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Abstract. We investigate the problem of setting up battery swapping
stations for electric scooters in an urban area from a computational op-
timization point of view. For the considered electric scooters batteries
can be swapped quickly in a few simple steps. Depleted batteries are
recharged at these swapping stations and provided again to customers
once fully charged. Our goal is to identify optimal battery swapping sta-
tion locations as well as to determine their capacities appropriately in
order to cover a specified level of assumed demand at minimum cost. We
propose a Mixed Integer Linear Programming (MILP) formulation that
models the customer demand over time in a discretized fashion and also
considers battery charging times. Moreover, we propose a Large Neigh-
borhood Search (LNS) heuristic for addressing larger problem instances
for which the MILP model cannot practically be solved anymore. Proto-
type implementations are experimentally evaluated on artificial bench-
mark scenarios. Moreover, we also consider an instance derived from
real-world taxi and bus stop shelter data of Manhattan. With the MILP
model, instances with up to 1000 potential station locations and up to
2000 origin/destination demand pairs can be solved to near optimality,
while for larger instances the LNS is a highly promising choice.

Keywords: Facility location problem · e-mobility · battery swapping
stations · mixed integer linear programming · large neighborhood search

1 Introduction

Recharging the batteries of electric vehicles is usually a time-consuming process
that hinders the large-scale adoption of such vehicles, especially when their range
without reloading is too limited. An alternative possibility is to build electric
vehicles in which the batteries can be replaced with charged ones. Batteries for
electric scooters are compact enough to be replaced directly by any customer in
a few simple steps. Replacement batteries are provided in exchange for the used
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ones at swapping stations. Returned batteries are recharged at these stations,
and once fully charged, they are again provided for exchange.

We aim at investigating how to best distribute such battery swapping stations
in a given urban area and how many battery slots and corresponding batteries are
required at each station. Our optimization goal is to minimize the setup costs
for stations in dependence of their numbers of slots and required batteries in
order to cover a specified amount of user demand over multiple consecutive time
periods. It is assumed that customers who want to change batteries specify their
trip data (origin, destination, approximate time) online and are automatically
assigned to an appropriate station for the exchange (if one exists). This way, a
better utilization of the swapping stations can be achieved. However, such an
automated assignment also needs to consider a certain customer dropout as not
every customer is willing to travel to a predestined station if the detour is long.
We assume that all scooters in our system are homogeneous and therefore require
the same batteries and have the same range. Moreover, since the scooters are
operating in an urban area, it is safe to assume that a scooter’s range is usually
larger than the length of a customer’s single trip. Hence, we do not consider
multiple battery swapping stops for a single trip. In fact, a scooter battery
is typically exchanged after multiple trips only. We model this problem as a
mixed integer linear program (MILP). Smaller problem instances can be solved
by directly applying a state-of-the-art MILP solver. To address the aspect of
scalability to larger instances, where the MILP solver does not yield satisfactory
solutions anymore, a Large Neighborhood Search (LNS) heuristic is proposed.
The approaches are experimentally evaluated on artificial benchmark scenarios
as well as one instance derived from real-world yellow taxi trip data and bus
stop shelter station data of Manhattan.

Section 2 reviews relevant related work. Section 3 presents the problem for-
malization in the form of a MILP. The LNS heuristic is described in Section 4.
Section 5 explains how the benchmark scenarios are generated. Experimental re-
sults of the proposed solution methods are given in Section 6. Finally, Section 7
concludes this article and gives an outlook on future work.

2 Related Work

In general, our problem can be classified as a location-allocation optimization
problem [1]. Specifically, our problem is closely related to the capacitated mul-
tiple allocation Fixed Charge Facility Location Problem (FLP) [2] in which cus-
tomers need to be assigned to facilities in order to satisfy their demand while
minimizing costs for building facilities and serving customers. Moreover, the
customer demand can be split arbitrarily between multiple facilities. When allo-
cating customers to facilities from the perspective of the facility provider without
considering the customers’ preferences, one frequently has to expect a certain
amount of customer dropout which we model with the help of a decay function as
done in, e.g., [3–5]. Facility location problems with time dependent parameters



are also referred to as multi-period FLPs [2]. One example for a multi-period FLP
can be found in [6], where the dynamic maximal covering problem is considered.

