
A Large Neighborhood Search for a Cooperative
Optimization Approach to Distribute Service Points in

Mobility Applications?

Thomas Jatschka1, Tobias Rodemann2, and Günther R. Raidl1

1 Institute of Logic and Computation, TU Wien, Austria
{tjatschk,raidl}@ac.tuwien.ac.at

2 Honda Research Institute Europe, Germany
tobias.rodemann@honda-ri.de

Abstract. We present a large neighborhood search (LNS) as optimization core for a co-
operative optimization approach (COA) to optimize locations of service points for mobility
applications. COA is an iterative interactive algorithm in which potential customers can
express preferences during the optimization. A machine learning component processes the
feedback obtained from the customers. The learned information is then used in an opti-
mization component to generate an optimized solution. The LNS replaces a mixed integer
linear program (MILP) that has been used as optimization core so far. A particular challenge
for developing the LNS is that a fast way for evaluating the non-trivial objective function
for candidate solutions is needed. To this end, we propose an evaluation graph, making an
efficient incremental calculation of the objective value of a modified solution possible. We
evaluate the LNS on artificial instances as well as instances derived from real-world data
and compare its performance to the previously developed MILP. Results show that the LNS
as optimization core scales significantly better to larger instances while still being able to
obtain solutions close to optimality.

1 Introduction

The traditional approach for solving service point placement problems, such as distributing charg-
ing stations for electric vehicles or vehicle sharing stations in a geographic area, essentially is to
first estimate the demand that may be fulfilled at potential locations and then to select actual lo-
cations either manually or by some computational optimization. However, estimating the customer
demand that may be fulfilled by certain stations is an intricate task in which erroneous assump-
tions may result in heavy economic losses for the service point provider. Also, estimating demand
upfront requires specific data which can be challenging and/or expensive to collect. As an alterna-
tive approach, in [1] we introduced a cooperative optimization approach (COA) for optimizing the
locations of service points in mobility applications. In contrast to the traditional approach, COA
is an iterative interactive algorithm that solves the demand data acquisition and optimization in a
single process by allowing customers to express their preferences intertwined with the optimization.
A machine learning component processes the feedback obtained from the customers and provides
a surrogate objective function. This surrogate objective is then used in an optimization component
to generate an optimized solution. This solution is then a basis for further interaction with the
users to obtain more relevant knowledge, and the whole process is repeated until some stopping
criterion is met. So far, COA uses a mixed integer linear program (MILP) in the optimization core
for determining solutions [2] or, in a former version [3], basic metaheuristic approaches that treated
the problem as black box model and hence do not make significant use of structural properties of
the problem. For an exact optimization core, the generated solutions are optimal w.r.t. to the so
far known information derived from the customer feedback. However, this optimality comes at the
cost of large computation times, especially for large-scale instances with thousands of customers
and hundreds of potential service point locations. In contrast, a heuristic optimization core may
feature better scalability towards larger instances. To this end we present here a large neighbor-
hood search (LNS) that can reduce computation times by orders of magnitudes with only small
? Thomas Jatschka acknowledges the financial support from Honda Research Institute Europe.

2 Jatschka, Rodemann, Raidl

losses in final solution quality. Due to the nature of the non-trivial objective function of our service
point distribution problem, an efficient way for evaluating said objective is necessary to make this
speedup possible. Therefore, our LNS features a data structure, referred to as evaluation graph for
modeling the evaluation of solutions. We show how the evaluation graph can be used to efficiently
keep track of small changes in the solution, such as opening or closing a service point. Based on
this evaluation graph, the LNS is able to quickly repair partially destroyed solutions in a promis-
ing heuristic way. We evaluate the LNS on artificial instances as well as instances derived from
real-world data and compare its performance to the previously developed MILP-based approach.

In the next section we review related work. Section 3 formally defines the General Service Point
Distribution Problem (GSPDP), as it is referred to, while an overview on the COA framework
is given in Section 4. Our main contribution, the LNS with its evaluation graph, is presented in
Section 5. Section 6 explains the benchmark scenarios, and Section 7 discusses experimental results.
Finally, Section 8 concludes this article and gives an outlook on future work.

2 Related Work

The basic concept of COA was presented in [1]. In interactive optimization algorithms, such as
COA, humans are used to (partially) evaluate the quality of solutions and to guide the optimiza-
tion process. For a survey on interactive optimization, see [4]. Interactive algorithms are often
combined with surrogate-based approaches [5, 6], in which a machine learning model is trained to
evaluate intermediate solutions approximately in order to reduce user interactions and to avoid
user fatigue [7]. In contrast to COA, most approaches from literature only allow a single user to
interact with the algorithm, e.g., [8, 9]. Hence, in [10] COA’s surrogate function is based on a matrix
factorization model [11], a popular collaborative filtering technique [12] in which unknown ratings
of items are derived from users with similar preferences.

In [3] two heuristic black box optimization approaches were suggested for COA to generate new
candidate solutions w.r.t. to the current surrogate model: a variable neighborhood search as well
as a population-based iterated greedy approach. In [2] COA was substantially extended to also be
applicable in use cases where the satisfaction of demands relies on the existence of two or more
suitably located service stations, such as car and bike sharing systems.

