FAKULTAT
FUR INFORMATIK

Faculty of Informatics

An lterative Time-Bucket
Refinement Algorithm for High
Resolution Scheduling Problems

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Logic and Computation
eingereicht von

Thomas Jatschka, BSc
Matrikelnummer 0928678

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Glnther Raidl
Mitwirkung: Univ.-Ass. Dipl.-Ing. Martin Riedler, BSc
Projektass. Dipl.-Ing. Johannes Maschler, BSc

Wien, 11. Oktober 2017

Thomas Jatschka Ginther Raidl

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

An lterative Time-Bucket
Refinement Algorithm for High
Resolution Scheduling Problems

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Logic and Computation
by

Thomas Jatschka, BSc
Registration Number 0928678

to the Faculty of Informatics
at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Gunther Raidl
Assistance: Univ.-Ass. Dipl.-Ing. Martin Riedler, BSc
Projektass. Dipl.-Ing. Johannes Maschler, BSc

Vienna, 11" October, 2017

Thomas Jatschka Ginther Raidl

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Thomas Jatschka, BSc
Hardtmuthgasse 58/1/6, Wien 1100

Hiermit erklére ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliellich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 11. Oktober 2017

Thomas Jatschka

Danksagung

Ich mo6chte mich herzlich bei meinen Betreuern Giinther Raidl, Martin Riedler und
Johannes Maschler bedanken. Ich bin ihnen sehr dankbar fiir ihre groflartige Unterstiitzung
und Geduld. Dank ihnen konnte ich viel Neues lernen und die Qualitdt meiner Arbeit
verbessern.

Ich méchte mich auch bei der EBG MedAustron GmbH!, Marie Curie-Straie 5, 2700
Wiener Neustadt, Osterreich, fiir die Zusammenarbeit und die finanzielle Unterstiitzung
dieser Arbeit bedanken.

Zu guter Letzt, mochte ich mich auch bei meinen Eltern und bei meinem Bruder Johannes
dafiir bedanken, dass sie mich mein ganzes Leben lang unterstiitzt haben.

Teile dieser Arbeit wurden vertffentlicht in M. Riedler, T. Jatschka, J. Maschler, and
G. R. Raidl. An iterative time-bucket refinement algorithm for a high-resolution resource-
constrained project scheduling problem. International Transactions in Operational
Research, to appear. available at http://dx.doi.org/10.1111/itor.12445/,

"https://www.medaustron.at

vii

http://dx.doi.org/10.1111/itor.12445
https://www.medaustron.at

Acknowledgements

I would like express my sincere gratitude to Giinther Raidl, Martin Riedler, and Johannes
Maschler for supervising this thesis. I am very grateful for their great support and
patience. Thanks to them I was able to learn many new things and improve the quality
of this thesis.

I also want to thank EBG MedAustron GmbH?, Marie Curie-Strafie 5, 2700 Wiener
Neustadt, Osterreich, for their cooperation and for partially funding this thesis.

Last but not least, I want to thank my parents and my brother Johannes for supporting
me throughout my whole life.

Parts of this thesis have been published in M. Riedler, T. Jatschka, J. Maschler, and
G. R. Raidl. An iterative time-bucket refinement algorithm for a high-resolution resource-
constrained project scheduling problem. International Transactions in Operational
Research, to appear. available at http://dx.doi.org/10.1111/itor.12445.

Zhttps://www.medaustron.at

ix

http://dx.doi.org/10.1111/itor.12445
https://www.medaustron.at

Kurzfassung

In dieser Arbeit werden Algorithmen zum Loésen von Scheduling Problemen, die einem
langen Zeithorizont unterliegen, entwickelt. Diese Algorithmen werden auf ein Problem,
das durch ein Patientenplanungsszenario des Krebsbehandlungszentrums Med Austron
in Wiener Neustadt, Osterreich, motiviert ist, angewandt. Ziel ist es, einen Plan fiir
die individuellen Behandlungstermine der Patienten zu erstellen, sodass zeitliche Ab-
héngigkeiten zwischen den Behandlungen eingehalten werden. Jede Behandlungsphase
benétigt verschiedene Ressourcen. Eine dieser Ressourcen ist der Teilchenstrahl, dessen
Nutzung insbesondere optimiert werden muss, da er fiir jede Behandlung bendtigt wird
und abwechselnd in mehreren Behandlungsraumen eingesetzt wird. Es soll ein Plan
erstellt werden, der so dicht wie moglich ist, sodass moglichst viele Patienten behandelt
werden konnen. Auflerdem fithrt ein kompakter Plan zu einer Reduzierung der Standzeit
des Teilchenstrahls.

Es werden sowohl exakte als auch heuristische Verfahren entwickelt, um das Problem
zu l6sen. Als heuristisches Losungsverfahren wird eine Greedy Randomized Adaptive
Search Procedure (GRASP) verwendet. Die exakten Algorithmen basieren auf gemischt-
ganzzahliger linearer Optimierung (engl. mized integer linear programming (MILP)). Es
werden verschiedene IMILP-Modelle entwickelt und sowohl in Bezug auf die Modellstarke
als auch mithilfe empirischer Experimente miteinander verglichen.

Der Hauptalgorithmus der Arbeit ist eine Matheuristik, die MILP! mit heuristischen
Ansatzen kombiniert. Die Grundidee besteht darin, das Problem zu 16sen, ohne explizit
den gesamten Zeithorizont zu beriicksichtigen. Stattdessen basiert der Algorithmus auf
einem relazierten Modell, in dem der Zeithorizont in sogenannte time-buckets partitioniert
wird. Dieses reduzierte Modell ist iiblicherweise viel kleiner als das urspriingliche und kann
daher relativ schnell gelost werden. Eine Losung des relaxierten Problems reprasentiert
eine duale Schranke fiir den tatséchlichen Losungswert. Bei der Losung handelt es sich
aber {iblicherweise nicht um einen giiltigen Plan. Daher wird eine Heuristik verwendet,
deren Ziel es ist, eine giiltige Losung (primale Schranke) aus der Losung des relazierten
Modells abzuleiten. Dariiber hinaus zerteilt der Algorithmus mehrere time-buckets, um
nach erneutem Losen des Modells eine bessere Schranke zu erhalten. Die Unterteilung
basiert auf Informationen, die aus der Losung des relazierten Modells gewonnen werden.
Durch das iterative Ausfithren dieser Prozedur ergibt sich eine Matheuristik, welche
schlussendlich zu einer beweisbar optimalen Losung konvergiert.

X1

Anhand zweier Gruppen neuer Testinstanzen werden verschiedene Strategien zur Untertei-
lung von time-buckets untersucht und ein Vergleich mit anderen exakten und heuristischen
Losungsverfahren durchgefiihrt.

Abstract

In this thesis algorithms are developed for solving scheduling problems subject to a
large time horizon. We apply these algorithms on a problem motivated by a real world
patient scheduling scenario at the cancer treatment center Med Austron located in Wiener
Neustadt, Austria. The tasks involved in providing a given set of patients with their
individual particle treatments shall be scheduled in such a way that given minimum
and maximum waiting times are respected. Each task needs certain resources for its
execution. One of the resources is the particle beam which is particularly scarce as it
is required by every treatment and shared between several treatment rooms. The goal
is to find a schedule which is as dense as possible to allow treating as many patients as
possible. Moreover, a dense schedule reduces the idle time of the particle beam within
the day.

We develop different exact as well as heuristic algorithms for tackling the problem. A
greedy randomized adaptive search procedure (GRASP) is used to heuristically solve the
problem. The exact algorithms are based on mixed integer linear programming (MILP).
We provide different IMILP| models and compare the strength of models that are of
particular interest.

The main algorithm of this thesis is a matheuristic which combines exact mathematical
programming methods as well as heuristic approaches. The basic idea of our matheuristic
is to solve the problem without explicitly considering the complete time horizon. Instead,
the algorithm considers a relaxed model which is based on partitioning the time horizon
into so called time-buckets. This relaxation is typically much smaller than the original
model and can be solved relatively quickly. An obtained solution provides a dual bound
for the problem’s solution value but in general does not represent a feasible schedule.
Using the solution to the relaxation, the algorithm tries to heuristically derive a primal
bound, i.e., a feasible schedule. Moreover, the algorithm also subdivides some time-
buckets based on information gained from the solution to the relaxation and resolves
the resulting refined model to obtain an improved bound on the problem. Doing this
refinement iteratively yields a matheuristic that in principle converges to a provably
optimal solution.

A novel set of test instances is used to evaluate the performance of different refinement
strategies of the matheuristic and to compare the matheuristic to other exact and heuristic
methods.

xiii

Contents

Kurzfassung

Abstract

Contents

1

Introduction
1.1 Structure of the Workl

State Of The Art

2.1 Resource-Constrained Project Scheduling
2.2 Dual Bounds for Scheduling Problems|
2.3 Matheuristics for Scheduling Problems|
2.4 Time Window Discretization Models

Methods

3.1 Mathematical Programming Methods
3.2 Heuristics e
3.3 Matheuristics

The Simplified Intraday Particle Therapy Patient Scheduling Prob-
lem

4.1 Complexity
4.2 Mathematical Formulations

Iterative Time-Bucket Refinement Algorithm

5.1 Initial Bucket Partitioningo
5.2 Primal Heuristicsl o
5.3 Bucket Refinement Strategies,

Implementation Details

6.1 Preprocessing Activity Starting Times
6.2 On Determining Big-M Constants for DEF|
6.3 Computing Bucket Sequences|

xi

xiii

XV

[N

S Ok W W

©

13
15

17
18
19

37
38
38
44

51
51
52
52

XV

6.4 Valid Inequalities|

7 Computational Results
7.1 Test Instances e
7.2 Computational Experiments|.

8 Conclusion and Future Work
8.1 Future Workl

List of Figures
List of Tables

List of Algorithms
Acronyms

Bibliography

95

57
o7
o8

81
82

83

85

87

89

91

CHAPTER

Introduction

Scheduling problems arise in a variety of practical applications. Prominent examples are
job shop or project scheduling problems that require a set of activities to be scheduled
over time. The execution of the activities typically depends on certain resources of limited
availability and diverse other restrictions such as precedence constraints. The goal is to
find a feasible schedule that minimizes some objective function like the makespan. In
certain cases planning has to be done in a very fine grained way, i.e., in high resolution,
using, e.g., seconds or even milliseconds as unit of time.

Classical mixed integer linear programming (MILP) formulations are known to struggle
under these conditions. On the one hand time discretized models provide strong linear
programming (LP) bounds but grow too quickly with the instance size due to the fine
time discretization. Event-based and sequencing-based models on the other hand typically
have troubles as a result of their weak [LP! bounds.

In the following we focus on problems with these characteristics and consider a simplified
scheduling problem arising in the context of modern particle therapy used for cancer
treatment. The problem is motivated by a real world patient scheduling scenario at
the recently founded cancer treatment center MedAustron' located in Wiener Neustadt,
Austria. The tasks involved in providing a given set of patients with their individual
particle treatments shall be scheduled in such a way that given precedence constraints
with minimum and maximum time lags are respected. Each task needs certain resources
for its execution. One of the resources is the particle beam which is particularly scarce
as it is required by every treatment and shared between several treatment rooms. For a
formal definition of the problem see Chapter 4.

The main goal therefore is to exploit in particular the availability of the particle beam
as best as possible by suitably scheduling all activities in high resolution. Ideally, the

"https://www.medaustron.at

https://www.medaustron.at

1.

INTRODUCTION

beam is switched immediately after an irradiation has taken place in one room to another
room where the next irradiation session starts without delay. Our goal is to minimize the
makespan. This objective emerges from the practical scenario as tasks need to be executed
as densely as possible to avoid idle time within the day as well as to allow treating as
many patients as possible within the operating hours. However, makespan minimization
is clearly an abstraction from the real world scenario where more specific considerations
need to be taken into account. In the terminology of the scientific literature in scheduling,
the considered problem corresponds to a resource-constrained project scheduling problem
with minimum and maximum time lags.

1.1 Structure of the Work

The thesis is organized as follows. In Chapter 2| we review the related literature. After-
wards, in Chapter 3| we describe the methodological concepts used in the thesis. Chapter 4
formally defines the investigated problem and provides different MILP-formulations for
solving it. The main part of the thesis is Chapter |5/ in which we present our matheuristic.
Implementation details are provided in Chapter 6. Afterwards, in Chapter [7, we discuss
computational experiments conducted on two sets of benchmark instances. We conclude
the thesis with Chapter § by giving an outlook on promising future research directions.

CHAPTER

State Of The Art

In this chapter we discuss the related work relevant for this thesis. We start with a brief
overview of resource-constrained project scheduling problems (RCPSPs). Afterwards
we review the derivation of dual bounds for such scheduling problems. Then, we give a
short introduction on matheuristics applied in the scheduling domain. Finally, we review
previous work dealing with scheduling problems subject to a large time horizon.

2.1 Resource-Constrained Project Scheduling

The resource-constrained project scheduling problem (RCPSP)) considers scheduling of a
project subject to resource and precedence constraints where a project is represented by
a graph with each node being an activity of the project. Precedence relations between
activities are represented as directed edges between the nodes. The RCPSP|is a well
studied problem with many extensions and variations. For an overview see Kolisch [1995],
Brucker et al.| [1999], Neumann et al.| [2003], and [Artigues et al.| [2008].

Our problem is a combination of multiple extensions of the RCPSP. One of these
extensions is the RCPSP! with generalized precedence constraints, extending the RCPSP
by minimal and maximal time lags between the end of one activity and the start of
another activity, see Bianco and Caramia [2012], |Cesta et al.| [2002], and De Reyck and
Herroelen| [1998]. Minimal time lags impose a minimal waiting time between the end and
the start of activities. Analogously, maximal time lags impose a maximal waiting time
between the end and the start of activities.

Activities can also be subject to release times and deadlines (Bomsdorf and Derigs| [2008],
Klein| [2000], [Demeulemeester and Herroelen| [1997]), meaning that an activity has to be
completely processed within the time window specified by these respective bounds. An
RCPSP| with release times and deadlines for the activities is referred to as generalized
RCPSP! (see Klein| [2000], [Demeulemeester and Herroelen| [1997]).

2.

STATE OF THE ART

For our problem resources are not always available which is usually referred to as
partially renewable resources in project scheduling (see Bottcher et al.|[1999]). Note that
using release times and deadlines one can model unavailability periods of resources by
introducing additional activities (see Bomsdorf and Derigs [2008]).

There exists a wide range of exact and heuristic approaches for the RCPSP! and its
extensions, for an overview see Brucker et al.|[1999], Neumann et al.|[2003], and |Artigues
et al.|[2008]. Examples of heuristic approaches can be found in Bomsdorf and Derigs
[2008] and |[Kolisch and Hartmann [2006]. Here we specifically want to focus on exact
approaches. Often used are branch-and-bound (B&B) algorithms (Demeulemeester and
Herroelen| [1997], Bianco and Caramial [2012]) and MILP! techniques. However, also
constraint programming (CP), SAT, and combinations thereof gained importance, e.g.,
Berthold et al.| [2010]. For our work we are primarily interested in MILP-based approaches
and thus focus on them in the following.

A well known technique are so-called time-indexed models, see Artigues [2017]. The
classical variant uses binary variables for each time slot to represent the start of an
activity. In addition, there are also so-called step-based formulations in which variables
indicate if an activity has started at or before a certain time instant. This might lead
to a more balanced B&B| tree. Both variants typically provide strong [LPl bounds but
struggle with larger time horizons due to the related model growth.