Moreover, our problem exhibits similarities with the Capacitated Deviation-
Flow Refueling Location Model (CDFRLM) introduced in [7], which is an ex-
tension of the Flow Refueling Location Model (FRLM) introduced by Kuby and
Lim [8]. The FRLM aims to locate a fixed amount of refueling stations to maxi-
mize the total flow volume refueled. Several extensions of the FRLM have been
proposed in the last years, such as the capacitated FRLM [9] in which the de-
mand a station can satisfy is limited. The Deviation Flow Refueling Location
Model (DFRLM) [5] relaxes the FRLM by allowing customers to deviate from
their shortest O/D pair paths in order to go to a refueling station. Moreover,
it is assumed that the number of customers willing to take a deviation from
the shortest path is exponentially decreasing with the length of the deviation.
In [7], the Capacitated Deviation-Flow Refueling Location Model (CDFRLM) is
presented which also introduces station capacities to the DFRLM,

While there already exists work for setting up a system of battery swapping
stations, e.g., [10], [11], to the best of our knowledge, there is no previous work
that considers specifically the aspect of recharging and reusing returned batter-
ies and its implications concerning station capacities when optimizing station
locations and configurations.

3 The Multi-Period Battery Swapping Station Location
Problem

In this section we formalize the problem of setting up battery swapping stations
for electric scooters in an urban area. The Multi-Period Battery Swapping Station
Location Problem (MBSSLP), as we call it, minimizes the costs for setting up
battery swapping stations to satisfy a requested expected total demand over a
whole day. To be able to consider battery charging times, we consider a day in a
discretized fashion as a set of equally long consecutive time intervals given as a
set of the start times T of the intervals; w.l.o.g., we assume T = {1, . . . , tmax}.
We make the simplifying assumption that charging any battery always takes the
same time and only completely recharged batteries are provided to customers
again. Moreover, as trips in an urban environment are usually rather short, we
further assume that trips start and end in the same time interval.

Let G = (V,A,w) be a weighted directed graph with node set V correspond-
ing to all relevant geographic locations, arc set A ⊆ V × V , corresponding to
shortest paths between locations, and arc weights w : A→ R+ representing the
respective travel times. We assume battery swapping stations can be set up at
a subset of locations L = {1, . . . , n} ⊆ V . Moreover, each location l ∈ L has
associated a maximal number of possible battery charging slots sl ≥ 0, fixed
setup cost cl for setting up a station at this location, and building costs per slot
csl ≥ 0. Customer travel demands are given by origin-destination (O/D) pairs
Q ⊆ V × V ; let m = |Q|. The expected number of users that need to change
batteries on trip q ∈ Q during a time interval t ∈ T is denoted as dtq. The



minimal amount of expected total customer demand that shall be satisfied over
all time intervals in T is denoted by dmin. Moreover, we are given a maximum
detour length wdetour

max by which a feasible path including a battery swap for some
q ∈ Q may be longer than a shortest path from the origin to the destination
of q. Finally, the number of time intervals required for completely recharging a
battery is referred to as tc.

It is assumed that customers would always take a shortest possible path pq
for an O/D pair q = (u, v) ∈ Q, except when they have to make a detour for
swapping batteries. Let the set of arcs of a shortest path puv from node u ∈ V to
node v ∈ V be A(puv) ⊆ A and its length w(puv) =

∑
e∈A(puv)

w(e). Moreover,

we consider for an O/D pair q = (uv) ∈ Q a shortest path that includes a certain
location l ∈ L as intermediate stop and denote it by plq. The combination of a
shortest path from u to l and a shortest path from l to v forms such a shortest
path plq, and its length is w(plq) = w(pul) +w(plv). Let Lq be the set of locations

l ∈ L for which w(plq) ≤ w(pq) + wdetour
max for q ∈ Q, i.e., the locations that may

be used for battery swaps for O/D pair q.