More generally, there exists a vast amount of literature regarding the location planning of
service points for mobility applications, see, e.g., [13] for electric vehicle charging stations or [14]
for stations of a bike sharing system. However, to the best of our knowledge no further work on
interactive optimization approaches for location planning in mobility applications exists.

3 The General Service Point Distribution Problem

In this section we give a formal description of the Generalized Service Point Distribution Problem
(GSPDP) introduced in [2], which is the problem to be solved at the core of COA and for which we
will then propose the LNS. Service points may be set up at a subset of locations V = {1, . . . , n}.
Establishing a service point at a location v ∈ V is associated with costs zfix

v ≥ 0 and the total
setup costs of all stations must not exceed a maximum budget B > 0. Additionally, the expected
costs for maintaining this service point over a defined time are zvar

v ≥ 0. Given a set of users U ,
each user u ∈ U has a certain set of use cases Cu, such as going to work, visiting a recreational
facility, or going shopping.

Each user’s use case c ∈ Cu is associated with a demand Du,c > 0 expressing how often the use
case is expected to happen within some defined time period. The demand of each use case may
possibly be satisfied by subsets of service points to different degrees, depending on the concrete
application and the customer’s preferences. Hence, we associate each use case c of a user u with a
set of Service Point Requirements (SPR) Ru,c with which a user can express the dependency on
multiple service points to fulfill the needs of the use case. For example, for the use case of visiting a
fitness center using a bike sharing system, one SPR may represent the need of a rental station close
to home or work and a second SPR a rental station close to some fitness center. We denote the set
of all different SPRs over all use cases of a user u by Ru =

⋃
c∈Cu Ru,c. Moreover, let R =

⋃
u∈U Ru

be the set of all SPRs over all users.
For now, let us further assume we know values wr,v ∈ [0, 1] indicating the suitability of a service

point at location v ∈ V to satisfy the needs of user u ∈ U concerning SPR r ∈ Ru,c in the use case

An LNS for a Cooperative Optimization Approach 3

c ∈ Cu. A value of wr,v = 1 represents perfect suitability while a value of zero means that location
v is unsuitable; values in between indicate partial suitability. For each unit of satisfied customer
demand a prize q > 0 is earned.

A solution to the GSPDP is a subset of locations X ⊆ V indicating where service points are to
be set up. It is feasible if its total fixed costs do not exceed the maximum budget B, i.e.,

zfix(X) =
∑
v∈X

zfix
v ≤ B. (1)

The objective function of the GSPDP is to maximize

f(X) = q ·
∑
u∈U

∑
c∈Cu

Du,c · min
r∈Ru,c

(
max
v∈X

wr,v

)
−
∑
v∈X

zvar
v . (2)

In the first term, the obtained prize for the expected total satisfied demand is determined by
considering for each user u, each use case c, and each SPR r a most suitable location v ∈ V at which
a service point is to be opened. Over all SPRs of a use case, the minimum of the obtained suitability
values is taken. The second term of the objective function represents the total maintenance costs
for the service stations. In [2] we have shown that the GSPDP is NP-hard.

By linearizing the objective function, the GSPDP can be modeled by the following MILP.

max q ·
∑
u∈U

∑
c∈Cu

Du,c yu,c −
∑
v∈V

zvar
v xv (3)

∑
v∈V

or,v ≤ 1 ∀r ∈ R (4)

or,v ≤ xv ∀v ∈ V, r ∈ R (5)

yu,c ≤
∑
v∈V

wr,v · or,v ∀u ∈ U, c ∈ Cu, r ∈ Ru,c (6)∑
v∈V

zfix
v xv ≤ B (7)

xv ∈ {0, 1} ∀v ∈ V (8)
0 ≤ yu,c ≤ 1 ∀u ∈ U, c ∈ Cu (9)
0 ≤ or,v ≤ 1 ∀r ∈ R, v ∈ V (10)

Binary variables xv indicate whether or not a service point is deployed at location v ∈ V . Con-
tinuous variables or,v are used to indicate the actually used location v ∈ V for each SPR r ∈ R;
these variables will automatically become integer. The degree to which a use case c ∈ Cu of a user
u ∈ U can be satisfied is expressed by continuous variables yu,c. The objective value is calculated in
(3). Inequalities (4) ensure that at most one location with the highest suitability value is selected
for each SPR. Inequalities (5) and (6) ensure that use cases are only satisfied if there are suitable
locations with opened service points for each SPR of the respective use case. Inequalities (6) ad-
ditionally determine the degree to which a use case is satisfied. Last but not least, Inequality (7)
ensures that the budget is not exceeded.

4 Cooperative Optimization Algorithm

A crucial aspect of COA’s general approach is that the suitability values wr,v are not explicitly
known a priori. A complete direct questioning would not only be extremely time consuming but
users would easily be overwhelmed by the large number of possibilities, resulting in incorrect
information. For example, users easily tend to only rate their preferred options as suitable and
might not consider certain alternatives as also feasible although they actually might be on second
thought when no other options are available.