Also quite well known are event-based formulations. Koné et al.| [2011] and Artigues et al.
[2013] provide an extensive overview. These models are based on a set of ordered events
to which activity starts and ends need to be assigned, allowing to model starting times
as continuous variables. On/Off event-based formulations use the same idea but require
even fewer variables. These models are usually independent of any time discretization and
the time horizon but feature significantly weaker [LP/ bounds compared to time-indexed
models.

Further IMILP! techniques for approaching the considered scheduling problems make use
of exponentially sized models and apply advanced techniques such as column generation,
Lagrangian decomposition, or Benders decomposition, see, e.g., Hooker| [2007]. While
they are frequently very successful, they are also substantially more complex to develop,
implement, and fine-tune.

2.2 Dual Bounds for Scheduling Problems

The most common method for deriving dual bounds is based on solving LP relaxations,
frequently strengthened by cutting plane methods. This approach is widely applicable
but often provides only weak bounds.

Other techniques for deriving dual bounds based on altering the MILP"s constraints are:
the constraint relaxation, the Lagrangian relaxation and the surrograte relaxation (see
Li et al.| [2015]).

2.3. Matheuristics for Scheduling Problems

The constraint relaxation derives a dual bound of a MILP! model by simply dropping
some of the model’s constraints.

The Lagrangian relaxation dualizes constraints by adding them as a penalty term to the
model’s objective function. Such a relaxation is presented by [Fisher| [1973] for a network
scheduling problem under resource constraints. Lagrangian relaxation is used in order to
dualize the resource constraints.

The third technique is the surrogate relaxation which derives a new constraint by
aggregating a set of constraints and replacing the original ones (see |Glover [1965]).

A less common method for generating dual bounds is the dual heuristic algorithm by
Li et al|[2015]. For some nodes of the B&B! tree, the heuristic attempts to improve
the current dual bound by computing an additional relaxation, e.g., a constraint or a
surrogate relaxation. The heuristic uses dual variables and slack variables of the [LP
solution in order to decide which constraints to relax.

Apart from such general approaches there are some works that consider problem specific
methods. For an example see Dupin and Talbi [2016]. The contribution deals with
fulfilling energy demands over a given time horizon. The energy is provided by power
plants which have to be refuelled and maintained regularly. Moreover, during refuelling
and maintenance some power plants have to go offline. The objective function is to
minimize the expected production costs over a given set of scenarios. The time horizon
is split into intervals of the same length, so called time steps. While production periods
are planned for each time step, offline periods are scheduled in weeks. [Dupin and Talbi
[2016] provide different IMILPs for computing lower bounds for the production costs. In
one such MILP| production time steps are aggregated to weekly production periods.

Another problem specific relaxation method is presented by (Carlier and Néron! [2003] for
the RCPSPL The relaxation is formulated as an IMILP! which is based on a partitioning
of the scheduling horizon. However, as the bounds generated by this formulation may
be too weak, Carlier and Néron| [2003] encode different estimations of the makespan
(linear lower bounds (LLB)) into the model as constraints. Each LLB underestimates the
makespan and is based on different properties of the problem, e.g., resource capacities or
critical paths. The quality of the relaxation is controlled by the number of [LLLBs added
to the model.

Further techniques for generating dual bounds for the RCPSP| can be found in Bianco
and Caramia [2011].

2.3 Matheuristics for Scheduling Problems

So far, Matheuristics have only been rarely considered to tackle the RCPSPL For an
example see Palpant et al. [2004], who developed a large scale neighbourhood search
heuristic for solving the RCPSP. Given a partial schedule, i.e., a schedule which does
not contain all activities, the neighbourhood for the heuristic is defined as the set of all

2.

STATE OF THE ART

schedules that also contain the partial schedule. In order to find the best schedule in the
neighbourhood, |Palpant et al.|[2004] suggest an MILP/model which finds optimal starting
times for the missing activities w.r.t. the partial schedule. Note that the partial schedule
is derived by removing activities from an initially complete schedule. The activities are
removed according to different strategies.

Della Croce et al.| [2014] use a similar approach as Palpant et al. [2004] for solving a
single machine scheduling problem. The biggest difference between these contributions
lies in the generation of the partial schedule. While [Palpant et al. [2004] suggest different
strategies for deriving a partial schedule, the algorithm of [Della Croce et al.|[2014] chooses
a random position in a complete schedule and then removes, starting from the chosen
position, a predetermined number of successive activities from the schedule.

Further matheuristic approaches can be found in terms of the multi-mode resource-
constrained multi-project scheduling problem (MRCMPSP). This is an extension of
the RCPSP! in which each activity is associated with a set of modes that decide the
processing time and resource demand. The idea behind modes is to model different trade-
offs between the processing time and the resource demands of an activity. An additional
extension of MRCMPSPs is that it is also possible to consider multiple projects.

Artigues and Hebrard| [2013] solve the MRCMPSP! with an algorithm consisting of four
phases. In the first phase initial modes are assigned to each activity using MILP. Phases
2 and 3 generate a schedule based on the assigned modes using (CP. The last phase uses
a large neighbourhood search to improve the schedule by changing the modes of some
activities. |Artigues and Hebrard| [2013] use [CP! to find the optimal modes w.r.t. the
specified neighbourhood. Phases 2 to 4 are repeated until the time limit is exceeded.

Toffolo et al.|[2016] solve the MRCMPSP! using a decomposition-based matheuristic.
After fixing execution modes the problem is decomposed into time periods that are
considered by independent MILP models. Finally, a hybrid local search is employed to
improve the obtained solutions.

2.4 Time Window Discretization Models

Time discretization can be done in two ways. The first approach is to coarsen the time
horizon in order to possibly obtain feasible but also less precise solutions, which are in
general not optimal for the original problem. A different way of time discretization is
to partition the given time horizon into subsets which, in contrast to the first approach,
usually results in a relaxation of the original problem.

Early examples for time discretization by coarsening include Levin| [1971] and Swersey and
Ballard| [1984]. The former deals with flight scheduling and routing problems. Departure
times of aircrafts are represented as a bundle of time slots instead of continuous sets.
Swersey and Ballard [1984] follow a similar approach for solving a bus scheduling problem.

An iterative refinement algorithm based on these ideas can be found in [Boland et al.
[2017] for solving the countinuous time service network design problem (CTSNDP). The

2.4. Time Window Discretization Models

authors solve the problem using a time-expanded network, in which each node represents
a location and a time. Initially, only a partially time-expanded network is considered to
avoid the substantial size of the complete network. The IMILP| model associated with the
reduced network constitutes a relaxation to the original problem. If the optimal solution
to this relaxation turns out to be feasible w.r.t. the original problem, the algorithm
terminates. Otherwise, the partially time-expanded network is extended based on the
current solution to obtain a more refined model. Iteratively applying this approach
converges to an optimal solution due to the finite size of the full time-expanded network.

Another algorithm of this type has been considered by Macedo et al. [2011] for solving
the vehicle routing problem with time windows and multiple routes (MVRPTW). The
problem is formulated as a network flow model s.t. nodes of the graph correspond to
time instants. Consequently, the formulation cannot cope with non integral travelling
times. In such a case a relaxation of the original problem is derived by rounding the
travelling times using special rounding procedures. In case the solution to the relaxation
is not feasible for the original problem, the current time discretization is locally refined
by disaggregating nodes of the current model.

A different way of time discretization is to partition the given time horizon into subsets.
Such an approach is presented by Bigras et al. [2008| for a single machine scheduling
problem. The scheduling horizon is partitioned into multiple sub periods. If a job spans
several sub periods, the job gets split into multiple subjobs. The relaxation is solved via
column generation. Each sub period with its corresponding jobs can be transferred into
a subproblem for the used Dantzig-Wolfe decomposition (see Dantzig and Wolfe [1960]).
The solution to the relaxation is then used as a lower bound in a [B&B| algorithm.

Other IMILP| approaches for solving single machine scheduling problems using time
window discretization can be found in Baptiste and Sadykov| [2009] and |Boland et al.
[2016]. Both contributions follow a common idea. By partitioning the given scheduling
horizon, the number of variables in the MILP! model decreases. In order to ensure the
correctness of the model, additional constraints have to be added. Unlike [Baptiste and
Sadykov| [2009], Boland et al.| [2016] impose the additional restriction that a job spans at
least two buckets.

An iterative refinement approach for the traveling salesman problem with time windows
(TSPTW) can be found in Wang and Regan| [2002] and |Wang and Regan| [2009]. First, the
time windows of each node are partitioned into subsets. Then, for a given time window
partitioning a lower bound and an upper bound are calculated, using an underconstrained
MILP| model and an overconstrained IMILP! model. As long as the gap between lower
and upper bound is not sufficiently small, the scheduling horizon gets further refined and
the problem is solved anew. In order to ensure that the overconstrained IMILP! model
does not lead to worse solutions in subsequent iterations, the applied refinement scheme
also takes the solution of the previous overconstrained MILP! model into account.

Dash et al.| [2012] combine the ideas of [Wang and Regan [2002] and Bigras et al. [2008] in
order to solve the TSPTW. The time windows of the nodes are partitioned into buckets

2.

STATE OF THE ART

using an iterative refinement heuristic. Refinement decisions are based on the solution
to the current [LP! relaxation. Afterwards, the resulting formulation is turned into an
exact approach by adding valid inequalities and solved using branch-and-cut (B&C). In
each node of the B&Bl tree a primal heuristic is applied using the reduced costs of the
variables of the current [LP! relaxation.

Recently, |Clautiaux et al.|[2017] introduced an approach that is more generally applicable
to problems that can be modeled as minimum-cost circulation problems with linking
bound constraints. The proposed algorithm projects the original problem onto an
aggregated approximate one. This aggregated model is iteratively refined until a provably
optimal solution is found. Experiments have been conducted on a routing problem and a
cutting-stock problem.

CHAPTER

Methods

In this chapter we discuss various theoretical foundations and optimization techniques
upon which our algorithms are based from a theoretical point of view. First, we take a
closer look at integer linear programming (ILP) and IMILP models in general, as such a
model constitutes the core of our algorithm. Afterwards, we review different heuristic
techniques relevant to our algorithm. As mentioned before, our algorithm, consisting of
an MILP| component and a heuristic component, can be categorized as a matheuristic,
which we discuss at the end of this chapter.

3.1 Mathematical Programming Methods

A mathematical programming problem deals with the task of finding a maximum or
minimum value of a real valued function subject to a set of constraints. integer linear
programming (ILP) is a subfield of mathematical programming as it focuses on linear
objective functions and constraints only.

Many problems in computer science can be formulated as an ILP! problem. While ILP
alone is not sufficient to solve our problem in reasonable time for instances subject to a
large time horizon, it constitutes an important part of our algorithm.

In the following, we first take a look at [LP which is an “easy” variant of ILP) in the sense
that [LP| problems can be solved in polynomial time. We review basic properties and the
geometrical interpretation of [LPs. Afterwards, we take a look at IMILPL In contrast to
LP., IMILP! problems are N'P-hard. Solving IMILP! problems is usually based on B&B.
Hence, finding tight bounds on the optimal value of the problem’s objective function is
vital for an efficient B&B| procedure. We will see that [LP| proves to be very useful for
finding such bounds.

The review of mathematical programming is based on Bertsimas and Tsitsiklis| [1997],
Schrijver| [1998] and Wolsey| [1998].

3.

METHODS

10

3.1.1 Linear Programming

A linear programming (LP)) problem is defined as follows:

min ¢'x (3.1)
s.t. af'x > b; Vi e M, (3.2)
ai'x < b; Vi € My (3.3)
ai’x =b; Vi € Mg (34)
z; >0 Vj e N (3.5)
z; <0 Vj € Ny (3.6)
The variables given by vector x = (x1,...,x,) are called decision variables.

The goal of a linear program is to find a variable assignment x that minimizes the
objective function (3.1) but does not violate any of the program’s constraints (3.2)) -
(3.6).

If all constraints of the program are satisfied w.r.t. x, then x is called a feasible solution.
The set of all feasible solutions is called the feasible set or feasible region. Vector x is an
optimal solution, if it is feasible and also minimizes the objective function. Note that
more than one optimal solution may exist.

The set of all values that can be assigned to a decision variable x; is called the domain
of ;. If the domain of x; is restricted (see Constraints (3.5) - (3.6))), we refer to z; as
restricted. Otherwise x; is called free or unrestricted.

The constraints of a linear program can be expressed as either equalities or inequalities.
An equality constraint a;’x = b; can be equivalently formulated with inequality constraints
only: aj’x < b; and aj’x > b;.

It is also possible to reverse the sign of the program’s inequalities:

Ax<b
< —Ax > -b

Moreover, a minimization problem can be transformed into a maximization problem and
vice versa:
min ¢’x = max —c'x

Therefore, we can write the above general form in a more compact way:

min ¢'x (3.7)
st. Ax > b (3.8)
x € R" (3.9)

Note that it is also possible to transform the Inequalities|3.9 into equalities by introducing
slack variables s:

3.1. Mathematical Programming Methods

Ax>Db
<SAx+s=Db s>0

Geometrical Interpretation of a Linear Program

Definition 1. A polyhedron is a set that can be described in the form {x € R" : Ax > b},
where A is an m X n matriz and b is a vector in R™.

The definition of a polyhedron bears strong similarities to the constraints of a linear
program. In fact, a polyhedron describes the feasible region of a linear program. Moreover,
for any linear program it holds that its corresponding polyhedron P is convex, i.e., if
x,y € P, then Ax + (1 — A\)x € P for any A € [0, 1]. It is easy to see that the optimal

solution to a linear program has to be a corner point of the program’s convex hull.

Moreover, it turns out that an optimal solution to the linear program has to be an
extreme point of P, i.e., a vector x € P s.t. no two vectors y,z € P (different from x)
exist satisfying x = Ay + (1 —)z for any X € [0, 1].

Solving Linear Programs

LP! problems are P-hard, i.e., they can be solved in polynomial time. There exist many
different algorithms for solving [LP! problems. The first polynomial time algorithm for
solving [LP| problems was the ellipsoid method, see Khachiyan| [1980]. However, due to its
poor performance in practice the ellipsoid method is only of theoretical interest. Other
polynomial time algorithms are interior point methods, see Karmarkar| [1984]. In contrast
to the ellipsoid method, interior point methods are efficient in practice. One of the most
effective methods is the simplex method by Dantzig [1951]. Although the simplex method
has exponential worst case complexity, the algorithm is usually very fast in practice. The
basic idea of the simplex method is to travel from one extreme point of the program’s
polyhedron to another extreme point along the edges of the polyhedron. If an extreme
point is adjacent to more than one extreme point, the algorithm chooses the most cost
reducing direction (w.r.t. minimization problems).

Note that there also exists polynomial time algorithms for solving [LP! problems (see
Khachiyan| [1979] and Karmarkar| [1984]).
3.1.2 Mixed Integer Linear Programming

A mixed integer linear programming (MILP) problem is defined as follows:

min ¢’x + d'y (3.10)
st. Ax+By <b (3.11)

11

3.

METHODS

12

x,y >0 (3.12)
xeZ" (3.13)

MILP! extends [LPl by allowing variables whose domains are restricted to the set of integers.
If the program is based on integer variables only, we refer to the program as [ILP. If the
integer variables are additionally restricted to be either 0 or 1, the program is called
binary integer linear program (BILPJ).