A solution to the MBSSLP is primarily given by a pair of vectors x =
(xl)l∈L ∈ {0, 1}n and y = (yl)l∈L with yl ∈ {0, . . . , sl}, where xl = 1 indi-
cates that a swapping station is to be established at location l and yl is the
respective number of battery slots. Moreover, let atql denote the part of the ex-
pected demand of O/D pair q ∈ Q which we assign to a location l ∈ Lq during
time period t ∈ T . Similarly to [5], we consider the loss of users in dependence
of the detour length by applying a penalty coefficient g(q, l) to atql in order to

obtain the actually expected satisfied demand ãtql of O/D pair q at location l. As
suggested in [12, 5] we use the sigmoid function for this penalty coefficient, i.e.,

g(q, l) = 1/(1 +αeβ(w(plq)−w(pq))−δq ), where w(plq)−w(pq) is the detour distance
for going to the swapping station, δq is a reference distance, and α and β are
parameters determine the shape of the function.

Based on the variables x, y, a, and ã the MBSSLP can be expressed as the
following MILP.

min
∑
l∈L

(clxl + cslyl) (1)

xl · sl ≥ yl ∀l ∈ L (2)

ãtql = g(q, l) · atql ∀t ∈ T , q ∈ Q, l ∈ Lq (3)∑
l∈Lq

atql ≤ dtq ∀t ∈ T , q ∈ Q (4)

t∑
t′=max(1,t−tc)

∑
q∈Q|l∈Lq

ãt
′

ql ≤ yl ∀t ∈ T , l ∈ L (5)

tmax∑
t=1

∑
q∈Q

∑
l∈Lq

ãtql ≥ dmin (6)



xl ∈ {0, 1} ∀l ∈ L (7)

yl ∈ {0, . . . , sl} ∀l ∈ L (8)

0 ≤ atql, ãtql ≤ sl ∀t ∈ T , q ∈ Q, l ∈ Lq (9)

The goal of the objective function (1) is to find a feasible solution that minimizes
the setup costs for stations and their battery slots. Inequalities (2) ensure that
battery slots can only be allocated to a location l ∈ L if a station is opened
there. For better readability equalities (3) introduce variables ãtql by applying

the penalty coefficients g(q, l) to variables atql. Constraints (4) enforce that the

total demand assigned from an O/D pair q to locations does not exceed dtq for
all t ∈ T . Inequalities (5) ensure the required capacity yl at all locations over all
time intervals. Note that by using ãtql instead of atql in (5), we “overbook” stations
to consider the expected case, similarly as in [13]. Inequalities (5) also model that
swapped batteries can be reused after tc time intervals. The minimal satisfied
demand to be fulfilled over all time intervals is expressed by inequality (6).
Finally, the domains of the variables are given in (7)–(9).

4 Large Neighborhood Search

Large Neighborhood Search (LNS) [14] is a prominent metaheuristic for address-
ing difficult combinatorial optimization problems, which builds upon effective
lower-level heuristics. A basic LNS in essence follows a classical local search
framework, but usually much larger neighborhoods are considered in each itera-
tion. The key-idea is to search these neighborhoods not in a naive enumerative
way but to apply some “more clever” problem-specific procedure to solve the sub-
problem induced by each neighborhood in order to obtain the best or a promising
heuristic solution from the neighborhood. Frequently, LNS follows a destroy and
recreate scheme: A current incumbent solution is partially destroyed, typically
by freeing a subset of the decision variables and fixing the others to their current
values, and then repaired again by finding best or at least promising values for
the freed variables.

We first show how to construct an initial solution in a fast greedy way. Af-
terwards, the search and destroy operators of our LNS are described.

4.1 Greedy Construction Heuristic

The construction heuristic generates a solution station-wise. In each iteration
of the algorithm a new station is opened and demand is allocated to it. In
order to decide at which location to open a station next, we first calculate how
much additional demand a new station at each so far unused location could
satisfy w.r.t. the already opened stations. The location with the highest ratio of
additionally satisfied demand to corresponding building costs is then chosen for
opening the next station.

To calculate the amount of demand a station l ∈ L can satisfy, demand is
assigned from each q ∈ Q | l ∈ Lq for all time periods t ∈ T to l until either the



station’s maximum capacity is exhausted or all demand has been assigned. The
iteration order of Q is hereby decided by the decay function g such that O/D
pairs with lower decay value w.r.t. l are considered first.

The construction algorithm terminates when one of the following conditions
is met: at least dmin demand is satisfied, stations are opened at all possible
locations, or no more demand can be assigned to a station anymore.

