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Abstract. We consider the Multi Objective Battery Swapping Station
Location Problem (MOBSSLP) for planning the setup of new stations
for exchanging depleted batteries of electric scooters with the aim of
minimizing a three-part objective function while satisfying an expected
amount of demand. Batteries returned at a station are charged and pro-
vided to customers again once they are full. We present a large neigh-
borhood search (LNS) for solving MOBSSLP instances. The LNS makes
use of a mixed integer linear program (MILP) to quickly find good solu-
tions within a specified neighborhood. Multiple neighborhood structures
given by pairs of destroy and repair operators are suggested. The pro-
posed LNS is evaluated on instances generated by adapted approaches
from the literature with up to 500 potential station locations and up
to 1000 user trips. Solutions obtained from the LNS have on average
ten to thirty percent better objective values on these instances than a
state-of-the-art MILP solver.

Keywords: Facility location problem · battery swapping stations ·mixed
integer linear programming · large neighborhood search

1 Introduction

A major hindrance for the large-scale adoption of electric vehicles (EVs) are the
long battery recharging times. Especially for electric scooters, an attractive alter-
native to recharging depleted batteries is to replace them at dedicated stations.
Once a depleted battery is returned to the station, the battery gets recharged
and can then be made accessible to other customers again when fully charged.

? This project was partially funded by Honda Research Institute Europe and Honda
R&D Co., Ltd.
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In this work, we introduce the Multi Objective Battery Swapping Station Lo-
cation Problem (MOBSSLP) and propose a large neighborhood search (LNS) [5]
for solving it. In the MOBSSLP the task is to plan the setup of new stations
for exchanging batteries of electric scooters or to extend existing stations with
the aim of minimizing three different objectives combined in a linear fashion
while satisfying an expected demand. The number of batteries a station can
contain is decided by the number of battery modules assigned to the station.
Battery swapping stations can be set up at dedicated locations which may differ
in the maximum number of modules that can be added, opening times at which
customers can exchange batteries, as well as setup and charging costs.

The MOBSSLP can be classified as a location-allocation problem [1] and is
closely related to the capacitated multiple allocation fixed-charge facility location
problem [2]. Moreover, the MOBSSLP is an adaption of the Multi-Period Battery
Swapping Station Location Problem [3] in which customers are considered in an
aggregated fashion, allowing better scalability to large numbers of customers and
potential locations for stations.

For each of the three objectives of the MOBSSLP destroy and repair opera-
tors are presented. Additionally, we show how these operators can be effectively
combined to consider all parts of the objective function together in the LNS. The
LNS is implemented as a matheuristic [4] in which the repair operators make
use of a mixed integer linear program (MILP).

We experimentally evaluate the proposed LNS on instances generated by
adapted approaches from the literature. Results show that the LNS can outper-
form a general-purpose MILP solver, achieving solutions with objective values
that are up to thirty percent smaller for instances with up to 500 potential
station locations and up to 1000 user trips.

This work is based on parts on a master thesis [6], where more details and
further results can be found.

2 Multi Objective Battery Swapping Station Location
Problem

In the Multi Objective Battery Swapping Station Location Problem (MOBSSLP)
the task is to plan the setup of stations for exchanging batteries of electric scoot-
ers or to extend already existing stations. We aim to minimize three different
objectives combined in a linear fashion while satisfying a given demand in expec-
tation. The three objectives are the setup cost for additional stations and exten-
sion modules, the cost for charging batteries, and the total duration of detours
for users to exchange batteries. We consider a time horizon that is discretized
into equally long consecutive time intervals represented by T = {1, . . . , tmax}.
Moreover, we assume the planning horizon to be cyclic, i.e., the predecessor of
the first interval is the last one and the successor of the last one the first interval.

Battery swapping stations can be set up at any of n different locations L =
{1, . . . , n}. The costs for setting up a station at a location l ∈ L with sinil ∈ N
initial battery slots are given by cl ≥ 0. One can add up to emax

l ∈ N additional
battery exchange (BEX) modules with capacity smodul ∈ N to the station at
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location l for a cost of cmodul
l ≥ 0 per module. Due to production limitations,

the number of total BEX modules available is restricted, i.e., zmodules ∈ N refers
to the maximum number of available BEX modules. Customers can exchange
batteries at l in the time intervals T ex

l ⊆ T . A battery that is returned to a
station is recharged in the subsequent tc time intervals. We distinguish between
daytime and nighttime charging costs cdchl ≥ 0 and cnchl ≥ 0, respectively, per
time interval with daytime referring to the set of time intervals T dch ⊆ T .

