
Exploiting Similar Behavior of Users in a
Cooperative Optimization Approach for
Distributing Service Points in Mobility

Applications?

Thomas Jatschka1, Tobias Rodemann2, and Günther R. Raidl1

1 Institute of Logic and Computation, TU Wien, Austria
{tjatschk,raidl}@ac.tuwien.ac.at

2 Honda Research Institute Europe, Germany
tobias.rodemann@honda-ri.de

Abstract. In this contribution we address scaling issues of our previ-
ously proposed cooperative optimization approach (COA) for distribut-
ing service points for mobility applications in a geographical area. COA
is an iterative algorithm that solves the problem by combining an opti-
mization component with user interaction on a large scale and a machine
learning component that provides the objective function for the optimiza-
tion. In each iteration candidate solutions are generated, suggested to the
future potential users for evaluation, the machine learning component is
trained on the basis of the collected feedback, and the optimization is
used to find a new solution fitting the needs of the users as good as
possible. While the former concept study showed promising results for
small instances, the number of users that could be considered was quite
limited and each user had to evaluate a relatively large number of can-
didate solutions. Here we deviate from this previous approach by using
matrix factorization as central machine learning component in order to
identify and exploit similar needs of many users. Furthermore, instead of
the black-box optimization we are now able to apply mixed integer lin-
ear programming to obtain a best solution in each iteration. While being
still a conceptual study, experimental simulation results clearly indicate
that the approach works in the intended way and scales better to more
users.

Keywords: Cooperative optimization · facility location problem · ma-
trix factorization

1 Introduction

There exists a vast amount of literature regarding setting up service points for
mobility applications such as bike sharing systems [1] or charging stations for

? Thomas Jatschka acknowledges the financial support from Honda Research Institute
Europe.

electric vehicles [2]. A fundamental ingredient for optimizing the locations of
service points is the distribution of existing customer demand to be potentially
fulfilled in the considered geographical area. An estimation of this existing de-
mand distribution is usually obtained upfront by performing customer surveys,
considering demographic data, information on the street network and public
transport, and not that seldom including human intuition and political motives.
Unfortunately, this estimation is frequently imprecise and a system built on such
assumptions might not perform as well as it was hoped for. Therefore, we have
recently proposed the concept of a cooperative optimization algorithm (COA)
[3, 4], which, instead of estimating customer demand upfront, directly incorpo-
rates potential users in the optimization process by iteratively suggesting them
solution scenarios and asking for feedback. Based on this user feedback a ma-
chine learning (ML) model is trained, which is used as evaluation function by
an optimization component. This optimization core is responsible for generating
new promising solution candidates, from which scenarios to be presented to the
users are again derived. A major bottleneck in this previous approach is the large
ML model consisting of many smaller components—one per considered user and
potential service point location— which need to be trained in each iteration, and
the used black-box optimization at the core.

In this contribution, we aim to improve the scalability of COA by replacing
the ML model as well as the optimization core in a way that allows to exploit
similar behavior of users. We refine the user interaction of COA by assuming
that each potential user has certain use cases for the system, such as going to
work, to a recreational facility, or shopping. The demand of these individual
cases can be satisfied by different service points to different degrees, depending
on the customer’s preferences about the locations of these service points. It is
unlikely that two customers have the same needs in all respect, i.e., they have
the very same use cases with the same demands; however, given a sufficiently
large number of users, it is safe to assume that some customers share some use
cases and then have similar opinions on the suitability of service point locations
w.r.t. such a use case. Our goal is to exploit these similarities using collaborative
filtering techniques, in particular matrix factorization [5], to predict a customer’s
preferences of service point locations.

Concerning the optimization core in COA, we investigated in [4] a variable
neighborhood search and a population-based iterated greedy algorithm, but both
act as black-box methods, which do not exploit any structural features except of
the ML model used to evaluate candidate solutions. Their scalability to larger
instances therefore also is rather limited. Using now the matrix factorization
based ML model allows to formulate the optimization problem as mixed integer
linear program, which we are able to solve sufficiently fast to proven optimality.

This article is structured as follows. In Section 2 related work is discussed,
while Section 3 formalizes the considered service point location problem. Sec-
tion 4 presents our new approach. In Section 5 we experimentally evaluate the
new COA variant based on a user simulation and discuss obtained results. Sec-
tion 5.2 concludes this work with an outlook on future work.

