffen Limmer, Fabio Oberweger, and Benjamin Schaden for
coauthoring with me.

I am thankful to HRI for funding my PhD position and to Honda R&D Co., Ltd. for
additional financial support. At this point I also want to thank Yusuke Okamoto, Hiroaki
Kataoka and Tadashi Hayashida from Honda R&D Co., Ltd. for their valuable insights.

Further, my thanks also go to my coworkers at the Algorithms and Complexity group for
the great work environment and helpful discussions. I want to especially thank Nikolaus
Frohner for taking the time to read this thesis and providing much appreciated feedback.

Last but not least, I want to thank my parents and my brother Johannes for supporting
me throughout my whole life.

vii

Kurzfassung

Fiir viele Geschéftsmodelle in der Mobilitdtsbranche wird eine optimale Verteilung von
Servicestellen fiir eine Kundengemeinschaft benotigt. Beispiele dafiir sind Ladestationen
oder Batterietauschstationen fiir elektrische Fahrzeuge, Fahrradverleihsysteme oder Re-
paraturstellen fiir Fahrzeuge. Zwei grundséitzliche Probleme sind dabei die Erhebung
der notwendigen Daten, um die Kundennachfrage abzuschétzen, sowie das Identifizieren
von optimalen Orten zum Platzieren von Servicestellen anhand der erhobenen Daten.
Ublicherweise werden diese zwei Probleme separat gelost. Allerdings ist das Erheben von
Kundeninformation auf diese Art von Grund auf unvollstdndig und so gut wie immer
fehleranfillig, da hier etliche Aspekte auf komplexe, nicht offensichtliche Weise zusam-
menspielen und deren Einfluss mit den tiblichen Modelliermethoden oft nicht erfasst
werden kann.

In dieser Arbeit préasentieren wir Losungsanséitze die beide Probleme, das Erheben der
Daten sowie die Optimierung der Orte fiir Servicestellen, auf einmal 16sen. Die Ansétze
basieren auf einer Zusammenarbeit eines Préiferenz-basierten Optimierungsalgorithmus
und der Kundengemeinschaft. Anstatt die Anforderungen der Kunden auf die tibliche
Art und Weise im Voraus zu erheben, werden die Kunden direkt in den Optimierungs-
prozess eingebunden, indem diese ihre Praferenzen zu geeigneten Orten fiir Servicestellen
kundgeben kénnen. Dadurch kann Kundenwissen iiber lokale Gegebenheiten besser be-
riicksichtigt. Vorteile dieser Methode sind eine schnellere und billigere Erfassung von
Kundeninformation, die direkte Einbindung von Kunden in den Planungsprozess, eine
starkere emotionale Verbindung zwischen den Kunden und dem Produkt sowie besser
akzeptierte Optimierungsergebnisse.

Ein spezielles Problem, das in so einem kooperativen Ansatz beriicksichtigt werden muss
ist, dass der Beitrag von einzelnen Kunden von Grund auf egoistisch ist. Daher werden
spezielle Techniken bendétigt, um individuelles Feedback zu verarbeiten und allgemein
giiltige Schliisse daraus zu ziehen.

Ein anderer wichtiger Aspekt ist, dass Benutzer nur mit einfachen Fragen, deren Antworten
aber zeitgleich stark richtungsweisend fiir das Zielsystem sein sollen, konfrontiert werden
sollen. Ein bedeutender Nachteil von interaktiven Algorithmen ist, dass deren Performance
stark von der Qualitdt der Kunden, die mit dem System interagieren, abhéngt. Stetige
Benutzerinteraktion fithrt schlussendlich zu einer Erschépfung der Benutzer, wodurch
ihre Fahigkeiten, zuverlassiges Feedback zu geben, stark beeinflusst werden. Aus diesem

ix

Grund soll Benutzerinteraktion nicht nur als zeitaufwendig, sondern auch als knappe
Ressource angesehen werden. Schliefllich muss auch noch entschieden werden, wie das
erhaltene Feeback in der Optimierung beriicksichtigt wird. Die Kernoptimierung ist
typischerweise bereits ein herausforderndes Problem. Daher erhoht die Beriicksichtigung
von Kundenfeedback in der Optimierung zusétzlich die Komplexitéit des Problems.

In dieser Arbeit werden drei verschiedene Probleme erforscht. Als Einfiihrung zum
Thema Verteilen von Servicestellen fiir Mobilitdtsanwendungen, behandelt das erste
Problem das Identifizieren von optimalen Orten fiir Servicestellen unter der Annahme,
dass die benotigte Kundeninformation bereits bekannt ist. Im Speziellen betrachten wir
das Problem zum Verteilen von Batterietauschstationen fiir elektrische Scooter, deren
Batterien in ein paar einfachen Schritten ausgetauscht werden konnen. Entladene Batterien
werden an den Tauschstationen wieder aufgeladen und, sobald sie wieder voll sind, den
Kunden wieder zur Verfiigung gestellt. Unser Ziel ist nicht nur das Identifizieren von
optimalen Orten fiir diese Tauschstationen, sondern auch das Ermitteln ihrer Kapazitat,
um eine gewisse Menge an Kundennachfrage mit minimalen Kosten erfiillen zu kénnen. Das
problem wird als gemischt ganzzahliges Problem formuliert und eine large neighborhood
search wird entwickelt zum Losen von entsprechenden Instanzen, abgeleitet von realen
Taxidaten von Manhattan.

Die zweite Problemformulation, die in dieser Arbeit erforscht wird, ist allgemeiner
formuliert, berticksichtigt dafiir aber Benutzerinteraktion zum Erheben der Kundenanfor-
derungen verwoben mit dem Opimierungsprozess. Daher beriicksichtigen wir in diesem
Problem neben der eigentlichen Optimierung auch, wie Kundeninformation erfasst werden
kann. Zu diesem Zweck prasentieren wir in dieser Arbeit einen kooperativen Optimie-
rungsansatz zum Verteilen von Servicestellen fiir Mobilitdtsanwendungen. Dieser Ansatz
ist iterativ und optimiert an welchen Orten Servicestellen errichtet werden sollen, indem
eine Optimierungskomponente mit Benutzerinteraktion grof angelegt kombiniert wird.
Eine machine learning Komponente stellt dazu die Auswertungsfunktion von Losungen
wéahrend der Optimierung bereit. In jeder Iteration des Algorithmus werden Kandida-
tenlosugen generiert und den Kunden vorgeschlagen, die machine learning Komponente
wir neu trainiert und die Optimierung wird benutzt, um eine neue Losung, die den
Benutzerbediirfnissen entspricht, zu finden. Wir stellen das Framework unseres koope-
rativen Ansatzes, welches in der Lage ist eine Vielzahl von Mobilitdtsproblemen zu
16sen, vor. Zusétzlich diskutieren wir verschiedene machine learning Modelle, um die
erhaltenen Benutzerdaten zu verarbeiten, sowie verschiedene exakte und heuristische
Optimierungsansétze zum Losen des zugrunde liegenden Problems.

Schlieflich betrachten wir auch ein anderes Optimierungsproblem, welches ebenso essen-
tiell ist, um einen effektiven Mobilitatsservice zu etablieren. Im Speziellen betrachten
wir die Betriebsfahigkeit des Services. Wir untersuchen das Problem des Planens von
elektrischen Fahrzeugen an einer Ladestation, sodass die zeitlichen Verfiigbarkeiten der
Fahrzeuge sowie die maximal verfiigbare Ladeleistung an der Station beriicksichtigt
wird. Unter Beriicksichtigung von zeitlich abhdngenden Energiepreisen sollen die Kosten
zum Laden der Fahrzeuge minimiert werden. Ein besonderer Aspekt, den wir hierbei

untersuchen ist, dass die maximale Ladeleistung, mit der ein Fahrzeug geladen werden
kann, vom aktuellen Ladezustand des Fahrzeuges abhéngt. Wir schlagen zwei Methoden
vor, um das Problem zu lésen. Der erste Ansatz ist ein cutting plane Ansatz, der die
konvexe Hiille der im allgemeinen nicht konkaven Kurve des Ladezustands ausnutzt. Der
zweite Ansatz basiert auf einer stiickweisen Linearisierung der Kurve des Ladezustands
und wird mittels branch-and-bound gelost. Beide Ansétze werden in experimentellen
Untersuchungen evaluiert anhand kiinstlich erstellter Testinstanzen, welche teilweise von
realen Daten abgeleitet wurden.

Abstract

For many business models in the mobility domain an optimal distribution of service points
in a customer community is needed. Examples are charging stations of electric vehicles
(EVs), bicycle sharing stations, battery swapping stations, or repair stations. Two main
challenges are to get the necessary data about the community and environment in order
to estimate user demands, local constraints of potential locations, and other properties
and to identify optimal service station locations based on these data. Traditionally,
these two tasks are considered in a separated fashion. Obtaining input data for the
optimization step in a classical way essentially always is inherently incomplete and error
prone for larger practical scenarios since manifold aspects play roles in complex, often
non-obvious ways, and not all of them can be captured with appropriate estimations of
their impacts.

In this work we present approaches for solving both challenges, the data acquisition and
the optimization, in a combined way by a cooperation of a preference-based optimization
algorithm and customers. Instead of estimating customer demands upfront, customers
are incorporated directly into the optimization process, i.e., users can interact with the
optimization algorithm by expressing their preferences for where to best place service
points. Potential customers further know local situations and their particular properties,
including also special aspects that cannot be easily captured in a classical data acquisition
approach. The expected benefits of such an approach are a faster and cheaper data
acquisition, the direct integration of users into the whole planning process, possibly a
stronger emotional link of the users to the product, and ultimately better and more
accepted optimization results.

A particular challenge to be considered for such a cooperative approach is that the
input from each individual user is inherently egoistic. Hence special techniques are
necessary for aggregating, interpolating, and extrapolating individual user feedback in
order to derive more globally valid aspects. Another important aspect is that users must
be confronted with easy questions or tasks whose answers at the same time provide
strong guidance for the target system. A major disadvantage of interactive algorithms
is that their performance strongly depends on the quality of the feedback given by
the interactors. Continuous user interactions will eventually result in user exhaustion,
negatively influencing the reliability of the obtained feedback. Therefore, user interactions
should not only be considered time consuming but users also need to be treated as a

xiii

scarce resource. Finally, one has to decide how to incorporate the obtained user feedback
into the optimization. The core optimization problems are typically already challenging
to solve. Hence, considering user feedback during the optimization adds an additional
layer of complexity that needs to be addressed.

In this thesis three different problems are investigated. As an introduction to distributing
service points for mobility applications, the first problem focuses on the challenge
of identifying optimal service station locations under the assumption that demand
information is already known. Specifically, we investigate the problem of setting up
battery swapping stations for electric scooters. For the considered electric scooters,
batteries can be swapped quickly in a few simple steps. Depleted batteries are recharged
at these swapping stations and provided again to customers once fully charged. Our
goal is to identify optimal battery swapping station locations as well as to determine
their capacities appropriately in order to cover a specified level of assumed demand at
minimum cost. The problem is formulated as a Mixed Integer Linear Program (MILP)
and a [Large Neighborhood Search (LNS)|is developed for solving instances derived from
real-world taxi data of Manhattan.