Solving MILP| problems

In contrast to LP, MILP| is N'P-hard (Papadimitriou [1981]). A basic procedure for
solving an IMILP)| problem is an algorithm which generates an increasing sequence of lower
bounds (dual bounds)

X <Xg<...<Xg <X

and a decreasing sequence of upper bounds (primal bounds)
XI>X3>...>Xg > X

and terminates when
Xg — Xt < €

where € is some small nonnegative value.

A primal bound is a lower bound for maximization problems and an upper bound for
a minimization problems. Moreover, every feasible solution to an MILP! problem is a
primal bound.

A dual bound is a lower bound for minimization problems and an upper bound for
maximization problems. Dual bounds are usually obtained by solving relaxations of the
MILP! problem.

Definition 2. A problem 2z} = min{f(x) : x € T C R"} is a relazation of = = min{c(z) :
x € X CR"} if:

(i) T C X, and

(ii) f(z) <c(x) Vx € X.
The idea of using a relaxation is to replace a difficult problem with a problem that is
easier to solve. An IMILP! problem can for example be relaxed by discarding some of

its constraints, which enlarges the set of feasible solutions. A common approach in this
sense is the LP| relaxation:

Definition 3. For the MILP min{cx : x € PNZ"} with P = {z € R" : Ax < b}, the
linear programming relazation is the linear program z** = min{cx : x € P}.

3.2. Heuristics

For each problem there exists an ideal formulation z s.t. z = 2. Such a formulation
usually has a large number of constraints and is hard to find. However, in order to find
an optimal solution, usually only a small amount of constraints is needed. The cutting
plane method tries to utilize this fact and solves a given MILP! formulation as follows:
First, a relaxed version of the formulation is solved. If the solution of the relaxation
is also a solution to the original MILP, then the solution is optimal. Otherwise, there
exists at least one inequality of the MILP! formulation that is violated. By adding these
inequalities (cutting planes) to the relaxed formulation, the relaxation is strengthened and
therefore provides a stronger lower bound. This procedure is repeated until an optimal
solution is found. It is important to note that these added inequalities are required for
obtaining a feasible solution. One could also use the same approach to add a set of
strengthening inequalities which are not necessary for obtaining a feasible solution but
may reduce the search space and hence speed up the solving process.

A very prominent procedure for solving MILPS is branch-and-bound (B&B)) which divides
the set of feasible solutions into subproblems and computes primal and dual bounds to
decide whether a subproblem should be refined or discarded.

The cutting plane method can be embedded into a [B&B! procedure yielding the branch-
and-cut (B&C)) procedure. B&C usually generates cutting planes for each subproblem of
the [B&B! tree, in order to generate stronger dual bounds for the subproblems.

Comparing Formulations

On the one hand, IMILP! is more expressive than [LP, on the other hand, MILP! problems
are much harder to solve. A problem can be formulated in infinitely many (non equivalent)
ways. MILP| formulations can be compared by the polyhedra of their corresponding linear
programming relaxation:

Definition 4. Given a set X € R™ and two formulations Py and Pa for X, then

(i) Py and Py are equivalent if Py = P,
(ii) Py is a stronger formulation than Py if Py C P, and

(iii) Py and Py are incomparable if Py ¢ Py and Py ¢ P»l.

3.2 Heuristics

There exist many problems for which exact methods are unsuitable, as they cannot solve
the problem within reasonable time. Alternatively, one can resort to heuristic approaches
for solving the problem. Heuristics focus on generating solutions of high quality, which
can usually be found in significantly less computation time. However, they provide no
dual bounds and therefore no quality guarantee on the computed solutions. In this
chapter we review two basic heuristic concepts: construction heuristics and local search.

13

3.

METHODS

14

Afterwards we show how these two concepts can be combined to a new heuristic. We use
Blum and Raidl [2016] as the basis of this review.

3.2.1 Construction Heuristics

Construction heuristics serve as basis for many other heuristic approaches. Starting from
an empty solution, a construction heuristic iteratively expands the solution until it is
complete. While the procedure is very fast, the generated solution usually leaves great
room for improvement. A prominent example for a construction heuristic is a greedy
heuristics, which chooses at each step of the solution generation the best element from a
local point of view. Construction heuristics can also be randomized by simply choosing a
random element to expand the current solution. The probability for an element to be
chosen is usually weighted, depending on the impact the element has on the solution.

3.2.2 Local Search

In contrast to a construction heuristic, a local search procedure does not generate solutions
from scratch. Instead, the goal of a local search procedure is to improve the quality of
already existing solutions.

A local search procedure consists of three components. The first component is the
neighbourhood function which assigns to a solution S a set of neighbours N(S). Instead
of explicitly defining the set of neighbours, a neighbourhood is usually defined by some
(small) operation which, applied to S, generates all neighbours of S. The goal of local
search is to find a local optimum, i.e., a solution S whose quality is not worse than any
other solution in N(S). Hence, a local optimum is a solution which is optimal w.r.t. some
neighbourhood. A solution S can be improved by replacing it with a solution S’ in N(S)
s.t. the quality of S’ is higher than the quality of S. By repeating this procedure as long
as possible one eventually reaches a local optimum.

The second local search component is the step function that decides which solution in
N(S) replaces the original solution S. One possibility is the so called first improvement
method, which replaces S with the first found solution that has higher quality. Another
way to replace S is the best improvement method, which replaces S with the solution
that has the highest quality in N(S). Moreover, the replacement for S can also be chosen
randomly. Note that the choice of the most suitable step function is problem specific.

The last local search component is the termination criterion, which decides when to
terminate the local search. A local optimum of a neighbourhood cannot always be found
in reasonable time. Therefore, we prematurely terminate the local search if a specific
criterion is met. A time limit is one of the most common termination criteria. However,
the total number of iterations or the number of iterations without improvement are also
popular choices.

Algorithm 3.1 shows a basic pseudocode for a local search.

3.3. Matheuristics

Algorithm 3.1: Local Search
Input: initial solution S
1: while 35" € N(S) s.t. f(S") < f(S) and termination criteria not met do
2: S < step function(N(S5));
3: end while
4: return S;

Algorithm 3.2: GRASP

1: '« S;// stores the best found solution

2: while termination criteria not met do

3: create a solution .S using a randomized construction heuristic;
4: S < Local Search(S);

5: if f(S) < f(9’) then S’ + S;

6: end while

7: return S';

3.2.3 GRASP

Metaheuristics are combinations of construction heuristics and/or local search procedures
with other algorithms. The idea behind metaheuristics is to explore the search space more
effectively than simple local search procedures. A greedy randomized adaptive search
procedure (GRASP)) is a prominent metaheuristic that applies a randomized variant of
a construction heuristic followed by a local search component independently for many
times, where the best found solution is kept as the result, see |Resende and Ribeiro| [2010].
Algorithm [3.2 shows a basic pseudocode for a [GRASP! algorithm.

3.3 Matheuristics

Matheuristics belong to the group of hybrid approaches. Hybrid approaches are usually
a combination of two different algorithmic procedures. Matheuristics are a combination
of mathematical programming and metaheuristics. The idea of matheursitics is to
either improve the metaheuristic by exploiting mathematical programming techniques
or improve the mathematical programming technique with the time efficiency of the
metaheuristic (Caserta and Vof} [2010]).

Matheuristics can be categorized in two types (Caserta and Vof| [2010]). In the first
type, a mathematical programming technique is embedded into a metaheuristic. For an
example recall [Palpant et al.| [2004], who uses mathematical programming techniques in
order to solve a large scale neighbourhood search heuristic for an RCPSP! problem.

In the second type, the mathematical programming technique controls the calls to the
metaheuristic. Typical applications for such matheuristics are MILP| models which use

15

3. METHODS

heuristics to generate feasible solutions or dual bounds. To generate dual bounds, one
can use the dual heuristic algorithm (Li et al.| [2015]) mentioned in Section [2.2.

Feasible solutions can for example be generated by heuristics based on decomposition
approaches of MILP| models, e.g., the Lagrangian decomposition. The solution generated
from a Lagrangian relaxation can in many cases be easily repaired s.t. the solution to
the relaxation becomes feasible. Procedures to repair solutions are usually based on
metaheuristics. For further examples of decomposition based heuristics see Raidl [2015].

16

CHAPTER

The Simplified Intraday Particle
Therapy Patient Scheduling
Problem

The simplified intraday particle therapy patient scheduling problem (SI-PTPSP) is defined
on a set of activities A = {1,...,a} and a set of unit-capacity resources R = {1,...,p}.
Each activity a € A is associated with a processing time p, € N+, a release time ¢/, € N>q
and a deadline t4 € N>q with £ < td. For its execution an activity a € A requires a
subset @, C R of the resources. Activities need to be executed without preemption.
The considered set of time slots T' = {T™ ... T™} is derived from the properties
of the activities as follows: T™" = min,c 4t} and T™* = maxge4t — 1. We denote
by Y, (t) the set of time points during which activity a € A executes when starting at
time ¢, i.e., Yo (t) = {t,...,t + pa — 1}. To model dependencies among the activities we
consider a directed acyclic precedence graph G = (A, P) with P C A x A. Each arc
(a,a’) € P is associated with a minimum and a maximum time lag Lgf}l’f}, Ly’ € Nxo
with Lam’g} < L7X, respectively. For each resource r € R a set of availability windows

a,

W =Ut....cop Wrw with Wy, = {Wstart | Wend} € T is given. Resource availability
windows are non-overlapping and ordered according to starting time W,?fjrt. Based on the
resource availabilities and the precedence relations among the activities we can deduce
for each activity a set of feasible starting times, denoted by T, C {t%,...,td — p,}; for

details on the computation of this set see Section 6.1.

A feasible solution S (also called schedule) to the [SI-PTPSP!is a vector of values S, € T,
assigning each activity a € A a starting time within its release time and deadline s.t.
the availabilities of the required resources and all precedence relations are respected.
The goal is to find a feasible solution having minimum makespan, i.e., a schedule with
minimal total length.

17

4.

THE SIMPLIFIED INTRADAY PARTICLE THERAPY PATIENT SCHEDULING PROBLEM

18

Using the notation introduced in Brucker et al. [1999] our problem can be classified as
PSm, -, 1|r;, d;, temp|Crax-

4.1 Complexity

Lawler and Lenstral [1982] have shown that finding a solution for the non preemptive
single machine scheduling problem with deadlines and release times (1|r;|Cmax according
to the notation by |Graham et al. [1979]) is N"P-hard by providing a reduction from the
well known NP-complete PARTITION problem.

Partition

INSTANCE: A finite set of n positive integers B = {by, b1,...,bn—1}.
QUESTION: Can the set B be partitioned into two subsets Bi, Bs s.t. the sum
of the numbers in By equals the sum of the numbers in Bs?

We adapt the aforementioned proof to show ANP-hardness of the SI-PTPSP. For this
purpose we consider the decision problem variant of the SI-PTPSP) the k-SI-PTPSP:

k-SI-PTPSP

INSTANCE: An instance I of the [SI-PTPSP! and a non negative integer k.
QUESTION: Does there exist a solution to I with makespan less than or equal
to k7

Proposition 1. The kiSI-PTPSP is N'P-complete.

Proof. The proof consists of two parts. First, we show that k:SI-PTPSP!is in NP. Then,
we show that k-SI-PTPSP! is N"P-hard.

To show N’P-membership, consider the certificate relation R = (I,5), where I is an
instance of the k-SI-PTPSP|and S is a schedule to I with makespan less than or equal to
k. Since S is of size linear in I, it follows that R is polynomially balanced. Moreover, R is
polynomially decidable as the schedule can be verified in O(|A|). Therefore, k-SI-PTPSP
is in N'P.

NP-hardness of kASI-PTPSP| is shown by a reduction from PARTITION. Consider an
instance I of PARTITION as described above. Note that Z?;Ol b; has to be even, otherwise

I cannot be a positive instance. Table 4.1/ shows how to construct an instance I’ of the
kISI-PTPSP| from 1.

Let (B, Bz) be a solution to I. Then, the following equation is valid:

4.2. Mathematical Formulations

n—1
A=1{0,1,...,n} (= Zicabi g
pi=b Wie{0,...n—1} R = {0}
pu—1 Wo = {{0..... 75}
£=0 Vie{0,...n—1} Qi={0} Vie{0...n}

n—1

R G = (4,0)
td=Tmx 11 Vie{0,...,n—1} Tmax = sl 41

Table 4.1: Rules for transforming an instance of PARTITION into an instance of the
k{ST-PTPSP

17
Yobi= > b=t =T —t] = 2?20 b (4.1)

b, eBy b;€Bo

Next, we show that I is a positive instance of PARTITION if I’ is a positive instance of the
kISI-PTPSPL Let S = {So, ..., Sy} be a solution to I’. Moreover, let, By = {p; : S; <t}
and By = {p; : S; > t%}. Note that B; U By = B. From Equation (4.1) it follows that
> beny i = D_p,ep, bi- Therefore, I is a positive instance of PARTITION.

It remains to show that I’ is a positive instance of the kASI-PTPSPIif I is a positive instance
of PARTITION: Let (B, Bg) be a solution to I. Moreover, let A(B;) = {a; : b; € B;}
for i € {1,2}. W.lLo.g. assume that A(B;) = {ao,...an} and A(B2) = {am+1,.-- qn_l}.

Then, since Equation (4.1)) is valid, the activities a; € By can be scheduled at S; = ;;}) b;.
Moreover, the activities a; € Bs can be scheduled at S; = tgn + ;;1,1 1105 Let Sy =17,
U, Si is a solution to I, since t§ < S; < t¢ — p; for all i € {0,...,n}. Therefore, I is a
positive instance of the k-SI-PTPSP. O

4.2 Mathematical Formulations

In this chapter we present various MILP| models for the [SI-PTPSP. We start by intro-
ducing two classical approaches: a discrete-event formulation (DEF) and a time-indexed
formulation (TIF). Both serve as reference approaches to which we will compare our
matheuristic. We show different time-indexed models and compare their strength. After-
wards, we present the time-bucket relaxation (TBR)) formulation which is a relaxation of
TTE' and constitutes the central component of our matheuristic. We conclude the chapter
by discussing additional inequalities for strengthening 'TBR.

4.2.1 Discrete Event Formulation

Discrete-event formulations (DEFS) are based on the idea of considering certain events
that need to be ordered and for which respective times need to be found. Resource
constraints then only have to be checked at the times associated with these events.

19

4. THE SIMPLIFIED INTRADAY PARTICLE THERAPY PATIENT SCHEDULING PROBLEM

In regard to our problem, the considered events are the start and the end of each activity
(activity events), and times at which the availability of a resource changes (resource
events). To simplify the model, we transform all resource events into activity events by
introducing a new artificial activity for each period during which a resource r € R is
unavailable.

To this end, we create a new activity for each maximal interval in 7'\ W, requiring
resource 7, where the processing time is the length of the interval, and the release time
and the deadline are the start and the end of the interval, respectively. Then, we define
a new set of activities A’ being the union of A and the artificial activities; let o/ = |A’|.
Consequently, we denote by K = {1,...,2a'} the set of chronologically ordered events.

