
VNS and PBIG as Optimization Cores in a
Cooperative Optimization Approach for

Distributing Service Points?

Thomas Jatschka1, Tobias Rodemann2, and Günther R. Raidl1

1 Institute of Logic and Computation, TU Wien, Austria
{tjatschk,raidl}@ac.tuwien.ac.at

2 Honda Research Institute Europe, Germany
tobias.rodemann@honda-ri.de

Abstract. We present a cooperative optimization approach for distribut-
ing service points in a geographical area with the example of setting up
charging stations for electric vehicles. Instead of estimating customer de-
mands upfront, customers are incorporated directly into the optimization
process. The method iteratively generates solution candidates that are
presented to customers for evaluation. In order to reduce the number of
solutions presented to the customers, a surrogate objective function is
trained by the customers’ feedback. This surrogate function is then used
by an optimization core for generating new improved solutions. In this
paper we investigate two different metaheuristics, a variable neighbor-
hood search (VNS) and a population based iterated greedy algorithm
(PBIG) as core of the optimization. The metaheuristics are compared
in experiments using artificial benchmark scenarios with idealized simu-
lated user behavior.

Keywords: Cooperative optimization · facility location problem ·meta-
heuristics.

1 Introduction

Usually, locations for setting up charging stations for electric vehicles are opti-
mized by some algorithm w.r.t. previously estimated customer demand. How-
ever, estimating the demand of a customer upfront is challenging, as this task
is usually based on various uncertain data and uncertain assumptions about the
behavior of customers. Among other things, customer demand may be fulfilled in
alternative ways that cannot all be predicted in advance. Sometimes, customers
might not even completely be aware themselves at which conditions their de-
mands can be fulfilled best until they can see an actual system configuration. At
this point, however, it is usually too late to make any further impactful changes.

Therefore, we propose in [4] a Cooperative Optimization Approach (COA) for
solving this problem by incorporating potential customers into a combined data

? Thomas Jatschka acknowledges the financial support from Honda Research Institute
Europe.



acquisition and optimization process. The method iteratively generates solutions
that are presented to the customers for evaluation. Based on the customer’s
feedback a surrogate objective function is trained and used by an optimization
core to generate new, improved solutions. This process is iterated on a large scale
with many potential customers and several rounds until a satisfactory solution
is reached.

In this contribution, we focus in particular on the optimization part of our
approach. A proper configuration of the used optimization core is vital for the
cooperative approach to work. We investigate a variable neighborhood search
(VNS) and a population based iterated greedy algorithm (PBIG) for this pur-
pose. First, however, we formally introduce the problem to be solved – the Service
Point Distribution Problem (SPDP).

2 The Service Point Distribution Problem

While this paper considers the distribution of charging stations for electric ve-
hicles as particular example, we define the underlying problem we consider –
the SPDP– in a more general way to be independent of the actual application
scenario. In the SPDP we are given a set of locations V at which service points
may be built and a set of users U for which the service points are built. The fixed
costs for setting up a service point at location v ∈ V are cv ≥ 0, and this service
point’s maintenance over a defined time period is supposed to induce variable
costs zv ≥ 0. The total construction costs must not exceed a maximum budget
B > 0. Erected service stations may satisfy customer demand, and for each unit
of satisfied customer demand a prize p > 0 is earned.

A solution to the SPDP is given by a binary incidence vector x = (xv)v∈V ,
where xv = 1 indicates that a service point is to be set up at location v.

The objective is to find a feasible solution that maximizes the prizes earned
for satisfied customer demands reduced by the variable costs for maintaining the
service points

f(x) = p ·
∑
u∈U

∑
v∈V

d(u, v, x)−
∑
v∈V

zvxv, (1)

where d(u, v, x) specifies the demand of user u ∈ U fulfilled at location v ∈ V
in solution x. The problem is incompletely specified in the sense that we do not
know how to calculate d(u, v, x). The function can only be evaluated by pre-
senting the solution x to user u and collecting the user’s feedback. Clearly, the
number of candidate solutions that are evaluated in this interactive way must
be kept low, as we cannot confront each user with hundreds of evaluation re-
quests. Hence, we additionally make use of a surrogate function d̃(u, v, x) trained
by obtained user feedback, which is actually used by the optimization core for
evaluating solutions.