4.2 Destroy and Repair Operators

Let (x, y, a) be a solution to the MBSSLP. Moreover, let L(x) ⊆ L be the set
of locations for which xl = 1. In a first step we create an undirected graph
GL = (V,E) where (u, v) ∈ E for u, v ∈ V if and only if {u, v} ⊆ Lq for at least
one O/D pair q ∈ Q.

We then derive a set of locations Lrepair that are considered for repairing via
an (r, k)-repair operator. The operator iteratively adds k random node sets to
Lrepair where each node set is generated by choosing a random vertex v ∈ V as
well as r random neighbors of v in GL (less if the degree of v is less than r).
Afterwards, k random locations from L(x) are added to Lrepair. Should, during
the generation of Lrepair, a randomly selected vertex already be in Lrepair the
repair operator chooses a new random vertex if possible. From Lrepair we derive
the set Ldestroy = Lrepair ∩ L(x), and close all stations at these locations.

When repairing the solution, one needs to consider how much more demand
needs to be satisfied in order to make the solution feasible again and how much
demand from which O/D pairs is still available to be assigned to a station. For
this purpose, letD′ = (d′

t
q)t∈T,q∈Q be the demand not yet assigned to any opened

location in the destroyed solution, i.e., d′
t
q = dtq −

∑
l∈L(x)\Ldestroy

atql. Moreover,
let dsat be the amount of total demand satisfied in the partially destroyed solu-
tion, i.e., dsat =

∑
l∈L(x)\Ldestroy

∑tmax

t=1

∑
q∈Q ã

t
ql. Hence, the goal of the repair

function is to assign at least d′min = dmin−dsat demand from D′ to the locations
L′ = Ldestroy ∪ Lrepair. For this purpose, let I(L′, D′, d′min) be the residual MB-
SSLP instance in which L, D = (dtq)t∈T,q∈Q, and dmin are replaced with L′,D′,
and d′min. We determine a promising heuristic solution to I(L′, D′, d′min) using a
relaxation of the MILP (1)–(9): Allowing the yl variables to be continuous, i.e.,
replacing (8) by 0 ≤ yl ≤ sl, ∀l ∈ L, while still keeping the xl variables integral
significantly speeds up the solving of the MILP. Obtained fractional values for
yl are finally rounded up to obtain a feasible solution to the original MBSSLP
again, assuming one exists.

Note that the described solving of the relaxation of the MILP followed by
rounding can also be used as a standalone heuristic for the original MBSSLP,
which is applicable as long as the instance is not too large. We refer to this
approach as y-Relaxed MILP Heuristic (RMHy). Additionally, we also considered
solving the full linear relaxation of the original MILP, i.e., the linear program
in which all xl as well as yl variables are continuous, and rounding up obtained
fractional xl as well as yl values to the next integers; we call this heuristic Linear
Programming Heuristic (LPH). In Section 6 we compare these approaches to each



other, showing that the RMHy heuristic is a better choice for repairing solutions
than the LPH heuristic.

5 Test Instances

As no real problem instances are available to us we created artificial test instances
with characteristics that might be expected in real scenarios. The creation of this
instances is described next. Moreover, we derived one problem instance from
real-world taxi trip and bus stop data of Manhattan as described in Section 5.2.

5.1 Random Instances for the MBSSLP

The instances are simplified scenarios modeled after a typical work day where
people go to work in the morning and return home in the evening. Battery
swapping stations as well as origin and destination locations of customers are
located within a square of length dξ

√
ne with ξ = 800. We generate a network

graph G = (V,E) following a similar procedure as used in [7, 15] by first sampling
|V | = 5n random points from the square and then constructing an euclidean
spanning tree w.r.t. V . Afterwards, n additional randomly chosen edges (u, v) ∈
V × V are added to E.

The set of potential battery swapping station locations L is generated by
choosing n random nodes from V . Costs for building a station are chosen uni-
formly at random from {50, . . . , 70} for each station. Costs for adding a battery
slot to a station are set to 40. Each battery swapping station can have at most
70 battery slots.