To state the model we use binary variables z, j that are one if event k € K is the start
of activity a € A and zero otherwise. Similarly, binary variables y, » indicate whether
event k is the end of activity a. Variables Ej represent the time assigned to each event
k. The starting times of the activities a € A" are modelled using variables S,. Having
transformed all resource events into activity events, the capacity of a resource now
determines how many activities sharing a common resource can overlap in the schedule.
As the capacity of all resources is one, no activities may overlap in the schedule. It
suffices to check activity overlaps at events as resource requirements can only change
there. For this purpose, we introduce variables D,.; which are one if resource r € R is
used by any activity immediately after event k and zero otherwise. Variable MS denotes
the makespan.

20

min MS (4.2)
Sa+ pa < MS Vac A (43)
Sa’ - Sa > Da + ngg/l V(a, a') epP (44)
Sar — 84 < pa+ Lg}j?(V(a, a') e P (4.5)

> ok =1 Vae A (46)
keK

D Yok =1 Vae A\ (47)
keK

> (Tak + Yag) =1 Vke K (4.8)
acA’

Ey_1 < Ej Vk e K\ {1} (4.9)
By — MUY (1 = aay) < S0 VkeK,acA (4.10)
B+ MG (1= a0y) > S, VkeK,acA (411)
B — ME? (1~ yar) < Sa+ pa VkeK,ae A (4.12)
By + MG (1= yak) > Sa + pa VkeKacA (4.13)

4.2. Mathematical Formulations

DT‘,O = Z La,0 Vre R (414)
a€A':reQq
Dyp=Drp1+ > Tap— Y. Yar VkEK\{l},reR (4.15)
a€A:rEQ, ac€A’:reQq
Dy <1 Vke K,re R (4.16)
th < S <15 — pa ac A (4.17)
MS,Ek,DT’k >0 Vke K,re R (418)
Taks Ya i € {0,1} Vke K,ac A" (4.19)

Inequalities (4.3) are used for determining the makespan. Precedence relations are
enforced by Inequalities (4.4) and (4.5). According to Equalities (4.6) and (4.7) each
activity starts and ends at precisely one event. Equalities (4.8) ensure that each event

is assigned to either exactly one starting time or exactly one ending time of an activity.

Events are chronologically ordered by Inequalities (4.9). Starting times of activities are
linked to the corresponding start events by Inequalities (4.10) and (4.11). Similarly,
Inequalities (4.12) and (4.13) link the event at which an activity a ends to the time at
which the activity ends. We do not know in advance which event corresponds to which
activity starting time. Hence, it is necessary to construct Inequalities (4.10) to (4.13) in
such a way that they are valid for all feasible permutations of activities. This can be
achieved by the so called big-M method, which puts events and activity starting times
into relation w.r.t. a constant, usually large, offset M. The constraints are constructed
in such a way that, M drops out of the constraint if an event coincides with an activity
staring time. Otherwise, the offset M remains in the constraints in order to ensure that
the constraints are valid. It is easy to find a high value for M s.t. the constraints are
satisfied, e.g., T™®*. However, to make the [LP relaxation as tight as possible, M should
be as small as possible. In Section 6.2 we discuss how to find tight Big-M values for
Constraints (4.10) to (4.13)). Equalities (4.14) and (4.15) compute the total demand of
a resource of all activities running during an event. Finally, Inequalities (4.16) ensure
that all resource demands are met at all events. Inequalities (4.17) ensure that activities
can only start during their release-time deadline windows. Inequalities (4.18) and (4.19)
restrict the domains of the model’s variables.

The formulation has O(|A’|?) variables and O(|R| - |A’|?) constraints. Thus, DEF is a
compact model, i.e., the model uses only one variable to represent an activity’s starting
time. However, its [LP! relaxation typically yields rather weak bounds primarily due to
the inequalities involving the Big-M constants. Consequently, solving [DEF' to integrality
frequently requires a huge number of B&B| nodes and, thus, too much time. Our
computational results in Chapter 7| will show that DEF!is clearly not competitive with
the other approaches we consider here.

21

4. THE SIMPLIFIED INTRADAY PARTICLE THERAPY PATIENT SCHEDULING PROBLEM

4.2.2 Time-indexed Formulation

In a classical MILP! way, we can model the [SI-PTPSP| by the following time-indexed
formulation (TIF)) using binary variables x, ¢ for indicating whether an activity a € A
starts at time t € T,,.

min MS (4.20)
> wap=1 Va € A (4.21)
teTa
Z t -2t +pq < MS Vaec A (4.22)
teTy

> Y mew <1 VreR, teW, (4.23)
a€ATEQa t'ETH:teEY ()
Z tTar s — Z txq s > pa + LE“’;I} V(a,a') € P (4.24)
teT,, teTy,
Sotxgy— > tway < po+ LIS Y(a,d') € P (4.25)
teT,, teTy,
zqt € {0,1} Vae A, teT, (4.26)
MS >0 (4.27)

Equations (4.21) ensure that exactly one starting time is chosen for each activity. Inequal-
ities (4.22) are used to determine the makespan MS. Resource restrictions are enforced
by Inequalities (4.23). Last but not least, Constraints (4.24) and (4.25) guarantee that
the precedence relations with their minimum and maximum time lags are respected. The
remaining constraints specify the variable domains.

The model has O(|A] - |T'|) variables and O(|T| - (|A| + |R| + |P|)) constraints. Its size
thus depends strongly on the resolution of the time discretization. Typically, the [LP
relaxation of [TTF| yields substantially tighter lower bounds than the [LP! relaxation of
DEF), and thus less B&Bl nodes are usually required to solve [TTFE.

In the following we discuss two alternative stronger time-indexed formulations. Stronger
formulations yield stronger [LP| relaxations, however their models are usually larger in
size, which may make them harder to solve. For a comparison of different time-indexed
models for a scheduling problem see (Cavalcante et al. [2001].

Time-Indexed Formulation using Disaggregated Precedence Constraints

The precedence constraints of [TTE| can be disaggregated by replacing (4.24) with

Z Tap = Z Lo/ ¢/ V(a, CL/) €l teTly (428)

t'€Tq:t! <t—pa—L™, VET <t

22

4.2. Mathematical Formulations

and (4.25) with

Z Lot/ > Z La,t V(a, a/) el tel, (429)
t/ET, it/ Stpa+ L0 €Tyt <t

yielding the disaggregated time-indexed formulation (DTIF). Informally, constraints
(4.28) enforce that if an activity a does not start after time ¢, then activity o’ with
(a,a’) € P cannot start after time t 4 p, + LT72¥. Similarly, constraints (4.29) enforce
that if an activity a’ does not start after time zz,, then activity a with (a,a’) € P cannot

start after time t — p, — Lgfg}. See |Artigues [2013] for more details about disaggregated
precedence constraints.

It is well known that time-indexed formulations using disaggregated precedence constraints

are usually stronger formulations than their disaggregated equivalents (Artigues [2017]).

Subsequently, we show that this also holds for TIF and DTIFEL

Theorem 1. The polyhedron of DTIF is a strict subset of the polyhedron of 'TIF.

Proof. The proof consists of two parts. In the first part we show that IDTIFis at least
as strong as [TIF. In the second part we show that the polyhedra are not isomorphic.

TIF differs from [IDTIF only by its minimum and maximum lag constraints. Hence, we

have to show that Constraints (4.24) and (4.25) are implied by the constraints of [DTTE.

For this purpose let 7, € T, be the minimal time point for an activity a € A s.t.

Y zgp=1 VacA (4.30)

teTq:t<7q

holds. Such a time point has to exist due to Inequalities (4.21). From Inequalities (4.28)
it follows that

Z La,t > Z Tal ¢ V(a, (l/) epP (431)

t'€Tat<Ta tlETa’:t/STa"FpaJ"ngian/

and
Ta < Ta/ (432)

Now assume that > ycr ,.p<r 4pot+rmin Tor = 0. Then, due to Inequalities (4.21) and
(4.32)) it follows that ,

Z t-xar+ Do+ Lgfg} < Z Loy V(a,d') € P (4.33)
teTy, tETa/

Hence, let us assume that Zt,eTa,:t/STaeraJrL;ny T/t = D teTyt<r, Tapt = 1.

Then, the following inequalities can be derived:

23

4.

THE SIMPLIFIED INTRADAY PARTICLE THERAPY PATIENT SCHEDULING PROBLEM

24

Z t-Zat+ pa+ ;ﬂg} = Z by V(a,a') € P (4.34)
teT, tGTa/

Therefore, Inequalities (4.24) are implied by Inequalities (4.28) and (4.21). Analogously,
it can be shown that Inequalities (4.25) are implied by Inequalities (4.29) and (4.21).

Next, we show that there exists a solution to the [LP| relaxation of [T1F| which is not a
solution to the [LP! relaxation of DTIFEL For this purpose consider the instance I described
in Table (4.2).

A={0,1} Wo = {[0,T™*]}
pi=1 Vie{0,1} Qi=0 Vic{0,1}
=0 Vie{0,1} G = (A,{(0,1)})
th=6 Vie{0,1} Ly =0

Tmax — 5 61’1%)(— max

R = {0}

Table 4.2: An instance of the [SI-PTPSP! for which a solution to the [LP|relaxation of [TTEF
exists, but no solution to the [LP| relaxation of [DTIFE.

One can easily verify that the following is an [LP-solution to I w.r.t. [T1E:

03 =1

1,1 = 0.1

1,5 = 0.9

MS =5.6

However, Inequalities (4.28) are clearly violated for t = 3 since > ,c 12y %ot = 0,
>tel,..,3y 1t = 0.1 and 0 2 0.1 Hence, the solution is not an [LP-solution w.r.t. DTIF.

O]

Time-Indexed Formulation based on Step Variables

It is also possible to model the [SI-PTPSP| by the following time-indexed formulation
with step variables (STIF)) using binary variables y,; for indicating that activity a € A
has started at some time ¢’ < ¢t € T,, and thus is finished at time ¢ + p,. While the
polyhedra of STIF|and DTIE! are isomorphic (see 4.2.3)), STIF may have a computational
advantage over DTIF w.r.t. B&Bl as branching on the variables of [STIF| may divide the
search space more evenly, than branching on the variables of DTIE/ (see |(Cavalcante et al.
[2001]). More details about time-indexed models based on step variables can be found in
Artigues| [2013].

Let 7™ = min(T,), T™* = max(T,) and

pred,(t) = max{t' € T, : t' <t} and succ,(t) =min{t' € T, : t' >t} (4.35)

4.2. Mathematical Formulations

indicate the predecessor and successor time points existing in T}, for some T™® < t and
t < T)M%* respectively.

Furthermore, let

Ya,t for t € Ty,
0 for t < T™in,
Sat = “ (4.36)
1 for ¢ > T,
Ya,pred, (t) else
be a generalization of the variables y, that is safely defined for any ¢ € Z.
We can now define STIF as follows.
min MS (4.37)
e — (Z (succq(t) — t) 'ya,t) + po < MS Vae A (4.38)
teT\{ TP}
Z ga,t - fa,tfpa <1 Vre R, teW, (439)
a€A:(reQante{Tn,... Tnax +pqa })
atmpa—rmin = Yo/t V(a,a') € Pt € Ty (4.40)
Sat—pa—L™x < Yar V(a,a") € Pt € T, (4.41)
y(l,t g ya7succa(t) Va G A, t E Ta \ {Ténax} (442)
Ya,Tmax =1 Vae A (4.43)
Yar € {0,1} Va € A, t € T, \ {T,"**} (4.44)
MS >0 (4.45)

Inequalities (4.38) are used to determine the makespan MS. They essentially count
the number of time slots at which each activity a € A has not yet started. Note

that y, rmax must always be one (also cf. (4.43)) and therefore is omitted in the sum.

Resource restrictions are enforced for each time slot in which a resource r € R is available
by Inequalities (4.39). Constraints (4.40) and (4.41) guarantee that the precedence
relations with their minimum and maximum time lags are respected. Last but not least,
Inequalities (4.42) and (4.43) ensure that for each a € A the sequence y, pmin, . . ., Yq Tmax
never decreases and ends with one, i.e., the activity is actually started at some time.

Proposition 2. Let (y, MS) be a solution to STIF. Then, the vector S with the values
Sa = Tg" =3 yer,\rmaxy (succa(t) —t) -yt for all a € A is a solution to the SI-PTPSP.

4.2.3 Comparison of STIF and DTIF

Consider the following bijection between the variables of [STTF| and the variables of DTIF:

25

4.

THE SIMPLIFIED INTRADAY PARTICLE THERAPY PATIENT SCHEDULING PROBLEM

26

bat= D, oy Va€ALEL (4.46)
teT,t'<t

Equation (4.46) can be reformulated as

fa,t = Zqt+ E Lt

t'ETg:t'<t—1
= Zqt + ga,t—l
yielding a new identity
Tat = ga,t - ga,t—l (447)

Theorem 2. The polyhedra of STIF and |DTIF are isomorphic.

Proof. We prove Theorem 2 by showing that the constraints of STIF|are a transformation
of the constraints of IDTIF| and vice versa. The variables of the constraints can be
transformed by Identities (4.46) and (4.47).

First, we show how Inequalities (4.43) can be transformed into Inequalities (4.21) and
vice versa using Equation (4.46):

ya7Ténax = ga’Ténax = Z xa’t/ - Z xa7t/ - 1 Va € A

t' €Tyt <Tinax t'eTy,

Next, we show the transformation between Inequalities (4.22) and Inequalities (4.38):

Zt~xa7t+pa§MS Va € A
teTy

Substituting according to Equation (4.47) on the left-hand side of the inequality yields:

Z t-Tot = Z t (ot —Eai—1)

teTy teTy

Note that &ut—1 = Yapred,) for all t € Ty, AT > Tmin and Samin_y = 0. Let Ty, =
{t1,...,tx} with t; = T™" and t; = T™a%, Then, it follows that

Yot (Cap—Eap-1) =T Yo+ >t (Yar — Yapred, (1)

teTy tET, \Tmin

=11 Yoty T2 Wats — Yartr) T 13- Waits — Yatz) T+t Yoty — Yarte_,)
= Yaty (01 —t2) + Yarty - (b2 —t3) + - + Yartyy - (Tho1 — k) + 1k Yar,

= Y (t—succy(t) yasr+ T™ - yg pmox

tETa \Tmax

Hence,

Z t-xqy =T — Z (succq(t) —t) - Yar

teT, tET, \Tmax

4.2. Mathematical Formulations

as desired.

Next, we focus on transforming the resource constraints of [STIF| and [DTTE. For this
purpose, we prove the following identity for arbitrary t¢:

fa,t - €a7t—pa = Z Lt

€T, tEY ()

We first reformulate the right-hand side of the equation as the difference of two sums and
then show that each sum corresponds to a £ term of the left-hand side of the identity.

From the definition of Y, (¢') it follows that ¢t — p, + 1 <’ <t. Let ¢] denote the earliest
time point s.t. t} € T, At — p, +1 < t|. Equivalently, we define ¢; as the latest time
point s.t. ¢, € T, At <t. Then,

§ Lot = E Lot — E Lot

tVeTy:teY, () tE€Tq:t! <t} v Tyt <t)
From the definition of ¢} and ¢}, it follows that

E Lot = ga,t;c = ga,t
tE€Tait! <t

Z Latr = ga,t’l = ga,preda(t—pa—l—l) = ga,t—pa
V€Tt <t

Therefore, the identity holds. By applying the identity on Constraints (4.23)), we get

Z ga,t - ga,tfpa <1 Vre R,teW,
a€A:reQq

which is equivalent to Constraints (4.39) due to the definition of the & variables.