The second problem is more generic but therefore considers user interaction for obtaining
demand information interleaved with the optimization. As core concept of this thesis we
present a Cooperative optimization Approach (COA) for distributing service points of
mobility applications. This approach is an iterative algorithm that optimizes the location
of service points by combining an optimization component with user interaction on a
large scale and a machine learning component that provides the objective function for
the optimization. In each iteration candidate solutions are generated and suggested to
the future potential users for evaluation, the machine learning component is (re-)trained
on the basis of the collected feedback, and the optimization is used to find a new solution
fitting the needs of the users as well as possible. We propose a framework for (COA| that
is suitable for solving a large range of mobility applications, such as charging stations of
electric vehicles or vehicle sharing systems. Additionally, we discuss different approaches
for implementing the components of [COAL Specifically, we propose different machine
learning models for processing the obtained user feedback and different optimization
techniques for solving the underlying problem w.r.t. the current user information including
mixed integer programming as well as heuristic methods.

Finally we consider a different optimization problem which is also crucial for establishing
an effective electric mobility service. Specifically, the operability of the service. We
investigate the problem of scheduling the charging of EVs at a single charging station
such that the temporal availability of each EV as well as the maximum available power at
the station are considered. The total costs for charging the vehicles should be minimized
w.r.t. time-dependent electricity costs. A particular aspect we investigate in this context
is that the maximum power at which a vehicle can be charged depends on the current
state of charge (SOC) of the vehicle. Two methods for solving the scheduling problem
are proposed. The first one is a cutting plane method utilizing a convex hull of the
in general nonconcave SOC-power curves. The second method is based on a piecewise

linearization of the [SOC-energy curve and is effectively solved by branch-and-cut. All
proposed approaches are vigorously experimentally evaluated on artificial benchmark
scenarios partly derived from real world data.

Contents

Kurzfassung ix
Abstract xiii
Contents xvii
1 _Introduction 1
1.1 _Structure of the Thesis/. 5
2 Methodologies 7
2.1 _Basic Definitions e 7
2.2 Mathematical Programming 8
2.3 _Heuristic Methods 12
2.4 Machine Learning Methods 18
3 Distributing Battery Swapping Stations for Electric Scooters 25
3.1 Introduction e 26
3.2 _Related Work! 27
3.3 Problem Definitionl 28
3.4 Large Neighborhood Search| 30
3.5 Test Instances|. 32
3.6 Computational Results 35
3.7 Conclusions and Future Work 39
4 Cooperative Optimization Approaches for Distributing Service Points
in Mobility Applications 41
4.1 Introductionl. 43
4,2 Related Work 45
4.3 Cooperative Service Point Distribution Problems| 48
4.4 The Cooperative Optimization Framework| 50
4.5 The Independent Service Point Distribution Problem|. 52
4.6 The Generalized Service Point Distribution Problem 61
4.7 _Conclusion and Future Work 88

xvii

5 Smart Charging of Electric Vehicles Considering SOC-Dependent

Maximum Charging Powers 91
5.1 Introduction e 92
5.2 Related Work 94
5.3 Problem Descriptionl L o 95
5.4 Problem Solving Approaches| 100
5.5 Benchmark Instances 103
5.6 Experimental Results. 106
5.7 Conclusions 121
6 Conclusion and Future Work 125
A Generation of MBSSLP Instances 129
A.1 Random Instances for the MBSSLP| 129
A.2 Manhattan Instancel L 130
B EVS-SOC-GLIN - Additional Results 133
List of Figures 139
List of Tables 141
List of Algorithms 143
Acronyms 145

Bibliography 147

CHAPTER

Introduction

Traveling in an urban environment has undergone many changes within the last decades
due to continuous progress in the automotive industry as well as a trend towards more
environmentally friendly means of transportation. Nowadays, in most cities there exists a
growing number of alternative modes of transportation to traveling by classical gasoline
powered vehicles. The number of people replacing their gasoline powered vehicle with an
electric vehicle (EV)| has strongly increased in recent years and is expected to increase even
further in the future [I]. Additionally, vehicle sharing projects have become increasingly
popular in many cities around the world 2, [3, [4]. A crucial requirement for establishing a
new mobility service in an area is the installation of the necessary infrastructure. A major
part of this process also includes the installation of service points at selected locations in
the respective area. For example, certain types of vehicle sharing services require service
points for picking up and returning vehicles. Furthermore, batteries of EVs need to be
recharged or exchanged regularly at corresponding stations.

Naturally, a major challenge to overcome for a mobility service to be successful is the
proper placement of such service points. Service points should be placed in such a way
that the utility of the service system is maximized while taking into account limitations,
such as financial budgets or inaccessible areas. We refer to such problems generally as
service point distribution problems (SPDPs). Two main challenges for solving SPDPs
are to first get the necessary data about the community and environment in order to
estimate user demands, local constraints of potential locations, and other properties and
to then identify optimal service station locations based on these data. Traditionally, in
the literature the data acquisition and the optimization step are considered in a separated
fashion, e.g., [3] 6] [7, 8] for setting up vehicle sharing systems or [9] 10} 1T}, 12] for setting
up charging stations for EVs.

The first part of this thesis is dedicated to the second challenge, identifying optimal

locations for service points under the assumption that user demands have already been
acquired a priori. For this purpose we discuss the problem of setting up battery swapping

1.

INTRODUCTION

stations for electric scooters in an urban area. The goal is to identify optimal battery
swapping station locations as well as to determine their capacities appropriately in order
to cover a specified level of assumed demand at minimum costs. However, as battery
swapping stations only have a limited capacity one has to consider how users behave
when their preferred stations are not available. Moreover, an additional aspect that
needs to be considered is that depleted batteries are recharged at these swapping stations
and provided again to customers once fully charged. While there already exists work
for setting up a system of battery swapping stations, e.g. [13], [14], to the best of our
knowledge, there is no previous work that considers specifically the aspect of recharging
and reusing returned batteries and its implications concerning station capacities when
optimizing station locations and configurations. We formulate the problem as a Mixed
Integer Linear Program (MILP) and present a Large Neighborhood Search (LNS) for
solving it. The performance of the LNS|is compared to the performance of the MILP| on
artificial instances as well as instances derived from real-world taxi data of Manhattan.
More specifically, instances are derived from a large set recorded taxi trips between the
taxi zones of Manhattan.

In the second part of this thesis, we investigate SPDPs under the assumption that user
demands are not completely known a priori. Obtaining input data for the optimization
in a classical way essentially always is inherently incomplete and error prone for larger
practical scenarios since manifold aspects play roles in complex, often non-obvious ways,
and not all of them can be captured with appropriate estimations of their impacts. For
example, some customers might use multiple modes of transport for a single trip [15] [16].
Consequently, some more distant service stations might be acceptable to a customer if
they are well connected by public transport used for an additional last leg.

Therefore, we propose an approach for solving both challenges, the data acquisition and
the optimization, in a combined way by a cooperation of a preference-based optimization
algorithm and a larger base of customers. Users are able to continuously provide feedback
during the optimization, allowing them to express their preferences in a more direct way
than in a classical data acquisition approach. The expected benefits of such a cooperative
approach are a faster and cheaper data acquisition, the direct integration of users into
the whole planning process, a stronger emotional link of the users to the product, and
ultimately better and more accepted optimization results. Potential customers further
know local situations and their particular properties, including also special aspects that
are not foreseen to consider in a classical data acquisition approach. For example, if
public transport between two locations is not reliable, e.g. due to frequent delays, users
may wish for an alternative travel method. We first specify a class of (Cooperative Service
Point Distribution Problem (CSPDP)|in which we define how users can provide feedback.
Afterwards, we present a framework for a Cooperative optimization Approach (COA)
for solving such problems. This framework consists of three main components, one for
obtaining information from users, one for processing the obtained information, and one
for generating optimized solutions based on the processed user feedback. Note that in
this thesis, the focus is put on the core principles and the interaction of the different

components of COA. More work will be needed to actually apply (COA in a real-world
application. Further challenges concern a suitable user interface and a corresponding
distributed implementation for obtaining user feedback where also psychological aspects
of users need to be considered.

Depending on the concrete problem to be solved, these components might be realized
in different ways, especially in regard to how the obtained user feedback is processed.
Therefore, we investigate two different (CSPDPs and show how these can be solved with
the ICOA! framework.

In one of the investigated [CSPDP5s users are considered independent of each other. For
each combination of users and potential locations for service points individual machine
learning models are used for processing user feedback and for making predictions about
unknown user information. Initially, these machine learning models are simple linear
regression models. We use an approach inspired by [I7] in which a machine learning
model is incrementally upgraded to higher complexity ones when the error of the model
exceeds a certain threshold. Hence, as more and more user feedback is obtained during
the course of |[COA, each model is upgraded, e.g., a feedforward neural network, to
make more accurate predictions about users and appropriate service point locations. To
generate optimized solutions for this problem we propose and compare two heuristic
approaches, a variable neighborhood search as well as a population based iterated greedy
approach. Our results show that our ensemble of machine learning models is able to learn
the non-trivial user behavior of all our benchmark scenarios reliably and the optimization
is able to find solutions with only small remaining optimality gaps.

The second [CSPDP| we investigate is modeled based on the assumption that given a
sufficiently large number of customers there are users which have similar preferences
about suitable locations for service points. To exploit this assumption in [COAl we
make use of a matrix factorization based machine learning model which is a popular
approach used in recommender systems for suggesting products to users [I8]. Users
are asked to provide values for how suitable a service point location is to their specific
needs. Based on these suitability values a matrix factorization model is used to estimate
the suitability of so far unrated locations for each individual users. Moreover, for this
problem (COA| always asks users for feedback about their most suitable service point
locations. Therefore, the user information is not missing at random and tends to be
biased towards more suitable service point locations. To consider this aspect, we make
use of an advanced machine learning model proposed by [19] that allows us to add a bias
towards so far unknown user information. Optimized solutions are obtained via heuristic
and mixed integer programming techniques. Specifically, an [LNS|is developed which uses
a MILP for repairing destroyed solutions. Further, the LNS| makes use of a special graph
data structure to efficiently update our rather complicated objective function. In our
results we can observe that the matrix factorization based surrogate model is able to
learn preferences of individual users from users with similar interests. Additionally, using
the advanced matrix factorization model yields a significant improvement in the quality
of the solutions. Moreover, the results show that at the cost of a slight deterioration of

1.

INTRODUCTION

usually not more than one percent in the quality of the solutions, the [LNS|can outperform
the MILP| w.r.t. to computation times by orders of magnitudes.

The |[COA framework is evaluated on completely artificial instances as well as instances
derived form real-world data. Specifically, we derive locations for service points from bus
stop shelter station data of Manhattan and user preferences are based on taxi data of
Manhattan.

At this point it should be noted that setting up service points is not the only challenging
aspect for successfully establishing a mobility service. Once the service infrastructure
has been established, maintaining and maximizing the operability of the service points is
another crucial challenge. Service points usually can handle only a limited amount of
customers at a time, e.g., vehicle sharing stations can become partly unusable if they
become full or empty. Moreover, charging stations for EVs usually have limitations w.r.t.
how many customers can charge at once and how fast the vehicles can be charged. Hence,
in the case of vehicle sharing systems, the service points need to be constantly rebalanced,
ensuring that each station has the right amount of vehicles. On the other hand, charging
stations require a proper scheduling strategy such that their utility can be maximized.