Origin and destination locations are chosen from a random subset V ′ ⊆ V
with |V ′| = min(m2 , 5n). To each v ∈ V ′ a random weight γv is assigned according
to a log-normal distribution with mean µ = ln(100) and standard deviation
σ = 0.5. Moreover, we also assign weights γq to each OD-pair q = (u, v) ∈
V ′ × V ′ such that γq corresponds to fPDF(w(pq), µ, σ) with fPDF being the
probability density function of a lognormal distribution with mean µ = ln(5000)
and standard deviation σ = 0.2. The total demand dtotalq of an O/D-pair q =

(u, v) is then calculated as dtotalq = γu · γv · γq. We then set Q to be the set of m

O/D-pairs q of V ′ × V ′ for which dtotalq is highest.
The swapping demand of each O/D-pair is distributed over 24 time periods,

T = {1, . . . , 24} and recharging a battery requires one time period, i.e., tc = 1.
We assume each customer to travel twice on his corresponding path, once in
the morning to get to work and once in the evening to travel back home, and
we assume that customers need to swap batteries once per trip counted here
as demand. The demand during each time period t ∈ T is determined by two
normal distributions Nmorning(8, 1) and Nevening(18, 2), respectively. From each
distribution 100 samples t are generated and transformed to valid integral values
by t := (dte mod tmax)+1. Afterwards, dtotalq is distributed over T according to
the frequency in which the time periods t ∈ T appear in the generated samples.



The maximal deviation distance of the users, wdetour
max , is set to ξ/2 and the

parameters of the distance decay function are set to α = 100, β = 0.1, and δq =
wdetour

max /10 for all q ∈ Q. Figure 1 shows the decay value g(q, l) in dependence of
the deviation distance w(plq)− w(pq) with the chosen parameterization.
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Fig. 1: Decay g(q, l) in dependence of the deviation distance w(plq)− w(pq).

Eight groups of test instances for different combinations of n and m have been
generated as described in Section 5, and each group consists of thirty instances.
In Section 6 we evaluate the instances with dmin being set either to 30% or to
80% of the total swapping demand.

5.2 Manhattan Instance

Next to artificial benchmark instances we also derived an instance from real-
world yellow taxi trip data and bus stop shelter data of Manhattan, which we
call here Manhattan instance. The underlying street network of the instance
corresponds to the street network graph of Manhattan provided by the Python
package OSMNX3. Origin/Destination pairs of our instance correspond to trips
between the taxi zones4 of Manhattan. The partitioning of Manhattan into taxi
zones is shown in Figure 3. For each taxi zone one random origin and one random
destination location were chosen from the set of nodes of the network graph that
are associated with the corresponding taxi zone.

The set of O/D-pairs and their corresponding demands have been derived
from the 2016 Yellow Taxi Trip Data5. The taxi data set was first preprocessed
and all trips with invalid data as well as trips made on a weekend have been
removed from the data set. Furthermore, we have also removed all trips which
do not start and end in Manhattan. From the preprocessed data set we then

3 https://github.com/gboeing/osmnx
4 https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
5 https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/k67s-

dv2t



extracted for each trip the pickup time, the pickup zone, the drop-off zone, as
well as the passenger count. Each pickup time was rounded down to the nearest
hour and afterwards an average daily passenger count for each triple (pickup
hour, pickup zone, drop-off zone) was calculated. In total, the final table contains
4498 unique pickup/drop-off zone pairs which also constitute the instance’s set
of O/D pairs Q. These passenger counts correspond to the hourly demands dtq
of the O/D pairs q ∈ Q. Figure 2 shows on the left how the total demand over
all O/D pairs is distributed over the time intervals. Figure 2 shows on the right
how the lengths of the O/D pairs are distributed. Similarly to our benchmark
instances, the trip lengths are approximately log-normal distributed with a mean
between ln(5000) and ln(6000). For the distance decay function and wdetour
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Fig. 2: Distributions of (a) demand and (b) trip length of the O/D pairs from
the real-world data based instance.

use the same parameters as for the artificial benchmark instances.
The set of potential battery swapping station locations L is derived from the

bus stop shelters 6 of Manhattan by selecting 500 locations randomly. Figure 3
shows the distribution of the stations.

As shown in Figure 2 left the demand at each hour is quite high. Therefore
we choose a capacity limit of 200 for each battery swapping station, The costs
for building a station as well for adding a battery charging slot are chosen as for
the artificial instances.

