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Abstract. We investigate a variant of the facility location problem con-
cerning the optimal distribution of service points with incomplete infor-
mation within a certain geographical area. The application scenario is
generic in principle, but we have the setup of charging stations for elec-
tric vehicles or rental stations for bicycles or cars in mind. When plan-
ning such systems, estimating under which conditions which customer
demand can be fulfilled is fundamental in order to evaluate and optimize
possible solutions. In this paper we present a cooperative optimization
approach for distributing service points that incorporates potential cus-
tomers not only in the data acquisition but also during the optimization
process. A surrogate objective function is used to evaluate intermediate
solutions during the optimization. The quality of this surrogate objec-
tive function is iteratively improved by learning from the feedback of
potential users given to candidate solutions. For the actual optimization
we consider a population based iterated greedy algorithm. Experiments
on artificial benchmark scenarios with idealized simulated user behavior
show the learning capabilities of the surrogate objective function and the
effectiveness of the optimization.

Keywords: Cooperative optimization · facility location problem · sur-
rogate objective function · metaheuristics.

1 Introduction

Identifying optimal locations for setting up charging stations for electric vehicles
(EVs), rental stations in public bike or car sharing systems, or, more generally
some kind of service stations for mobility applications is always a challenging
problem when planning such systems. Usually, the goal is to place stations at lo-
cations with high customer demand in order to maximize the usage and revenue
of such systems. However, estimating the customer demand that can possibly
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be fulfilled is challenging. Demographic data is usually interlinked with geo-
graphic information, data on public transport, the street network, knowledge on
manifold special locations, etc. Additionally, surveys of potential customers are
performed. Customer demand information determined in such ways typically is
vague, and not uncommonly a system built on such assumptions is not as effec-
tive as originally hoped for due to major deviations in reality. The actual usage
of a service system by a user will in general depend not only on the construc-
tion of service points on a few specific locations but more globally on non-trivial
relationships of the user’s necessities and preferences in conjunction with larger
parts of the whole service system. For example in the case of charging stations
for EVs, consider the situation that a station is not built in close proximity to
a location a user is interested in, e.g., the user’s place of work. Intuitively, one
might say that the user’s demand cannot be fulfilled. However, such a conclusion
may be too naive. It might easily be the case that some other location is covered
that provides a reasonable alternative for the user, e.g., by additionally using
some public transport. Thus, there might be alternatives for fulfilling demand
that cannot all be foreseen or exactly pre-specified by potential users.

Hence, a crucial assumption that makes the situation challenging and ap-
pears to be particularly valid in the context of the above mentioned mobility
applications is the following: We are in general not able to obtain complete
information from potential users about the conditions under which how much
demand will be fulfilled, even when assuming absolutely rational users, neglect-
ing uncertainty, and ignoring aspects arising from competition from many users
on possibly scarce resources.

To overcome this problem, we investigate a cooperative optimization ap-
proach. More generally, interactive optimization approaches incorporate poten-
tial users on a large scale and more tightly into the data acquisition as well as
the optimization process; for a review see [1]. We confront the potential users
with carefully selected candidate solutions and ask how these suit the needs.
Obtained feedback is used to incrementally gain more knowledge on how much
demand may be fulfilled under which conditions. The optimization core relies
on a surrogate objective function that approximates the real fulfilled demand.
It is based on machine learning models that are trained by the user feedback.
Having obtained a new so far best solution from the optimization core, new,
more promising candidate solutions can be derived and again be presented to
the users. The process is iterated on a large scale with many potential users and
several rounds until a satisfactory solution is reached.

We test the approach in a proof-of-concept manner on artificial benchmark
scenarios simulating user behavior in an idealized fashion. Results document the
learning capabilities of the surrogate objective function and the effectiveness of
the optimization.

The paper is structured as follows. In Section 2 the Service Point Distribu-
tion Problem (SPDP) is formally introduced. Section 3 discusses related work.
Section 4 introduces the cooperative optimization approach (COA) for solving



the SPDP. Finally, in Section 5 we experimentally evaluate the COA and present
obtained results.