SMC

OC

FC EC

Fig. 1: The cycle of the COA framework. Users evaluate candidate solutions
provided by the FC. The feedback is used to train a surrogate function in the
EC which is used by the OC to find new optimized solutions.

3 Related Work

The SPDP is a variant of the uncapacitated Facility Location Problem (uFLP)
[3]. The uFLP generally deals with selecting a subset from a set of potential
facility sites in order to serve a set of demand points w.r.t. some optimization
goal subject to a set of constraints.

With the rise of electric vehicles, the problem of finding optimal locations for
charging stations has gained increased attention recently. There already exists a
large number of studies concerning this topic. Moreover, these studies all have to
address the problem of how to determine the demands of potential customers.
Chen et al. [2] derive the customer demand for charging electric vehicles by
using parking demand gained from a travel survey. In [5] charging stations for
an on-demand bus system are located using taxi probe data of Tokyo.

For a survey on interactive optimization algorithms see [9]. Continuous user
interactions will eventually result in user exhaustion [7], negatively influencing
the reliability of the obtained feedback. A way to unburden the users is to use
a surrogate-based approach. Surrogate models are typically used as a proxy of
functions which are either unknown or extremely time consuming to compute
[6].

4 Cooperative Optimization Approach (COA)

In this section, we summarize the COA as proposed in [4], which consists of: an
evaluation component (EC), an optimization core (OC), a feedback component
(FC), and a solution management component (SMC), see also Figure 1.

The SMC stores and manages solutions and all associated data such as user
feedback or surrogate objective values. All framework components can access
the SMC.

The FC provides the interface to the users and is responsible for deriving an
individual set of solutions for each user that is then presented to the user for
evaluation. Solutions are derived from the so far best found solutions stored in



the SMC with the purpose of identifying new relevant locations for a user and
determining the relationship between a user’s relevant locations. Each user gives
feedback to the proposed solutions by stating how much of the user’s demand
would actually be satisfied at which locations, i.e., a user u ∈ U returns the values
d(u, v, x) for all v ∈ V w.r.t. a solution x. Weaker preferences of locations are
hereby expressed by smaller values.

Once the feedback is obtained from the users, the EC builds a surrogate
function d̃(u, v, x) based on machine learning (ML) models gu,v for each pair
(u, v) ∈ U × Vu, where Vu is the set of so far identified relevant locations of
user u ∈ U , i.e., the set of locations for which a user has expressed a positive
demand at least once. Each gu,v gets as input a binary incidence vector x =
(xw)w∈Vu,w 6=v, with xw = 1 indicating that a service point exists at location w.
Initially, each gu,v starts out as a linear regression model. However, once the mean

squared error (MSE) of d̃(u, v, x) exceeds some threshold τ = 0.075, the model
is upgraded to a perceptron. The model can be further upgraded to a neural
network with a single hidden layer and initially two neurons in the hidden layer.
Afterwards, whenever the MSE of d̃(u, v, x) exceeds τ , an additional neuron is
added to the hidden layer of the neural network until a maximum number of
neurons is reached.

In the last step of a COA iteration, new, improved solutions are generated
in the OC using the surrogate function for evaluating solutions. The OC is
implemented as a black-box optimization model and returns one or multiple
close-to-optimal solutions w.r.t. d̃. In the next section we investigate two different
methaheuristics serving as core optimization of COA.

4.1 VNS and PBIG as core optimization of COA

A proper choice of optimization algorithm and corresponding configuration is
vital for the COA to work. The optimization algorithm should not only provide
close-to-optimal solutions but should also not need too many candidate solution
evaluations as they are rather time-expensive and the OC needs to be repeatedly
performed. For this purpose we consider two different metaheuristics – a VNS
and a PBIG – as OC.

The VNS follows the classical scheme from [10]. An initial solution is gen-
erated via the randomized construction heuristic that considers all locations in
random order and sets up a station at a location as long as the budget is not
exceeded.