2 Related Work

The Service Point Distribution Problem (SPDP) we consider here can generally
be classified as a variant of the uncapacitated Facility Location Problem (FLP)
[6]. For a survey on FLPs see [7]. Although the SPDP is quite generally phrased,
we specifically have mobility applications in mind, especially the distribution
of charging stations for electric vehicles. While there exists a vast amount of
literature for setting up such systems, see e.g. [8–11], to the best of our knowledge
all existing work essentially assumes customer demand to be estimated upfront.
In our approach we substantially deviate from this traditional way of solving
the SPDP by resorting to an interactive approach. Potential future customers
are incorporated in the optimization process as an integral part by iteratively
providing feedback on meaningfully constructed solution scenarios. In this way
we learn user demands on-the-fly and may avoid errors due to unreliable a priori
estimations. For a survey on interactive optimization algorithms see [12].

As we cannot expect a user to evaluate hundreds of solutions, a common way
to unburden the users is to train a surrogate function [13] with the user feedback
which is then used to evaluate intermediate solutions. In this contribution we
use matrix factorization [5] as ML model to realize the surrogate function. Ma-
trix factorization is a collaborative filtering technique which is frequently used
in recommender systems [14]. The idea of collaborative filtering is to make rec-
ommendations for users based on the preferences of similar users, which means
in our context to estimate some user demand for a use case by the feedback
already provided by other users for similar use cases.

Matrix factorization is based on singular value decomposition which decom-
poses a matrix into two smaller matrices. Unknown values can then be estimated
my multiplying the corresponding rows and columns of the decomposed matrices
[14]. The two most popular techniques for decomposing a matrix with missing
values are stochastic gradient descent (SGD) [15] and alternating least squares
(ALS) [16]. ALS is usually only preferred over SGD for parallelization [5].

3 The Service Point Distribution Problem

The SPDP was originally defined in [3] as follows. We are given a set of locations
V = {1, . . . , n} at which service points may be built and a set of potential users
U = {1 . . . ,m}. The fixed costs for setting up a service point at location v ∈ V
are zfix

v ≥ 0, and this service point’s maintenance over a defined time period is
supposed to induce variable costs zvar

v ≥ 0. The total construction costs must
not exceed a maximum budget B > 0. Erected service stations may satisfy an
arbitrary amount of customer demand, and for each unit of satisfied customer
demand a prize p > 0 is earned.

A solution to the SPDP is a binary incidence vector x = (xv)v∈V , where
xv = 1 indicates that a service point is to be set up at location v. A solution x
is feasible if its total fixed costs do not exceed the maximum budget B, i.e.,

zfix(x) =
∑
v∈V

zfix
v xv ≤ B. (1)

The objective function f(x) of the problem is not explicitly given but only
implicitly by allowing solutions to be evaluated by the users. In the original
problem definition a user provides as feedback the estimated amount of demand
(e.g., per week) that would be satisfied for him at each service point included in
the solution x.

We now refine this user feedback by asking users already initially to specify
use cases by a name and the demand each of them induces. Hence, we are also
given for each user u ∈ U the set of use cases Eu and the demand Du,e for each
use case e ∈ u. Note, however, that we do not know which users share which use
cases, their names have no meaning to us. The number of service points required
to satisfy a use case e in general depends on the underlying application scenario.
In our experiments in Section 5, we only consider scenarios where a use case
requires one suitable service point to be satisfied, such as setting up charging
stations for electric vehicles. Our approach, however, is in principle more general.
For example when setting up rental stations for a bike sharing system, a use case
will typically require two suitable service stations, one close to the origin and
one close to the destination of a trip.

The objective is to find a feasible solution that maximizes the expected prizes
earned for satisfied customer demands reduced by the variable costs for main-
taining the service points, which is in our case

f(x) = q ·
∑
u∈U

∑
e∈Eu

Du,e ·max
v∈V

w(u, e, v)xv −
∑
v∈V

zvar
v xv, (2)

where function w(u, e, v) ∈ [0, 1] denotes the suitability of a service point at
location v to satisfy the needs of user u concerning his use case e. This objective
function assumes that a user chooses for a use case always a location that is
most suitable. The objective function f(x) further interprets the determined
suitability value for each use case as probability of the actual usage of the system
to satisfy the demand Du,e.