2 The Service Point Distribution Problem

In this section we specify the problem we consider more formally. In the
Service Point Distribution Problem (SPDP) we are given a set of locations
V = {1, . . . , n} at which service points may be built and a set of potential users
U = {1 . . . ,m}. The fixed costs for setting up a service point at location v ∈ V
are cv ≥ 0, and this service point’s maintenance over a defined time period is
supposed to induce variable costs zv ≥ 0. The total construction costs must not
exceed a maximum budget B > 0. Erected service stations may satisfy customer
demand, and for each unit of satisfied customer demand a prize p > 0 is earned.
We remark that for simplicity we do not consider here any capacity restrictions
at service points. A solution to the SPDP is given by a binary incidence vector
x = (xv)v∈V , where xv = 1 indicates that a service point is to be set up at
location v.

The problem is incompletely specified in the sense that we do not have a
function for calculating the fulfilled demand for a candidate solution upfront.
Instead, we assume here that we are only able to evaluate solutions “exactly”
by presenting them to the potential customers U and collecting their feedback.
These user evaluations are denoted by d(u, v, x) which specifies the demand of
user u ∈ U fulfilled at location v ∈ V in solution x. If a service station is not
ideal for a user but somewhat acceptable for him to be used and there are no
better alternatives in solution x, this is modeled by a correspondingly reduced
fulfilled demand value d(u, v, x); i.e., the user is less likely to use this service
point and therefore the expected fulfilled demand is lower. Clearly, the number
of candidate solutions that are evaluated in this interactive way are a major
concern. We cannot confront each user with hundreds or thousands of evaluation
requests. Instead, we carefully have to select the solutions to be evaluated by
each user in an individual fashion, avoiding redundancies as far as possible.

Naturally, the demand fulfilled at any location must always be non-negative
and can only be positive when a service point is set up there, i.e.,

d(u, v, x) ≥ 0, xv = 0 → d(u, v, x) = 0 u ∈ U, v ∈ V. (1)

A solution x is feasible if its total fixed costs do not exceed the maximum bud-
get B, i.e.,

c(x) =
∑
v∈V

cvxv ≤ B. (2)

The objective is to find a feasible solution that maximizes the prizes earned for
satisfied customer demands reduced by the variable costs for maintaining the
service points

f(x) = p ·
∑
u∈U

∑
v∈V

d(u, v, x)−
∑
v∈V

zvxv. (3)



3 Related Work

The SPDP can be classified as a variant of the Facility Location Problem (FLP).
In the FLP a set of potential facility sites and a set of demand points is given.
The task is to select a subset of these sites in order to serve the demand points
w.r.t. some optimization goal subject to a set of constraints. For a survey on
FLPs see [2], for a more comprehensive book on location theory see [3]. More
specifically, our SPDP is closely related to the uncapacitated FLP [4] in which
each facility can satisfy an arbitrary amount of demand – with the substantial
difference that in our case user demands are not known upfront but must be
learned via user interaction.

The problem of optimizing the distribution of charging stations for EVs has
gained increased attention recently. An essential question of contributions con-
cerning this topic always is how to determine potential customer demands. Chen
et al. [5] substitute charging demand with parking demand in order to identify
good locations for public charging stations. The parking demand is derived from
parking information of a travel survey. In [6], a maximal covering model [7] for
identifying charging stations is proposed. The demands are estimated using re-
gression analysis based on surveys on the number of cars per household, the
average travel distance of cars, the estimated range of an EV etc. In [8], the
charging demand of a location is modeled as the expected duration of charging
all drivers that need to charge their EV at this location. The number of drivers
in a location is derived from a mobility survey as part of a case study of the
city of Coimbra, Portugal. In [9] charging stations for an on-demand bus system
are located using taxi probe data of Tokyo. While the focus in this paper lies
on distributing charging stations for EVs, our approach is a general framework
capable of planning service point based systems of any kind, such as bike or car
sharing systems [10].