Customer travel demands are given for origin-destination (O/D) pairs Q; let
m = |Q| be the number of these O/D pairs and wl

q ≥ 0 be the expected detour
time for the O/D pair q ∈ Q when making a fastest possible detour to location
l ∈ L for exchanging batteries there. Let I ⊂ N be the set of vehicle types we
consider represented by the corresponding numbers of batteries. We assume that
batteries are all of the same type. The expected number of users with vehicle
type i ∈ I who need to change batteries on trip q ∈ Q during a time interval
t ∈ T is denoted as dtqi.

A solution is primarily given by x = (xl)l∈L ∈ {0, 1}n and y = (yl)l∈L with
yl ∈ {0, . . . , emax

l }, where xl = 1 indicates that a swapping station is to be set
up at location l and yl is the corresponding number of additionally installed
BEX modules. Additionally, let assignment variables atqli denote the part of the
expected demand of O/D pair q ∈ Q w.r.t. vehicle type i ∈ I which we assign
to a location l ∈ L during time interval t ∈ T ex

l .

We express the MOBSSLP by the following MILP.

min αsetup

∑
l∈L

(clxl + cmodul
l yl) +

αcharging

∑
l∈L

∑
q∈Q

∑
i∈I

∑
t∈T ex

l

cchlt · i · atqli +

αdelay

∑
l∈L

∑
q∈Q

wl
q ·
∑

t∈T ex
l

∑
i∈I

atqli

(1)

emax
l · xl ≥ yl ∀l ∈ L (2)∑
l∈L|t∈T ex

l

atqli ≤ dtqi ∀t ∈ T , i ∈ I, q ∈ Q (3)

∑
t′∈T ch

l
(t)∪{t}

∑
q∈Q

∑
i∈I

i · at
′
qli ≤ sinil xl + smodulyl ∀l ∈ L, t ∈ T ex

l (4)

∑
q∈Q

∑
l∈L

∑
t∈T ex

l

∑
i∈I

i · atqli =
∑
q∈Q

∑
t∈T ex

l

∑
i∈I

dtqi (5)

∑
l∈L|cl>0

xl +
∑
l∈L

yl ≤ zmodules (6)

xl ∈ {0, 1} ∀l ∈ L (7)

yl ∈ {0, . . . , emax
l } ∀l ∈ L (8)

0 ≤ atqli ≤ min

(
sinil + emax

l · smodul

i
, dtqi

)
∀l ∈ L, t ∈ T ex

l , i ∈ I, q ∈ Q (9)
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The objective function (1) is the linear combination of the different objectives
with weights αsetup > 0, αcharging > 0 and αdelay > 0. Inequalities (2) link vari-
ables xl and yl. Constraints (3) limit the amount of demand that can be assigned
to the stations at each time interval. Inequalities (4) calculate the required ca-
pacity of a station at each location with T ch

l (t) referring to the tc subsequent
time intervals succeeding t ∈ T . Equality (5) ensures that all demand is satisfied.
Constraint(6) restricts the total number of used BEX modules.

3 Large Neighborhood Search

In this section we present a large neighborhood search (LNS) based on the LNS
presented in [3] for solving MBSSLP instances. Let (x, y, a) be a solution to the
MOBSSLP. Moreover, let L0(x) ⊆ L be the set of locations with closed stations
in x and L1(x) ⊆ L be the set of locations with open stations in x. In each
iteration of the LNS, while the termination criterion has not yet been reached,
a set of ν locations Ldestroy ⊆ L1(x) is selected and destroyed by setting the
number of modules to zero and un-allocating all associated demand. Afterwards,
a repair procedure is applied to make the solution feasible again. For this purpose,
first a set of ν′ locations L′

repair ⊆ L0(x) \ Ldestroy is selected. To generate the
final repair set, we also add all locations in Ldestroy, i.e. Lrepair = L′

repair ∪
Ldestroy, to guarantee that we can always obtain a feasible solution. A solution
is repaired w.r.t. a residual instance I of the original instance that only considers
the demands of O/D pairs not assigned in the current partial solution. We first
solve a relaxation of the MILP (1) to (9) in which we consider the y variables to
be continuous. From the obtained solution which we denote with (x, ỹ, a) we then
derive a feasible MOBSSLP solution as follows: First, all fractional ỹ values are
rounded up, i.e., y = (dỹle)l∈L. Next, we greedily delete modules if the solution
contains more than zmodules modules. Modules are deleted from locations l ∈ L
for which ỹl − bylc is the lowest. There may exist stations at locations l ∈ L
for which sinil < smodul. Removing such modules may result in an insufficient
number of battery slots for satisfying the necessary demand. In such a case we
iteratively close a random station and randomly add an equivalent number of
modules to the remaining locations in the solution. This procedure is repeated
until the total number of battery slots corresponds to the number of battery slots
of the relaxed solution (x, ỹ, a). Finally, the demand is redistributed using the
MILP (1) – (9) with the values of all x and y variables being fixed. For further
details on how to repair a partial solution we refer to [6].