Note that w(u, e, v) is not known upfront, but respective values can only
be partially obtained from the users by providing them sample scenarios for
evaluation. The evaluation of scenarios is discussed in more detail in Section 4.2.

As we are in general only able to obtain a small portion of all relevant values
for w(u, e, v) from the users, we exploit user behavior similarities and replace
w(u, e, v) by an approximation w̃(u, e, v), yielding the surrogate objective func-
tion f̃(x). This approximation will be realized by a ML model.

4 Cooperative Optimization Algorithm

The basic procedure of our COA remains almost the same as presented in [3],
i.e., the framework consists of an evaluation component (EC) (containing the
ML model), an optimization component (OC), a feedback component (FC), and
a solution management component (SMC). Figure 1 illustrates the communi-
cation between the components, and Algorithm 1 shows the main procedure in
pseudo-code. We now use, however, different algorithms in these components as
explained in the following.

SMC

OC

FC EC

Users

optimized
solutions

initial
solutions

optimized solutions

user
feedback

solutions
to present
to users

user feedback data for learning

(surrogate) obj. function

surrogate
obj. function

Fig. 1: Components of the COA framework and their interaction.

Algorithm 1: Basic Framework

Input : an instance of the SPDP
Output: a solution x = (xv)v∈V ∈ {0, 1}n

1: while no termination criterion satisfied do
2: Feedback Component:
3: for u ∈ U do
4: for e ∈ Eu do
5: determine set of scenarios Su,e to be evaluated by user u;
6: let user u evaluate Su,e;
7: update SMC with ratings obtained from Su,e;

8: end for

9: end for

10: Evaluation Component:

11: train ML model with ratings in R, yielding surrogate obj. func. f̃(x);

12: re-evaluate all solutions stored in the SMC with new f̃(x);

13: Optimization Component:

14: xOC ← generate optimal solution w.r.t. the EC’s f̃(x);

15: update SMC with xOC;

16: end while
17: return overall best found solution x̃∗;

4.1 Solution Management Component

The SMC stores and manages so far considered solutions and evaluations
by the users. This includes in particular the set of tuples R = {(u, e, v) |
w(u, e, v) is known from user feedback, u ∈ U, e ∈ Eu, v ∈ V } with the re-
spective ratings w(u, e, v). Moreover, the SMC also maintains the set X of all
solutions obtained from the OC over all major iterations with their current surro-
gate objective values and, if available, their exact objective values. The current
best solution is the solution in X with the highest surrogate objective value,
denoted by x̃∗. With V (u, e) the SMC also keeps track of the set of all loca-
tions v ∈ V for which (u, e, v) ∈ R, with u ∈ U, e ∈ Eu. Last but not least,
through the FC we are also able to obtain upper bounds on ratings w(u, e, v),

with v ∈ V, u ∈ U, e ∈ Eu, as explained in the next section. These upper bounds
are stored in the SMC as wUB(u, e, v).

4.2 Feedback Component

The FC generates location scenarios for users to evaluate. Similar to solutions
these scenarios are binary incidence vectors s = (s1, . . . , sn) ∈ {0, 1}n, however
they are not restricted by the budget constraint (1) and can therefore contain
an arbitrary number of service points. In each COA iteration we present a set
of scenarios to each user u ∈ U for each of his use cases Eu for evaluation. If a
user u selects in a scenario s for a use case e a suitable service point location v,
he grades it with a rating w(u, e, v) ∈ (0, 1]. If a user u decides that for a use
case e there is no suitable service point location in scenario s, he indicates this
by selecting no service point location, and we then know that w(u, e, v) = 0 for
all v ∈ V (s). Note that the user is required to select a best suited service point
in the scenario if not all service points are unsuitable.

The obtained ratings are used in the EC for training the surrogate function.
Moreover, the obtained ratings also serve as upper bounds for unknown ratings.
As each user selects the best suited service point v in the presented scenario
x w.r.t. a use case e, it must hold that w(u, e, v) ≥ w(u, e, k) ∀k ∈ x. Hence,
w(u, e, v) serves as upper bound wUB(u, e, k) of w(u, e, k). Moreover, wUB(u, e, k)
is updated in the SMC whenever a lower upper bound is obtained.