Opposite to the aforementioned contributions, we assume to have essentially
no knowledge on customer demand in advance but aim at obtaining this infor-
mation on the fly in an interactive way by integrating potential customers in
the optimization process. More generally, in interactive optimization algorithms,
humans are typically used to evaluate the quality of solutions; e.g., in [11] an
interactive genetic algorithm for designing dresses is proposed. Instead of explic-
itly defining a fitness function, the fitness of a solution is decided by a user. For
a survey on interactive optimization algorithms see [1]. A major disadvantage of
interactive algorithms is that their performance strongly depends on the qual-
ity of the feedback given by the interactors. Continuous user interactions will
eventually result in user exhaustion [12], negatively influencing the reliability
of the obtained feedback. Therefore, user interactions should not only be con-
sidered time consuming but users also need to be treated as a scarce resource
– the interaction should be kept to a required minimum. A common way to
overcome this problem is to combine interactive optimization algorithms with a
surrogate-based approach [13, 14]. Surrogate models are typically used as a proxy
of functions which are either unknown or extremely time consuming to compute.
Classic candidates for such surrogates are machine learning (ML) models. In [15]



a survey of popular surrogate functions is provided, ranging from polynomial re-
gression [16] to more sophisticated techniques such as neural networks [17] and
support vector regression [18].

Our approach also exhibits similarities to so-called interactive ML ap-
proaches. Such methods are typically used when the number of training sam-
ples is not sufficient to properly train an ML model. To compensate this prob-
lem, a human is used as a guide to reduce the search space during the learning
phase [19]. One way to reduce the search space is to reduce the number of fea-
tures considered during the learning phase [20]. Our approach can be considered
as an interactive ML algorithm in the sense that the ML models in use are
continuously improved and corrected through user evaluations.

4 Cooperative Optimization Algorithm

The proposed solution framework, which we call Cooperative Optimization Al-
gorithm (COA), consists of the following interacting components: an evaluation
component (EC), an optimization component (OC), a feedback component (FC),
and a solution management component (SMC).

The FC is responsible for selecting or deriving for each user individual candi-
date solutions that are then presented to him for evaluation. A user u ∈ U gives
feedback to a proposed solution x by stating how much of his demand would ac-
tually be satisfied at which locations, i.e., he returns the values d(u, v, x), v ∈ V .

The EC provides a function for evaluating candidate solutions. This in par-
ticular also includes intermediate solutions that are not directly evaluated by the
users. Should for a solution x the values d(u, v, x) be known for each user u ∈ U
and all locations {v ∈ V | xv = 1}, we can calculate the exact objective value
f(x) according to (3). Otherwise, we resort to a surrogate objective function
f̃(x) based on an ML model that estimates the real objective value based on
the information gained from the users’ feedback so far. The respective learning
mechanism also is part of the EC.

One call of the OC solves the SPDP by using the EC’s current surrogate
objective function for evaluating any intermediate solutions and yields one or
more optimal or close-to-optimal solutions w.r.t. the current state of the EC.
Note that the surrogate objective function never changes during one call of the
OC. Instead, the OC is called repeatedly in each major iteration of the framework
after having obtained new user feedback and re-trained the EC.

Finally, the SMC efficiently stores and manages information on all candidate
solutions that are relevant for more than one of the above components and in
particular also the solutions for which users have given feedback.

Figure 1 illustrates the communication between the components, and Algo-
rithm 1 shows how the components of the framework interact with each other
within the main program. The algorithm starts with the FC by presenting each
user the solution in which all locations are selected, i.e., xv = 1, v ∈ V . The
information acquired in this way over all users serves as initial training data for
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Fig. 1: Components of the framework and their interaction. The framework con-
sists of the feedback component (FC), the evaluation component (EC), the op-
timization component (OC), and the solution management component (SMC).
Users can interact with the framework via the FC.

the EC. The following subsections describe each component’s functionality in
more detail.

4.1 Solution Management Component

As the number of locations |V | is usually much larger than the number of service
stations that can actually be built in a feasible solution, candidate solutions in
the SMC are compactly represented by the subset of locations chosen for setting
up service points. Let us denote this set of locations by s(x) = {v ∈ V | xv = 1}.