Next we present various selection operators for deciding which locations
should be considered during the destroy and repair process. The operators are
randomized greedy procedures that select locations according to their (potential)
impact on the objective value w.r.t. to one or more objective goals. Moreover,
locations are selected via tournament selection, i.e., to select one location a set
of k (a strategy parameter) random candidate locations is first chosen randomly
from L1(x) or L0(x), respectively. Then from this set the most promising candi-
date is chosen according to a criterion different for each selection operator and
added to Ldestroy or L′

repair, respectively. For the destroy selection schemes this
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procedure is repeated ν times and ν′ times for repair selection schemes, where
ν and ν′ are further strategy parameters.

For each objective we define one destroy and one repair selection operator. For
the Construction-Based Destroy Operator the most promising location l that is

added to Ldestroy in each iteration is the candidate for which δsetupl =
cl+cmodul

l yl

sinil +smodul
l yl

is the highest. For the Delay-Based Destroy Operator the most promising candi-
date l is the location with highest δdelayl as specified by Equation (10). Finally,
for the Delay-Based Charging Operator the most promising candidate l is the
location with highest δchl as specified by Equation (11).

δdelayl =

∑
q∈Q

(
wl

q

∑
i∈I

∑
t∈T ex

l

atqli

)
∑
q∈Q

∑
i∈I

∑
t∈T ex

l

atqli
(10) δchl =

∑
q∈Q

∑
i∈I

∑
t∈T ex

l

cchlt · i · atqli∑
q∈Q

∑
i∈I

∑
t∈T ex

l

i · atqli
(11)

The repair selection operators select promising candidates in a similar way.
More specifically, the Construction-Based Repair Operator chooses the location
l for which ρsetupl , given by Equation (12), is the lowest. The Delay-Based Repair

Operator selects the candidate for which ρdelayl , given by Equation (14), is the
lowest. Finally, the Charging-Based Repair Operator selects the candidate for
which ρchl , given by Equation (15), is the lowest.

ρsetupl =
cl + cmodul

l min(yavg, e
max
l )

sinil + smodul
l min(yavg, emax

l )
(12) yavg =

∑
l∈Ldestroy

yl

ν
(13)

ρdelayl =

∑
q∈Q

(
wl

q

∑
i∈I

∑
t∈T ex

l

d′
t
qi

)
∑
q∈Q

∑
i∈I

∑
t∈T ex

l

d′tqi
(14) ρchl =

∑
q∈Q

∑
i∈I

∑
t∈T ex

l

cchlt · i · d′
t
qi∑

q∈Q

∑
i∈I

∑
t∈T ex

l

i · d′tqi
(15)

For the Delay-Based Repair Operator and the Charging-Based Repair Op-
erator we also estimate which demands are potentially covered by a selected
candidate l and do not consider these demands in the remaining steps of the
selection procedure anymore. For further details we refer to [6].

The presented selection operators can also be combined to select locations
according to multiple objective goals. In the most straight forward way, in each
iteration of the LNS the repair and destroy operators are selected randomly,
choosing from the above presented selection operators. We refer to these opera-
tors as Mixed Destroy Operator and Mixed Repair Operator, respectively.

In a more sophisticated way, the Weighted Sum Destroy Operator chooses the
candidate l with the highest impact on the objective function, i.e., the largest
value αsetup · δsetupl + αdelay · δdelayl + αcharging · δchl .

Similarly, the Weighted Sum Repair Operator selects the candidate location l
for which the estimated impact on the objective function is the lowest represented
by the value αsetup · ρsetupl +αdelay · ρdelayl +αcharging · ρchl . Finally, the Objective-
Based Repair Operator uses the same procedure as the delay- and charging-



6 T. Jatschka et al.

based repair operator to prevent already covered demand from being considered
in future iterations of the selection procedure.

4 Computational Results

We test our LNS on artificial instances with properties chosen based on informa-
tion provided by Honda R&D. We created six groups of instances identified by
their number of station locations n and number of O/D pairs m as (n,m). For

Table 1: Average optimality gaps, for different αdelay for each selection strategy.

gap (%)

αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n,m) constr delay charging constr delay charging constr delay charging

(50, 100) 2.73 3.01 2.61 6.54 5.60 5.76 12.77 10.94 12.05
(100, 200) 2.77 1.97 2.80 6.69 5.61 6.81 22.41 18.27 25.82
(200, 400) 4.49 5.72 5.49 17.43 18.65 21.31 41.89 36.78 47.47
(300, 600) 5.13 6.88 6.31 28.41 29.13 32.32 62.37 59.42 67.99
(400, 800) 6.50 8.62 8.39 33.75 33.96 36.63 71.48 70.21 74.49
(500, 1000) 7.98 10.77 10.68 36.16 37.03 39.99 74.80 74.25 77.59

gap (%)