We use two approaches to generate scenarios that are presented to a user
u ∈ U w.r.t. a use case e ∈ Eu. First, a scenario sV = {v ∈ V | w(u, e, v) 6∈ R}
containing all locations that have not been rated yet w.r.t. u and e is presented
to the user. Then, the user is also asked to evaluate the scenario s∗ = {v ∈ x̃∗ |
w(u, e, v) 6∈ R} containing all locations from the current best solutions that have
not been rated yet w.r.t. u and e.

A main goal is to keep the number of presented scenarios per use case as low
as possible. For this purpose, we exploit that users may show similar preferences
for single use cases, hence, not every user needs to evaluate every location for a
use case. Therefore, the scenario sV is presented to u with a probability of 90%
and s∗ is shown to u with a probability of 20%.

4.3 Evaluation Component

The EC provides the means for evaluating solutions, in particular also within
the OC. The real objective function f(x), cf. (2), which contains many unknown
user ratings, is approximated by the surrogate objective function f̃(x) that is
defined in accordance to f(x) but makes use of estimated ratings

w̃(u, e, v) =

{
w(u, e, v) if (u, e, v) ∈ R
min{wUB(u, e, v), g̃(u, e, v)} else,

(3)

where g̃(u, e, v) is an approximate rating of location v for user u w.r.t. use case e.

We use matrix factorization [5] in order to predict unknown ratings. Given
matrix W = (W(u,e),v)u∈U,e∈Eu,v∈V with W(u,e),v = w(u, e, v) for (u, e, v) ∈
R and the other values unknown, matrix factorization identifies for each row
(u, e), u ∈ U, e ∈ Ue a vector ξu,e ∈ Rφ and for each column v ∈ V a vector
νv ∈ Rφ, respectively, with a space of features F = {1, . . . , φ}. The number
of features φ is hereby a parameter that is chosen, e.g., in dependence of an
estimation of the overall number of different use cases. An unknown value in W
is approximated via the dot product W(u,e),v = ξu,e

ᵀνv, and g̃(u, e, v) = W(u,e),v.
The vectors ξu,e and νv are learned by minimizing the loss function

min
∑

(u,e,v)∈R

(
W(u,e),v − (µ+ bu,e + bv + ξu,e

ᵀνv)
)2

+λ(‖ξu,e‖2+‖νv‖2+b2u,e+b2v), (4)

where λ is a regularization parameter which is set to 0.001 in our experiments,
bu,e ∈ R and bv ∈ R are biases for users and locations, respectively, and µ is the
average over all known values in R. For this minimization, stochastic gradient
descent is used. In the first iteration of COA, the weights of the model are
initialized randomly, while in later iterations, the model is re-trained starting
with the values from the previous iteration.

4.4 Optimization Component

The OC solves the following mixed integer programming (MIP) formulation to
determine an optimal solution w.r.t. the current surrogate objective function
with ratings w̃(u, e, v) provided by the EC. We use a binary variable xv to
indicate whether or not a location v ∈ V is in the solution. Continuous variable
yu,e ∈ [0, 1] represents the expected degree to which a use case e ∈ Eu is satisfied
for user u ∈ U . Binary variable zu,e,v ∈ {0, 1} indicates whether or not a user u
would use a service point at location v to satisfy the demand of a use case e ∈ Eu.

max q ·
∑
u∈U

∑
e∈Eu

Du,e yu,e −
∑
v∈V

zvar
v xv (5)

yu,e ≤
∑
v∈V

w̃(u, e, v) · zu,e,v ∀u ∈ U, e ∈ Eu (6)

zu,e,v ≤ xv ∀u ∈ U, v ∈ V, e ∈ Eu (7)∑
v∈V

zu,e,v ≤ 1 ∀u ∈ U, e ∈ Eu (8)∑
v∈V

cfix
v,1 xv ≤ B (9)

xv ∈ {0, 1} ∀v ∈ V (10)

yu,e ∈ [0, 1] ∀u ∈ U, e ∈ Eu (11)

zu,e,v ∈ {0, 1} ∀u ∈ U, e ∈ Eu, v ∈ V (12)

Inequalities (6) determine the expected degrees of satisfying the use cases
in dependence of the user ratings and the location selection variables. Inequali-
ties (7) express that a location can only satisfy demand if it contains a service

point. According to (8), the demand of a service point for a user can only be
satisfied at a single location. Finally, inequality (9) ensures that a solution does
not exceed the budget.