Hence, interaction with users needs to be kept to a minimum and should be done wisely to
extract as much meaningful information as possible. Therefore, COA does not ask a user to directly
provide best suited station locations for the SPRs but creates meaningful location scenarios, i.e.,
subsets of locations, and asks the users to evaluate these. More specifically, a user u returns as

4 Jatschka, Rodemann, Raidl

FC EC OC

COA Framework

determine
use cases and
SPRs of users

generate loca-
tion scenarios

present location
scenarios to users

generate train-
ing data from
user feedback

train and up-
date surrogate
function f̃Θ

update surrogate
objective values of
solutions in SMC

initialize optimiza-
tion algorithm

generate optimized
solution w.r.t. f̃Θ

return best
found solution

SMC

Users
f̃Θ

w(r, v)

use cases,
service point
requirements optimized solutions

user-evaluated scenarios

user-
evaluated
scenarios

optimized
solutions

optim
ized solution

initia
l solution

best found
solution X̃∗

Fig. 1: Components of COA and their interaction.

evaluation of a location scenario S w.r.t. one of the user’s SPRs r ∈ Ru a best suited location
vr,S ∈ S and the corresponding suitability value w(r, vr,S) > 0 or the information that none of the
locations of the scenario S is suitable. We assume here that the suitability of a location w.r.t. an
SPR can be specified on a five valued scale.

The COA framework consists of a Feedback Component (FC), an Evaluation Component (EC),
an Optimization Component (OC), and a Solution Management Component (SMC). Figure 1 il-
lustrates the fundamental principle and communication between these components. During an
initialization phase, the FC first asks each user u ∈ U to specify her or his use cases Cu with their
associated SPRs Ru,c, as well as corresponding demands Du,c, c ∈ Cu. Then, the FC is responsible
for generating individual location scenarios for each user which are presented to the user in order
to obtain her/his feedback.

The obtained feedback is processed in the EC. A crucial assumption we exploit is that in a large
user base some users typically have similar preferences about the locations of service points w.r.t.
to some of their use cases. Hence, by identifying these similarities and learning from them, the
EC maintains and continuously updates a surrogate suitability function w̃Θ(r, v) approximating
the real and partially unknown suitability values wr,v of service point locations v ∈ V w.r.t. SPR
r ∈ R without interacting with the respective user. Based on this surrogate function, the EC also
provides the surrogate objective function

f̃Θ(X) = q ·
∑
u∈U

∑
c∈Cu

Du,c · min
r∈Ru,c

(
max
v∈X

w̃Θ(r, v)

)
−
∑
v∈X

zvar
v (11)

with which a candidate solution X can be approximately evaluated.
A call of the OC is supposed to determine an optimal or close-to-optimal solution to the problem

with respect to the EC’s current surrogate objective function f̃Θ. In [2] this is achieved by solving
the MILP (3)–(10) in which the suitability values are approximated by the surrogate suitability
function w̃Θ.

The SMC stores and manages information on all generated solutions as well as suitability values
obtained by the FC.

The whole process is repeated until some termination criterion is reached. In the end, COA
returns a solution X̃∗ with the highest surrogate objective value of all of the so far generated
solutions. For more details, in particular on how meaningful solution scenarios are derived in the
FC and how a matrix factorization is utilized to determine the approximated values w̃Θ(r, v) in
the EC, we refer the interested reader to [2].

5 Large Neighborhood Search

We now propose a large neighborhood search (LNS) as a faster replacement for the original MILP-
based optimization core in COA. The LNS follows the classical scheme from [15]. The key idea

An LNS for a Cooperative Optimization Approach 5

of LNS is to not search neighborhoods in a naive enumerative way but instead to identify via
some problem-specific more effective procedure either best or promising solutions within larger
neighborhoods. To this end, LNS frequently follows an iterative destroy and repair scheme: First,
a given solution is partially destroyed, typically by freeing a subset of the decision variables and
fixing the others to their current values. Afterwards this partial solution is repaired by finding
best or at least promising values for the freed variables. If the obtained solution is better than the
previous one, it is accepted, otherwise the previous solution is kept.

In our LNS a solution to a GSPDP instance is destroyed in a uniform random fashion by adding
kdest new locations to the solution, where kdest is a parameter that is varied.

To repair a solution X, we make use of a randomized greedy approach: Let ∆(v,X) denote by
how much the objective value of a solution X would decrease when removing location v from X.
Note that, it is discussed later how ∆(v,X) can be efficiently calculated for all v ∈ X. In each
iteration we first generate a restricted candidate list of krep locations v ∈ V for which ∆(v,X) is
lowest, i.e., the candidate list contains the locations that have the lowest impact on objective value
of X. Hereby, krep is another strategy parameter. Ties are broken randomly. A location is then
chosen uniformly at random from this restricted candidate list and removed from X.

To construct an initial solution in the first iteration of COA, we also make use of the repair
heuristic, starting from X = V and then sequentially removing locations from X for which ∆(v,X)
is lowest until the solution becomes feasible, i.e. krep = 1 for constructing an initial solution. In
subsequent iterations of COA, the LNS is warm-started with COA’s current best solution X̃∗.