Moreover, applying the identity on Constraints (4.39), yields

Z Z o <1 VreR, teW,

A€EA:(TEQaNte{Tin [Tmaxytp 1) t/€Tq:t€Yq(t))

which corresponds to Constraints (4.23) since ¢ € T, : t € Y, (') implies that ¢ €
(T, T 4 p,}.

Next, we show the transformation between the minimum time lag Constraints (4.28)) and
(4.40). Consider Inequalities (4.28):

Z Tap = Z Lot/ V(a, a/) eEP teTy (448)
t’GTa:t’St—pa—L:‘g‘/ Vel t'<t

27

4. THE SIMPLIFIED INTRADAY PARTICLE THERAPY PATIENT SCHEDULING PROBLEM

By Equation (4.46) it must hold that

E Tap = &t p,—Lmin and
a,a

t/€Tait! <t—pa— L2,

E Lo/t = Ya! t

tIETa/ St/St

Therefore, the transformation holds. The maximum lag constraints of the models can be
transformed analogously.

Inequalities (4.42) of ISTIF| do not have an equivalent in DTIF! but we can show that
they are implied. By substituting according to Equation (4.46), Inequalities (4.42) are
transformed to:

Yar = Y. Tay (4.49)

HET,:t/<t

Ya,succq (t) = Z La,t (450)

t/ETq:t! <succq (t)

Therefore, the transformation yields

Z Tat < Z La,t Vae At eT, \ {Tmax} (451)

teTy:t'<t t' €Ty :t' <succq(t)

As t < succq(t), it follows that Y-y eq, .<; Ta,t is contained in 3y e, .y <suceq (1) Tat- There-
fore, the transformation yields an inequality which always holds.

O

4.2.4 Time-bucket Relaxation

As the number of variables and constraints of [TTF| can become huge when considering a
fine-grained time discretization, directly solving the model may not be a viable approach
in practice. We therefore consider a relaxation of it in which we combine subsequent time
slots into so-called time-buckets. This model, which we call time-bucket relaxation (TBR)),
yields a lower bound to the optimal value of the original problem but in general not
directly a valid solution to it. Note that this stays in contrast to a more common
approach in which the time-discretization is coarsened in order to obtain a feasible but
also less precise solution, which is not necessarily optimal (or even feasible) for the
original problem. Based on [TBR| we will build our iterative refinement approach in the
subsequent chapter that is guaranteed to converge to an optimal solution for SI-PTPSPL

Let B = {Bj,...,Bg} be such a partitioning of 7" into subsequent time-buckets. Note
that the individual buckets do not need to have the same size. We denote by I(B) =
{1,..., 3} the index set of B. For all b € I(B) we define the set of consecutive time slots
By = {Btrt .. ,Bgnd} contained in the bucket. Since B is a partitioning of T" we have

28

4.2. Mathematical Formulations

Tmin Tmax

Figure 4.1: Bucket partitioning of T.

Bitart = Tmin gepd — pmax_and Bend 1 = Byt b € I(B)\ {B}. For an illustration
see Figure 4.1. Additionally, let W2 (b) = |B, N W,.| denote the aggregated amount of
resource r € R available over the whole bucket b € I(B).

Considering a bucket partitioning we now derive for each activity a € A all subsets of
buckets in which the activity can possibly be completely performed s.t. it executes at
least partially in every bucket. We call these subsets bucket sequences of activity a and
denote them by Cy = {Cy1,...,Canr.} C 2/B). Let functions bfirst(a,) and blast(a, c)
fora € Aand c=1,...,7, provide the index of the first and the last bucket of bucket
sequence Cg ., respectively. The bucket sequences in C, are assumed to be ordered
according to increasing starting time, or, more precisely, lexicographically according to
(bfirst(a, ¢), blast(a, ¢)). We can determine all bucket sequences for an activity in time
O(|T|) by “sliding” the activity over all time slots and taking the covered buckets. With a
more careful approach this can be brought down to run in O(|B|log|B]|), see Section 6.3
on how this is done in detail. Analogous to set T, we do not consider bucket sequences
that involve only infeasible starting times.

For each bucket sequence let Sg}é“ € T be the earliest time slot at which activity a can
possibly start when it is assigned to bucket sequence C, . € Cy. Similarly, let Sg’e* € T be
the latest possible starting point. Moreover, values zg’l})flc and zgja’é provide bounds on the
number of utilized time slots within bucket b € C, . when activity a uses bucket-sequence

Cac € C,. Note that for inner buckets b with bfirst(a,c) < b < blast(a,c) we always

have 247 = 255% = | By|.
Figure 4.2 shows an example of a set of bucket sequences for a given activity. Observe
that for bucket sequence Cj 2 we need to shift the execution window s.t. the activity
executes at least for one time slot in bucket Bs, i.e., we require z;n:l;,HQ > 0 to avoid an
overlap with bucket sequence Cj 1.

Our relaxation of 'TIF uses binary variables y, . indicating whether activity a € A is
completely performed in bucket sequence Cy . for c € 1,...,7,. Model TBR!is stated as
follows:

min MS (4.52)
Ya—1
> Yae=1 Vae A (4.53)
c=0
Ya—1
> S yge+ pa < MS Vac A (4.54)
c=0

29

4. THE SIMPLIFIED INTRADAY PARTICLE THERAPY PATIENT SCHEDULING PROBLEM

max min
Za,1,1 %a,2,1
r L Il | d
ta, I lpa 1 ta,
\} | /
’ By | Bo |Bs‘ By ‘ Bs ‘ Ca,1 = {B1, B2}
L]
I 1
} M |
min max
Zgii Za,2,1
max min
Za,1,2 %a,3,2
H
Pa
L |
I 1
2 2.
’ B: | Bo |B3‘ By ‘ Bs ‘ Ca,2 = {B1, B2, B3}
| |
I P 1
a
H max
min
Za,1,2 Za,3,2
max min
2a,2,3 %a,4,3
P H
Pa
I]
) 1
5[B |Bs| B | B |
‘ | 2 3 4 ' Ca,3 = {B2, B3, Ba}
f p i
a
H P
min min
%a,2,3 %0,4,3
max min
%a,3,4 %a,5,4
— H
Pa
I]
I 1
B, ‘ B2 | Bs | By | Bs ‘
| Cas = {Bs, Ba, Bs}
I]
I 1
Pa
H max
min
Zgsa %454
max Zmin
a,4,5 a,5,5
f Da } |
| |
I 1
ENEED ey
: : Ca,5 = {B4,Bs}
r 1
} Pa |
min pmax
a,4,5 a,5,5

Figure 4.2: Bucket sequences C, of an activity a with processing time p,. Descriptions

of inner buckets of a sequence are omitted since we always have 2" = 2% = | By| for
" "
them.

30

4.2. Mathematical Formulations

> > 200 Yae < WE(D) Vr € R, b€ I(B) (4.55)

aeA:rEQa C’a,CEC’a:bECa,c

Ya! Ya))

> SH g — > SHR o > pa + LI Y(a,d') € P (4.56)
/=1 c=1

Ya!) Ya

> S e — > Sy < po + LA Y(a,d') € P (4.57)
/=1 c=1
Ya,e € {0,1} Va € A, (4.58)

c=1,...,7,

MS >0 (4.59)

Equations (4.53) ensure that exactly one bucket sequence is chosen for each activity. The
makespan MS is determined using Inequalities (4.54). Constraints (4.55) consider the
resource availabilities individually for each bucket in an accumulated fashion. Determined
resource consumptions of activities are precise for all used inner buckets of a sequence but
might underestimate the actually required amount in the first and last bucket. Finally,
Inequalities (4.56) and (4.57) realize the precedence constraints with their minimum
and maximum time lags, respectively. These restrictions are also a relaxation of the
corresponding ones in [TIE since the precise starting times within the buckets are not
known (unless dealing with buckets of unit size).

The model has O(|A| - |B|) variables and O(|A| + |R| - |B| 4 | P|) constraints, and thus its
size does not directly depend on |T.

Similar to TIF, we can disaggregate the precedence constraints by replacing (4.56) by

Z Ya,o = Z Ya' ! V(a, a/) e P, (460)
=1

/ . Qmin max min ! —
c=1,...,7q: SN LSMAX _p — L c e —
Ve a,c! ="a’,c Pa a,a’ e C 1, vy Ya!

and (4.57) by

Z Yo' o > Z Ya,c' V(a,d’) € P, (4.61)
=1

=L Y ST, <S4 pa+ L2 =1, c=1,.. 7

a

yielding the disaggregated time-bucket relaxation (DTBR).

Extended Time-bucket Relaxation

We originally started with a more elaborate TBR formulation documented here. This
formulation, however, turned out to not perform well in practice due to its substantially
larger number of variables and constraints.

We strengthen the TBR by guaranteeing that the total execution time of an activity
spent across all buckets equals its processing time. To this end we introduce additional

31

4. THE SIMPLIFIED INTRADAY PARTICLE THERAPY PATIENT SCHEDULING PROBLEM

variables z,; > 0 indicating the number of time-slots, activity a € A is performed within
bucket b € I(B,a).

Set I(B,a) = U.—1, ~, Ca,. refers to the set of all buckets in which a part of activity
a € A may possibly be performed.

The extended time-bucket relaxation (ETBRJ) is stated as follows:

min MS (4.62)
Ya
Zya,c =1 Vac A (463)
c=1
Ya .
> Smn .y e+ pa < MS Vac A (4.64)
c=1
’Y{ll ’ya . .
D SH Yo — > STy > po + LI Y(a,d') € P (4.65)
/=1 c=1
Ya! . Ya
D SH e — > Sy < pa + LI Y(a,d') € P (4.66)
/=1 c=1
Byt ae) * Yae + Zaplast(ae) < MS Va,€ A,be I(B,a) (4.67)
Zap > S 2 Yae Vae A, beI(B,a) (4.68)
c=1,...,74:b€Cq,c
Zap < > 2% Yae Vae€ A, belI(B,a) (4.69)
c=1,...,74:b€Cq ¢
> zapb=Da YacA (4.70)
beI(B,a)
> Zap < WE (D) YreR, bel(B) (4.71)
a:bel(B,a)AT€Qq
0 < 2z4p < max zZ0h Va € A, be I(B,a) (4.72)
c: E a,c "
Ya.c € {0,1} VYa e A, (4.73)
c=1...,7%
MS >0 (4.74)

Inequalities (4.63)—(4.67)),(4.72)—(4.74) correspond to Inequalities (4.52)—(4.54), (4.56)—
(4.59) of TBR. Inequalities (4.68) and (4.69) link the z,; variables and the y, . variables.
Equations (4.70)) ensure that each activity’s whole processing time is allocated. Inequali-
ties (4.71) consider the resource availabilities for performing the activities.

The [ETBR model has O((|A| + |R|) - |B| + | P|) constraints, while TBR! only has O(|A| +
|R| - |B| + |P|) constraints. Hence, for a high number of activities the number of
constraints drastically increases. Preliminary tests have shown that the additional
constraints slow down the model significantly compared to TBRL Moreover, the accuracy

32

4.2. Mathematical Formulations

gained by introducing the z variables is only very small, especially for a coarse bucket
partitioning. Therefore, the costs of the ETBR) model outweigh its benefits. Note that
Inequalities (4.67)—(4.69) add O(|A| - |B|) constraints to the model.

4.2.5 Comparison of TIF and TBR

In this section we compare [TIF/and TBRL We first show that the LP relaxations of 'TIF
and [TBR are equally strong if all buckets of TBR! have unit size. Afterwards, we prove
that [TBRlis a relaxation of [T1F! for an arbitrary bucket partitioning of 'TBR.

First, let us consider the case of [TBR! in which all buckets have unit size, i.e., B =
{{r™in} {T™in 4+ 1}, ..., {T™3%}}. Let us denote this special case by TBR}. This leads
to several simplifications. All buckets b belonging to some sequence Cj . are fully used,
g}éf‘c abe = | By| = 1. Moreover, minimum and maximum starting times are equal
and equivalent to the first time slot of the initial bucket of the sequence: Spc" = SPe* =
By a.c)- Essentially, this means that T, = {Si" : Cac € Ca} = {Sg2% : Coc € Ca}
and |T,| = |C,| for all a € A. Moreover, since buckets correspond to time points in this

scenario, resource availabilities become binary per bucket.

ie., z =z

For [TIF and [TBR) we consider ¢,: {1,...7,} — T, for each activity a € A with
Pa(c) = Sy

Proposition 3. Function ¢ is bijective.

Proof. Each bucket sequence w.r.t. TBR) corresponds to a specific starting time. For

each activity C, considers all feasible bucket sequences and T, all feasible starting times.

Thus, there exists a unique mapping between these sets. O

Proposition 4. The polyhedra of TBR) and!TIF are isomorphic.

Proof. We establish an isomorphism between the variables of the models using function
©q and its inverse: w,; = Yaprt(t) and Yac = Tg,p,()- Moreover, we can use these
functions to immediately transform (4.21) into (4.53), (4.22) into (4.54), (4.24) into
(4.56)), and (4.25) into (4.57) and vice versa. To provide the isomorphism between (4.23)

and (4.55)) we need a few further things. First recall that all z™® constants are equal to 1.

a,b,c
Secondly, using ¢ <+ {t} as isomorphism between 7" and the set of unit buckets we obtain

WB(b) = 1 if the corresponding time point t € W, and W,P(b) = 0 otherwise. Finally,
this correspondence between time points and unit buckets guarantees that Y5 (t) and C .
are isomorphic for ¢, !(t) = c. Putting things together also the resource constraints can
be transformed into one another.]

Corollary 1. Thel|LP relaxations of [TBR, and | TIE are equally strong.

In the following we show that [TBR! with an arbitrary bucket partitioning is a relaxation
of TBR) and thus of [TTFE.

33

4. THE SIMPLIFIED INTRADAY PARTICLE THERAPY PATIENT SCHEDULING PROBLEM

Definition 5. Let TBRg and TBRp: be two|TBR-models with bucket partitionings B
and B', respectively. TBRp: is called a refined model of TBRp iff V&' € B'3b € B(b' Cb).

Definition 6. Let TBRp be a ! TBR-model and let TBRp' be a refined model of TBRpg.
Then, o: C!, — C, defines a (surjective) mapping from bucket sequences C! w.r.t. TBRp
to bucket sequences C, w.r.t. TBRp satisfying for all C o €CL:

U vc | oAVCeneCa| U V€ U bVa(Cly)C Cag

b/EC(’LC, bea(C;yc,) b/ecg’c, beCaq,c,

This means sigma provides the inclusion minimal bucket sequence from TBRp that
contains at least the time slots that the bucket sequence from TBRp: contains.

Lemma 1. Function o can be implemented by:

0(Cher) = Cae s.t. Cae € Ca A Sg}(if € bfirst(a, c) A (Sg}i? + pa) € blast(a, c)

Proof. Feasibility of C" » together with the fact that buckets in TBRp: are subsets of
those in TBRp implies that there exists a sequence C, . € C, satisfying S™ € bfirst(a, c)
and (Smm + pa) € blast(a, c).