Therefore, the last part of this thesis is dedicated to this aspect and we consider specifically
the task of finding a charging schedule for an EV| fleet from the perspective of a charging
station. The schedule must minimize the overall charging costs under time-dependent
electricity costs while respecting each vehicle’s temporal availability, its state of charge,
as well as the charging station’s maximum charging power. A special focus is put on the
aspect that each vehicle’s maximum charging power is limited by a function that depends
on the vehicle’s state of charge, which is particularly important for fast-charging. In
related literature, e.g. [20} 21], it is typically assumed that the maximum charging power
of an [EV|remains constant over the planning horizon. However, in practice the maximum
charging power depends on the state of charge (SOC) of the EV's battery. The exact form
of the charging power curve does not only depend on the type of battery and its charging
controller but also on other factors like the ambient temperature or the state of health of
the battery [22]. In most cases the curve is highly nonlinear. Frendo et al. [23] conclude
from numerical experiments that under the constraint of a limited total charging power,
up to 21% more energy can be charged if the SOC-dependent maximum charging power
is considered in the planning. Considering an [SOC-dependent maximum charging power
for a discretized time horizon is not trivial as the maximum charging power of an EV|may
also change during time steps. To deal with this issue, we instead consider the maximum
energy by which an EV|can be charged within a time step. We propose and compare two
MILP| based approaches for solving the scheduling problem and evaluate these approaches
in extensive numerical experiments. The first one is a cutting plane method utilizing
a convex hull of the in general nonconcave [SOC-power curves. The second method is
based on a piecewise linearization of the SOC-energy curve and is effectively solved by
branch-and-cut. The proposed approaches are evaluated on benchmark instances, which
are partly based on real-world data. To deal with [EVs arriving at different times as
well as charging costs changing over time, a model based predictive control strategy is

1.1. Structure of the Thesis

usually applied in such cases. Hence, we also experimentally evaluate the performance of
our approaches for such a strategy. The results show that optimally solving problems
with general piecewise linear maximum power functions requires high computation times.
However, problems with concave, piecewise linear maximum charging power functions
can efficiently be dealt with by means of linear programming. Approximating an EV/s
maximum charging power with a concave function may result in practically infeasible
solutions, due to vehicles potentially not reaching their specified target SOC. However,
our results show that this error is negligible in practice.

1.1 Structure of the Thesis

In the next chapter we give an overview of the methodological concepts based on which
the approaches in this thesis were developed.

In Chapter |3 the distribution of battery swapping stations for electric scooters is discussed.
The chapter first gives an extensive overview of related problems in the literature. The
problem is formally defined as a MILP, an LNS|is presented for solving the problem.
Afterwards, it is described how the test instances are generated and, based on these
instances, the |[LNS is evaluated and compared to the MILP. The chapter is based on the
publication

T. Jatschka, F. F. Oberweger, T. Rodemann, and G. R. Raidl, “Distributing battery
swapping stations for electric scooters in an urban area,” in Optimization and Appli-
cations, Proceedings of OPTIMA 2020 — XI International Conference Optimization
and Applications (N. Olenev, Y. Evtushenko, M. Khachay, and V. Malkova, eds.),
vol. 12422 of LNCS, pp. 150165, Springer, 2020.

Chapter 4 is dedicated to solving SPDPs in a cooperative way. First, related problems
in the literature are discussed and it is shown how demand information for various
Service Point Distribution Problem (SPDP)s have been obtained so far. The next section
defines the class of CSPDPs and the way in which users can interact with the [COA
framework which is presented afterwards. Then, two concrete CSPDPs are defined and it
is shown how these problems can be solved within the [COA| framework. For each of the
problems it is described how the components of the |[COA| framework are implemented
and the performance of the resulting approaches is tested on artificial instances as well
as real-world inspired instances. The chapter is based on the publications

e T. Jatschka, T. Rodemann, and G. R. Raidl, “A cooperative optimization approach
for distributing service points in mobility applications,” in Evolutionary Computa-
tion in Combinatorial Optimization (A. Liefooghe and L. Paquete, eds.), vol. 11452
of LNCS, pp. 1-16, Springer, 2019

e T. Jatschka, T. Rodemann, and G. R. Raidl, “VNS and PBIG as optimization
cores in a cooperative optimization approach for distributing service points,” in

1.

INTRODUCTION

Computer Aided Systems Theory — EUROCAST 2019, vol. 12013 of LNCS, pp. 255—
262, Springer, 2020

T. Jatschka, T. Rodemann, and G. R. Raidl, “Exploiting similar behavior of
users in a cooperative optimization approach for distributing service points in
mobility applications,” in The 5th International Conference on machine Learning,
Optimization and Data science — LOD 2019 (G. Nicosia, P. Pardalos, G. Giuffrida,
R. Umeton, and V. Sciacca, eds.), LNCS, pp. 738-750, Springer, 2019

T. Jatschka, G. R. Raidl, and T. Rodemann, “A general cooperative optimization
approach for distributing service points in mobility applications,” Algorithms, vol. 14,
no. 8, 2021

T. Jatschka, T. Rodemann, and G. R. Raidl, “A large neighborhood search for a
cooperative optimization approach to distribute service points in mobility applica-

tions,” in Metaheuristics and Nature Inspired Computing (B. Dorronsoro, F. Yalaoui,
E.-G. Talbi, and G. Danoy, eds.), vol. 1541 of CCIS, pp. 3-17, Springer, 2022.

In Chapter |5 we discuss the scheduling of EV5s at charging stations. Again, an overview
of related literature is given and afterwards the problem is described in more detail.
Additionally, it is shown how to derive the maximum charging energy from the maximum
charging power in an exact as well as an approximate way. Then, it is shown how
to solve the scheduling problem for concave maximum energy function with a linear
program. Afterwards, a more general approach is described for non-concave, piecewise
linear energy function. Then, it is explained how the benchmark instances are generated
and experimental results are presented. The chapter is based on the publications

e B. Schaden, T. Jatschka, S. Limmer, and G. R. Raidl, “Smart charging of electric

vehicles considering SOC-dependent maximum charging powers,” Energies, vol. 14,
no. 22, 2021

e B. Schaden, “Scheduling the charging of electric vehicles with soc-dependent maxi-

mum charging power,” Master’s thesis, TU Wien, 2021. Supervised by G. R. Raidl
and T. Jatschka.

Finally, Chapter |6 concludes this thesis and discusses future work.

CHAPTER

Methodologies

In this chapter we give a detailed description of the concepts on which the approaches
presented in this thesis are based on. First, we introduce basic mathematical definitions.
The second part is dedicated to mathematical programming approaches, specifically,
linear programming and mixed integer linear programming. After giving formal defi-
nitions, we briefly describe the most important approaches for solving (mixed integer)
linear programming models. Next, relevant (meta)heuristics are discussed, specifically,
greedy construction heuristics, local search, population-based iterated greedy, variable
neighborhood search, as well as large neighborhood search. Another important area
for this thesis is machine learning. We give a brief introduction to machine learning in
general and then present relevant machine learning approaches, such as linear regression,
neural networks, and matrix factorization in more detail.

2.1 Basic Definitions

Vectors and matrices we follow the notation of [32]. We refer to an element of R as a
vector of size n. To better distinguish vectors form scalar values, vectors are highlighted

in bold font. Let
1

x=|: (2.1)

be a vector of size n. Then x; refers to the element of i*® element of x.

Given dimensions n,m € N, a matrix W € R™*™ is an m - n tuple of elements, i.e.,
w11 w12 ... Wi
w1 w2 oo Won
W=| . .) (2.2)
Wm1 Wm2 ... Wmn

2.

METHODOLOGIES

where w;; refers to the element of row ¢ and column j. Just as vectors, matrices are
highlighted in bold font as well.

The transpose of a vector x and a matrix W is denoted by x’ and W’, respectively.

2.2 Mathematical Programming

The goal of mathematical programming is to find a minimum or maximum value of a
real valued function subject to a set of constraints. For this thesis we only focus on
mathematical programs that can be expressed with a linear optimization function as well
as linear constraints. Moreover, as maximization problems can easily be transformed into
minimization problems and vice versa in the following, only minimization problems are
discussed. This overview is based on [33, [34], B5], and [36].

2.2.1 Linear Programming

In [33] p. 3] a Linear Program (LP)|is defined as follows:

min ¢'x (2.3)
s.t.ax > b; Vi € M (2.4)
a;'x < b; Vi € My (2.5)
ay'x = b; Vi € M3 (2.6)
2 >0 Vi e Ny (2.7)
z; <0 Vi € Ny (2.8)

or in a more compact form

min ¢'x (2.9)

st. Ax > b (2.10)

x € R" (2.11)

The goal of an |LP is to find an assignment of the decision variables x = (x1,...,%y)

such that the objective function of the problem (2.3), i.e., a dot product of the decision
variables x and a cost vector ¢, is minimized and all Constraints (2.4) - (2.8) are satisfied.
In linear programming a constraint can generally be seen as a comparison between a
dot product of the decision variables x with a vector a; to a scalar b;. A solution to an
LP|is referred to as feasible if all of the [LP’s constraints are satisfied w.r.t. the variable
assignment of the solution and as infeasible otherwise. Additionally, if a solution is not
only feasible but also minimizes the objective function, the solution is also called optimal.

The constraints of a linear program can be expressed as either equalities or inequalities.
The domain of a decision variable, i.e., the set of values that can be assigned to the
variable, can either be restricted or free.

2.2. Mathematical Programming

As previously mentioned, a minimization problem can be transformed into a maximization
problem and vice versa:
min ¢’x = max —c'x

From a geometrical point of view, the feasible region, i.e., the set of all feasible solutions,
of an |[LP| can also be described by a polyhedron:

Definition 1 ([33, p. 42]). A polyhedron is a set that can be described in the form
{x € R": Ax > b}, where A is an m X n matriz and b is a vector in R™.

Generally, LPs are in P and can therefore be solved in polynomial time. Polynomial
time algorithms include the ellipsoid method [37] and interior point methods [3§]. In
practice, the preferred approaches for solving [LPs are usually the simplex method [39]
and variations of it which have exponential worst case complexity.

The basic idea of the simplex method is to travel between the extreme points of the
polyhedron of an |LP| along the polyhedron’s edges. More specifically, consider first the
following definition of an active vector:

Definition 2 ([33, p. 48]). If a vector x* satisfies a;’x < b; for some i in My, Mo, or
Ms the corresponding constraint is referred to as active or binding at x*.

Definition 3 ([33, p. 50]). Consider a polyhedron P defined by equality and inequality
constraints, and let X* be an element of R™.

(a) The vector x* is a basic solution if:

(i) All equality constraints are active;

(ii) Out of the constraints that are active at x*, there are n of them that are
linearly independent.

(b) If x* is a basic solution that satisfies all of the constraints, we say that it is a basic
feasible solution.

As there is usually only a finite number of linear inequality constraints, the number of
basic feasible solutions is finite as well. Moreover, note the following relation between
vertices, extreme points and basic feasible solutions:

Theorem 1 ([33, p. 50]). Let P be a nonempty polyhedron x* € P. Then the following
are equivalent:

(a) X* is a vertex;
(b) x* is an extreme point;

(c) x* is a basic feasible solution.