Our local search uses an exchange & complete neighborhood following a
first improvement strategy. In the first step of the neighborhood, a location
in the solution is replaced by an unused location, i.e., a location at which no
service point exists. As this exchange might decrease the current budget of the
solution, we afterwards add further unused locations in a random order to the
solution as long as the budget allows it. The k-th shaking removes k randomly
selected locations from the solution and then iteratively adds unused locations
in a uniform random order until no more locations can be added. Note that the
VNS considers only feasible solutions.



For the general principles of the PBIG we refer to [1]. An initial population
of solutions is generated via the same randomized construction used for gen-
erating the initial solution of the VNS. Then, in each major iteration a new
solution is derived from each solution in the current population by applying a
destroy & recreate operation. The best solutions from the joint set of original and
newly derived solutions are accepted as new population for the next iteration.
Our destroy & recreate operation first removes a number of selected locations
from the solution and then again iteratively adds unused locations in a uniform
random order, such that the solution stays feasible and no more stations can be
added. We reuse the exchange & complete neighborhood as well as the shak-
ings operators of the VNS as destroy & recreate operations of the PBIG. Hence,
the PBIG also considers only feasible solutions. Note that the PBIG returns its
final population while the VNS only returns a single solution as result of the
optimization.

5 Experimental Evaluation

As previously mentioned, the COA is tested in a proof-of-concept manner on ar-
tificial benchmark scenarios using an idealized simulation of all user interaction.

The primary parameters for our benchmark scenarios are the number of
potential locations for service stations n and the number of users m, and we
consider here the combinations n = 50, 60, . . . , 100 with m = 50 and n = 50
with m = 50, 60, . . . , 100. The n locations correspond to points in the Euclidean
plane with coordinates chosen uniformly at random from a grid with height and
width d10

√
ne. The fixed costs cv as well as the variable costs zv for setting up

a service station at each location v ∈ V are uniformly chosen at random from
{50, . . . , 100}. The budget is chosen in such a way that about 10% of the service
points can be set up on average.

Each user has a set of use case locations distributed in the same grid as
the potential service point locations V . The number of use case locations is
determined by a shifted Poisson distribution with offset one and expected value
three. The use case locations themselves are determined with a set of randomly
chosen attraction points, i.e., the closer a location is to an attraction point, the
more likely the location is to be chosen as a use case location. Each use case
location is associated with a maximal demand that can be partially fulfilled
by service points within a maximal walking distance. The satisfied demand is
calculated by a distance decay function. It is assumed that a user always chooses
the service point closest to a use case location, i.e., the service point that can
satisfy most of the use case location’s demand.

For each combination of n and m 30 independent scenarios were created.
They are available at www.ac.tuwien.ac.at/research/problem-instances/#spdp.
The instances were also specifically designed with the ability in mind to cal-
culate proven optimal solutions to which we will compare the solutions of our
framework.



Table 1: VNS vs. PBIG.
VNS PBIG

n m %-gap σ%-gap nbest
it t[s] %-gap σ%-gap nbest

it t[s]

50 50 0.26 0.48 29 3 0.28 1.22 696 8
50 60 0.20 0.61 35 4 0.31 1.36 656 9
50 70 0.00 0.02 32 4 0.10 0.42 634 8
50 80 0.31 0.74 31 4 0.09 0.28 631 9
50 90 0.14 0.42 32 4 0.37 1.01 648 11
50 100 0.37 1.03 33 4 0.01 0.07 706 15
60 50 0.25 0.64 43 4 0.07 0.34 862 9
70 50 0.34 0.62 54 5 0.28 0.57 1113 17
80 50 0.43 0.54 56 6 0.24 0.51 1389 23
90 50 0.30 0.42 64 7 0.19 0.60 1628 30
100 50 0.37 0.47 65 9 0.42 0.82 1754 39

Table 2: COA[VNS] vs. COA[PBIG].
COA[VNS] COA[PBIG]

n m %-gap σ%-gap nit t[s] %-gap σ%-gap nit t[s]