Bucket sequences C o and Cg . satisfy Ublec, b C Ubec b. Moreover, C, . is uniquely

determined since by deﬁmtlon two different bucket sequences cannot have the same first
and last buckets. Therefore, every other sequence covering the buckets from C’ o must
be strictly larger than Cy . O

Theorem 3. Let TBRp be a T BR-model and let TBRp: be a refined model of TBRp.
Then, TBRp is a relaxation of TBRp:.

Proof. Using function o according to Lemma |1, we create a solution y to TBRp from an
optimal solution y* to TBRp as follows:
Yase = {1 AChe € Colygw = 1N 0(Chp) = Cae) (4.75)

0 otherwise

We first show that y is a feasible solution to TBRp. Constraints (4.53) are satisfied since
Y o is feasible and o is surjective. As bfirst(a, ¢’) C bfirst(a, c) for all Cyc = 0(Cy, /) it
holds that Sy < Smm and S5 < Spie*, hence Constraints (4.54),(4.56), and (4.57)
must hold. If Inequahtles (4. 55) are satisfied for y*, then the resource constraints are
also satisfied for y since the refined resource allocation entails the coarser one. Therefore,

y is a feasible solution to TBRp.

Since Sf;‘én < Sg}i?, the objective can only decline due to the transformation. Thus, the
optimal solution to TBRp can be at most as large as the value of the optimal solution to
TBRp/. Thus, TBRp is a relaxation of TBRp:. O

Corollary 2. [TBR is a relaxation of 'TIF.

34

4.2. Mathematical Formulations

4.2.6 Strengthening TBR by Valid Inequalities

In the following we introduce two types of valid inequalities to compensate for the loss of
accuracy in [TBR!/ due to the bucket aggregation. Note that these inequalities strengthen
the relaxation in general but might become redundant for more fine-grained bucket
partitionings.

Clique Inequalities

Observe that two activities, represented by non-unit bucket sequences, cannot feasibly
start in the same bucket if both require a certain resource. The same holds for two or
more bucket sequences with these properties ending in the same bucket. This can be
used to derive sets of incompatible bucket sequences that give rise to clique inequalities,
see Demassey et al.| [2005], Hardin et al. [2008].

The respective constraints are specified in terms of the following sets. First we determine
for each b € I(B) sets S, = {(a,¢) :a € A,c € Cy, 21 < |By|,|Cac| > 1, bfirst(a, c) = b}

a,b,c
and F, = {(a,c) :a € A,c € C’a,zgjé?c < |By|,|Ca.| > 1,blast(a,c) = b} of non-unit
bucket sequences starting and ending in bucket By, respectively. For each of these sets we
consider a graph having the respective set as vertices and an edge between two vertices if
the activities of the corresponding bucket sequences share a resource. Let C;)S and be be
the sets of all maximal cliques with a minimum size of two within these graphs. Then,

we add the following inequalities to [TBR:

> Yae <1, Vb € I(B),Vk € CF (4.76)
(a,c)ER

> Yae <1, Vb e I(B),Vk € Cf (4.77)
(a,c)ER

Some of these constraints might be redundant if the sum of zg}éflc of the smallest two
sequences is already large enough to prohibit them from being in the same bucket by
means of Inequalities (4.55). The most trivial form of this case is excluded in the above

sets by the condition ™1 < |By|.

a,b,c

The considered cliques can be computed using the algorithm by [Bron and Kerbosch
[1973]. Cazals and Karande| [2008]) show that this algorithm is worst-case optimal, i.e.,
it runs in O(35) which is the largest possible number of maximal cliques in a graph on n
vertices. Although problematic in general this might still be reasonable considering the
rather small expected size of the conflict graphs.

Nevertheless, in our implementation we decided to avoid clique computations and resort
to a simpler variant. We do so by considering a separate graph per resource obtaining a
set of not necessarily maximal cliques. This leads to conceptually weaker inequalities
but requires almost no computational overhead. More specifically, we consider subsets
Spr =8y N{(a,c) :a€ Ace Cyr € Qu} of Sy and subsets F,, = F, N {(a,c) : a €
A,c € Cy,1r € Qu} of Fyy , respectively for b € I(B) and r € R, s.t. within these subsets

35

4. THE SIMPLIFIED INTRADAY PARTICLE THERAPY PATIENT SCHEDULING PROBLEM

all activities require a common resource. Using these sets we build the same type of

constraints:
> Yae <1, Vbe I(B),Vr € R: |8, >2 (4.78)
(a,c)eSh
> Yae <1, Vbe I(B),Vr € R: |Fp,| >2 (4.79)
(a,c)EFp

If mutual overlap of the resources required by the activities is rare, the simpler inequalities
are often almost as powerful as the full clique inequalities.

Path Inequalities

The idea of this kind of inequalities is to extend the precedence constraints (4.56) and
(4.57) and the makespan constraints (4.59) to be valid for paths in the precedence graph
instead of only for adjacent activities.

We consider the acyclic directed precedence graph G' = (A, P). Let 74,4, = (a0, .., 0m)
be a directed path from activity ag to activity a,, in G. Moreover, let dpmin(7qg,a,,) =

o pa; + ngﬁiﬂ and dpmex(Tagan) = Soro! Pa; + Lgs,,, be the minimum and
maximum makespan of the activities within the path, respectively. Let I, . denote
the set of all distinct paths from node a to node o’. Since G is acyclic, I1, o is finite
(but in general exponential in the number of edges) for all pairs of nodes a,a’ € A. Let

I = Uga,ayca o, denote the union of all these paths between any two nodes.

Let S be a feasible solution to SI-PTPSP. Then, for each path 7, in G it must hold
that S, + dpmin (7g,e7) < So and Sg + dpmax(7,4,4) > Ser. Hence, adding the following
inequalities for all 7, ,» € II to [TBRlyields a strengthened relaxation of [T1E:

Ya Ya!

Z S(I;,l:;n *Ya,c + dLmin (770,7(1’) < Z Sgll?g/(“Ya! ! (480)
c=1 /=1

Ya Ya! .

DS e+ dpmex(Taw) > Y SE - Yo o (4.81)
c=1 =1

Ya)

Z S«I;l(l:n “Ya,e + dpmin(Tgq) + Py < MS (4.82)
c=1

Due to the exponential number of these inequalities we only consider a reasonable subset
of them in our implementation, for details see Section |6.4.

36

CHAPTER

Iterative Time-Bucket Refinement
Algorithm

Solving instances of the SI-PTPSP|using a MILP! formulation is possible in theory, however
in practice this approach may suffer from the disadvantages of the MILP! formulation in
use, especially for instances with a large time horizon. While DEF' is expected to yield
weak [LP! relaxations, the performance of TTF! (and TBR)) strongly depends on the size of
the time horizon as it is proportional to the number of variables in the model.

The basic idea of our iterative time-bucket refinement algorithm (ITBRA) is to solve
instances of the SI-PTPSP! without explicitly considering the complete time horizon
of the instance. Solving an instance of [SI-PTPSP! using [TBR] w.r.t. a coarse bucket
partitioning usually only results in a lower bound for the instance’s makespan. However,
by repeatedly refining the bucket partitioning, i.e., splitting a set of buckets into smaller
buckets, and resolving the model, we will eventually reach an optimal solution.

We speed this procedure up by employing two primal heuristics at each iteration of the
algorithm. The purpose of these heuristics is to construct a valid [SI-PTPSP! solution from
a relaxed solution S yielded by [TBRL The first heuristic is the gap closing heuristic (GCH).
The goal of GCH|is to derive a valid SI-PTPSP! solution S’ from S s.t. the makespan
of S’ does not exceed the makespan of S. This way it is guaranteed that S is optimal.
However, (GCH| may not always succeed in deriving such a solution, especially in early
iterations of the algorithm.

In case [GCHI cannot provide a solution, we apply a follow-up heuristic, whose goal is to
derive any feasible SI-PTPSP! solution from S. If this heuristic cannot close the gap to
the [TBR! bound, we proceed with the bucket refinement process and solve [TBR! again
(see Algorithm 5.1).

Effective refinement strategies are of utter importance for the performance of ITBRA.
If the bucket partitioning is too coarse, the primal heuristics may fail to construct a

37

d.

ITERATIVE TIME-BUCKET REFINEMENT ALGORITHM

38

Algorithm 5.1: Iterative time-bucket refinement algorithm (ITBRA)
Input: SI-PTPSP! instance

Output: solution to SI-PTPSP and lower bound

compute initial bucket partitioning;

compute initial primal solution;
do

solve [TBRI for the current bucket partitioning;

apply gap closing heuristic (GCH)): try to find an [SI-PTPSP| solution in
accordance with the [TBR/ solution;

if unscheduled activities remain then
‘ apply follow-up heuristic to find feasible [SI-PTPSP| solution

end if

if gap closed then

10: ‘ return optimal solution

11: end if

12: derive refined bucket partitioning for the next iteration;

AN

© »®» 3

13: while termination criteria not met;
14: return best heuristic solution and lower bound from |TBR

good bound which increases the number of iterations of [TBRAL On the other hand, if
the bucket partitioning is too fine-grained, the number of variables in the [TBR! model
increases too fast, resulting in higher computation times for solving the TBR/ model. We
will see that the quality of a bucket partitioning depends not only on the number of
created buckets but also on the structure of the partitioning. Some parts of the time
horizon are more important than others and need to be refined to a higher degree. In
Section |5.3| we suggest several refinement strategies. Most of these strategies exploit
information obtained from the [TBR! solution and the applied primal heuristics.

The pseudocode of ITBRAlis shown in Algorithm [5.1. The individual components of
ITBRA! will be explained in detail in the next sections.

5.1 Initial Bucket Partitioning

We create the initial bucket partitioning B in such a way that buckets start/end at any
time where a resource availability interval starts or ends and at any release time and
deadline of the activities. For details see Algorithm [5.2.

5.2 Primal Heuristics

We consider heuristics that attempt to derive feasible SI-PTPSP! solutions and corre-
sponding primal bounds based on [TBR!solutions. If ITBRAlis terminated early, the best

5.2. Primal Heuristics

Algorithm 5.2: Computing an initial bucket partitioning

Output: the initial bucket partitioning

1: B+ (; // bucket partitioning

2 T « {T™n} U {T™ 4+ 1}; // bucket starting times
3: T%TU{Wﬁ’%rt,Wﬁvad—l-l reR, w=1,...,w};

4 T+ TUu{t,td:aec A},

5: sort T;

6: fori« 1to|T|—1do

7. | B+ BU{{T[i,....Tli+1]—1}}; // add bucket

8: end for

9: return B;

solution found in this way is returned. Note, however, that depending on the instance
properties, these heuristics might also fail and then yield no feasible solution.

5.2.1 Gap Closing Heuristic (GCH)

This is the first heuristic applied during an iteration of TTBRAL It attempts to construct
an optimal solution according to [TBR/s result to close the optimality gap. Thus, it
may only fully succeed when the relaxation’s objective value does not underestimate the
optimal SI-PTPSP! solution value. If the gap cannot be closed, (GCH! provides only a
partial solution and no primal bound. Information on the unscheduled activities then
forms an important basis for the subsequent bucket refinement.

Let (y*, MS™) be the current optimal 'TBRI solution. Initially, GCH! receives for each

activity a € A the interval S BR = {STBRmin = gTBR.max1 of hotential starting times,
where SyBRmin — $79¢ gmin . 4x and Sy BRimax — §77 gmax .4 - These intervals

can in general be further reduced by removing for each a € A all time slots t € STBR

violating at least one of the following conditions in relation to the precedence constraints
and the calculation of the makespan:

e SuPR(t 4 po+ LI <t <t+py + LYY V(a,d’) € P (5.1)
€ SUPR(+ por + L% <t <t +py + LIFY) V(d',a) € P
t+p, < MS* (5.3)

We repeatedly prune the set of intervals of potential activity starting times for all activities
STBR — [GTBR . 4 ¢ A} w.r.t. Conditions (5.1)—(5.3) until no more starting times can
be discarded. This is done by Algorithm |5.3| which is based on the well-known AC3
algorithm, see Mackworth| [1977]. Algorithm 5.3 utilizes the fact that the precedence
graph has to be acyclic. The order in which the activities are considered for pruning,
may have a negative impact on the number of iterations of Algorithm 5.3, Therefore,
Algorithm [5.3| reverses the pruning order after each iteration.

39

d.

ITERATIVE TIME-BUCKET REFINEMENT ALGORITHM

40

Algorithm 5.3: PruneStartingTimes

Input : intervals of potential starting times STBR = {STBR . 4 ¢ A}
an ordered set of activities A’
Output: STBR pruned w.r.t. Conditions (5.1)—(5.3)
while A’ # () do
(STBR A") < PruneOrdered(STBR, A');
reverse the order of A’ ;
end while
return STBR:

EANNE - v

While Algorithm [5.3| determines the order in which the starting times are pruned,
Algorithm 5.4 does the actual pruning. For each SIBR Algorithm 5.4 removes all times
violating Conditions (5.1)—(5.3). The algorithm returns the pruned starting times and a
set of activities whose starting times can possibly be pruned again. This set contains the
activities a’ and a” s.t. (a,a’), (a”,a) € P for each SIBR that has been pruned.

Activities for which only a single feasible starting time remains can be handled more
efficiently since no further pruning is applicable for them. This is particularly relevant
during (GCH! since the pruning is repeated whenever an activity’s starting time is fixed.
Hence, Algorithm [5.5| partitions the set of all activities into a set A; containing all
activities that topologically appear before a and a set Ay containing all activities that
topologically appear after a. Then, Algorithm 5.3 is applied on A; and As.

Note that the pruning algorithms may yield empty intervals for some activities (i.e.,
intervals with SIBR.min » GIBR.max) “indicating that there remains no feasible starting
time assignment respecting all constraints. In this case the pruning algorithm will give
up on this activity and continues with the remaining ones deviating from the usual arc
consistency concept to allow further activities to be scheduled.

The pseudocode of [GCHI is shown in Algorithm 5.6l After the initial pruning of starting
time intervals, (GCH! constructs the (partial) schedule S by iteratively scheduling the
activities respecting all constraints. If this is not possible for some activities, they remain
unscheduled. Using a greedy strategy the activities are considered in non-decreasing
order of STBRmax 44, “ie. according to their earliest possible finishing times. Activities
are always scheduled at the earliest feasible time from SIBR. Note that any explicit
enumeration of time slots from an interval can be efficiently avoided by using basic
interval arithmetic. Whenever an activity starting time is set, constraint propagation
is repeated to ensure arc consistency according to Conditions (5.1)—(5.3). Remaining
unscheduled activities are partitioned into two sets, depending on the reason for which
they could not be scheduled. This information is relevant for the bucket refinement
process (see Section 5.3)).