6 Computational Results

All algorithms were implemented in Julia7 1.4.2. All test runs have been executed
on an Intel Xeon E5-2640 v4 2.40GHz machine in single-threaded mode with a
time limit of thirty minutes. Gurobi8 8.1.0 was used for solving the MILPs.

First, we investigate the performance of the standalone MILP model given
by Equations (1)–(9) as well as the standalone RMHy and the LPH approach.

6 https://data.cityofnewyork.us/Transportation/Bus-Stop-Shelters/qafz-7myz
7 https://julialang.org/
8 https://www.gurobi.com/



Fig. 3: Taxi zones of Manhattan and potential locations for swapping stations.

Afterwards, the results of the LNS are discussed. Finally, in Section 6.3 we
present the results on the instance derived from real-world data for the LNS
approach as well as the MILP models. All instances are evaluated with dmin

being set either to 30% or to 80% of the total swapping demand. Hence, let
dmin[%] refer to dmin as percentage of the total swapping demand.

6.1 MILP Approaches

All MILP models were solved with Gurobi 8.1.0. In case no optimal solution was
found within the time limit, the solver returned the best found feasible solution
if it exists.

Table 1 shows a summary of the performance of the exact MILP approach,
RMHy and LPH for each instance group in our benchmark set. Column “gap[%]”
shows the average optimality gaps for each instance group, the median computa-
tion times are shown in column “time[s]”, and column “|L(x)|” lists the average
number of opened stations in the solutions. Note that the gaps listed for RMHy

and LPH are determined also w.r.t. the lower bounds obtained by the original
MILP.

Overall, with the exact MILP solving was aborted due to the time limit for
almost all instances. However, for each instance at least one feasible solution was
found. Instances with up to 1000 potential battery swapping stations and 2000
O/D-pairs can be solved by the MILP almost to optimality with a gap of less than
1%. For larger instances the optimality gaps deteriorate. Compared to the results
of the original MILP model, RMHy yields in general better average optimality
gaps for the three largest instance groups. The LPH approach was able to solve
all instances to optimality w.r.t. the linear relaxation of the original MILP in



Table 1: Results of the original MILP, the RMHy heuristic, and the LPH heuris-
tic.

(a) MILP results for dmin[%] = 30.

MILP RMHy LPH

gap[%] time[s] |L(x)| gap[%] time[s] |L(x)| gap[%] time[s] |L(x)|

250 500 0.05 1800 25 2.61 91 25 18.62 2 81
1000 0.02 1800 38 1.59 125 38 10.38 4 103

500 1000 0.03 1800 46 2.54 287 46 18.12 5 149
2000 0.08 1800 72 1.60 686 71 10.06 12 190

1000 2000 0.24 1800 89 2.54 1295 88 17.95 20 279
4000 2.69 1800 192 1.77 1800 129 9.78 47 346

2000 4000 9.09 1800 382 3.67 1800 166 18.01 81 532
8000 6.78 1800 531 8.60 1800 535 10.92 238 660

(b) Results for dmin[%] = 80.

MILP RMHy LPH

gap[%] time[s] |L(x)| gap[%] time[s] |L(x)| gap[%] time[s] |L(x)|

250 500 0.03 1800 47 1.09 47 47 4.98 2 86
1000 0.02 1800 72 0.32 536 72 2.47 5 121

500 1000 0.02 1800 84 1.01 464 84 4.85 7 158
2000 0.08 1800 138 0.31 1800 137 2.37 18 226

1000 2000 0.12 1800 160 1.04 1800 159 4.78 25 294
4000 1.92 1800 305 0.35 1800 260 2.33 64 425

2000 4000 3.64 1800 488 1.40 1800 316 4.81 95 559
8000 29.54 1800 1248 0.49 1800 515 2.31 236 815

less than 5 minutes on average. However, the derived feasible MBSSLP solutions
are significantly worse than the solutions generated by RMHy especially for
dmin[%] = 30. For instances nearly solved to optimally, we can also observe that
the number of opened stations in the solutions are as expected. RMHy solutions
require a marginally smaller number of opened stations than the MILP solutions.
Solutions generated from the LPH approach, on the other hand, require a much
higher number of opened stations than the other approaches. Hence, LPH does
not seem to be a good choice as repair procedure for the LNS.