5 Experimental Evaluation

As this contribution is only a conceptual study, we do not test with real users
but simulate the user interaction in an idealized manner in certain benchmark
scenarios. For this purpose we adopt the user simulation from [3] and extend it
to our new needs.

5.1 Benchmark Scenarios

The n possible locations for service stations are randomly distributed in the
Euclidean plane with coordinates coord(v), v ∈ V chosen uniformly from the
grid {0, . . . , L− 1}2, with L = d10

√
ne. The fixed costs cv as well as the variable

costs zv for setting up a service station at each location v ∈ V are uniformly
chosen at random from {50, . . . , 100}. The budget is assumed to be B = d7.5 ·ne
so that about 10% of the stations with average costs can be set up.

The number of use cases for each user u ∈ U is chosen randomly according to
a shifted Poisson distribution with offset one and expected value three. Each of
these use cases e ∈ Eu is associated with an individual demand Du,e chosen at
random from {5,. . . ,50} and a particular geographic location ru,e ∈ {0, . . . , L−
1}2. In order to model similarities in the users’ use cases, these locations are
generated in the following dependent way. We first select α attraction points
A with uniform random coordinates from {0, . . . , L − 1}2. Then, each use case
location is derived by choosing one of these attraction points (ax, ay) ∈ A and
adding an individual deviation, i.e.,

ru,e = (bN (ax, σv)c, bN (ay, σv)c), (13)

where N (·, ·) denotes a random value sampled from a normal distribution with
the respectively given mean value and standard deviation. Note that coordinates
beyond the grid are re-sampled.

A service point location v ∈ V is generally considered suitable for the use
case e if its Euclidean distance to the use case location does not exceed 15.

In this case v receives a positive rating that decreases exponentially with the
distance but is also perturbed by a Gaussian noise:

w(u, e, v) = N (e−||ru,e−coord(v)||/10, σr). (14)

If w(u, e, v) 6∈ (0, 1], the random sampling is repeated in order to obtain a valid
rating.

In our experiments we consider benchmark scenarios with n = 100 locations
and m ∈ {500, 1000, 1500} users. For each combination we derive three groups
of 30 independent instances with different parameters α ∈ {10, 17, 25}, σv ∈
{5, 7, 10}, and σr ∈ {0.03, 0.1, 0.15}. All benchmark instances are available at
https://www.ac.tuwien.ac.at/research/problem-instances#spdp.

5.2 Computational Results

The whole approach was implemented in Python 3.7. The matrix factorization
has been realized with Keras 2.2.4 and TensorFlow 1.13.1 without GPU support.
The number of features φ of the matrix factorization was set in accordance to the
number of attraction points α of the test instances. At each iteration, the model
was trained with the SGD optimizer to minimize loss function (4). Each training
was done over 300 epochs with a batch size of 32, or until the loss function did
not improve within 10 epochs. We use 20% of the training data as validation
data with which the loss of the model is calculated.

The MIP is solved with Gurobi 8.1.0. All test runs have been executed on
an Intel Xeon E5-2640 v4 2.40GHz machine in single-threaded mode. COA was
terminated after five major iterations or when a CPU-time limit of 7200s has
been reached and returned as the overall best solution x̃∗, i.e., the solution with
the highest surrogate objective value at the end.

We compare our results to optimal solutions obtained by solving the MIP
in the OC with exact values w(u, e, v) provided by the user simulation, and
with our previous COA variant from [3], here denoted as COA0. In order make
the comparison to COA0 as fair as possible, the same termination criteria were
applied, but otherwise all parameters of COA0 were set as described in [3].

Table 1 shows the obtained results. Each line lists, for COA as well as COA0,
the average number of iterations nit, the average optimality gap %-gap between
the objective value of x̃∗ and the optimal solution, the average percentage error

of the surrogate function values of the final solutions %-∆f̃ , with %-∆f̃ = 100%·
|f̃(x̃∗)−f(x̃∗)|/f(x̃∗), the average ratio of locations the users had to rate during
the course of the algorithm per use case and their relevant locations per use case
ρ, and the median computation times in seconds t[s].