Next to storing all considered candidate solutions, the SMC also maintains
for each solution the users for which the exact fulfilled demand is already known,
and for each user u ∈ U a set of so far identified relevant locations Vu, which
includes any location for which the user has indicated positive demand in at
least one solution. Note that the complete set of relevant locations in general is
unknown. However, it is the task of the FC to choose the solutions presented to
the users in such a way that as many relevant locations as possible are identified
(see Section 4.2).

Another important task of the SMC is to derive a user’s demand for scenarios
where this can be efficiently achieved through logical implications from previous
scenario evaluations. For example, any scenario that is a superset of a scenario
with already maximum fulfillable demand dmax

u will also achieve this maximum.

4.2 Feedback Component

In each major generation of Algorithm 1, the FC generates for each user u ∈ U
an individual set of solutions to evaluate. It is assumed here that any user u



Algorithm 1: Basic Framework

Input : an instance of the SPDP
Output: a solution x = (xv)v∈V ∈ {0, 1}n

1: XOC = {(1, . . . , 1)} // initial solution, later best solution(s) from the OC
while no termination criterion satisfied do

2: Feedback Component:
3: for u ∈ U do
4: determine set of solutions X ′u to be evaluated by u from XOC and

further data in the SMC;
5: let user u evaluate X ′u, update the SMC with evaluated solutions

from X ′u;

6: end for

7: Evaluation Component:

8: train surrogate objective function f̃(x) with data from the SMC;
9: re-evaluate all solutions stored in the SMC with the new surrogate

objective function;

10: Optimization Component:
11: adopt so far best solutions from the SMC as initial solutions;
12: XOC ← perform optimization using the EC’s surrogate objective

function f̃(x);
13: when possible, calculate exact f(x) for x ∈ XOC ;
14: store the solution(s) from XOC in the SMC;

15: end while

16: return overall best found solution x∗ w.r.t. f̃ ;

evaluates each solution in a completely rational way so that the total fulfilled
demand is maximal. The number of user evaluations of solutions needs to be
kept as low as possible to avoid user fatigue [12], we cannot ask real users to
evaluate hundreds of solutions. Thus, each solution presented to a user must be
non-redundant and meaningful in the way that we likely obtain new knowledge
on his needs that is valuable for finding an overall optimal solution.

It appears natural that a solution presented to a user should be similar to
the best solutions identified so far by the OC or, otherwise, provide substantial
information gain on locations that are potentially interesting for the user. Next to
finding new relevant locations for a user, it is also necessary to gain information
on the relationship between relevant locations.

We apply the following combination of strategies for compiling a set of at
most κ solutions presented to each user u ∈ U , where κ is a strategy parameter
and is set to 15 in the experiments performed for this article.3 Note that solutions
generated with these strategies may not necessarily be feasible, which, however,
does not immediately matter for the intended purpose.

3 All parameter values stated in the text have been tuned in comprehensive preliminary
tests.



Best Solution Strategy. Let f(x) be the evaluation function in which we consider
exact fulfilled demands d(u, v, x) and let f̃ be the surrogate function, which will
be defined in Section 4.3. Select the γ1 best feasible solutions w.r.t. to f and
the γ2 best feasible solutions w.r.t. the surrogate function f̃ (see Section 4.3) for
which no exact total fulfilled demand is known yet for user u. Hereby, γ1 and γ2
are strategy parameters, which are both set to 2 in the experiments performed
for this article. This strategy clearly focuses on getting exact evaluations for the
currently most promising solutions.

Irrelevant Locations Strategy. This strategy focuses purely on finding new rele-
vant locations for a user u, which might lead to good alternative solutions. For
this purpose a solution in which the locations in V \Vu are selected is generated.

Best Solution Mutation Strategy. This strategy is a combination of the previous
strategies and tries to gain information on the relationship between locations by
replacing a subset of s(x) ∩ Vu of a solution x obtained from the best solution
strategy for a user u with a set of locations for which it is so far unclear if
they are relevant: A new solution x′ is constructed from a copy of an existing
solution x by setting xv = 0 with v ∈ s(x) ∩ Vu with a certain probability ξ for
each v, where ξ is a strategy parameter which is set to 0.5 in the experiments
throughout this article. Afterwards, we set xv = 1 for n′ uniformly at random
chosen locations v ∈ V \ s(x) with n′ being chosen uniformly at random from
{0, . . . , |V | − |s(x)|}.