5.2. Primal Heuristics

Algorithm 5.4: PruneOrdered

Input : intervals of potential starting times STBR = {STBR . ¢ ¢ A} with
STBR — {STBR,min STBR,maX}
. s yeeey Sy ,

an ordered set of activities A" whose corresponding starting time intervals
have to be be pruned
Output: partially pruned set STBR w.r.t. Constraints (5.1)-(5.3), a set of
activities whose starting times can possibly be pruned again

1: A"« 0; // set of activities whose starting times can
possibly be pruned again
2: forall a € A’ do
3: forall a : ((a,a’) € P V (d/,a) € P) A SPRomin < gTBRmax g
" STBRmIn ¢ max {GTBRmin gIBRLMIN | piming
5: STBR:max o pin {GTBRumax GEBRMAX 4), 4 pmaxy,
6: STBRmin o pax{gIBRamin gEBRmMIN _), _ [maxy,
7 STBR.max o ypijp { §TBR,max SS,BR’maX — Do — Lg}lg :
8: STBRmax o ypin{ STBR:max Arg pa};
9: end
10: if new values assigned to SFBR-Min o GTBR.max thepn
11: | A"+ A"U{d : (a,d') € P V(d,a) € P};
12: end if
13: end

14: return STBR A",

5.2.2 Activity Block Construction Heuristic (ABCH)

If (GCH! fails to close the gap, we attempt to compute a feasible solution instead that
might have a larger objective value than the current [T'BR) bound. The idea of ABCH! is
to simplify an [SI-PTPSP! instance by combining the activities of the weakly connected
components of the precedence graph into so-called activity blocks, i.e., all the activities
belonging to one such activity block are statically linked considering the precedence
constraints and minimum time lags in between them.

ABCH]|then tries to construct a schedule using the activity blocks instead of the individual
activities. The activity blocks are considered in order of their release times and are
scheduled at the first time slot where no resource constraint is violated w.r.t. the activity
block’s individual activities and resource requirements.

Applying ABCH on an empty schedule may lead to poor results. Hence, we apply the
algorithm on partial schedules S generated by [GCH. For this purpose we remove all
weakly connected components from S which are not completely scheduled. Details are
provided in Algorithm [5.7.

41

d.

ITERATIVE TIME-BUCKET REFINEMENT ALGORITHM

42

Algorithm 5.5: PruneSinglePoint

Input : intervals of potential starting times STBR = {STBR . 4 ¢ A}
the set of activities A" in topological order w.r.t. P,
an activity a with SIBR.min — GTBR max
Output: STBR pruned w.r.t. violations of conditions (5.1)—(5.3)
Ay + {d : d’ € AN d'topologically appears in A" before a} U {a} ;
Ay« {d' : d' € AN d'topologically appears in A" after a} U {a} ;
sort Ay and A, topologically ;
reverse the order of A; ;
STBR . PruneStartingTimes(STBR, Ay);
STBR ¢ PruneStartingTimes(STBR, A,);
return STBR.

I A A

5.2.3 Greedy Randomized Adaptive Search Procedure (GRASP)

We can improve ABCH| by extending it to a/(GRASP. The approach provides a reasonable
balance between being still relatively simple but providing considerably better results
than ABCH.

In the following, we will first discuss the construction heuristic of the GRASP! and
afterwards its local search component. The construction heuristic of the (GRASP! is a
combination of (GCH and |/ABCH. First, we construct a partial schedule using(GCH. Then,
the schedule is completed with ABCH. The (GRASP| requires a randomized construction
heuristic. Both, (GCH| and I ABCH, can be randomized. The randomization procedure is
the similar for both algorithms. Randomization is done by allowing the order in which the
activities or activity blocks are scheduled to deviate from the strict greedy criterion. In

particular, we choose uniformly at random from the k:ggrﬁd (k:irgré(}{) candidates with the

highest priority. Parameters k(g;g%d and kirgré(}{ control the strength of the randomization.

Note that the success of ABCH! and hence also of the (GRASP! strongly depends on the
partial solution provided by [GCHL Therefore, we primarily choose to randomize GCH.
However, note that we also try to compute a primal solution at the very beginning before
solving 'TBR! for the first time. Hence, there is no [GCHI solution available at this point.
In this case we randomize [ABCH! instead.

As mentioned before, many of our bucket refinement strategies exploit information
obtained from partial [(GCHI schedules. However, as (GCH|is randomized in the (GRASP,
we have multiple schedules to choose from. To get a strong guidance for the bucket
refinement process we prefer (GCH solutions that schedule as many activities as possible.
However, these solutions might not necessarily correspond to those solutions that work
best in conjunction with ABCH. Therefore, we track the best complete solution and
the best partial (GCH! solution separately during (GRASP. This means that our (GRASP
returns a feasible [SI-PTPSP| solution as well as a partial (GCH solution (which might be
unrelated). Since (GRASP|combines the functionalities of GCH and ABCH] it effectively

5.2. Primal Heuristics

Algorithm 5.6: Gap closing heuristic (GCH)

Input : intervals of potential starting times STBR = {STBR . ¢ € A} with
STBR — {STBR,min STBR,maX}
o s yeeey Sy ,

the set of activities A’ in topological order w.r.t. P
Output: (partial) schedule S and all activities that cannot be scheduled w.r.t.
STBR grouped by violation type, a set of activities with violated
precedence constraints Ap, a set of activities with violated resource
constraints Ag

1: Ap « @;

2: AR + @;

3: Ay < A; // unscheduled activities

4: A" +topSort(A); // sort A topologically

5: W/ < W,; // resource availabilities

6: PruneStartingTimes(STBR, A’);

7: while Ay # () do

8: select and remove an activity a € Ay with minimal SEBR’maX + Pa;
9: if STBR — () then // precedence constraints violated
10: Ap(—ApU{a};

11: continue;

12: end if

13: | STBR « {t e STBR . {t t+4p,—1} CW.,VreQul;

14: if STBR = () then // resource constraints violated
15: Ap < ArU{a};

16: continue;

17: end if

18: Sy + min W;

19: | SIBR 1S}
20: W WIN\At,...,t +pa— 1}, Vr € Qq;
21: pruneSinglePoint (STBR, A");
22: end while
23: return S, AP,AR;

replaces Lines 5§ in Algorithm [5.1.

The applied local search component considers a classical 2-exchange neighbourhood on
the order of the activity blocks scheduled by ABCH. A best improvement strategy is
applied, and the local search is always performed until a local optimum is reached.

As termination criterion for the GRASP! a combination of a time limit and a maximal

number of iterations without improvement is used, details will be given in Chapter [7.

Moreover, in the first iteration of the (GRASP|the deterministic versions of GCH! and
ABCH) are used. This guarantees, especially for short executions, that the final result of

43

d.

ITERATIVE TIME-BUCKET REFINEMENT ALGORITHM

44

Algorithm 5.7: Activity block construction heuristic (ABCH)

Input: a partial schedule SG“H computed by IGCH
Output: a feasible schedule S or no solution if SG°H cannot be completed
1: C' + set of subsets of A corresponding to the weakly connected components in the
precedence graph which are not completely scheduled in SGCH;

2: A® < (; // the set of activity blocks
3: forall weakly connected components ¢ € C do
4: S¢<«0;// a schedule representing the activity block of c
5: forall activities a € c in topological order do
6: schedule a in S¢ at the earliest possible time w.r.t. precedence constraints
and resource consumptions of activities in ¢ but ignoring all other
activities as well as release times and deadlines, and resource availabilities;
end
the release time of the activity block is minge. t};
AC — AC U (S ;
10: end
11: forall activity blocks S¢ € AC ordered according to release time do
12: try to schedule the activity block at the earliest feasible time in S s.t. activity
release times and deadlines as well as resource constraints are satisfied;
13: if no feasible time found then
14: ‘ return no solution;
15: end if
16: end

17: return S;

the (GRASPIis never worse than the one of the pure heuristics.

5.3 Bucket Refinement Strategies

In general, the bucket refinement is done by selecting one or more existing buckets and
splitting each of them at selected points into two or more new buckets. If a bucket only
consists of a single time slot, it cannot be subdivided further and becomes irrelevant for
subsequent splitting decisions. Buckets are never merged or extended in our approach, i.e.,
the number of buckets always strictly increases due to the refinement. This guarantees
that ITBRAl eventually terminates if at least one bucket is subdivided in each iteration
(cf. Theorem 3)).

More formally, a refinement of some bucket By € B is given by an ordered set of splitting

points 70 = {7, ... 70} C {Bgtat + 1 ... B} with 7P < ... < 7. Based on 7° we
get |7°| + 1 new buckets replacing the original one: {Bs*¥t ... 7P — 1} {r},... 7% —
1}, {75, ..., B{"d}. For an example see Figure 5.1.

5.3. Bucket Refinement Strategies

Tmin T12 T{l 7'51 Tmax
r ! . ' |
By Bo B3 By Bs Bs - | Bg
| | | | | | | | |
| | | | | | | | |
I I I I I I I I I
I | | | | | | | |
By | By | By |By|By| By |Br| Bg By |-+ | B

Figure 5.1: An example of a bucket refinement for 72 = {72}, 7* = {r{, 73}, and 7° = 0)
for b e I(B) \ {2,4}.

In general, the decisions to be made in the bucket refinement process are (a) which
buckets are to be refined, (b) at which positions, and (¢) how many splits to apply. To
address these tasks we need criteria that identify promising bucket refinements. A bucket
refinement should be done in such a way that the current optimal TBR! solution becomes
invalid. In this way, it is ensured that in each iteration we obtain a more refined solution.
Furthermore, bucket refinements should resolve conflicts between activities that cannot
be scheduled together. Therefore, information from constraints that are responsible for
such conflicting activities should be exploited to prevent these situations from occurring
again. Last but not least, we want to obtain a dual bound for the SI-PTPSP| that is
as tight as possible. Hence, a bucket refinement that likely has implications on [TBR/s
objective value is desirable.

Selecting Buckets to Refine

Observe that refining inner buckets of selected bucket sequences does not directly affect
the current TBRI solution. Refining first and last buckets (if they are non-unit buckets),
however, ensures that the bucket sequence that contained them does not exist in the
refined [TBRI model anymore and therefore cannot be used again. Furthermore, some of
the newly introduced buckets might not be part of feasible bucket sequences anymore,
resulting in a more restricted scenario. Hence, we want to either split only first or last
buckets of selected sequences or both. If we use just one bucket, we need to resort to the
other one if otherwise no progress can be made. During preliminary tests it turned out
that always using both boundary buckets for refinement is superior. Another question is
for which bucket sequences the bounding buckets shall be refined. In the following we
propose different strategies that will be experimentally compared in Section |7.2.2.

All Selected (ASEL) We refine all first and last buckets of all bucket sequences
selected in the identified optimal [TBR! solution. This can, however, be ineflicient as it
may increase the total number of buckets in each iteration substantially. The following
strategies will therefore only consider certain subsets of the buckets from ASEL.

45

d.

ITERATIVE TIME-BUCKET REFINEMENT ALGORITHM

46

All In GCH Schedule (AIGS) Considering the partial schedule S generated by
GCH we only refine all first and last buckets of those bucket sequences C, . whose
corresponding activities a are feasibly scheduled in S. The idea is to improve accuracy
for the activities that could be scheduled in order to reveal sources of infeasibility w.r.t.
the activities that could not be scheduled once [TBR/is solved the next time.

Incompletely Scheduled Connected Components (ISCC) We split the first and
last buckets of all bucket sequences selected in the optimal 'TBR/solution for activities
belonging to weakly connected components for which not all activities could be feasi-
bly scheduled by (GCHL This approach is conceptually similar to AIGS, however, we
additionally take the activity blocks of the unscheduled activities into account to obtain
additional candidates for refinement.

Violated Due (VDUE) If GCH fails to schedule all activities, it provides a set of
activities Ap that cannot be scheduled due to precedence constraint violations and a
set of activities Ag that cannot be scheduled due to resource constraint violations. The
basic idea is to refine first and last buckets of bucket sequences selected for activities in
the schedule that immediately prevent the activities in Ap and Ag from being scheduled.
To identify those activities we again consider the partial schedule S generated by (GCH.
Let ASCH = A\ (ApU Ap) be the set of feasibly scheduled activities.

Refinements based on resource infeasibilities are derived from sets Ng(a) = {a’ € ASCH .
QuNQu #DAN{Sw,..., Sy + po — 1} N {SIBRmin - gTBRmax 4 o, 11 £ @} for
a € Ag. For each activity a’ € Ng(a) we refine the first and last bucket of the bucket
sequence Cy . in the TBRI solution.

The activities potentially responsible for a € Ap having no valid starting time are the
activities a’ in ASCH s.t. (a,a’) € P or (a’,a) € P. However, we do not have to consider
all activities incident to a for the refinement. Let N5 (a) = {a’ : (a’,a) € P Aa' € ASCH}
and Nj (a) = {d’: (a,d’) € P Nd' € ASCM} for all @ € Ap. Then, calculate:

Np(a) =arg max{Sy + py + Ly} U arg min{Sy + py + L%} U

,a

a’€NL (a) a’€Ng (a)
arg min{Sy: — Lg'g" U arg max{Sy — Lgtg} (5.4)
a’GNI}L(a) a/GNIJg(a)

We refine the first and last buckets of all bucket sequences of activities a’ € Np(a) that
are selected in the current TBR solution.

If no refinement is possible for bucket sequences corresponding to a’ € Np(a) U Np(a),
we refine the first and last bucket of C, . instead.

Last Used Bucket (LUSED) Refining the first and last bucket(s) used in selected
bucket sequences that are directly responsible for the objective value appears promising
for improving the lower bound in the next iteration. With the makespan as objective,
these are all bucket sequences that fulfill equations (4.54) or equations (4.82) at equality.

5.3. Bucket Refinement Strategies

Critical Path (CPATH) We consider a complete directed graph with all activities as
nodes. A critical path in this graph is a sequence of activities whose selection of bucket
sequences successively depends on each other and who are jointly directly responsible for
the obtained objective value.

Such a critical path is obtained in reverse order as follows. We start with an activity

whose selected bucket sequence fulfills equation (4.54) without slack (compare LUSED).

If path inequalities are used, we start with an activity whose selected bucket sequence
fulfills equation (4.82) without slack.

In general, an activity a € A on a critical path may have a predecessor if and only if
its selected bucket sequence C, . is not the first one possible w.r.t. C,, i.e., Cy 1, when
considering no other activities. In this case, we try to determine a predecessor as follows.

First we deal with activities reachable via the precedence graph. We only consider
initial resource availabilities for the current activity and do not take the consumption
of the other activities into account. Feasible predecessors w.r.t. a are activities a’ with
(a’,a) € P s.t. d is assigned to a bucket sequence preventing selection of an earlier
sequence for a (considering the ordering of C,). Note that multiple candidates might
exist; we simply take the first one identified.

Every time no further predecessors can be identified using the precedence graph we
resort to information obtained from the resource consumptions instead. We consider
bucket sequence C, .1 directly preceding the one selected by TBR! w.r.t. Cg. If there is
a resource 1 € (Q, required by other activities so that less than z;nénc_l capacity would
remain in a bucket b € C, .—1 for activity a, then these respectivé other activities are
feasible predecessors of a. Among these candidates we choose one for which the bucket

sequence ¢ selected in [TBR/s solution maximizes bfirst(a,c — 1) — bfirst(d’, ¢/).

Finally, we split first and last buckets of the bucket sequences selected by 'TBR/ for all
activities being part of the determined critical path.

All Critical Paths (ACPATHS) As already mentioned above, there is in general no
unique critical path. Therefore, it appears to be also meaningful to consider all activities
involved in any critical path. To derive them, we start from all activities whose selected
bucket sequence fulfills equation (4.54) (or equation (4.82)) without slack, and determine
all predecessors in a recursive manner following the same considerations as in CPATHS.

Combinations Note that approaches LUSED, CPATH and ACPATHS might not
always be able to identify feasible, i.e., non-unit, buckets for refinement. Thus, we need
to combine them with some of the other strategies to avoid getting stuck. Additionally,
it also makes sense in general to consider combinations of the above strategies to obtain
a larger variety of refinement candidates. To reduce the already large number of possible
options we only consider combinations for the strategies that cannot be applied on their
own in our experiments.