The results clearly show that COA is able to converge to very reasonable
solutions with small remaining optimality gaps of typically less than 2.3% within
only five major iterations. For %-∆f̃ , we can observe that the percentage errors
decrease as the number of users increases. This is especially evident for the
hardest instance groups C, F, and I where %-∆f̃ decreases from 8.17% to 4.42%
on average. This documents that, given a sufficient amount of users, the surrogate
function is able to approximate the real objective function at the end well in the
relevant parts w.r.t. the returned solution. The table also shows that not all runs
have been completed with five iterations, i.e., COA was aborted due to the time
limit for 9 instances from the instance groups H and I. Column ρ of COA also
shows that in general users do not need to rate more locations than their total
number of relevant locations for each of their use cases.

COA0 is significantly outperformed by COA in all aspects. COA is able to
generate better solutions in less time for all instance groups. In many cases
COA0 exceeded the time limit of 7200s already in the first or second iteration
which explains the large difference in performance between COA and COA0. It
is not quite easy to compare ρ between COA and COA0 since COA0 was not
able to perform as many iterations as COA. However, in general we can observe

Table 1: Average results of COA and COA0.

COA COA0

Inst. m α σv σr φ nit %-gap %-∆f̃ ρ t[s] nit %-gap %-∆f̃ ρ t[s]

A 500 10 5 0.03 10 5.00 0.35 2.28 0.86 751 1.97 16.40 28.07 0.82 7172
B 500 17 7 0.10 17 5.00 1.18 5.19 0.88 888 2.43 18.37 21.44 1.24 7168
C 500 25 10 0.15 25 5.00 2.23 8.17 0.84 1033 2.07 14.61 26.54 0.89 7190
D 1000 10 5 0.03 10 5.00 0.39 1.94 0.84 1540 2.90 16.93 22.63 1.53 7180
E 1000 17 7 0.10 17 5.00 1.61 4.73 0.83 2407 2.30 13.34 21.91 1.07 7181
F 1000 25 10 0.15 25 5.00 1.52 5.72 0.86 3383 2.53 16.98 20.86 1.32 7191
G 1500 10 5 0.03 10 5.00 0.26 1.73 0.85 2579 2.83 14.78 14.81 1.50 7189
H 1500 17 7 0.10 17 4.90 1.18 3.81 0.82 4478 1.77 17.78 28.88 0.65 7179
I 1500 25 10 0.15 25 4.73 1.63 4.42 0.80 5605 1.97 18.08 26.13 0.83 7189

A B C D E F G H I
instance group

0
2
4
6
8

%
-g

ap

A B C D E F G H I
instance group

0
6

12
18
24

%
-

f

Fig. 2: Distributions of the optimality gaps and surrogate percentage errors of
the best found solutions.

that users are required to evaluate significantly more locations with COA0 than
with COA.

In Figure 2 we take a closer look at the distributions of the optimality gaps
of the obtained solutions and how well our surrogate function is able to learn
the behavior of the users. Considering a fixed number of users, the obtained
optimality gaps deteriorate as the complexity of the instances (i.e., α, σv, σr)
increases. Interestingly, increasing the number of users does not have a substan-
tial impact on the optimality gaps when the complexity parameters stay the

same. For %-∆f̃ , however, we can observe that the medians of the percentage
errors slightly improve as the number of users increases. The large outliers of
the instances groups H and I are from runs that have been aborted due to the
time limit.

Generally, Figure 2 indicates that the new approach scales now much better
to larger numbers of users, and instead of the users, the number of actually
different use cases is now what matters primarily. Thus, the similarity among
users is indeed effectively exploited.

In Figure 3 we analyze the computation times of the individual components
of COA. Note that we omitted the computation times of the FC in Figure 3 as
they are negligible in comparison to the computation times of the EC and the

A B C D E F G H I
instance group

1000
3000
5000

tim
e[

s]

tEC[s] tOC[s]

Fig. 3: Computation times of COA grouped by its framework components.

OC. We see that the number of users has the strongest impact on the overall
times. However, with an increasing complexity of the test instances, the OC
quickly becomes the main bottleneck of our COA, as it generally requires more
computation time than the other two components together.

While for COA0 the EC was a major bottleneck, it now scales very well with
an increasing number of users w.r.t. our benchmark instances. Hence, matrix
factorization turns out to be an excellent choice as underlying model of our
surrogate function.

6 Conclusion and Future Work

In this contribution we have made major progress in improving the scalability
of our previously presented COA [3] by using a matrix factorization model as
our new surrogate function in the EC. Due to this change we were also able
to abandon our previous black box optimization model of the OC and use a
MIP instead. The new surrogate function as well as the new optimization core
resulted in a major speedup and improvement in the scalability of our COA.
Moreover, our new approach also requires a significantly lower number of user
interactions.