4.3 Evaluation Component

The EC provides the means for evaluating solutions, in particular also temporary
solutions generated within the OC. Within the OC the objective value of a
solution is estimated by a surrogate objective function f̃(x), which is defined in
accordance to f(x) but makes use of estimated fulfilled demands

d̃(u, v, x) =

{
0 if v 6∈ Vu ∨ xv = 0

max(0, gu,v(x)) else
(4)

for each user u ∈ U and each location v ∈ V , where gu,v(x) represents an ML
model trained by all solutions so far evaluated by user u. Note that our definition
of d̃(u, v, x) ensures that conditions (1) are always fulfilled and gives function
gu,v(x) more freedom in the sense that it may return negative values, which
are mapped to zero, and arbitrary values in case of xv = 0. Furthermore, for
any location v for which user u has so far never indicated any positive fulfilled
demand in any solution, i.e., for any so far not relevant location v ∈ V \ Vu,
gu,v(x) = 0 is assumed and no ML model needs to be maintained.

Similarly to [21], we use an adaptive surrogate function in the sense that
the ML model for each gu,v(x) is initially simple and is upgraded to a higher
complexity model during the course of the algorithm when the error of the
model – measured in terms of the usual mean squared error (MSE) of d̃(u, v, x)



– exceeds a certain threshold τ . In this way we stay as efficient as possible from
a computational perspective and substantially reduce problems with overfitting.

Our initial choice for gu,v(x) is the linear model (LM)

gLMu,v (x) = wu,v +
∑

v′∈Vu\{v}

w′u,v,v′ · xv′ . (5)

Ridge regression with a penalization factor of one is used for determining the
weights wu,v and w′u,v,v′ . This model is sufficient for covering simple scenarios
where users have independent demands that can be fulfilled at specific locations.
Furthermore, it can even accurately represent the case where for a user one
demand can be fulfilled at a specific primary location or, with a possibly reduced
amount, at one alternative location if no service station is set up at the primary
location. More complex dependencies, including in particular more than one
alternative location, are, however, beyond the capability of the LM.

In this case, which is detected by a remaining MSE of d̃(u, v, x) larger than
a threshold τ = 0.075, we turn to a neural network, starting with a single layer
perceptron with a leaky rectified linear unit (ReLU) activation function [22].
This simple neural network realizes the function

gNN
u,v (x) = φ

(
gLMu,v (x)

)
with φ(S) =

{
S if S ≥ 0

ε · S else.
(6)

The leaky ReLU activation function φ serves as an extension of the LM in the
sense that this perceptron takes actively into account that satisfied demands
cannot be negative. Due to this non-linearity, it can accurately represent sce-
narios in which for a user a demand can be fulfilled at an arbitrary number of
ordered alternative locations, where a service station at one of these locations
will only fulfill a certain amount of the demand when no station is set up at any
of the preceding alternative locations in the order. We use here the leaky ReLU
function with parameter ε = 0.01 which returns small negative values in case
the sum S is negative.

While the above perceptron is already more powerful, it is still limited when a
user has more than one demand that can be fulfilled partly at the same locations,
or more generally, when the different demands are related in some way. Again,
we detect the insufficiency of the perceptron by a MSE that exceeds τ and turn
in this case to a more complex feed forward neural network with one hidden layer
that contains initially two hidden neurons. These neurons again make use of the
leaky ReLU activation function, while the single output layer neuron corresponds
to a simple summation of the inputs. Initially, we use two hidden neurons and
increase this number until, after training, either the MSE does not exceed τ
anymore or a maximum of λ = 6 hidden neurons is reached.

Note that the solutions used for training the models are not required to be
feasible, since user evaluations do not consider the budget at all.



4.4 Optimization Component

Remember that the OC is called in each major iteration of the whole framework
and makes use of the current surrogate function provided by the EC, which does
not change during each individual run of the OC. The OC is thus supposed
to return an optimal or close-to-optimal solution w.r.t. the current surrogate
function.