Figure 4 provides a more detailed comparison of the optimality gaps of the
MILP, RMHy and LPH solutions. The figure shows boxplots of the optimality
gaps for each instance group and approach and confirms our previous observa-
tions. Note that for a better comparison between the approaches Figure 4b is
cut off and only shows optimality gaps up to 7% since solutions to the instances
with n = 1000,m = 4000 as well as n = 2000,m = 8000 generated by the MILP
feature optimality gaps up to 45%. For the largest instances with n ≥ 1000 and
m ≥ 4000, RMHy starts to produce better results than the MILP while LPH
does not seem to be able to compete with RMHy for any instance group. How-
ever, since RMHy requires solving a large MILP as well, this approach also has
its limits concerning scalability. Therefore, in the next section we investigate the
LNS that uses in each iteration RMHy to (re-)optimize only a comparably small
part of a solution.
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Fig. 4: Optimality gaps of the MILP, RMHy and LPH solutions.

6.2 Large Neighborhood Search

For the size parameters of the repair operator we consider here, after prelimi-
nary tests r = 4 and k ∈ {4, 14, 20}. These values are promising as the MILPs
corresponding to the repair subproblems can usually be solved to a small re-
maining optimality gap within seconds. As the LNS is a heuristic approach, it
also does not make much sense to solve the MILPs always to proven optimal-
ity; instead we terminated the MILP solver when a solution with an optimality
gap of at most 0.0005% has been reached. Each LNS run was terminated after
30 minutes. The results of the LNS are shown in Table 2. For each considered
minimum demand coverage dmin and each neighborhood size parameter k, the
average number of iterations “iter” and the average optimality gap “gap[%]”
(w.r.t. the lower bounds obtained by the original MILP).

Table 2: Results of the LNS.
dmin[%] = 30 dmin[%] = 80

k=4 k=14 k=20 k=4 k=14 k=20

n m gap[%] iter gap[%] iter gap[%] iter gap[%] iter gap[%] iter gap[%] iter

250 500 1.05 2549 1.62 385 1.70 217 0.57 3222 0.75 520 0.79 270
1000 0.83 1465 1.14 207 1.21 117 0.32 1843 0.23 263 0.25 117

500 1000 1.31 2094 1.64 418 1.83 207 0.72 2305 0.77 559 0.81 299
2000 1.06 982 1.22 230 1.29 132 0.48 1115 0.33 282 0.31 156

1000 2000 1.72 1177 1.95 399 2.05 241 1.00 1375 1.02 482 1.03 317
4000 1.41 604 1.44 203 1.45 132 0.78 606 0.46 214 0.42 128

2000 4000 2.58 698 2.64 292 2.69 211 1.59 720 1.46 331 1.39 251
8000 3.28 306 3.10 128 3.06 93 2.00 280 1.11 128 1.06 87

The table shows that, naturally, the LNS can perform less iterations the
larger k is. For instances with dmin[%] = 30 we can see that the solutions tend
to deteriorate as k is increasing. However, this is not the case for instances with
dmin[%] = 80 where we can see no such pattern. Moreover, as the instances
become larger, the LNS with k = 20 starts to outperform the LNS with k = 4.
Hence, for dmin[%] = 80 an LNS with even larger values for k might yield better
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Fig. 5: Comparison of the optimality gaps of the LNS solutions to the solutions
of the other approaches.

results in theory. However, the larger k is chosen the worse the scalability of the
LNS becomes as the MILP that needs to be solved in the repair procedure takes
longer to solve for larger values of k.

Figure 5 compares the optimality gaps of solutions obtained by the LNS to
the optimality gaps of the MILP and RMHy solutions. Note that for a better
comparison between the approaches Figure 5b is cut off and only shows optimal-
ity gaps up to 7%. For instances with dmin[%] = 30 we can see that the LNS is
on average on all instance groups able to produce better solutions than RMHy.
This particularly holds for the largest instance group, where the gap of RMHy

deteriorates to over 8% but the LNS’ gaps are still within 4%. For instances
with dmin[%] = 80, both, the LNS as well as RMHy, perform quite well with
gaps usually less than 2%. The LNS solutions are here slightly worse than the
RMHy solutions for larger instances.