Our LNS makes use of two destroy operators with kdest = 10 and kdest = 20, respectively, and
two repair operators with krep = 2 and krep = 4, respectively. These settings have shown to yield
a robust convergence behavior across the kinds and sizes of instances in our benchmark sets. In
each iteration a repair and destroy operator is chosen uniformly at random. Moreover, each LNS
run terminates after 40 iterations without improvement.

A crucial aspect for developing an effective heuristic for solving the GSPDP is that computing
the surrogate objective value f̃Θ of a solution in a straight-forward way from scratch is time
consuming. Hence, in order to accelerate this task we maintain for a GSPDP instance a directed
graph G = (LL∪ SL∪CL∪ {lobj}, ALL ∪ASL ∪ACL) referred to as evaluation graph. This graph
represents the objective function calculation and stores intermediate results for a current solution,
allowing for an effective incremental update in case of changes in the solution. The evaluation graph
consists of four layers of nodes, which are the location layer (LL), the SPR layer (SL), the use
case layer (CL), and the evaluation layer containing a single node lobj. The location layer contains
n nodes corresponding to the locations in V , i.e., LL = {lv | v ∈ V }. The use case layer consists
of one node for each use case Cu of each user u ∈ U , i.e., CL = {lc | c ∈ Cu, u ∈ U}, and the
SPR layer contains one node for each SPR in ∈ Ru,c, for each use case c ∈ Cu and user u ∈ U , i.e.,
SL = {lu,r | r ∈ Ru,c, c ∈ Cu, u ∈ U}.

There exists an arc in G from a node of the location layer lv to a node of the SPR layer lu,r if
w̃Θ(v, r) > 0, i.e., ALL = {(lv, lu,r) | lv ∈ LL, lu,r ∈ SL, w̃Θ(v, r) > 0}. A node of the SPR layer is
connected to a node of the use case layer if the corresponding SPR is an SPR of the corresponding
use case, i.e., ASL = {(lu,r, lc) | lu,r ∈ SL, lc ∈ CL, r ∈ Ru,c}. Finally, each node lc of the use
case layer is connected to lobj, i.e., ACL = {(lc, lobj) | lc ∈ CL}.

The location layer gets as input a binary vector (xv)v∈V with xv = 1 if v ∈ X and xv = 0
otherwise, w.r.t. a solution X. Moreover, each node in G has an activation function α() that decides
its output value which is propagated to its successor nodes in the next layer as their input, i.e.,

αLL(lv, X) =

{
1 if v ∈ X
0 otherwise,

∀lv ∈ LL, (12)

αSL(lu,r, X) = max
(lv,lu,r)∈ALL

(αLL(lv, X) · w̃Θ(v, r)) ∀lu,r ∈ SL, (13)

αCL(lc, X) = min
(lu,r,lc)∈ASL

αSL(lu,r, X) ∀lc ∈ CL, (14)

αeval(lobj, X) =
∑

(lc,lobj)∈ACL
αSL(lc, X)−

∑
v∈X

zvar
v . (15)

The evaluation graph stores all output of the activation functions from the last evaluated solution
and is therefore especially efficient for evaluating subsequent solutions that only differ in a single

6 Jatschka, Rodemann, Raidl

location v ∈ V as not everything needs to be calculated from scratch but just the modified value v
w.r.t. the current solution X needs to be propagated. Note that ALL needs to be updated in each
iteration of COA as the EC recalculates the surrogate suitability values w̃Θ in each iteration with
newly obtained user feedback.

Additionally, the evaluation graph also makes it possible to efficiently keep track of how much
each location v contributes to the objective value of a solution. For this purpose, we introduce the
following new notations. Let X be a current solution and c ∈ Cu be a use case of a user u ∈ U that
is satisfied (to some degree) in X, i.e., for each r ∈ Ru,c there exists at least one location v ∈ X such
that w̃Θ(r, v) > 0. Let vmax(r,X) refer to a location in the solution for which w̃Θ(r, vmax(r,X)) =
maxv∈X w̃Θ(r, v). For the sake of readability we further refer to w̃Θ(r, vmax(r,X)) as w̃max

Θ (r,X).
Additionally, let w̃fallback

Θ (r,X) denote the second highest suitability value for an SPR r w.r.t. to
the locations in X, i.e., w̃fallback

Θ (r,X) = max{w̃Θ(r, v) | v ∈ X \ {vmax(r,X)} ∪ {0}}. Note that
w̃fallback
Θ (r,X) is zero if X \{vmax(r,X) is empty. Finally, let w̃min

Θ (u, c,X) = minr∈Ru,c w̃
max
Θ (r,X).