50 50 0.28 0.70 11 2259 0.20 0.45 10 2662
50 60 0.73 1.27 9 2343 0.06 0.18 9 2643
50 70 0.14 0.37 10 3107 0.09 0.44 10 3764
50 80 0.19 0.36 10 3588 0.04 0.15 10 3919
50 90 0.42 0.68 10 3596 0.19 0.71 9 4516
50 100 0.12 0.26 10 4391 0.02 0.08 10 4995
60 50 0.48 0.72 11 2460 0.05 0.11 10 2944
70 50 0.46 0.66 11 2533 0.13 0.43 10 3658
80 50 0.22 0.58 12 2864 0.11 0.28 11 4810
90 50 0.37 0.52 11 2910 0.26 0.65 11 5435
100 50 0.49 1.02 12 3460 0.07 0.15 11 7197

5.1 Computational Results

The OC was implemented in C++, compiled with GNU G++ 5.5.0, while the
remaining components of the framework were realized in Python 3.7. All test
runs have been executed on an Intel Xeon E5-2640 v4 with 2.40GHz machine.

Initially, we determined the parameter configurations of standalone variants
of the VNS and the PBIG, in which it is naively assumed that users can evaluate
all intermediate solutions. The parameters have been determined with irace [8]
on a separate set of benchmark instances and have been tuned with the goal to
minimize the number of iterations it takes the metaheuristics to generate near
optimal solutions, i.e., solutions with an optimality gap of 0.5%. For the VNS we
obtained to best use shaking neighborhoods k ∈ {1, 2}, for PBIG k ∈ {1, . . . , 10}
with a population size of 100. The termination criteria of the metaheuristics have
been chosen according to the number of iterations that were necessary on av-
erage to find the close-to-optimal solutions, which was 60 iterations without
improvement for the VNS, and 300 iterations (or three generations) without im-
provement for PBIG. Table 1 shows a comparison of the standalone variants of
the metaheuristics using above parameter configurations. The table shows for
each instance group with n locations and m users the average optimality gap
(%-gap) and their corresponding standard deviation (σ%-gap) of the metaheuris-
tics. Moreover, the table also shows the iteration in which the best solution has

been found on average (nbestit ) and the median of the total computation times
(t[s]).

PBIG produces slightly better optimality gaps but also needs significantly
more time than the VNS. Moreover, it takes PBIG much more iterations to find
the best solution as opposed to the VNS.

Next, we tested COA in conjunction with the VNS (denoted as COA[VNS])
and the PBIG (denoted as COA[PBIG]), respectively, as OC. Further tests have
shown that COA[PBIG] yields slightly better results when using the so far best
found solutions stored in the SMC as initial population. In case there are not
enough solutions available, the remaining solutions are generated by the ran-
domized construction heuristic. The other parameters remain unchanged. The
COA terminated after five iterations without improvement or after two hours.
The comparison can be seen in Table 2. The table shows again the average



50
/5

0

50
/6

0

50
/7

0

50
/8

0

50
/9

0

50
/1

00

60
/5

0

70
/5

0

80
/5

0

90
/5

0

10
0/

50

n/m

0

2000

4000

6000
tim

e[
s]

COA[VNS]
Computation Times

tEC[s] tOC[s]

50
/5

0

50
/6

0

50
/7

0

50
/8

0

50
/9

0

50
/1

00

60
/5

0

70
/5

0

80
/5

0

90
/5

0

10
0/

50

n/m

0

2000

4000

6000

tim
e[

s]

COA[PBIG]
Computation Times

tEC[s] tOC[s]

Fig. 2: Median computation times of the COA components for each instance set

optimality gaps (%-gap) and their corresponding standard deviations (σ%-gap).
Moreover, the table also shows the average number of COA iterations (nit) and
the median of the total computation times (t[s]). While the optimality gaps in
Table 1 are somewhat comparable between the VNS and the PBIG, COA[PBIG]
clearly outperforms COA[VNS] w.r.t. the optimality gaps. This difference can
be explained by the number of solutions returned by the VNS and the PBIG.
While the OC of COA[VNS] only returns one solution in every COA iteration,
the OC of COA[PBIG] returns 100 solutions in every iteration. A higher number
of solutions in the SMC results in more diversified solutions not only in the FC
but also in the EC. Hence, the accuracy of the surrogate function increases w.r.t.
larger areas of the search space, whereas for less diversified training data the ac-
curacy of the surrogate function usually only increases in a small part of the
search space. Moreover, the high number of shakings in the PBIG additionally
increases the diversity of the solutions returned by the OC. Note however that
COA[PBIG] does not scale so well w.r.t. computation times, especially for an
increasing number of locations. The reason for this is the generous termination
criterion of the PBIG in comparison to the VNS, since it takes the PBIG much
more time to find a near optimal solution.