Overall, we can say that the LNS works reasonably well over all considered
benchmark instances, and it is reasonable to expect it to scale much better to
even larger instances than RMHy or solving the original MILP directly.

6.3 Results on the Manhattan Instance

In this section we show how well the MILP approaches as well as the LNS
were able to deal with the real-world data based Manhattan instance. While the
size of n and m is similar to some of our benchmark instances, the Manhattan
instance is much harder to solve than our benchmark instances due to the shape
of Manhattan as well as the instance’s geographic distribution of demand.

Tables 3 and 4 show respective results. Each solution approach was applied
to the instance six times with different values for dmin[%]. For each approach the
tables lists the total costs of the solutions, the corresponding optimality gaps
(always w.r.t. the lower bounds obtained from the linear relaxation of the original
MILP), and the computation times in seconds. The direct MILP approach was
only able to find (non optimal) solutions for the lowest levels of dmin[%]. RMHy



and LPH could obtain feasible solutions for all cases except with dmin[%] = 60.
Concerning RMHy and LPH, one can see that, as one might expect, gaps of LPH
are usually significantly larger than those of RMHy, but LPH is much faster and
is, in contrast to RMHy, also able to yield a feasible solution for dmin[%] = 50.

Table 4 shows the results obtained by the LNS with r = 3 and different values
for k. Listed are total costs of the solutions, the corresponding optimality gaps (if
a lower bound is known from the MILP), and the number of destroy and repair
iterations. Most importantly, in contrast to the above MILP/LP approaches, the
LNS could also find a feasible solution for dmin[%] = 60. Moreover, except for
the lowest level of dmin[%] = 10, the LNS was able to find the best solutions. The
number of performed destroy and repair iterations stays approximately the same
for increasing levels of dmin[%]. However, as expected, the number of iterations
decreases the larger the value for k.

Table 3: LPH, RMHy, and MILP results for the Manhattan instance.

LPH RMHy MILP

dmin[%] costs gap[%] time[s] costs gap[%] time[s] costs gap[%] time[s]

10 155797 1.27 179 153886 0.04 1801 153886 0.04 1801
20 325775 2.90 140 321773 1.69 1801 320168 1.20 1801
40 692976 1.06 196 689600 0.57 1801 - - -
50 892035 0.77 704 - - - - - -
60 - - - - - - - - -

Table 4: LNS results for the Manhattan instance.

k = 4 k = 7 k = 14

dmin[%] costs gap[%] iter costs gap[%] iter costs gap[%] iter

10 153900 0.05 92 153890 0.05 19 154025 0.13 2
20 319769 1.07 87 319334 0.94 43 318939 0.82 19
40 688298 0.39 87 687769 0.31 42 687983 0.34 16
50 890049 0.55 83 888920 0.43 44 887926 0.32 24
60 1095190 - 89 1093898 - 43 1095097 - 15

7 Conclusions and Future Work

We presented the new Multi-Period Battery Swapping Station Location Problem
(MBSSLP) for distributing battery swapping stations in an urban area. On our
benchmark instances, directly solving the proposed MILP model is reasonable
for instances with up to 1000 stations and 2000 O/D-pairs, where solutions with
small gaps could be obtained. For larger instances solving the MILP model be-
comes quickly infeasible and heuristics need to be employed to find approximate
solutions. Relaxing the y variables and rounding obtained fractional values, i.e.,
our RMHy, is a viable approach by which significantly larger instances can be
solved reasonably well, nevertheless it also has its limits. We therefore proposed
an LNS that effectively utilizes RMHy and provides better scalability. This can
in particular be seen in the results for the real-world data based Manhattan
instance.

We remark that the proposed LNS still has room for improvement. For ex-
ample, different strategies for selecting the nodes to be removed or considered



for addition may be investigated. Moreover, adaptive mechanisms for choosing
among different destroy and re-create methods may be useful. Last but not least,
there are also alternative ways to address the scalability issue, for example by
approaches based on (hierarchical) clustering and iterative refinement.

In future work the MBSSLP model should also be further refined to reflect
real-world aspects in a more realistic way. For example, battery swapping sta-
tions are usually not extended slot by slot but by modules which consist of
multiple new battery slots. So far, we also have not yet considered a pricing
model for customers or costs for maintaining the battery swapping stations and
the batteries.
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