2.

METHODOLOGIES

10

If a polyhedron is nonempty and bounded, it has at least one extreme point. Additionally,
if there exists at least one optimal solution to a linear program, then there exists an
optimal solution that is an extreme point of the associated polyhedron. Therefore, we
can solve LP5s by exploring only the extreme points of the associated polyhedron. If an
extreme point is adjacent to more than one extreme point, the algorithm chooses the
most cost reducing direction (w.r.t. minimization problems).

2.2.2 Mixed Integer Linear Programming

In [33] p. 452] a |Mixed Integer Linear Program (MILP) is defined as follows:

min ¢'x + d'y (2.12)
st. Ax+By <b (2.13)
x,y >0 (2.14)
x € Z" (2.15)

In contrast to an |LP, the domains of some of the variables are sets of integers. Such
variables are referred to as integer variables. A special case of integer variables are so
called 0-1 or binary variables which must always be either zero or one. Note that solving
MILPs is NP-hard, even when limited to binary variables only [40].

Most state of the art approaches for solving [MILPs are based on Branch-and-Bound
(BB) and cutting plane methods. Branch-and-bound divides the set of feasible solutions
into subproblems and computes upper and lower bounds to decide whether a subproblem
should be refined or discarded. Note that for minimization problems upper and lower
bounds are usually referred to as primal and dual bounds. For maximization problems
upper and lower bounds are usually referred to as dual and primal bounds. A primal
bound is usually derived from a feasible but not necessarily optimal solution. Dual
bounds are often derived from the linear programming relazation of a MILP:

Definition 4 ([33| p. 462]). Given a MILP
min ¢'x +d'y
s.t. Ax+By <b
x,y=>0
x €Z"
its linear programming relaxation is defined as
min ¢'x +d'y
s.t. Ax+By <b
X,y 20,

where the requirements that x is a vector of integers was relaxed.

2.2. Mathematical Programming

While every feasible MILP| solution is also a feasible solution to its LP-relaxation, the
other way is usually not true. Clearly, an optimal solution to the |LP-relaxation is a dual
bound to the optimal solution of its original MILPL

The LP-based Branch-and-Bound (LP-BB) procedure, described in Algorithm 2.1} uses
the |LPFrelaxation for deriving dual bounds for its subproblems and is one of the most
common ways for solving MILPs. At the beginning, LP-BB initializes a primal bound Z

Algorithm 2.1: LP-based Branch-and-Bound, [35, p. 113]
Input: Problem: min{c'x | x € S}

1: X* < primal heuristic;

2: Z < obj(x*);

3: L+ {S},

4: while L # () do

5: S’ < select problem from L;

6: xP « solve LP relaxation w.r.t. S';
7 if xMP is infeasible then prune by infeasibility;
8: z + obj(x*P);

9: if z > z then prune by bound;

10: else if x*F € S then

11: x* — xMP;

12: Z 4 2

13: prune by optimality;

14: end if

15: else

16: x; < choose fractional value from xLP
17: Sl {xes|z; < L:L‘?PJ};

18: Sy {xe S |x; > [2F71}

19: L+ LU{S}, S5}

20: end if
21: end while
22: return x*;

for the problem to be solved using either some heuristic approach or just some trivial
bound such as +oo. Afterwards, for a list of subproblems L the [LP| relaxations are
sequentially solved and based on the obtained solutions it is decided whether the current
subproblem should be further divided into new subproblems or whether it should be
pruned. For LP-BB a subproblem can be described as a set of solutions S’ over which an
optimized solution should be derived. If no solution x“¥' to the LP relaxation w.r.t. S’
can be obtained, the current subproblem is discarded. If the objective value z of x¥ is
larger or equal to Z, the subproblem is discarded as well since it is not possible to achieve
a solution better than the current incumbent solution x* w.r.t. S’. However, in case x"
is also a feasible solution to the original (non relaxed) formulation with z < Z, a new

11

2.

METHODOLOGIES

12

incumbent solution as well as primal bound is found and updated correspondingly. Just
as in the previous cases, the subproblem is pruned. Finally, in the case that z < Z and
xP is not a feasible solution to the original formulation new subproblems are added to
L. A subproblem S’ is divided into two new subproblems by first selecting one of the
integer variables ; whose value in the LP|solution w.r.t. S’ is fractional and then setting
fixing the value of this variable to infpj and [x;fp], respectively. When L is empty it is
guaranteed that x* is an optimal solution, assuming that the problem has an optimal

solution.

Note that the performance of the LP-based branch and bound algorithm can be strongly
influenced by choosing good strategies for choosing the next subproblem on the list as well
as choosing on which variable to branch. For both of these problems multiple strategies
have been investigated. Commonly used strategy for choosing the next subproblem as
described in [35] are the depth-fist search strategy and the best-node first strategy. The
goal of the depth-first strategy is to find a good feasible solution by descending the
enumeration tree in order to have a good lower bound for pruning. On the other hand,
the best-node first strategy aims to minimize the total number of nodes evaluated in the
tree by always choosing the subproblem with the best upper bound. A popular strategy
for deciding on which variable to branch next is to always choose the most fractional
variable, i.e., for binary variables the one whose value is closest to % is chosen.

Another commonly used approach for solving MILPs are cutting plane approaches.
Cutting plane approaches are based on the idea that often a small subset of the problem’s
constraints is sufficient for finding an optimal (and feasible) solution. Hence, these
approaches initially solve a relaxed version of the MILP| by discarding some of its
constraints. Should the optimal solution s to this relaxation be feasible w.r.t. to the
original formulation then s is also an optimal solution to the original MILPL Otherwise,
there is at least one of the previously discarded constraint that is not satisfied. In this
case, one or more of these violated constraints are added again to the current relaxation
and the relaxation is solved anew. Finding constraints that are violated is also referred
to as separation problem. This procedure is repeated until an optimal solution to the
original MILP)| is obtained.

This method can also be embedded into a BB| procedure yielding the branch and cut
procedure. Branch and cut generates cutting planes for each of its subproblems, in order
to generate stronger dual bounds. For more details regarding cutting plane approaches
as well as branch and cut procedures we refer to [35].

2.3 Heuristic Methods

A major disadvantage of exact approaches, such as mathematical programming, is that
in general generating optimal solutions for large instances of hard problems is a time
consuming process. While finding a high quality solution already requires a lot of effort,
exact approaches also have to provide some kind of guarantee that the found solution
is indeed optimal, i.e., via exhaustive enumeration or by comparing dual and primal

2.3. Heuristic Methods

bounds. Therefore, for most problems exacty approaches are only applicable to small
size instances which are rarely relevant in practical scenarios. However, often good,
non-optimal solutions might already be sufficient, especially if they can be generated
quickly. Procedures for generating promising solutions without quality guarantee are
referred to as heuristics. The advantage of heuristics often is that in comparison to
exact approaches, they not only are able to generate solutions quicker but they also
scale better to large size instances. In this section we will discuss a selection of heuristic
approaches. First, we briefly discuss construction heuristics which often serve as basis
for other heuristics that aim to improve incumbent solutions. Then iterated greedy

algorithms are presented and finally local search based (meta)heuristics are introduced.

The review of heuristic methods is based on [41], 42, [43], 44}, 36].

2.3.1 Construction Heuristics

The idea of construction heuristics is to rather quickly generate solutions from scratch.

A classical approach is to build solutions step by step, i.e., to extend a partial solution
iteration wise until a feasible complete solution is obtained. There are multiple strategies
for deciding on how to extend a partial solution. A frequently used strategy is to extend
partial solutions in a greedy way by always adding the component to a partial solution that
results in the best objective value w.r.t. the currently known information. This strategy
is referred to as greedy construction heuristic. Algorithms that require multiple initial
solutions often make use of randomized greedy heuristics in which partial solutions are
extend by making stochastic decisions. Algorithm 2.2/shows a classical randomized greedy

approach that is commonly used in greedy randomized adaptive search procedures [41].

A solution is element-wise created. In each iteration the element that is added to the

Algorithm 2.2: Randomized Greedy Heuristic, [41] p. 285]

s+ 0;

while s is not complete do
RCL « build restricted candidate list;
e < select random element from RCL;
s« sU{e};

end while

return s;

I A S A > vy

solution is chosen from a so called restricted candidate list (RCL). The RCL is typically
constructed by selecting the elements with the cheapest induced costs when added to the
current partial solution. From the RCL a random element is then chosen and added to
the solution. The |RCL is generated in anew in each iteration w.r.t. the current partial
solution. This procedure is repeated until a complete solution is obtained.

13

2.

METHODOLOGIES

14

2.3.2 Iterated Greedy

Iterated greedy is an iterative procedure consisting of three steps in each iteration.
Algorithm 2.3 shows a basic pseudocode of iterated greedy. First, a current incumbent
solution is partially destroyed, typically by freeing a subset of the decision variables and
fixing the other to their current values. Afterwards, the destroyed solution is repaired
by applying a greedy construction heuristic. Finally, it is decided whether the previous
solution or the repaired one should be kept. A common strategy is to keep the solution
with the better objective. However, to prevent the algorithm from converging too quickly
to a non optimal value, accepting the worse solution with some probability might be a
viable strategy. A specific implementation of this strategy is the Metropolis criterion [45]
in which a worse solution can be accepted to some probability in dependence of its quality
and a temperature value that decreases in each iteration of the algorithm. The lower the
temperature value, the smaller is the likelihood of accepting a worse solution. The destroy
and repair procedures are repeated until some termination criterion, e.g., a time limit or
a certain number of iterations in which no improved solution was found, is reached.

Algorithm 2.3: Iterated Greedy, [41, p. 552]

s < GeneratelnitialSolution;
s+ s;
while termination criteria not met do
s’ + destroy(s);
s’ + repair(s');
s « accept(s, s);
if s is better than s* then s* < s;
end while
return s*;

© P 3> T A KN

An alternative way for controlling the diversification/intensification behavior of iterated
greedy is to use a Population-Based Iterated Greedy (PBIG) [46]. Instead of a single
solution, a population, i.e., a set of solutions, is considered. The size of the population is
decided by a parameter and is fixed throughout the iterations of the algorithm. In each
iteration new solutions are derived by applying the destroy and repair procedure to each
individual of the population and the accepted solutions form the new population for the
next iteration.

2.3.3 Local Search

In contrast to a construction heuristic, local search does not generate solutions from
scratch. Instead, the goal of local search procedures is to improve the quality of an
already existing solution.

Local search forms the basis of a multitude of metaheuristics, such as variable neigh-
borhood search and large neighborhood search. The local search procedure consists

2.3. Heuristic Methods

of three components. The first component is the neighborhood function which assigns
to a solution s a set of neighbors N(s). Instead of explicitly defining the function, a
neighborhood is usually defined by some operation which, applied to s, generates all
neighbors of s. The goal of local search is to find a local optimum, i.e., a solution s
whose quality is not worse than any other solution in N(s). Hence, a local optimum is a
solution which is optimal w.r.t. some neighborhood. A solution s can be improved by
replacing it with a solution s’ in N(s) s.t. the quality of s’ is higher than the quality of s.
By repeating this procedure as long as possible one eventually reaches a local optimum.