From the definition of the surrogate objective function, it follows that the degree to which a use
case c is satisfied in a solution X is only determined by the set of locations {vmax(r,X) | r ∈ Ru,c}.
Hence, let ∆(u, c, v,X) denote by how much the degree to which a use case c ∈ Cu of a user u ∈ U
is satisfied w.r.t. a solution X would decrease when removing v from X, i.e.,

∆(u, c, r,X) =

{
q ·Du,c · (w̃max

Θ (r,X)− w̃fallback
Θ (r,X)) w̃fallback

Θ (r,X) < w̃min
Θ (u, c,X)

0 otherwise
(16)

∆(u, c, v,X) = max{∆(u, c, r,X) | r ∈ Ru,c, v = vmax(r,X)} ∪ {0} (17)

Generally speaking, the removal of a location v from a solution X only has an impact on a use case
c ∈ Cu if it results in a change of w̃min

Θ (u, c,X). Additionally, note that the GSPDP also allows
cases in which one service point location can be associated to multiple SPRs of the same use case.
Such a case would for example correspond to situations in which a customer returns a vehicle at
the same station at which the vehicle was picked up. Therefore, the removal of a location from
X may affect a use case w.r.t. more than one of its SPRs. However, only the change that affects
w̃min
Θ (u, c,X) the most is relevant for calculating by how much the degree to which a use case is

satisfied changes.
Hence, the amount ∆(v,X) by how much the objective value of a solution would decrease when

removing location v from X is calculated as

∆(v,X) = −zvar
v +

∑
u∈U

∑
c∈Cu

∆(u, c, v,X). (18)

Note that the time required for determining wmax, wfallback, and wmin is negligible if the domain of
the rating scale by which users can specify suitability values is small. Moreover, ∆(v,X) does not
need to be calculated from scratch every time a location is added or removed from the solution.
Let X ◦ {v} refer to the modification of a solution, by either adding or removing a location v ⊆ V
to/from X. Then ∆(v′, X ◦ {v}) with v′ ∈ X can be determined from ∆(v′, X) as follows:

∆(v′, X ◦ {v}) = ∆(v′, X)−
∑
u∈U

∑
c∈Cu

∆(u, c, v′, X) +∆(u, c, v′, X ◦ {v}). (19)

Additionally, ∆(v,X) needs to be updated only w.r.t. use cases that are actually affected by the
modification of the solution, i.e., only if w̃max

Θ , w̃fallback
Θ , or w̃min

Θ of a use case change. Finally, for
each use case c ∈ Cu at most 2 · |Ru,c| locations need to updated in the worst case.

6 Benchmark Scenarios

Benchmark scenarios for our experiments were generated as described in detail in [2] and are
available at https://www.ac.tuwien.ac.at/research/problem-instances/#spdp.

The considered test instances are of two groups. One group of instances is inspired by the
location planning of car sharing systems and hence referred to as CSS. Locations are randomly
generated on a grid in the Euclidean plane. The number of use cases for each user is chosen
randomly, but each use case always has two SPRs. To generate suitability values for locations

An LNS for a Cooperative Optimization Approach 7

w.r.t. SPRs, ten attraction points are randomly placed on the grid, and each SPR is then associated
with a geographic location sampled from a normal distribution centered around a randomly chosen
attraction point. The actual suitability value is then calculated via a sigmoid function based on
the distance between the SPR’s geographic location and the respective service point location and
afterwards perturbed by Gaussian noise. Six sets of 30 benchmark instances were generated for
CSS, considering different combinations of the number of potential service point locations and the
number of users.

The second group of instances is derived from real-world taxi trip data of Manhattan and
referred to as MAN. The underlying street network of the instances corresponds to the street
network graph of Manhattan provided by the Julia package LightOSM3. The Taxi trips have been
extracted from the 2016 Yellow Taxi Trip Data4. For the generation of the instances all trips
within the ten taxi zones with the highest total number of pickups and drop-offs of customers were
considered, resulting in a total of approximately two million taxi trips. The set of potential service
point locations has been chosen randomly from vertices of the street network that are located in the
considered taxi zones. Each use case of a user is associated with two SPRs representing the origin
and destination of a trip chosen uniformly at random. Suitability values for locations w.r.t. SPRs
are again calculated via a sigmoid function based on the distance between the SPR’s geographic
location and the respective service point location. The MAN benchmark group also consists of 30
instances in total with each instance having 100 potential service point locations and 2000 users.
Additionally, each instance will be evaluated with different budget levels b [%] ∈ {30, 50, 70} such
that about b percent of the stations can be expected to be opened.

7 Computational Results

All test runs have been executed on an Intel Xeon E5-2640 v4 2.40GHz machine in single-threaded
mode. Gurobi 9.15 was used to solve the MILP models in the OC. We compare our COA with the
LNS, denoted in the following as COA[LNS], to the COA from [2] that uses the MILP (3)–(10)
as optimization core and henceforth denoted as COA[MILP]. Since COA[LNS] always uses the
current best solution X̃∗ as initial solution, we also set X̃∗ as starting solution in the MILP solver.