The OC is implemented as a Variable Neighborhood Search (VNS) and fol-
lows the classical scheme from [23]. It consists of a randomized construction
heuristic, a local search part, and a shaking mechanism for escaping local op-
tima. The initial solution is generated via the randomized construction heuristic
that considers all locations in random order and sets up a station at a location
as long as the budget is not exceeded.

Our local search follows a first improvement strategy and utilizes a two-
exchange neighborhood structure, in which a location in the solution is replaced
by a location not contained in the solution. The VNS only considers feasible
solutions, hence, we skip all moves in the neighborhood resulting in budget
constraint violations. Moreover, after each feasible move, we try to additionally
improve the solution by adding stations at further locations to the solution in a
random order as long as the budget allows it.

Shaking removes stations from a number of uniformly selected random loca-
tions and then iteratively adds stations to other locations in a uniform random
order, such that the solution stays feasible and no more locations can be added.
The number of stations to be removed corresponds to the index of the shaking
neighborhood and varies from one to two.

The VNS terminates if no better solution has been found within 40 iterations.

5 Experimental Evaluation

We test the suggested framework in a proof-of-concept manner on artificial
benchmark scenarios using an idealized simulation of all user interaction. To
a large degree, the proposed framework is independent of the concrete applica-
tion as long as our general problem formulation is suitable. The machine learning
models in the EC, however, were already designed with a few assumptions on
user requirements, as they appear, for example, in the context of setting up
charging stations for EVs: Users would like to have certain needs associated
with use cases fulfilled that are related to particular geographic locations, such
as their home and/or work address or other places they visit regularly. While
ideally respective service stations would be set up at precisely these locations,
the respective demands can to a certain degree also be fulfilled by service sta-
tions located in the vicinity. The degree (amount) of fulfilled demand, however
is assumed to decrease with the distance. In this way, we implicitly also consider
the convenience for the users. It is generally assumed that for fulfilling a demand,
a user always uses a station that is closest to the demand’s original location.



5.1 Benchmark Scenarios

The primary parameters for our benchmark scenarios are the number of potential
locations for service stations n and the number of users m, and we consider
here the combinations n = 50, 60, . . . , 100 with m = 50 and n = 50 with m =
50, 60, . . . , 100. The n locations correspond to points in the Euclidean plane with
coordinates chosen uniformly at random from the grid {0, . . . , L − 1}2, where
L = d10

√
ne is the underlying width and height. The fixed costs cv as well as

the variable costs zv for setting up a service station at each location v ∈ V are
uniformly chosen at random from {50, . . . , 100}. The budget is assumed to be
B = d7.5 · ne so that about 10% of the stations with average costs can be set
up. We assume each of the m users u ∈ U has ρu so-called use cases, where ρu
is chosen randomly according to a shifted Poisson distribution with offset one
and expected value three. Each of these use cases i = 1, . . . , ρu is associated
with a particular geographical location ru,i ∈ {0, . . . , L − 1}2 and a respective
demand d∗u,i that could ideally be fulfilled there. This demand can, for example,
be the expected number of usages of a service point in a time period. Here,
we choose each d∗u,i uniformly at random from {5,. . . ,50}. In a real scenario,
the locations where demand arises will clearly not be uniformly distributed over
the whole considered geographic area. There will be more popular regions as
well as less popular ones. We want to consider this aspect and therefore first
choose α = d(L/50)2e attraction points A with uniform random coordinates from
{0, . . . , L− 1}2 and then derive the location for each use case from a uniformly
selected attraction point (ax, ay) ∈ A by

ru,i = (bN (ax, 20)c mod L, bN (ay, 20)c mod L), (7)

where N (·, ·) denotes a random value sampled from a normal distribution with
the respectively given mean value and standard deviation.