The second local search component is the step function that decides which solution in
N (s) replaces the original solution s. One possibility is the so called first improvement
method, which replaces s with the first found solution that has higher quality. Another
way to replace s is the best improvement method, which replaces s with the solution
that has the highest quality in N(s). Moreover, one can also just pick a single random
neighbor and replace the current solution if this leads to an improvement. Note that the
choice of the most suitable step function is problem specific.

The last local search component is the termination criterion which decides when to
terminate the local search. Ideally, the local search continues until a local optimum has
been reached. However, sometimes this may be too time consuming and then a different
termination criterion like the number of iterations or the time may be used. A local
optimum of a neighborhood cannot always be found in reasonable time. Therefore, we
prematurely terminate the local search if a specific criterion is met.

Algorithm [2.4] shows a basic pseudocode for the local search procedure.

Algorithm 2.4: Local Search
Input: initial solution s
1: while termination criteria not met do

2 s’ « step function(N(s));
3: if s’ is better than s then
4: 54 s8';

5: end if

6: end while
7: return s;

Variable Neighborhood Descent (VND)| is an extension of local search in which the
local optimum over a set of neighborhoods is determined. Algorithm 2.5/ shows the
basic procedure of [VND| Starting with some initial solution s, a new solution shall
be generated w.r.t. a neighborhood Nj(s). If the respective step function does not
yield a better solution, the procedure is repeated and the next neighborhood Ny1(s) is
considered. VND|terminates when no neighborhood is able to yield an improved solution.
However, once an improved solution is found, in the next iteration the first neighborhood

15

2.

METHODOLOGIES

16

Algorithm 2.5: Variable Neighborhood Descent, [43, p. 64]
Input: initial solution s, , neighborhood structures {Ny,..., Nk, }
k <+ 1;
while k& < kjax do
s’ + step function(Ng(s));
if s’ is better than s then
54 §';
k <+ 1;
end if
else k + k+ 1;
end while
return s;

© ®» 3 ok Y

[y
4

is considered again. Therefore, when VND| terminates, the obtained solution is a local
optimum w.r.t. all considered neighborhoods.

Basic Variable Neighborhood Search (VNS)| [47] extends VND) by a nondeterministic
component. Algorithm [2.6| shows the basic [VNS| pseudocode. Basic VNS is almost
identical to VND. However, at the beginning of each iteration a random solution s’ is
randomly chosen from the current neighborhood Nj(s). This process is also referred to
as shaking.

Algorithm 2.6: Basic Variable Neighborhood Search, [43] p. 67]

Input: initial solution s, neighborhood structures {Ny,..., Ng,_. }
1: while termination criteria not met do
2: k< 1;
3: while k < kpax do
4: s + random element of Ni(s);
5: s’ +— LocalSearch(Ng(s'));
6: if s’ is better than s then
7 5+ §';
8: k 1;
9: end if
10: else k <+ k+1;
11: end while
12: end while
13: return s;

Finally, General Variable Neighborhood Search (GVNS) further extends the basic VNS
by not only introducing an additional dedicated set of shaking neighborhoods but by
also applying a complete VND)| instead of a single step function in each iteration. In each

2.3. Heuristic Methods

iteration of GVINS|a new solution is obtained by choosing a random element from the
current shaking neighborhood Nj. Afterwards this solution is optimized with |[VND| w.r.t.
to a different set of neighborhoods {Ny,..., N/ 1.

Algorithm 2.7: General Variable Neighborhood Search, [43] p. 68|
Input: initial solution s, neighborhood structures
{N1,...,Np...), {N{,...,N/ _}

) lmax

1: while termination criteria not met do
2: k <+ 1;

3: while k£ < k.« do
4: s' « random element of N (s);
5: s’ + VND(s',{N],... ,Nl’mx}) :
6: if s’ is better than s then
7: s+ 8
8: k <+ 1;
9: end if

10: else k <+ k+1;

11: end while

12: end while

13: return s;

2.3.4 Large Neighborhood Search

Large Neighborhood Search (LNS) [44] is a prominent metaheuristic for addressing
difficult combinatorial optimization problems, which builds upon effective lower-level
heuristics. A basic LNS|in essence follows a classical local search framework, but usually
much larger neighborhoods are considered in each iteration. The key idea is to search
these neighborhoods not in a naive enumerative way but to apply some “more clever”
problem-specific procedure to solve the subproblem induced by each neighborhood in order
to obtain the best or a promising heuristic solution from the neighborhood. Frequently,
LNS| follows a destroy and recreate scheme: A current incumbent solution is partially
destroyed, typically by freeing a subset of the decision variables and fixing the others
to their current values, and then repaired again by finding best or at least promising
values for the freed variables. Note that the basic [LNS procedure is similar to the
procedure of iterated greedy as described in Algorithm 2.3l However, in contrast to
iterated greedy, LNS| typically does not make use of construction heuristics for repairing
destroyed solutions. Instead more sophisticated methods are frequently used for efficiently
identifying a promising solution within a specified neighborhood for example dynamic
programming or [MILP-based approaches.

17

2.

METHODOLOGIES

18

2.4 Machine Learning Methods

In this section we give a short overview of supervised machine learning and afterwards
explain the machine learning models relevant to this thesis in more detail. The review of
machine learning methods is based on [48] 32} 49, 50} 511, (2].

Machine learning has become increasingly popular in the recent years. While machine
learning and its concepts have already been investigated in the 1950s [53], it is thanks
to the recent increase in computing power that these concepts can today be applied in
reasonable time also on huge sets of data and for more advanced applications. In [48]
machine learning is defined as a computer program being able to learn from experience
by performing tasks evaluated by some performance measure. More generally, the goal of
machine learning is to train an algorithm with a set of known sample data in order to
either make approximations about unknown data or to detect new patterns within the
input data.

Machine learning is often divided into supervised and unsupervised learning. In supervised
learning algorithms are trained from labeled data, i.e., for every input data an associated
output label is provided. The most common types of supervised learning are regression and
classification. For both the goal is to predict an output value for some (unknown) input.
While for regression the output can be a real-valued number or vector, classification is
used when the output is restricted to a set of integers representing categories. Figure [2.1
shows an example for a regression as well as a classification problem. The goal of

e Data Points e Data Points A
Linear regression e Data Points B
T T T 10 ® T T "o ©®
[| [}
8 sl 0. . o |
] °
L °
6 g 6| e o® ° ° |
> . ® ES °
® L ° 4 Fe o [] [] o |
4 | [) [] B [] °
21 d e® o %o
° o °® °
2 | | | 0 | ryl Y |
2 4 6 8 0 2 6 8 10
T x

(a) Regression: Fitting a curve via linear re-(b) Classification: Fitting a function to separate
gression to predict unknown data points. two different sets of data.

Figure 2.1: Examples of supervised machine learning problems.

unsupervised learning on the other hand, is to identify patterns or similarities within data.
It is often applied for clustering data into groups or for estimating the distribution of
the data from which the input was sampled from. In this thesis only supervised learning
algorithms are used. Note that problems involving learning from a small set of labeled

2.4. Machine Learning Methods

data and a large set of unlabeled data are also categorized as semi-supervised learning.
For further reading on unsupervised or semi-supervised learning, we refer to [49] 54].

In supervised learning a machine learning model can be defined as a predictor
fo:RP - R (2.16)

mapping an D-dimensional input vector to some real-valued output. Note that the
output may also be multi-dimensional. However, for simplicity we restrict ourselves
to one dimensional outputs. The predictor has a set of parameters ®. The idea of
supervised learning is to find suitable parameter values ®* so that fg+ fits the input
data well, i.e.,

for(xi) =y, Vie{l,...,n} (2.17)
where {(x1,y1), ..., (Xn,yn)} is the input data, also referred to as ground truth.

Measuring how well ®* fits the data is done by a loss function E(y,§) comparing the
ground truth labels y = {yi}ic(1,....n} to the predicted labels ¥ = {;}ic1,..n) With

There are multiple ways in which F can be realized. A common loss function is the mean
squared error (MSE):

n

MSE(y, 9) = > (i — 5)* (219)
=1

Naturally, the better ®* fits the data, the smaller the loss reported by E. Therefore
finding good parameter values is a minimization problem

min E((yh sy yn)v (f@’(xl)7 ER) f@/ (Xn))) (220)
@'cT
where 7 is the domain of the parameters of f. Solving this problem is usually not trivial.
Hence in many cases gradient descent based approximation approaches are employed in
order to quickly compute good parameters for f.

Note however that the primary objective of supervised machine learning is not to find a
model that fits the already known data but a model that also fits unknown data, i.e.,
values for the parameters so that the expected loss over the whole population from which
the input is sampled from is minimized. While using known data to make predictions
about unknown data is a reasonable approach, there is also the risk of overfitting, i.e.,
the predictor fitting too closely to the input data and not generalizing well to unknown
data. To address this problem, often a parameter bias, referred to as reqularization term,
is additionally considered, i.e.,

win B((yn,). (for(x1), - for(x0))) + Ap(@). (221)

Here A determines the influence of the regularization term p. Introducing a regularization
term to the minimization problem is an effective way for countering ill-posed parameter

19

2.

METHODOLOGIES

20

configurations. However, the success of regularization depends on setting a proper value
for A that can often only be determined experimentally. Let ® = {6y,...,0,,}, then the
two most prominent regularization methods are the L1 regularization

min B((r,- o), (for(x1), -, for(xn))) + AS 6 (2.22)
=1

as well as the L2 regularization

min B0,). oG for (%) + A 02 (2.23)
=1

In the remainder of this section, we focus only on the machine learning models used in
this thesis.

2.4.1 Linear Regression

As previously mentioned, regression deals with predicting the outcome of some observation
X = (Zi)ie{1,..,p} using some predictor fg with learned parameter values ®. One of the
simplest regression models is the linear model which combines input variables in a linear
fashion, i.e.,

f@(X) =60g+01x1+...+0pxp. (2.24)

A linear regression model for D-dimensional training data, has D+ 1 trainable parameters,
i.e., ® = {O;}icqo,..,p}, Where g is also referred to as bias. By adding a dummy input
xo = 1, the model can also be written in the more compact vector form as

fo(x) =x'®. (2.25)

While one can also use gradient descent based approaches for fitting the linear model to
a set of training data, a more effective approach in conjunction with the MSE| as loss
function is to fit the model using the method of least squares. Using this method @ is
chosen in such way that the residual sum of squares is minimized, i.e.,

min Z(yl - x/©)? (2.26)
i=1

Lety = {yi}ie{17...,n} and X = {fBi,j}ie{L,,_,n},je{o,._.,D} where z; j refers to the 5t variable
of x;. Then the solution of this quadratic equation is characterized by

(y —XO)'(y - XO) (2.27)
By differentiating w.r.t. ® we get

X'(y — X©) = 0. (2.28)

2.4. Machine Learning Methods

Then, if X’X is invertible, a unique solution exists, which is given by

6 = (X'X)"'X'y. (2.29)

Similar to other machine learning models, linear regression can also be regularized.
Adding the L1 regularization term, the new model is referred to as lasso regression and
as ridge regression when adding the L2 regularization term.