We present the results of COA by providing snapshots at different levels of performed user
interactions. In [2] we have argued that at most IUB

u =
∑
r∈Ru (|{v | w(r, v) > 0}|+ 1) interactions

per user are required to completely derive all suitability values of user u ∈ U . Let Iu be the
number of user interactions of user u ∈ U performed within COA to generate some solution. Then,
I = 100% · (

∑
u∈U Iu/I

UB
u)/m, refers to the relative average number of performed user interactions

relative to IUB
u over all users. Results are presented in an aggregated way at various interaction

levels ψ by selecting for each instance the COA iteration at which I is largest but does not exceed ψ.
First, we provide some general information about the performance of COA[LNS]. Table 1 shows

for each instance group at different interaction levels the average number of performed destroy and
repair iterations niter, the average time in seconds required for finding the best solution t∗[s],
and the average total time in seconds until the LNS terminated t[s]. We can see that the LNS
terminates within 43 to 80 iterations on average and usually terminates within three seconds for
the CSS instances and within eight seconds for the MAN instances. While the total number of
iterations is relatively low, we later show in Table 2 that the solutions generated by the LNS are
almost optimal w.r.t. the presented instances. The number of iterations performed tends to decrease
as the number of performed user interactions increases while the total runtime increases in each
iteration for the MAN instance but stays almost constant for the CSS instances. The decreasing
number of iterations can be explained by the LNS being warm-started with the so far best found
solution X̃∗. Moreover, as the number of user interactions increases, COA is able to identify more
locations relevant to the SPRs of the use cases of the users, resulting in a higher number of arcs
between the nodes in the service point layer and the nodes in the SPR layer of the respective
evaluation graph. Therefore, the number of iterations until the LNS converges decreases while the
time for performing one iteration increases.

Next, we investigate COA runs in which we apply in each iteration both, the LNS and the
MILP, for solving the exact same GSPDP instances w.r.t. w̃Θ as well as the initial solution X̃∗.
3 https://github.com/DeloitteDigitalAPAC/LightOSM.jl
4 https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/k67s-dv2t
5 https://www.gurobi.com/

8 Jatschka, Rodemann, Raidl

Table 1: Results of COA[LNS].
CSS

(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s]

40 50 0.21 0.87 62 0.96 2.08 60 0.21 0.61 76 1.37 2.31 59 0.35 0.66 75 1.32 1.99
50 51 0.27 1.09 67 1.18 2.82 67 0.48 1.05 68 1.03 2.42 65 0.50 0.94 71 1.32 2.34
60 46 0.22 1.17 58 1.09 3.09 58 0.41 1.17 59 1.01 2.74 66 0.61 1.19 65 1.47 2.96
70 47 0.25 1.39 53 0.79 3.09 50 0.30 1.27 58 1.18 3.07 64 0.56 1.22 64 1.45 3.27
80 45 0.18 1.51 48 0.44 2.78 45 0.16 1.16 50 0.59 2.80 56 0.47 1.33 59 1.14 2.98
90 43 0.10 1.48 44 0.25 2.64 45 0.17 1.19 49 0.60 2.73 46 0.22 1.17 44 0.43 2.51

MAN

b 30% 50% 70%

ψ niter t∗[s] t[s] niter t∗[s] t[s] niter t∗[s] t[s]

40 78 2.19 3.85 74 1.58 3.35 59 0.65 1.76
50 80 3.70 6.12 75 2.76 5.25 55 1.10 3.30
60 78 4.22 8.20 72 3.72 7.21 63 2.00 5.02
70 65 3.40 8.18 64 3.10 7.74 54 1.51 5.62
80 55 2.62 7.65 58 2.93 8.12 54 1.93 6.74
90 49 1.40 7.24 48 1.27 7.35 46 0.73 6.09

The MILP solver is able to find optimal solution in all cases, but at the expense of typically much
longer running times. Note however that only the solution generated by the LNS is further used
for the next iteration in COA. Table 2 shows the average percentage gaps between the objective
values of the best solutions found by the LNS and respective optimal solutions w.r.t. f̃Θ, denoted
by gapf̃Θ [%], the average total running times in seconds of the LNS t[s], the average times t◦M[s]
needed by the MILP solver required for reaching a solution with at most the same objective value
as the solution obtained by the LNS, as well as the average total times tM[s] in seconds of the MILP
solver for determining a proven optimal solution. Bold values indicate best times w.r.t. t, t◦M, and
tM. First, we can see that the solutions generated by the LNS are on average only about 1% worse
than an optimal solution for most instance groups. Next, the table shows that for CSS instances
with a n/m ratio of 1/10, the MILP solver needs significantly more time for finding good solutions.
Note that these instances have been designed in such a way that users behave less similar resulting
in more complex instances. Nonetheless, the LNS significantly outperforms the MILP w.r.t. all
instance groups. For all instance groups the LNS requires significantly less time on average to
terminate than the MILP needs to reach a solution of the same quality as the solution obtained
by the LNS. Additionally, Table 2 especially highlights how much more time the MILP requires
for improving a solution at the same quality as the best found LNS solution to a provable optimal
solution. Moreover, further tests have shown that most of the time the LNS is able to identify its
best found solution while the MILP solver has still not yet solved the root relaxation in the same
amount of time.