Finally, Figure 2 shows the computation times of the individual components
of the COA framework. The total computation time is primarily split between
the EC and the OC while the FC has barely any impact. Moreover, the figure
also shows that the computation time of the EC mainly depends on the number
of users, while the computation time of the OC primarily scales with the num-
ber of service point locations. Finally, Figure 2 also shows large differences in
computation times between COA[VNS] and COA[PBIG].

6 Conclusion and Future Work

We considered a Cooperative Optimization Approach (COA) for distributing ser-
vice points within a geographical area in mobility applications under incomplete
information. Instead of estimating user demands upfront, our method directly
incorporates potential customers in the optimization process. In this contribu-
tion we specifically focused on the optimization part of COA. We could show
that for our instances a variable neighborhood search (VNS) as well as a pop-
ulation based iterated greedy algorithm (PBIG) reliably generate near optimal



solutions in short time. However, within COA, not quality matters: PBIG is
naturally able to return multiple different high quality solutions that can all
be further exploited. While COA[PBIG] has the edge over COA[VNS] w.r.t. to
optimality gaps, COA[PBIG] does not scale as well as COA[VNS] for instances
with a large number of service point locations.

In future work, we aim at adapting COA to also work for larger instances
in a reasonable of time. Alternative models will be considered for the surrogate
function, and we plan to change the optimization core (OC) from a black-box
optimization to a white-box or at least a gray box model.

References

1. Bouamama, S., Blum, C., Boukerram, A.: A population-based iterated greedy al-
gorithm for the minimum weight vertex cover problem. Applied Soft Computing
12(6), 1632–1639 (2012)

2. Chen, T., Kockelman, K.M., Khan, M.: The electric vehicle charging station lo-
cation problem: A parking-based assignment method for Seattle. In: 92nd Annual
Meeting of the Transportation Research Board in Washington DC (2013)

3. Cornuéjols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility location
problem. In: Mirchandani, P.B., Francis, R.L. (eds.) Discrete Location Theory, pp.
119–171. John Wiley and Sons, Inc, New York, NY, USA (1990)

4. Jatschka, T., Rodemann, T., Raidl, G.R.: A cooperative optimization approach
for distributing service points in mobility applications. In: Liefooghe, A., Paquete,
L. (eds.) Evolutionary Computation in Combinatorial Optimization. LNCS, vol.
11452, pp. 1–16. Springer (2019). https://doi.org/10.1007/978-3-030-16711-0

5. Kameda, H., Mukai, N.: Optimization of charging station placement by using taxi
probe data for on-demand electrical bus system. In: König, A., Dengel, A., Hinkel-
mann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) Knowledge-Based and Intelli-
gent Information and Engineering Systems. pp. 606–615. Springer (2011)

6. Koziel, S., Ciaurri, D.E., Leifsson, L.: Surrogate-based methods. In: Computational
Optimization, Methods and Algorithms. Studies in Computational Intelligence,
vol. 356, pp. 33–59. Springer (2011)

7. Llorà, X., Sastry, K., Goldberg, D.E., Gupta, A., Lakshmi, L.: Combating user
fatigue in iGAs: Partial ordering, support vector machines, and synthetic fitness.
In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Com-
putation. pp. 1363–1370. GECCO ’05, ACM, New York, NY, USA (2005)

8. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.:
The irace package: Iterated racing for automatic algorithm configuration. Opera-
tions Research Perspectives 3, 43–58 (2016)

9. Meignan, D., Knust, S., Frayret, J.M., Pesant, G., Gaud, N.: A review and taxon-
omy of interactive optimization methods in operations research. ACM Transactions
on Interactive Intelligent Systems 5(3), 17:1–17:43 (2015)

10. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers & Opera-
tions Research 24(11), 1097–1100 (1997)