2.4.2 Feedforward Neural Networks

The perceptron is the simplest neural network and can be interpreted as a generalization
of a linear regression model. The basic model of a perceptron is given by

fo(x)=®(0 +61z1 +... +0pzp) (2.30)

where ® is referred to as activation function. The activation function used for a perceptron
is typically the sign function, mapping real values to {-1,+1}. Similar to before, we
introduce a dummy variable xg = 1 to represent the perceptron in a more compact form,
i.e.,

fo(x) = B(x'O). (2.31)

Notice that if ® is the identity function, the perceptron corresponds to a linear regression
model.

The generalization of a perceptron is the multilayer perceptron consisting of three parts:
an input layer, an output layer, as well as a specified number of hidden layers in between
the input and output layers. The basic building block is referred to as a neuron which is
similar to a perceptron, however, the activation function is a more general function. Each
neuron feeds its output to the neurons of the next layer. As data is only fed from output
to input, we refer to such neural networks as feedforward networks. In the standard
architecture of a feedforward network all neurons of one layer are connected to all neurons
of the following layer. Figure [2.2| shows an illustration of a feedforward network.

Assume that a neural network has k& hidden layers, where layer ¢ has p; neurons. Then,
the transformation of a D-dimensional input x can be described recursively as follows

h; = ®(W/x) (2.32)
hi 1 = ®(W/, hy) Vie{l,...,k—1} (2.33)
0= ®(Wj hy) (2.34)

The learnable parameters of the input layer are given by a matrix W1 with size D X p;.
For a hidden layer 7, the matrix W is of size p; X pi41. The k'™ + 1 layer is the output
layer and its parameter matrix Wy is of size pg x o, where o is the number of outputs.
Note that © is the matrix formed by all W, fori € 1,...,k+ 1.

The proper choice of the activation function of a network’s neurons is a crucial part of
a neural network’s design. Figure [2.3| gives on overview of commonly used activation

21

2. METHODOLOGIES

Input Hidden Output
layer layer layer

T4

Figure 2.2: Example of a feedforward neural network.

1 1 \
D(z:)
0.5 a 0
O 71 | | |
-6 —4 -2 0 2 4 6 -6 -4 -2 0 2 4
(a) Sigmoid function. (b) Tanh function.
1 I I]. I I I
®(x;) = max(0, z;) O (z;) = max(aw;, x;)
0.5 a 0.5 |-
0 a 0
| | | 1 | |
-1 —0.5 0 0.5 1 -1 —0.5 0 0.5
(¢) ReLU function. (d) Leaky ReLU function.

Figure 2.3: Commonly used activation functions.

22

2.4. Machine Learning Methods

functions in the hidden layer. For the hidden layer a common activation function is the
Rectified Linear Unit (ReLU) activation function. While the ReLLU activation function

works well in practice, it sometimes can get “stuck”, i.e., always returning zero as output.

Therefore, in such a case the leaky ReLLU activation function may provide a feasible
alternative.

For regression problems the output layer usually uses the identity activation function,
while for classification problems the softmax function

eri

>j=1 €%

is a popular choice as activation function. The softmax function is applied vector-wise,
such that the sum of all outputs is one. For a more comprehensive list of activation
functions we refer to [51].

B(x) = (2.35)

Parameters ® can again be learned by minimizing some loss function E. Multi-layer
perceptrons are usually trained via backpropagation consisting of two phases. In the
forward phase training data is fed into the neural network w.r.t. the current parameter

values ©. Afterwards, the final output as well as the derivative of the loss function w.r.t.
the output is calculated. In the backward phase, the gradient of the loss function w.r.t.

O is learned and based on this gradient ® is updated, i.e.,
® <+ O —-aVE(y,y) (2.36)

where « is referred to as learning rate.

A popular approach for training multi-layer perceptrons is the [Stochastic Gradient
Descent (SGD) approach. In contrast to the standard gradient descent approach, © is
updated in each iteration w.r.t. only a single data point (x;,y;), i.e.,

The period in which all training data are fed to the perceptron is called epoch. In each
epoch the training data are fed to the perceptron in random order. The perceptron is in
general trained over multiple epochs until the loss converges. Note however, that the loss
might not converge if the data are not linearly separable.

Note that there also exist other training algorithms besides SGD| such as Adam [55],
an adaptive learning rate method which derives an individual learning rate for each
parameter.

2.4.3 Matrix Factorization

Matrix factorization is a collaborative filtering technique which is frequently used in
recommender systems [52]. The idea of collaborative filtering is to make recommendations
for users based on the preferences of similar users, which means in our context to estimate

23

2.

METHODOLOGIES

24

some user demand for a use case by the feedback already provided by other users for
similar use cases. Matrix factorization is based on singular value decomposition which
decomposes a matrix into two smaller matrices. Unknown values can then be estimated
my multiplying the corresponding rows and columns of the decomposed matrices [52].

Given an incomplete matrix containing ratings R = (w; j)icv, jep for a set of users U over
a set of products P, the idea behind matrix factorization is to decompose this matrix into
two smaller matrices, a user/feature matrix & € RIV*® and a product/feature matrix
v € RIPIX® guch that the product of these two matrices approximates the original matrix.
The parameter ® refers to the number of features that should be extracted and is chosen
by the user. An unknown rating, i.e., a rating not contained in the original matrix R,
can then be estimated as the dot product of the corresponding feature vectors in matrix
£ and matrix v, respectively.

Traditionally, the rating matrix R is factorized by solving the optimization problem

min Y. B(wi, &) + A€, v) (2.38)
v i,j|’wi,]'€R
where F is again a loss function for measuring the error between the actual and the
predicted ratings and p is a regularization term.

The two most popular techniques for decomposing a matrix with missing values are SGD
[56] and Alternating Least Squares (ALS) [57]. ALS is usually only preferred over SGD
for parallelization [18].

CHAPTER

Distributing Battery Swapping
Stations for Electric Scooters

This chapter deals with identifying optimal locations for service points under the assump-
tion that user demands are completely known in advance. Even though the demands
of the users are already known, one has to also take into account the behavior of the
users, once the system is operational. Demand information can only be obtained to
a certain degree. However, it is difficult to estimate which service point a user will
choose once the user’s most preferred service points are no longer available, e.g., if their
capacity is exhausted at the moment. An approach to overcome this problem is to have
users assigned by some system to appropriate service points. This requires the users
to specify their needs of service points in advance, e.g., via some mobile app before a
trip. However, for such an approach one needs to consider that customers cannot be
arbitrarily assigned to service points due to a potential unwillingness to accept large
detours. We will investigate this aspect specifically for distributing battery swapping
stations for electric scooters in an urban area. Due to the compactness of electric scooter
batteries, depleted ones can easily be exchanged by charged ones at battery swapping
stations. Exchanging such batteries can be done within a few minutes and is therefore
much faster than waiting for the recharge of batteries.

We propose a |[Mixed Integer Linear Program (MILP) formulation for this problem that
models the customer demand over time in a discretized fashion and also considers battery
charging times. Moreover, we propose a Large Neighborhood Search (LNS) for addressing
larger problem instances for which the MILP| model cannot practically be solved anymore.
The approaches are tested on artificial instances as well as instances derived from real-
world taxi and bus stop shelter data of Manhattan. Part if this chapter was published
as:

T. Jatschka, F. F. Oberweger, T. Rodemann, and G. R. Raidl, “Distributing battery

25

3.

DISTRIBUTING BATTERY SWAPPING STATIONS FOR ELECTRIC SCOOTERS

26

swapping stations for electric scooters in an urban area,” in Optimization and Appli-
cations, Proceedings of OPTIMA 2020 — XI International Conference Optimization
and Applications (N. Olenev, Y. Evtushenko, M. Khachay, and V. Malkova, eds.),
vol. 12422 of LNCS, pp. 150-165, Springer, 2020.

Moreover note that this problem of distributing battery swapping stations was studied
as part of a collaboration with Honda R&D Co., Ltd., Japan.

3.1 Introduction

Recharging the batteries of electric vehicles is usually a time-consuming process that
hinders the large-scale adoption of such vehicles, especially when their range without
reloading is too limited. An alternative possibility is to build electric vehicles in which the
batteries can be replaced with charged ones. Batteries for electric scooters are compact
enough to be replaced directly by any customer in a few simple steps. Replacement
batteries are provided in exchange for the used ones at swapping stations. Returned
batteries are recharged at these stations, and once fully charged, they are again provided
for exchange.

We aim at investigating how to best distribute such battery swapping stations in a given
urban area and how many battery slots and corresponding batteries are required at each
station. Our optimization goal is to minimize the setup costs for stations in dependence
of their numbers of slots and required batteries in order to cover a specified amount of
user demand over multiple consecutive time periods. It is assumed that customers who
want to change batteries specify their trip data (origin, destination, approximate time)
online and are automatically assigned to an appropriate station for the exchange (if one
exists). This way, a better utilization of the swapping stations can be achieved. However,
such an automated assignment also needs to consider a certain customer dropout as not
every customer is willing to travel to a predestined station if the detour is long. We
assume that all scooters in our system are homogeneous and therefore require the same
batteries and have the same range. Moreover, since the scooters are operating in an
urban area, it is safe to assume that a scooter’s range is usually larger than the length
of a customer’s single trip. Hence, we do not consider multiple battery swapping stops
for a single trip. In fact, a scooter battery is typically exchanged after multiple trips
only. We model this problem as a MILP. Smaller problem instances can be solved by
directly applying a state-of-the-art MILP| solver. To address the aspect of scalability to
larger instances, where the MILP)| solver does not yield satisfactory solutions anymore, an
LNS|is proposed. The approaches are experimentally evaluated on artificial benchmark
scenarios as well as one instance derived from real-world yellow taxi trip data and bus
stop shelter station data of Manhattan.

The remainder of this chapter is structured as follows. Section 3.2 reviews relevant
related work. Section [3.3| presents the problem formalization in the form of a MILP.
The [LNS| heuristic is described in Section |3.4. Section 3.5 explains how the benchmark

3.2. Related Work

scenarios are generated. Experimental results of the proposed solution methods are given
in Section 3.6. Finally, Section 3.7/ concludes this article and gives an outlook on future
work.

3.2 Related Work

In general, our problem can be classified as a location-allocation optimization problem [58].
Specifically, our problem is closely related to the Capacitated Multiple Allocation Fixed
Charge Facility Location Problem (FLP)|[59] in which customers need to be assigned to
facilities in order to satisfy their demand while minimizing costs for building facilities
and serving customers. Moreover, the customer demand can be split arbitrarily between
multiple facilities. When allocating customers to facilities from the perspective of the
facility provider without considering the customers’ preferences, one frequently has to
expect a certain amount of customer dropout which we model with the help of a decay
function as done in, e.g., [60, [61), 62]. Facility location problems with time dependent
parameters are also referred to as multi-period FLPs [59]. One example for a multi-period
FLP| can be found in [63], where the dynamic maximal covering problem is considered.

Hodgson [64] introduced the Flow Capturing Location Model (FCLM) which is an
adaptation of the Maximal Covering Location Model [65] for covering demand along
paths in an underlying given graph. Customer demand is given as an origin-destination
pair (O/D pair) and it is assumed that a shortest path is chosen to get from the origin
to the destination. For each specified path there is a set of facilities that can capture the
respective flow/demand. Hodgson as well as Berman et al. [61] argue that in order to
cover the most demand, these facilities should be placed directly at the nodes of a path
to also cover the demand of other paths going through the same node.