Finally, we want to compare independent COA[MILP] and COA[LNS] runs, and thus the impact
of the in general slightly worse intermediate solutions of the LNS on the overall results of the two
COA variants. For this purpose Table 3 shows for each interaction level the average optimality
gaps between the best found solution during the optimization to an optimal solution w.r.t. the
original objective f for COA[LNS] (gapL[%]) as well as COA[MILP] (gapM[%]). The table shows
that small differences in the solution quality w.r.t. f̃Θ translate to slightly larger differences w.r.t.
f . With the exception of the MAN instance group with b[%] = 30, the solutions generated by
COA[LNS] are usually at most 3% off from the values obtained by COA[MILP]. In most cases,
the average differences are around 1% or less. Hence, in general it can be concluded that the LNS
substantially outperforms the MILP in terms of computation time while still being able to generate
almost optimal solutions.

An LNS for a Cooperative Optimization Approach 9

Table 2: Times required by the LNS, times the MILP solver needed to obtain a solution with at
least the same quality as the solution of the LNS, as well as the total time required by the MILP
to find a proven optimal solution. Additionally, the optimality gaps between the LNS solutions and
respective optimal solutions are also shown.

CSS

(100, 500) (200, 1000) (300, 1500)

ψ t[s] t◦M[s] tM[s] gapf̃Θ
[%] t[s] t◦M[s] tM[s] gapf̃Θ

[%] t[s] t◦M[s] tM[s] gapf̃Θ
[%]

40 0.87 4.58 6.50 0.91 0.61 2.41 3.90 0.65 0.66 2.97 4.01 0.08
50 1.09 4.03 7.68 0.90 1.05 3.60 5.27 0.27 0.94 3.59 4.31 0.10
60 1.17 5.50 7.47 0.78 1.17 3.32 5.12 0.19 1.19 3.67 4.62 0.07
70 1.39 6.65 8.10 0.64 1.27 3.75 4.81 0.12 1.22 3.14 3.74 0.07
80 1.51 5.74 7.04 0.44 1.16 4.48 5.97 0.08 1.33 3.28 4.40 0.04
90 1.48 5.48 6.73 0.33 1.19 4.11 5.06 0.06 1.17 4.58 5.30 0.03

CSS

(100, 1000) (200, 2000) (300, 3000)

ψ t[s] t◦M[s] tM[s] gapf̃Θ
[%] t[s] t◦M[s] tM[s] gapf̃Θ

[%] t[s] t◦M[s] tM[s] gapf̃Θ
[%]

40 2.08 21.87 37.42 2.15 2.31 32.79 92.15 1.24 1.99 26.04 85.61 0.81
50 2.82 28.03 50.51 1.97 2.42 37.61 90.11 1.07 2.34 39.84 101.52 0.57
60 3.09 35.60 59.04 1.45 2.74 36.47 126.67 0.89 2.96 38.34 130.05 0.47
70 3.09 42.95 67.34 1.74 3.07 40.48 111.96 0.84 3.27 43.41 136.93 0.36
80 2.78 43.57 69.94 1.83 2.80 40.98 120.07 0.90 2.98 43.78 137.76 0.37
90 2.64 40.09 74.98 1.37 2.73 41.33 123.32 0.78 2.51 63.56 149.78 0.37

MAN

30% 50% 70%

ψ t[s] t◦M[s] tM[s] gapf̃Θ
[%] t[s] t◦M[s] tM[s] gapf̃Θ

[%] t[s] t◦M[s] tM[s] gapf̃Θ
[%]

40 3.85 67.21 326.46 2.15 3.35 17.24 53.54 0.87 1.76 6.36 10.71 0.21
50 6.12 80.31 328.53 1.36 5.25 16.76 95.43 0.59 3.30 10.20 15.29 0.11
60 8.20 131.28 368.28 1.19 7.21 24.36 89.15 0.43 5.02 14.59 21.54 0.07
70 8.18 140.34 375.46 1.06 7.74 24.86 108.59 0.35 5.62 13.22 21.73 0.06
80 7.65 160.13 414.39 1.12 8.12 27.70 108.01 0.34 6.74 18.00 24.43 0.05
90 7.24 154.44 411.55 1.29 7.35 43.43 102.70 0.27 6.09 13.03 17.46 0.03

Table 3: Quality of solutions generated by COA[LNS] and COA[MILP].
CSS

(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%]

40 3.46 2.98 11.92 9.57 1.64 1.21 4.34 2.81 0.54 0.51 2.81 2.36
50 2.06 1.50 7.34 4.72 0.81 0.62 2.86 1.90 0.43 0.31 1.87 1.27
60 1.62 0.63 4.31 2.29 0.45 0.36 2.21 1.20 0.30 0.20 1.31 0.72
70 1.20 0.27 4.11 1.61 0.22 0.12 1.56 0.47 0.19 0.11 0.81 0.28
80 0.66 0.18 2.72 0.92 0.15 0.05 1.30 0.18 0.09 0.04 0.58 0.15
90 0.43 0.01 1.95 0.08 0.08 0.02 0.95 0.05 0.06 0.01 0.44 0.03

MAN

b 30% 50% 70%

ψ gapL[%] gapM[%] gapL[%] gapM[%] gapL[%] gapM[%]