αdelay = 0.1 αdelay = 1.0 αdelay = 10.0

(n,m) mixed wsum mixed wsum mixed wsum

(50, 100) 2.51 2.42 5.84 6.50 8.87 11.87
(100, 200) 2.72 2.60 5.84 6.06 17.71 20.15
(200, 400) 3.34 4.75 17.49 17.30 38.52 41.39
(300, 600) 5.07 4.84 27.35 28.35 60.98 62.21
(400, 800) 6.59 6.84 32.79 32.78 70.15 70.33
(500, 1000) 8.16 8.22 36.30 36.60 74.65 74.06

each subgroup we generate 30 instances. For more details on how the instances
were generated, see [6]. On each instance, we test three different alpha configu-
rations which differ in the αdelay parameter, i.e. αcharging = 0.01, αsetup = 0.01,
and αdelay ∈ {0.1, 1, 10}. Therefore, in the remainder of this section each con-
figuration will be identified only by αdelay. For the parameters of the LNS we
determined ν = ν′ = 5 and k = 5 in preliminary experiments. For the procedure
for constructing an initial solution for the LNS we refer to [6].

The proposed algorithms were implemented in Julia4 1.6.1 using the JuMP
package5 and Gurobi6 9.1 as underlying MILP solver. All test runs have been
executed on an Intel Xeon E5-2640 v4 2.40GHz machine in single-threaded mode
with a global time limit of one hour per run.

We investigate five different strategies for selecting the locations considered
in the destroy and repair procedures: constr , delay and charging use only the

4 https://julialang.org/
5 https://jump.dev/JuMP.jl/stable/
6 https://www.gurobi.com/
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construction-, delay- and charging-based destroy and repair operators, respec-
tively. Moreover, mixed and wsum use only the mixed selection operators and
weighted sum selection operators, respectively. We evaluate the quality of solu-
tions in terms of optimality gaps to the best lower bounds obtained by trying
to solve the MILP given by Equations (1)–(9) within the one hour time limit.
Table 1 shows average optimality gaps, for all considered αdelay configurations.
We can see that optimality gaps generally increase with growing instance size
and growing αdelay value for all five strategies. As expected, we can observe that
delay performs better, the higher αdelay is, i.e., as minimizing the delay becomes
more important LNS operators destroying and repairing stations based on their
induced delay produce better results. For lower values of αdelay constr shows the
best performance. Regarding the multi-objective strategies, one can see that for
αdelay = 0.1 and αdelay = 1.0 mixed is slightly more favorable. For αdelay = 10.0
the difference becomes more evident, as mixed achieves up to 3% better results.
In general the performance of the multi-objective strategies is comparable to the
performance of the best single-objective strategy for each αdelay. Therefore, as
expected, multi-objective strategies are more robust to changes of the weights
of the objective function.
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Fig. 1: Final optimality gaps when solving the MOBSSLP with different ap-
proaches.
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Finally, Figure 1 compares the LNS with selection strategy mixed to other
approaches. In particular, we compare the obtained results to those of an LNS
using a uniform random selection strategy, denoted by random, to solutions gen-
erated by the initial construction heuristic, denoted by CH, as well as solutions
obtained by Gurobi within one hour w.r.t. the MILP (1) – (9), denoted by MILP.
Starting from (200, 400) our LNS approach is able to consistently achieve supe-
rior results with up to 29% lower objective values than those obtained by the
MILP approach. Moreover, we can see that the LNS strongly improves the initial
solution obtained by the construction heuristic. Finally, we performed one-sided
Wilcoxon signed-rank tests between the solutions obtained by mixed and the so-
lutions obtained by random. For almost all instance groups and values of αdelay,
mixed achieved significantly better results than random within a 95% confidence
interval.

5 Conclusion and Future Work
We considered the Multi Objective Battery Swapping Station Location Problem
(MOBSSLP) and presented a large neighborhood search (LNS) using mixed in-
teger linear programming (MILP) for repairing solutions. We proposed different
strategies for selecting the locations for the destroy and repair procedure of the
LNS. For larger instances our evaluation shows that our LNS far surpasses the
performance of a state-of-the-art MILP solver in terms of solution quality. We
have further seen that combining all single objective selection strategies results
in a strategy more robust to changes in the weighting of the objective function.

For future work it seems promising to extend the approach to an Adaptive
Large Neighborhood Search (ALNS) which then dynamically selects the most
promising selection operator in each iteration. Moreover, it could also be inter-
esting to research adapted variants of the MOBSSLP, considering aspects such
as limited charging times or an overall budget for building stations and modules.
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