Moreover, our problem exhibits similarities with the Capacitated Deviation-Flow Refueling
Location Model (CDFRLM) introduced in [66], which is an extension of the Flow Refueling
Location Model (FRLM)| introduced by Kuby and Lim [67]. The FRLM aims to locate
a fixed amount of refueling stations to maximize the total flow volume refueled. In its
original form, this approach for the FRLM is computationally expensive and can only be
applied to small instances. More efficient formulations of the FRLM) that can deal with
larger instances are described in [68, [69]. Moreover, instead of placing a fixed number of
stations to maximize the total flow covered, the goal in [69] is to cover all demands with
as little costs as possible. Several extensions of the [FRLM have been proposed in the
last years, such as the capacitated FRLM [70] in which the demand a station can satisfy
is limited. The Deviation Flow Refueling Location Model (DFRLM) [62] relaxes the
FRLM| by allowing customers to deviate from their shortest O/D pair paths in order to
go to a refueling station. Moreover, it is assumed that the number of customers willing
to take a deviation from the shortest path is exponentially decreasing with the length of
the deviation.

In [71] a system of car charging stations shall be built gradually over time. For this
purpose the model proposed in [69] is extended to a multi-period optimization model.

27

3.

DISTRIBUTING BATTERY SWAPPING STATIONS FOR ELECTRIC SCOOTERS

28

Existing stations cannot be relocated in later time periods.

Literature on planning gas filling station locations is surprisingly sparse. In [72] a MILP
model is presented concerning the selection of filling stations to provide with unleaded
fuel.

While there already exists work for setting up a system of battery swapping stations, e.g.,
[13], [14], to the best of our knowledge, there is no previous work that considers specifically
the aspect of recharging and reusing returned batteries and its implications concerning
station capacities when optimizing station locations and configurations. However, there
is work dedicated to minimizing the charging costs at a battery swapping station. For
example [73] deals with obtaining an optimal charging policy while ensuring a certain
level of quality of service at a battery swapping station. In [74] a mixed integer non-linear
programming formulation for setting up battery charging stations for electric vehicles is
presented in which also the waiting time for a free charging slot at a station is considered.

3.3 Problem Definition

In this section we formalize the problem of setting up battery swapping stations for
electric scooters in an urban area. The Multi-Period Battery Swapping Station Location
Problem (MBSSLP), as we call it, minimizes the costs for setting up battery swapping
stations to satisfy a requested expected total demand over a whole day. To be able
to consider battery charging times, we consider a day in a discretized fashion as a set
of equally long consecutive time intervals given as a set of the start times T of the
intervals; w.l.o.g., we assume 7 = {1,...,tmax}. We make the simplifying assumption
that charging any battery always takes the same time and only completely recharged
batteries are provided to customers again. Moreover, as trips in an urban environment
are usually rather short, we further assume that trips start and end in the same time
interval. Additionally, we make the assumption that a customer will always be able to
reach a battery swapping station before his or her battery is depleted.

Let G = (V,A,w) be a weighted directed graph with node set V' corresponding to
all relevant geographic locations, arc set A C V x V, corresponding to shortest paths
between locations, and arc weights w : A — R™ representing the respective travel
times. We assume battery swapping stations can be set up at a subset of locations
L ={1,...,n} C V. Moreover, each location | € L has associated a maximal number
of possible battery charging slots s; > 0, fixed setup cost ¢; for setting up a station at
this location, and building costs per slot ¢j > 0. Customer travel demands are given by
origin-destination (O/D) pairs Q C V' x V; let m = |Q|. The expected number of users
that need to change batteries on trip ¢ € Q during a time interval ¢ € T is denoted as
dg. The minimal amount of expected total customer demand that shall be satisfied over
all time intervals in 7 is denoted by dpnin. Moreover, we are given a maximum detour
length wdetou by which a feasible path including a battery swap for some ¢ € Q may be
longer than a shortest path from the origin to the destination of ¢. Finally, the number
of time intervals required for completely recharging a battery is referred to as t°.

3.3. Problem Definition

It is assumed that customers would always take a shortest possible path p, for an O/D pair
q = (u,v) € Q, except when they have to make a detour for swapping batteries. Let the
set of arcs of a shortest path py, from node u € V to node v € V' be A(pyy) C A and its
length w(puv) = Y cca(p,,) w(e). Moreover, we consider for an O/D pair ¢ = (uv) € Q a
shortest path that includes a certain location [€ L as intermediate stop and denote it by
pfl. The combination of a shortest path from u to [and a shortest path from [to v forms
such a shortest path plq, and its length is w(pé) = w(py) + w(p). Let Ly be the set of
locations [€ L for which w(pé) < w(py) + wietew for g € Q, i.e., the locations that may

max

be used for battery swaps for O/D pair q.

A solution to the MBSSLP is primarily given by a pair of vectors x = (z7)1er € {0,1}"
and y = (y;)ier with y; € {0,...,s;}, where 2; = 1 indicates that a swapping station is
to be established at location [and ; is the respective number of battery slots. Moreover,
let atql denote the part of the expected demand of O/D pair ¢ € @ which we assign to
a location | € L, during time period ¢ € T. Note that variables a!, are continuous as
the refer to the expected demand assigned to a station. Similarly to [62], we consider
the loss of users in dependence of the detour length by applying a penalty coeflicient
9(q,1) to af;l in order to obtain the actually expected satisfied demand Ethl of O/D pair
q at location . As suggested in [75] [62] we use the sigmoid function for this penalty
coefficient, i.e., g(¢,l) = 1/(1 + ae'g(w(pé)_w(m))_%), where w(p,) — w(pg) is the detour
distance for going to the swapping station, d, is a reference distance, and o and j are
parameters that determine the shape of the function.

Based on the variables x,y,a, and a the MBSSLP| can be expressed as the following
MILP.

min Z(cm + i) (3.1)

leL
x-S 2 Y Vie L (3.2)
dg = 9(¢,1) - ayy VieT, qeQ, €L,
> al < d] VteT, ¢geqQ (3.4)
IEL,

t /

> > ay <y VteT,lel (3.5)

t/=max(1,t—t¢) g€Q|IE€Lq

tmax

Z Z Z df]l > dmin (36)

t=1 qeQlel,

3.

DISTRIBUTING BATTERY SWAPPING STATIONS FOR ELECTRIC SCOOTERS

30

z; € {0,1} vieL (3.7)
y €10,..., 5} VieL (3.8)
0<ap,ay < s VteT, qeQ, leL, (3.9)

The goal of the objective function (3.1) is to find a feasible solution that minimizes the
setup costs for stations and their battery slots. Inequalities (3.2) ensure that battery
slots can only be allocated to a location [€ L if a station is opened there. For better
readability equalities (3.3) introduce variables &Zl by applying the penalty coefficients
9(q,1) to variables afﬂ. Constraints (3.4) enforce that the total demand assigned from
an O/D pair ¢ to locations does not exceed dé for all t € T. Inequalities (3.5) ensure
the required capacity y; at all locations over all time intervals. Note that by using &Zl
instead of afﬂ in (3.5), we “overbook” stations to consider the expected case, similarly as
n [76]. Inequalities (3.5) also model that swapped batteries can be reused after ¢° time
intervals. The minimal satisfied demand to be fulfilled over all time intervals is expressed
by inequality (3.6). Finally, the domains of the variables are given in (3.7)—(3.9).

3.4 Large Neighborhood Search

In this section we propose an [LNS| for solving the MBSSLP| making use of a MILP| in
the repair step. We first show how to construct an initial solution in a fast greedy way.
Afterwards, the search and destroy operators of our LNS| are described.

3.4.1 Greedy Construction Heuristic

The construction heuristic generates a solution station-wise. In each iteration of the
algorithm a new station is opened and demand is allocated to it. In order to decide at
which location to open a station next, we first calculate how much additional demand a
new station at each so far unused location could satisfy w.r.t. the already opened stations.
The location with the highest ratio of additionally satisfied demand to corresponding
building costs is then chosen for opening the next station.

To calculate the amount of demand a station [€ L can satisfy, demand is assigned from
each ¢ € Q | | € L, for all time periods ¢t € T to [until either the station’s maximum
capacity is exhausted or all demand has been assigned. The iteration order of () is hereby
decided by the decay function g such that O/D pairs with lower decay value w.r.t. [are
considered first.

The construction algorithm terminates when one of the following conditions is met: at
least dmin demand is satisfied, stations are opened at all possible locations, or no more
demand can be assigned to a station anymore.

3.4.2 Destroy and Repair Operators

Let (x,y,a) be a solution to the MBSSLP. Moreover, let L(x) C L be the set of locations
for which 2; = 1. In a first step we create an undirected graph GF = (V,E) where

3.4. Large Neighborhood Search

(u,v) € E for u,v € V if and only if {u,v} C L, for at least one O/D pair g € Q.

We then derive a set of locations Lyepair that are considered for repairing via an (r,k)-
repair operator. The operator iteratively adds k£ random node sets to Lrepair Where each
node set is generated by choosing a random vertex v € V' as well as r random neighbors
of v in G* (less if the degree of v is less than r). Afterwards, k random locations from
L(x) are added to Lyepair- Should, during the generation of Lyepair, a randomly selected
vertex already be in Liepair the repair operator chooses a new random vertex if possible.
From Lyepair we derive the set Lgestroy = Lrepair N L(X), and close all stations at these
locations.

When repairing the solution, one needs to consider how much more demand needs to
be satisfied in order to make the solution feasible again and how much demand from
which O/D pairs is still available to be assigned to a station. Recall that variables a
refer to demand of an O/D-pair assigned to a station while variables a refer to demand
that is not only assigned to a station but also satisfied, i.e., the fraction of customers
that is expected to actually arrive at their assigned station. Let D’ = (d’ z)teT,qu be the
demand not yet assigned to any opened location in the destroyed solution, i.e.,

t
d,q _ d(tz o Z af]l' (310)
ZGL(X)\Ldestroy

Moreover, let dgsay be the amount of total demand satisfied in the partially destroyed
solution, i.e.,

tmax

dat = > Y al. (3.11)

ZGL(X)\Ldestroy t=1 qu

Hence, the goal of the repair function is to assign at least d. ;. = dmin — dsat demand
from D’ to the locations L' = Ldestroy U Lrepair- For this purpose, let I(L', D', d. ;)
be the residual MBSSLP)| instance in which L, D = (dg)teT,qe@ and d,;, are replaced
with L',D’, and d;;,. We determine a promising heuristic solution to I(L',D’,d])
using a relaxation of the MILP) (3.1)—(3.9): Allowing the y; variables to be continuous,
i.e., replacing (3.8) by 0 < y; < s;, VI € L, while still keeping the x; variables integral
significantly speeds up the solving of the MILP. Obtained fractional values for y; are
finally rounded up to obtain a feasible solution to the original MBSSLP|again, assuming

one exists.