In future work we aim at improving the approach further by refining in
particular the feedback component to further reduce the number of user evalua-
tions that are necessary to obtain reliable results. Moreover, for larger instances
solving the MIP becomes the major bottleneck, as we have seen. Hence, a nat-
ural step to further improve the scalability is to replace the exact MIP with a
reasonable heuristic approach. The loss of the proven optimality does not seri-
ously matter in our application as enough other uncertainties remain. Last but
not least, remember that COA was designed with more general applications in
mind, and one of our next steps will be to apply it to more complex scenarios
like bike sharing station planning, where we have to deal with trips instead of
single locations in the use cases.

References

1. Kloimüllner, C., Raidl, G.R.: Hierarchical clustering and multilevel refinement for
the bike-sharing station planning problem. In: International Conference on Learn-

ing and Intelligent Optimization. LNCS, vol. 10556, pp. 150–165. Springer (2017)
2. Frade, I., Ribeiro, A., Gonçalves, G., Antunes, A.: Optimal Location of Charging

Stations for Electric Vehicles in a Neighborhood in Lisbon, Portugal. Transporta-
tion Research Record: Journal of the Transportation Research Board 2252, 91–98
(2011)

3. Jatschka, T., Rodemann, T., Raidl, G.R.: A cooperative optimization approach
for distributing service points in mobility applications. In: Liefooghe, A., Paquete,
L. (eds.) Evolutionary Computation in Combinatorial Optimization. LNCS, vol.
11452, pp. 1–16. Springer (2019)

4. Jatschka, T., Rodemann, T., Raidl, G.R.: VNS and PBIG as optimization cores
in a cooperative optimization approach for distributing service points. In: Com-
puter Aided Systems Theory – EUROCAST 2019”. LNCS, Springer (to appear),
https://www.ac.tuwien.ac.at/files/pub/jatschka 19a.pdf

5. Bell, R.M., Koren, Y., Volinsky, C.: Matrix factorization techniques for recom-
mender systems. Computer 42(08), 30–37 (2009)

6. Cornuéjols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility location
problem. In: Mirchandani, P.B., Francis, R.L. (eds.) Discrete Location Theory, pp.
119–171. Wiley, NY, USA (1990)

7. Farahani, R.Z., Hekmatfar, M.: Facility Location: Concepts, Models, Algorithms
and Case Studies. Springer (2009)

8. Awasthi, A., Venkitusamy, K., Padmanaban, S., Selvamuthukumaran, R., Blaab-
jerg, F., Singh, A.K.: Optimal planning of electric vehicle charging station at the
distribution system using hybrid optimization algorithm. Energy 133, 70–78 (2017)

9. Cavadas, J., Homem, G.d.A.C., Gouveia, J.: A MIP model for locating slow-
charging stations for electric vehicles in urban areas accounting for driver tours.
Transportation Research Part E: Logistics and Transportation Review 75, 188–201
(2015)

10. Chung, S.H., Kwon, C.: Multi-period planning for electric car charging station
locations: A case of korean expressways. European Journal of Operational Research
242(2), 677–687 (2015)

11. Kameda, H., Mukai, N.: Optimization of charging station placement by using taxi
probe data for on-demand electrical bus system. In: König, A., Dengel, A., Hinkel-
mann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based and Intelli-
gent Information and Engineering Systems. pp. 606–615. Springer (2011)

12. Meignan, D., Knust, S., Frayret, J.M., Pesant, G., Gaud, N.: A review and taxon-
omy of interactive optimization methods in operations research. ACM Transactions
on Interactive Intelligent Systems 5(3), 17:1–17:43 (2015)

13. Koziel, S., Ciaurri, D.E., Leifsson, L.: Surrogate-based methods. In: Computational
Optimization, Methods and Algorithms. Studies in Computational Intelligence,
vol. 356, pp. 33–59. Springer (2011)

14. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender
systems. Foundations and Trends in Human–Computer Interaction 4(2), 81–173
(2011)

15. Robbins, H., Monro, S.: A stochastic approximation method. The Annals of Math-
ematical Statistics 22(3), 400–407 (1951)

16. Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neigh-
borhood interpolation weights. In: Seventh IEEE International Conference on Data
Mining. pp. 43–52 (2007)