For each use case i = 1, . . . , ρu of each user u ∈ U , demand is always only
fulfilled at the closest location vclstu,i (x) ∈ V w.r.t. the Euclidean distance where
a service station is set up in the current candidate solution x (ties are broken
according to the locations’ natural order) and when a maximum distance, chosen
here as 12, is not exceeded. We further assume an exponential decay of the
fulfilled demand in dependence of the distance and round down to the closest
integer, obtaining

di(u, v, x) =

{
bd∗u,i · e−||ru,i−vclstu,i (x)||/10c if v = vclstu,i (x) ∧ ||ru,i − v|| ≤ 12

0 else,
(8)

where || · || denotes the L2 norm. These fulfilled demands for each use case i are
finally summed up in order to obtain the overall fulfilled demands d(u, v, x) =∑
i=1 di(u, v, x) for each user u ∈ U and location v ∈ V under candidate solution

x. Finally, the prize earned for each unit of fulfilled demand in our objective
function is assumed to be p = 50.

For each combination of n and m 30 independent scenarios were created, and
they are available at https://www.ac.tuwien.ac.at/research/problem-instances.



The benchmarks were also specifically designed with the ability in mind to cal-
culate proven optimal solutions to which we will compare the solutions of our
framework. Exploiting the complete knowledge of the data and specific structure
in a “white-box” manner allows the problem to be expressed as mixed-integer
linear programming (MIP) model, which we solved with the MIP-solver Gurobi4.

5.2 Computational Experiments

The OC was implemented in C++, compiled with GNU G++ 5.5.0, while the
remaining components of the framework were realized in Python 3.7. For linear
regression scikit-learn 0.17 was used and for the perceptrons and neural networks
Keras 2.2.2 on top of Theano 1.0.2 (without GPU support). The perceptrons and
neural networks were trained with the adam optimizer (learning rate 0.1) over
5000 epochs with a batch size of 32 in order to minimize the MSE. All test
runs have been executed on an Intel Xeon E5-2640 v4 with 2.40GHz machine.
Our framework terminated when no improved solution could be found over five
iterations or when the CPU-time limit of 7200s had been reached and returned
the overall best found solution x∗ w.r.t. the approximate evaluation function f̃ .

Table 1 lists average results of COA over all 30 instances for each considered
combinations of n and m. Each line shows the average number of iterations
nit, the average of the exact objective values of the finally returned solutions
f(x∗) and the corresponding optimal solutions f(xopt) obtained from Gurobi by

solving the white-box MIP, the average optimality gap %-gap and corresponding
standard deviation σ%-gap, where the %-gap is calculated for a final solution x∗

of COA in relation to an optimal solution xopt as %-gap = 100% · (f(xopt) −
f(x∗))/f(xopt), the average percentage error of the surrogate function values

of final solutions %-∆f̃ (serving as an indicator for the quality of the surrogate
function) and the corresponding standard deviation σ%-∆f̃ , with %-∆f̃ = 100% ·
|f̃(x∗)−f(x∗)|/f(x∗), and the median of the computation times in seconds. The
table shows that COA finds near optimal solutions for almost all instances.
Average final gaps to optimal solutions are always less than 0.6%. Moreover,
the surrogate function predicts the actual user demand at least for the final
solutions excellently; for all instance groups the average percentage error of the
surrogate function values is below 0.55%. The percentage errors and computation
times tend to slightly increase with an increasing number of users, while the
optimization gaps show no such behavior. Neither the number of users, nor the
number of locations seems to have an impact on the optimality gaps, indicating
that our algorithm is able to also solve larger instances with a similar solution
quality. The generally rather high computation times can be explained by the
large number of machine learning models that need to be trained in each iteration
but also by the fact that the OC is implemented as pure black-box optimization.

Next, in Figure 2, we take a closer look at the percentage errors of the
surrogate function. The boxplots in Figure 2 show the distribution of %-∆f̃ for

4 http://www.gurobi.com/



Table 1: Average results of COA.

n m nit f(x∗) f(xopt) %-gap σ%-gap %-∆f̃ σ%-∆f̃ time[s]