Note that the described solving of the relaxation of the MILP), followed by rounding can
also be used as a standalone heuristic for the original MBSSLP), which is applicable as
long as the instance is not too large. We refer to this approach as y-Relaxed MILP
Heuristic (RMHy). Additionally, we also considered solving the full linear relaxation
of the original MILP, i.e., the linear program in which all z; as well as y; variables
are continuous, and rounding up obtained fractional x; as well as y; values to the next
integers; we call this heuristic Linear Programming Heuristic (LPH). In Section 3.6 we
compare these approaches to each other, showing that the RMH, heuristic is a better
choice for repairing solutions than the LPH] heuristic.

31

3.

DISTRIBUTING BATTERY SWAPPING STATIONS FOR ELECTRIC SCOOTERS

32

3.5 Test Instances

As no real problem instances are available to us we created artificial test instances with
characteristics that might be expected in real scenarios. Additionally, we derived one
problem instance from real-world taxi trip and bus stop data of Manhattan.

In this section we give an overview of how our instances have been generated. For a
detailed description see Appendix Al

3.5.1 Random Instances for the MBSSLP

The instances are simplified scenarios modeled after a typical work day where people go
to work in the morning and return home in the evening. Battery swapping stations as
well as origin and destination locations of customers are located within a square area. The
length of the square is decided in dependence of n such that there is an average distance
of 800 meters between the station locations. Following the procedure of [66], [68] we first
generate a graph by sampling random points from the square and then constructing an
euclidean spanning tree from the complete graph induced by the set of sampled nodes.
Afterwards randomly chosen edges are added to the graph.

The set of potential battery swapping station locations is generated by choosing random
nodes from the generated graph. Costs for building a station at a location are random
while costs for adding a battery slot as well as the maximum number of battery slots is
the same for all stations.

Origin and destination locations are again chosen from the nodes of the previously
generated graph. Note however, that only a subset of the nodes is considered to speed up
the computation time. Using a log-normal distribution, to each of the considered nodes
popularity values are assigned, i.e., nodes with higher weights have higher incoming and
outgoing traffic. Additionally, we also assume the length of a trip made by a scooter to
be log-normal distributed as well with a mean length of five kilometers. We therefore
use the probability density function of this distribution for assigning weights to trips, in
dependence of the length of the trip. The total demand of a trip is then the product of
the popularity values of the respective origin and destination and the weight of the trip.
Depending on the specified number of O/D pairs m, only the m trips with the highest
total demand are then kept as O/D pairs for the problem instances.

Afterwards, the total demand of an O/D pair is distributed over 24 time intervals. We
assume, according to working behavior in Austria, each customer to travel twice on his
corresponding path, once in the morning to get to work and once in the evening to travel
back home, and we assume that customers need to swap batteries once per trip counted
here as demand. Therefore, we use two normal distributions, one with mean at eight and
one with mean at eighteen to determine the demand for each time interval.

The maximal deviation distance of the users, wicoW is set to 400 meters and the

parameters of the distance decay function are set in such a way that the decay value
becomes zero at approximately 400 meters. Figure 3.1 shows the decay value g(g,1) in

3.5. Test Instances

dependence of the deviation distance w(pé) — w(pg) with the chosen parameterization of
the distance decay function.

1.0

° o °
B o]

decay value

o
N}

0.0

0 100 200 300 400 500
deviation distance

Figure 3.1: Decay ¢(q,!) in dependence of the deviation distance w(plq) — w(pq)-

Eight groups of test instances for different combinations of n and m have been generated
this way and each group consists of thirty instances. In Section 3.6 we evaluate the
instances with dpyi, being set either to 30% or to 80% of the total swapping demand.

3.5.2 Manhattan Instance

Next to artificial benchmark instances we also derived an instance from real-world yellow
taxi trip data and bus stop shelter data of Manhattan, which we call here Manhattan
instance. The underlying street network of the instance corresponds to the street network
graph of Manhattan provided by the Python package OSMNX!. Origin/Destination
pairs of our instance correspond to trips between the taxi zones?| of Manhattan. The
partitioning of Manhattan into taxi zones is shown in Figure 3.3l For each taxi zone one
random origin and one random destination location were chosen from the set of nodes of
the network graph that are associated with the corresponding taxi zone.

The set of O/D-pairs and their corresponding demands have been derived from the 2016
Yellow Taxi Trip Data®. The taxi data set was first preprocessed and all trips with

invalid data as well as trips made on a weekend have been removed from the data set.
Furthermore, we have also removed all trips which do not start and end in Manhattan.

The preprocessed data set then consisted of 4498 unique pickup/drop-off taxi zone pairs
which also constitute the instance’s set of O/D pairs). The demand of the O/D pairs has
been derived from passenger counts of trips between the respective taxi zones aggregated
hourly. Figure 3.2 shows on the left how the total demand over all O/D pairs is distributed
over the time intervals. Figure 3.2 shows on the right how the lengths of the O/D pairs

'nttps://github.com/gboeing/osmnx

2https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc

3https ://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi—-Trip—-Data/
k67s—dv2t

33

https://github.com/gboeing/osmnx
https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/k67s-dv2t
https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/k67s-dv2t

3. DISTRIBUTING BATTERY SWAPPING STATIONS FOR ELECTRIC SCOOTERS

are distributed. Similarly to our benchmark instances, the trip lengths (given in meters)
are approximately log-normal distributed with a mean between In(5000) and In(6000).

30000 —— demand
20000
25000

20000 15000

15000

demand

10000

10000

5000
5000

0 5 10 15 20
hour 0

(a) Distribution of total daily demand. (b) Distribution of lengths of O/D pairs
in meters.

Figure 3.2: Distributions of demand and trip lengths of the O/D pairs from the real-world
data based instance.

For the distance decay function and wd¢" we use the same parameters as for the
artificial benchmark instances.

The set of potential battery swapping station locations L is derived from the bus stop
shelters * of Manhattan by selecting 500 locations randomly. Figure 3.3 shows the
distribution of the stations.

Figure 3.3: Taxi zones of Manhattan and potential locations for swapping stations.

‘https://data.cityofnewyork.us/Transportation/Bus—-Stop-Shelters/qafz-Tmyz

34

https://data.cityofnewyork.us/Transportation/Bus-Stop-Shelters/qafz-7myz

3.6. Computational Results

As shown in Figure 3.2/ left the demand at each hour is quite high. Therefore we choose a
capacity limit of 200 for each battery swapping station, The costs for building a station
as well for adding a battery charging slot are chosen as for the artificial instances.

3.6 Computational Results

All algorithms were implemented in Julia® 1.4.2. All test runs have been executed on an
Intel Xeon E5-2640 v4 2.40GHz machine in single-threaded mode with a time limit of
thirty minutes. Gurobi® 8.1.0 was used for solving the MILPs.

First, we investigate the performance of the standalone MILP| model given by Equa-
tions (3.1)—(3.9) as well as the standalone RMHy, and the LPH approach. Afterwards,
the results of the [LNS| are discussed. Finally, in Section 3.6.3| we present the results on
the instance derived from real-world data for the |[LNS approach as well as the MILP
models. All instances are evaluated with d,;, being set either to 30% or to 80% of
the total swapping demand. Hence, let dpin[%)] refer to dmin as percentage of the total
swapping demand.

3.6.1 MILP Approaches

All MILP, models were solved with Gurobi 8.1.0. In case no optimal solution was found
within the time limit, the solver returned the best found feasible solution if it exists.

Table 3.1/ shows a summary of the performance of the exact MILP approach, RMH, and
LPH]| for each instance group in our benchmark set. Column “gap[%]" shows the average
optimality gaps for each instance group, the median computation times are shown in
column “timels]", and column “|L(z)|" lists the average number of opened stations in the
solutions. Note that the gaps listed for RMHy, and LPH|are determined also w.r.t. the
lower bounds obtained by the original MILP.

Overall, with the exact MILP)| solving was aborted due to the time limit for almost all
instances. However, for each instance at least one feasible solution was found. Instances
with up to 1000 potential battery swapping stations and 2000 O/D-pairs can be solved
by the MILP| almost to optimality with a gap of less than 1%. For larger instances
the optimality gaps deteriorate. Compared to the results of the original MILP model,
RMH,, yields in general better average optimality gaps for the three largest instance
groups. The LPH| approach was able to solve all instances to optimality w.r.t. the
linear relaxation of the original MILP|in less than 5 minutes on average. However, the
derived feasible MBSSLP)| solutions are significantly worse than the solutions generated
by RMHy, especially for dmin[%] = 30. For instances nearly solved to optimally, we
can also observe that the number of opened stations in the solutions are as expected.
RMHy solutions require a marginally smaller number of opened stations than the MILP

Shttps://julialang.org/
Shttps://www.gurobi.com/

35

https://julialang.org/
https://www.gurobi.com/

3.

DISTRIBUTING BATTERY SWAPPING STATIONS FOR ELECTRIC SCOOTERS

36

Table 3.1: Results of the original MILP, the RMHy heuristic, and the |LPH.

(a) MILP results for dmin[%] = 30.

MILP RMH,, LPH
n m gap[%] time[s] |L(x)] gap[%] time[s] [L(z)| gap[%] time[s] [L(z)|
250 500 0.05 1800 25 2.61 91 25 18.62 2 81
1000 0.02 1800 38 1.59 125 38 10.38 4 103
500 1000 0.03 1800 46 2.54 287 46 18.12 5 149
2000 0.08 1800 72 1.60 686 71 10.06 12 190
1000 2000 0.24 1800 89 2.54 1295 88 17.95 20 279
4000 2.69 1800 192 1.77 1800 129 9.78 47 346
2000 4000 9.09 1800 382 3.67 1800 166 18.01 81 532
8000 6.78 1800 531 8.60 1800 535 10.92 238 660
(b) Results for dpmin[%] = 80.
MILP RMH,, LPH
n m gap[%] time[s] |L(z)] gap[%] time[s] [L(z)| gap[%] time[s] [L(z)|
250 500 0.03 1800 47 1.09 47 47 4.98 2 86
1000 0.02 1800 72 0.32 536 72 2.47 5 121
500 1000 0.02 1800 84 1.01 464 84 4.85 7 158
2000 0.08 1800 138 0.31 1800 137 2.37 18 226
1000 2000 0.12 1800 160 1.04 1800 159 4.78 25 294
4000 1.92 1800 305 0.35 1800 260 2.33 64 425
2000 4000 3.64 1800 488 1.40 1800 316 4.81 95 559
8000 29.54 1800 1248 0.49 1800 515 2.31 236 815

solutions. Solutions generated from the |[LPH| approach, on the other hand, require a
much higher number of opened stations than the other approaches. Hence, LPH| does
not seem to be a good choice as repair procedure for the LNS.

Figure 3.4 provides a more detailed comparison of the optimality gaps of the MILP,
RMHy and LPH solutions. The figure shows boxplots of the optimality gaps for each
instance group and approach and confirms our previous observations. Note that for
a better comparison between the approaches Figure 3.4b is cut off and only shows
optimality gaps up to 7% since solutions to the instances with n = 1000, m = 4000 as
well as n = 2000, m = 8000 generated by the MILP) feature optimality gaps up to 45%.
For the largest instances with n > 1000 and m > 4000, RMH,, starts to produce better
results than the MILP while LPH| does not seem to be able to compete with RMHy, for
any instance group. However, since RMHy requires solving a large MILP as well, this
approach also has its limits concerning scalability. Therefore, in the next section we
investigate the [LNS that uses in each iteration RMH, to (re-)optimize only a compa