40 8.61 3.46 3.58 3.46 1.32 3.46
50 5.14 1.88 2.19 1.88 0.77 1.88
60 3.32 1.14 1.41 1.14 0.46 1.14
70 2.53 0.63 0.86 0.63 0.25 0.63
80 2.03 0.26 0.54 0.26 0.12 0.26
90 1.77 0.10 0.33 0.10 0.05 0.10

8 Conclusion and Future Work

We presented a large neighborhood search (LNS) to be used as optimization core in a coopera-
tive optimization approach (COA) for the general service point distribution problem (GSPDP) in

10 Jatschka, Rodemann, Raidl

mobility applications. While the LNS follows the traditional destroy and repair principle, a major
challenge was to (a) effectively guide the repair heuristic to produce promising new solutions and
to (b) efficiently calculate the surrogate objective function for modified solutions in an incremental
way. Both was achieved by introducing the evaluation graph, which stores relevant intermediate
results allowing efficient updates when stations are added to or removed from the current solution.
In particular, the evaluation graph provides an effective way to keep track of how much impact each
location in the solution has on its respective objective value. The efficient update possibility also
allows to consider a larger amount of locations during the destroy procedure. The performance of
the LNS within COA was tested on artificial instances as well as instances derived from real-world
data and was compared to the original COA with its MILP-based optimization core. Results show
that at the cost of a slight deterioration of usually not more than one percent in the quality of the
solutions, the LNS can outperform the MILP w.r.t. to computation times by orders of magnitudes.
In future work it seems promising to also consider other metaheuristic approaches, such as an evo-
lutionary algorithm that uses the evaluation graph for efficiently recombining solutions. Moreover,
the GSPDP it is still a rather abstract problem formulation, and it would be important to extend
it as well as the solving approach to cover further relevant practical aspects such as capacities of
stations and time dependencies of users.

References

1. Jatschka, T., Rodemann, T., Raidl, G.R.: A cooperative optimization approach for distributing service
points in mobility applications. In Liefooghe, A., Paquete, L., eds.: Evolutionary Computation in
Combinatorial Optimization. Volume 11452 of LNCS., Springer (2019) 1–16

2. Jatschka, T., Raidl, G., Rodemann, T.: A general cooperative optimization approach for distributing
service points in mobility applications. Technical Report AC-TR-21-006, TU Wien, Vienna, Austria
(2021) submitted.

3. Jatschka, T., Rodemann, T., Raidl, G.R.: VNS and PBIG as optimization cores in a cooperative
optimization approach for distributing service points. In Moreno-Díaz, R., et al., eds.: Computer
Aided Systems Theory – EUROCAST 2019. Volume 12013 of LNCS., Springer (2020) 255–262

4. Meignan, D., Knust, S., Frayret, J.M., Pesant, G., Gaud, N.: A review and taxonomy of interactive
optimization methods in operations research. ACM Transactions on Interactive Intelligent Systems 5
(2015) 17:1–17:43

5. Sun, X., Gong, D., Jin, Y., Chen, S.: A new surrogate-assisted interactive genetic algorithm with
weighted semisupervised learning. IEEE Transactions on Cybernetics 43 (2013) 685–698

6. Sun, X.Y., Gong, D., Li, S.: Classification and regression-based surrogate model-assisted interactive
genetic algorithm with individual’s fuzzy fitness. In: Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, ACM (2009) 907–914

7. Llorà, X., Sastry, K., Goldberg, D.E., Gupta, A., Lakshmi, L.: Combating user fatigue in iGAs: Partial
ordering, support vector machines, and synthetic fitness. In: Proceedings of the 7th Annual Conference
on Genetic and Evolutionary Computation, ACM (2005) 1363–1370

8. Kim, H.S., Cho, S.B.: Application of interactive genetic algorithm to fashion design. Engineering
applications of artificial intelligence 13 (2000) 635–644

9. Dou, R., Zong, C., Nan, G.: Multi-stage interactive genetic algorithm for collaborative product cus-
tomization. Knowledge-Based Systems 92 (2016) 43–54

10. Jatschka, T., Rodemann, T., R. Raidl, G.: Exploiting similar behavior of users in a cooperative
optimization approach for distributing service points in mobility applications. In Nicosia, G., et al.,
eds.: Machine Learning, Optimization, and Data Science. Volume 11943 of LNCS., Springer (2019)
738–750

11. Bell, R.M., Koren, Y., Volinsky, C.: Matrix factorization techniques for recommender systems. Com-
puter 42 (2009) 30–37

12. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender systems. Foundations
and Trends in Human–Computer Interaction 4 (2011) 81–173

13. Frade, I., Ribeiro, A., Gonçalves, G., Antunes, A.: Optimal location of charging stations for electric
vehicles in a neighborhood in Lisbon, Portugal. Transportation Research Record: Journal of the
Transportation Research Board 2252 (2011) 91–98

14. Kloimüllner, C., Raidl, G.R.: Hierarchical clustering and multilevel refinement for the bike-sharing
station planning problem. In: International Conference on Learning and Intelligent Optimization.
Volume 10556 of LNCS., Springer (2017) 150–165

15. Gendreau, M., Potvin, J.Y., et al.: Handbook of Metaheuristics. Volume 3. Springer (2019)