50 50 10 56499 56717 0.34 0.67 0.19 0.14 2063
50 60 10 67134 67467 0.38 1.05 0.31 0.19 2594
50 70 11 78562 78845 0.21 0.58 0.33 0.34 2936
50 80 10 88003 88283 0.28 0.51 0.35 0.32 3522
50 90 10 98408 98961 0.56 0.89 0.37 0.34 3867
50 100 11 106604 107020 0.28 0.48 0.41 0.44 4424
60 50 11 59189 59354 0.46 1.43 0.53 1.35 2335
70 50 11 61685 62097 0.49 0.93 0.38 0.48 2447
80 50 12 64425 64690 0.49 0.73 0.27 0.28 2904
90 50 11 66689 66870 0.27 0.40 0.23 0.19 2946
100 50 13 71030 71229 0.26 0.44 0.28 0.27 3889
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Fig. 2: Distributions of the percentage errors of the surrogate function values of
final solutions.

all instances. The figure shows that the percentage error of the final surrogate
function of an instance is almost always below 1%. As observed in Table 1, one
can see a slight increase of the percentage errors as the number of users increases,
i.e. there seems to be a correlation of the size of the percentage errors and the
number of users.

Figures 3a-b visualize for an exemplary run with n = 100 and m = 50 the
best solutions w.r.t. f̃ at the first and at the last iteration of COA, respectively.
Blue dots show the locations of users’ use cases with their sizes indicating the
respective maximal satisfiable demands d∗u,i. Diamonds show the potential lo-
cations of service stations V , with the larger ones with the discs corresponding
to those chosen in the best solution of the iteration. The actually fulfilled de-
mand of a service station is indicated by the size of the diamonds, and the discs
illustrate the covered area in respect to the maximum distance of 12. We can
see that already the solution obtained in the first iteration is quite meaningful.



Although the final solution is similar at the first glance, a closer look reveals a
significantly better coverage of demands in the final solution.

This observation is also confirmed by Figure 3c showing the corresponding
development of the best solution’s exact objective value over the iterations in
comparison to the optimal solution value f(xopt). We can see that already the
solution of the first iteration has a relatively high objective value, which is con-
tinuously improved in few iterations until the optimum is almost reached.

Finally, Figure 3d shows the distribution of the model sizes of the surrogate
function’s underlying machine learning models at the final iteration of COA. A
model size of zero refers to LMs, size one to perceptrons, and larger sizes to
neural networks with the respective number of neurons in the hidden layer. The
distribution shown in Figure 3d is typical for all instances tested. It shows that
the majority of machine learning models is made up of LMs and perceptrons.
Larger size neural networks are rarely needed. However, the figure also shows a
small peak at the largest neural network with six neurons in its hidden layer.
This peak is caused by unpopular service point locations resulting in training
data in which most customer demands are zero. The neural networks often fail
to properly learn such data, however, on the other hand, as these locations are
the least popular service point locations, they usually have no large impact on
the final solution.

6 Conclusion

We proposed a cooperative algorithm framework for distributing service points
within a geographical area in mobility applications under incomplete informa-
tion. Instead of estimating user demands by combining a variety of more or
less reliable sources, our method directly incorporates potential customers in
the optimization process. Our proof-of-concept implementation is still based on
comparatively simple components. Nevertheless we could show that the machine
learning models in our evaluation component are able to learn the non-trivial
user behavior of all our benchmark scenarios reliably after relatively few user
interactions, and the optimization is able to indeed find solutions with only small
remaining optimality gaps. The careful derivation of the candidate solutions to
be presented to the users in the feedback component also plays a particularly
important role.

In future work we will investigate the approach on more complex scenarios
such as bike sharing systems, where a use case always relates to two, usually
different locations for renting and returning a bike, respectively. Considering ca-
pacity limits and different possible configuration options for the service points is
another practically highly relevant aspect. Another challenge is to improve the
scalability of the approach towards more potential locations and more users. To
this end it seems necessary to replace the individual machine learning models
we currently have for each user and each location by a more integrated ap-
proach. Even though, we use a surrogate function to unburden the customers
from evaluating too many solutions, the current number of solutions a user needs
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Fig. 3: An exemplary run with n = 100 and m = 50: (a-c) best solutions at
different iterations and (d) exact objective value of best solution per iteration.

to evaluate is still very high. Additional efforts need to be made to further re-
duce this number. Last but not least, improvements should also be possible in
the optimization component.
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