47

d.

ITERATIVE TIME-BUCKET REFINEMENT ALGORITHM

48

Identifying Splitting Positions

Once a bucket has been selected for refinement, we have to decide at which position(s) it
shall be subdivided. Again, we consider different strategies. The challenge is to identify
candidate positions that usually have a large impact on the subsequent [TBR/ and its
solution while resulting in well balanced sub-buckets.

Binary (B) Let Cg . be the bucket sequence causing its first and last buckets to be
selected for refinement. We split the selected buckets in such a way that the interval of
potential starting and finishing times of the respective activity is bisected. In particular,
for bfirst(a,) and blast(a, ¢), we consider the splitting positions [(SI" + S2ax) /2] and
[(SPn 4 Sax) /2] + pa, respectively. We have to round up in case of non integral
refinement positions, since it is not feasible to refine w.r.t. the bucket start. Although
this approach typically leads to well balanced sub-buckets it might often have a rather
weak impact on the subsequent [IT'BR! solution since the resulting buckets might still be
too large to reveal certain sources of infeasibility.

Latest Start/Earliest End (LSEE) Instead of doing the splitting so that an activ-
ity’s interval of potential starting times is bisected, we split in this variant at times S;’¢*
and Sanjén + pq. Note that the obtained splitting positions are typically far from the center
of the bucket and often even lead to unit buckets. However, this strategy is still worth
considering since the border cases are explicitly split off.

Start/End Time (SET) Let a be an activity that could be scheduled by (GCH| and
Ca,c the corresponding bucket sequence in [TBR/ whose first and last buckets shall be
refined. We split bfirst(a, ¢) at the activity’s starting time S, and blast(a, c) at S, + pa,
i.e., after activity a has ended according to (GCH's schedule. Thus, the specifically chosen
time assignment of (GCH! gets an individual bucket sequence in the next iteration.

As this method is defined only for activities that could be scheduled by I(GCH) it is
applicable only in direct combination with AIGS. To overcome this limitation we resort
to B or LSEE if SET is not applicable. The obtained strategies are denoted by SET+B
and SET+LSEE, respectively.

Selecting Splitting Positions

The strategies introduced above may yield several splitting positions for a single bucket,
especially since one and the same bucket may be selected multiple times for refinement
for different activities. In principle we want to generate as few new buckets as possible
while ensuring strong progress w.r.t. the dual bound and narrowing down the activities’
possible starting time intervals. Splitting at all identified positions might therefore not
be the best option. In the following we propose different strategies for selecting for each
selected bucket the splitting positions to be actually used from all positions determined
in the previous step. Let set 7 be this union of identified splitting positions for bucket b.

5.3. Bucket Refinement Strategies

Union Refinement (UR) We simply use all identified splitting positions. As already
mentioned, however, this approach may lead to a high increase in the number of buckets
and may therefore not be justified.

Binary Refinement (BR) We use the splitting position 7/ € 7° closest to the center

Bstart+Bend
. !/ 3 b b
of the bucket, i.e., 7/ = arg mingc b |—t—5—t—

— t’; ties are broken according to the

order in which the splitting positions have been obtained. This approach clearly tends to

keep the number of buckets low but may increase the total number of required iterations
of ITBRAL

Median Partition Refinement (MPR) We first partition 7° into two sets at
_ start end _ —

t = w: Let 7% = {t € 7% : t <%} and 7% = {t € 7 : t > #}. The refine-
ment we apply splits the bucket into three buckets using the median of each set, i.e.,
{median(7%"), median(7%*)}. Note that either of the sets might be empty and then we
only obtain two sub-buckets.

The idea of partitioning the potential splitting positions in this way is to give candidate
positions close to either boundary of the bucket equal chances of being selected. This
is motivated by the fact that splitting a bucket close to its end usually has a strong
influence on (non-unit) bucket sequences starting in the bucket while choosing a splitting
position close to the start typically has a higher impact on (non-unit) bucket sequences
ending in this bucket. Both cases might be equally relevant and thus it makes sense to
apply a bucket refinement considering each of them.

Centered Partition Refinement (CPR) We again partition 7° into two sets at
_ start end _ —

t= M. Let 78! = {t € 7% : t <%} and 7%" = {t € 7° : t > T}. To obtain up to
three new buckets we choose as splitting points the two “innermost” elements, i.e., we
apply the refinement {max %!, min7%%}. If one of the sets is empty, we only apply a
single split.

The idea is similar to the one of MPR; however, this time we prefer splitting positions
close to the center of the bucket. This might be beneficial in situations where candidate
positions are (too) strongly clustered at the boundaries of the bucket.

Figure [5.2| provides an overview of the discussed bucket selection, splitting position
identification, and splitting position selection strategies and their possible combinations.

49

d.

ITERATIVE TIME-BUCKET REFINEMENT ALGORITHM

50

Selecting buckets

[aseL | :

Identifying
splitting positions

Selecting
splitting positions

UR
BR

Figure 5.2: Overview of the proposed strategies to perform a bucket

they can be combined.

LUSED SET
CPATH
J ACPATHS g B
; Ly LsEE
r VDUE (!
scc [SET
L AIGS |

|
o

NPR

refinement and how

CHAPTER

Implementation Detalils

In this chapter we discuss further algorithmic details that are important for an efficient
implementation of [TBRA! and the associated heuristics.

6.1 Preprocessing Activity Starting Times

To obtain the restricted set of possible activity starting times T, we start by removing
the starting times leading to resource infeasibilities:

To={teT t <t<td—p,VreQut eY,(t)(t' € W)}

The obtained set is then further reduced by taking also precedence relations into account.
In particular, only starting times respecting the following conditions are feasible:

V(a,a') € P 3t' € Ty(t +pa+ Liyws <t <t+pa+ Liar)
V(d',a) € P It € Ty(t' + py + Ly <t <t + poy + L)

We can use constraint propagation for this purpose similar as in (GCH! to achieve arc
consistency w.r.t. these conditions. All these calculations can be performed based
on interval arithmetic without enumerating individual time slots, and thus in time
independent of |T|.

Finally, the originally given release times and deadlines can be tightened according to
the pruned sets T,, i.e., we set

t, ¢ minT, Vac A
tg%pa—i—maxTa Va € A

51

6.

IMPLEMENTATION DETAILS

52

6.2 On Determining Big-M Constants for DEF

Choosing smallest possible Big-M constants for Inequalities (4.10)—(4.13) in DEF| is
important for making its [LPl relaxation as tight as possible. To this end we compute
bounds on the number of events that precede and succeed each activity event. Let k5 be
the event at which activity a € A’ starts and k! be the event at which it ends. Now let
K,fre and K}"¢ be sets of events that must precede and succeed event k in any feasible
solution.

Note that it is not known in advance which event corresponds to which activity. Con-
sequently, it is difficult to determine complete sets K} and K;"°. However, using
release times, deadlines, and precedence relations we can derive reasonable, but in general
incomplete sets K} © and K3 efficiently. Since the events are ordered, it follows that
the ith event k; € K is contained in K'° for i =1,...,|Kp"| and k; is contained in K;"°
for i = |[K| — |K;"°| +1,...,|K|. Thus, we can set the big-M constants in Inequalities

(4.10)—(4.13) as follows:

0 fOI‘kE{kl,...,kare}
My = ! (6.1)
Tmax — 7 otherwise
0 for k € {kg_|pesuc N
I _ | {kix e K|} 62
7 td —p, — T™" otherwise
0 for k € {ki,..., kjgrre }
M(54I%12) _ 1K | (6.3)
’ Tmax —¢" — p, otherwise
0 forke{kK_Ksuc 1,,]’4:}{}
M(54é13) _ ||| o I+ | K| (6.4)

’ td — 7™ otherwise

Obtaining complete sets K and K;" is usually difficult. Thus, we determine reasonable,
but in general incomplete sets efficiently by Algorithm |6.1. Over all ' € A’ together, the
procedure requires time O(]A’[?).

The estimation for K3 is analogous to the estimation of K.

6.3 Computing Bucket Sequences

Algorithm [6.2] calculates the bucket sequences C, for an activity a € A using the fact
that bucket sequences are uniquely determined by their earliest possible starting times
S;‘}én. In particular, we can efficiently compute the next such time point that needs to be
considered from the previous one.

If the current bucket sequence consists of a single bucket, we proceed with the time point
ensuring that only p, — 1 time can be spent in the current bucket, see Line 12l Otherwise,

6.3. Computing Bucket Sequences

Algorithm 6.1: Efficiently determining not necessarily complete sets K< of events

that must precede a given activity start event k> in DEF.

Input: activity a € A’
Output: sets K" and K}

1: Klsge,K]fge —0;

2: forall o’ € A"\ {a} do

3: if td, —py <t. V (t& —py =t ANd’' < a) then
4: K}jée — K]Sée U {k5};

5: KR+ K" U{kS};

6: end if

| iftd <tr v t4, =tl Ad < athen

8: K}%G — Kli’ge U {kE};

9: K%e +— K};{ée U {kE};

10: end if

11: iftg,—pa/<t2+paVtﬁ,—pa/:t2+pa/\a’<athen
12: ‘ K,Sge — K};’ge U {k‘S/};

13: end if

14: if t4, <t' +p, V t4 =t +p, ANd < athen
15: ‘ K,Sg’le — Klfgfe u{kb};

16: end if

17: end

pre g-pre,

18: return Kk§ K s

we try to find the earliest time point that guarantees that we start in b** and finish in
the earliest bucket succeeding b25*. If no such time point exists, we proceed with the
earliest time slot in bucket b™* + 1 instead. The offset, denoted by &, to the sought time
point can be computed according to Line [16.

Iterating over the earliest starting times is linear in the number of buckets. The bucket
to which a certain time slot belongs can be determined in logarithmic time w.r.t. the
number of buckets. Hence, the overall time required by the algorithm is in O(|B|log|B|).
Note that the z;nénc and z;% values are only set for the first and last buckets of the
computed sequences since these values are always equal to the bucket size for all inner
buckets.

For Co. € Cy let T35 . = {Sin, ..., 53} N T,. We can discard all bucket sequences for
which T, . = (). Moreover, ng;n and Sg¢* can be strengthened as follows:
San?én = min(77)

S;‘?X = max(T;C)

53

6. IMPLEMENTATION DETAILS

Algorithm 6.2: Computing all bucket sequences for an activity.

Input: Activity a € A
Output: Set of bucket sequences C,, associated values S™in Saes ZMin Cand Zmax

a,c a,b,c’ a,b,c
1: Oa — @;
2: t tz;
3: ¢+ 1;
. d
4: while t <{§ —p, do
5: birst « bt € By,
6: blaSt<—bit—|—pa—1€Bb;
7: Ca7c — {Bbﬁrst, ey Bblast};
min .
8: Sa7c —t;
9: if pfirst = plast then
10: Zg?ll,{las:76 < Pa;
11: Z(][ll??l)ést7C < Pas
12: t <« Bg{;ﬁt — Do + 25
13: else
d .
14: zﬁ}?ﬁ‘rst’c +— B —t+ 1
15: Zpast o < Sae +Pa — Byt
16: o = min {zme 1, min {Bgnd el — 1} — (Smin 4 p, 1) };
17: Z;I}é%rst7c <~ Zgjgéstp - 57
18: Z(Ilr,ll?l);St,C — zﬁ)ﬁst’c + 0;
19: t— S 45+ 1;
20: end if
21 | S = B -2 41
22: Co < CoU{Cy.};
23: c+—c+1;

24: end while
25: return Cy;

54

6.4. Valid Inequalities

6.4 Valid Inequalities

As already mentioned we only consider the simplified version of the clique inequalities
(4.78) and (4.79) to avoid the overhead for computing maximal cliques. The number of
these inequalities grows significantly as the buckets get more fine-grained. Fortunately,
the final bucket partitionings turned out to be still sufficiently coarse to add all inequalities
of this type to the initial formulation.

Recall that the number of path inequalities (4.80)—(4.82) is in general exponential. In
favour of keeping the model compact we avoided dynamic separation and only consider a
reasonable subset of these inequalities that is added in the beginning. Clearly, we want
to use a subset of the paths II still having a strong influence on the relaxation. The idea
is to use all paths targeting vertices of the precedence graph with an out-degree of zero.
This guarantees that precedence relations are enforced more strictly between all sinks
and their predecessors. Since the sinks in the precedence graph are the nodes that will
define the makespan, this appears to be particularly important.

To this end, we consider the following subsets of IT with deg™(-) denoting the out-degree
of a node:

HLmin = U {arg max dLmin (7Ta7al) . Ha7a/ # @, deg+(a,) = 0}
{a7a/}gA Ta,a! EHa,a’
Opmex = | {arg min dpmex(mqr) : g0 # 0,deg(a’) = 0}

{a,a’}QA Tra’a/el_[a‘a/

We then add Inequalities (4.80) and (4.82) only for paths 7,4 € Ipmin and Inequali-
ties (4.81) for paths mq o € Ilpmax.

55

CHAPTER

Computational Results

In this chapter we are going to present the computational results for the considered
algorithms with their variants. We first show how our test instances are generated. Then,
we provide details on the actually used configurations. Finally, we present the obtained
results.

7.1 Test Instances

The benchmark instances are motivated by the real world patient scheduling scenario
at cancer treatment center MedAustron that requires planning of particle therapies.
In general, each treatment session consists of five activities that have to be performed
sequentially. The modeled resources are the particle beam, irradiation rooms, radio
oncologists, and the anesthetist. In principle, resources are assumed to be available for
the whole time horizon except for short time periods. The most critical resource is the
particle beam that is required by exactly one activity of each treatment. This particle
beam is shared between three irradiation rooms, in which also additional preparation
and follow-up tasks have to be performed. A radio oncologist is required for the first
and the last activity. In addition, some patients require sedation, which means that the
anesthetist is involved in all activities.

The main characteristic of our benchmark instances is the number of activities. We have
generated two groups of benchmark instances, each consisting of 15 instances per number
of activities a € {20,30,...,100}. These two groups differ in the size of the interval
between release time and deadline of the activities and with it their difficulty.

Activities are generated treatment-wise, i.e., by considering sequences of five activities
at a time. The particle beam resource is needed by the middle activity, i.e., the third
one. The second, third, and fourth activity demand one of the room resources selected
uniformly at random. We assume that [;] radio oncologists are available and select one

o7

7. COMPUTATIONAL RESULTS

58

of them for the first and last activity. Moreover, 25% of the treatments are assumed to
require sedation and are therefore associated with the anesthetist resource. We add for
each consecutive activity in the treatment sequence a minimum and maximum time lag.
Hence, the resulting precedence graph consists of connected components, each being a
path of length five. In the following we refer to these paths, that essentially are equivalent
to the treatments, also as chains. The processing times of the activities are randomly
chosen from the set {100, ...,10000}. Minimum lags are always 100 and maximum lags
are always 10000.

It remains to set the release times and deadlines of the activities and the resources’

availability windows in such a way that the resulting benchmark instances are feasible
with high probability but not trivial. For this reason a preliminary naive schedule is
generated from which release times and deadlines are derived. To this end, the activities
are placed treatment-wise in the tentative time horizon {0,...,3 ,c4(ps + 10000)}, by
randomly selecting a starting time for the first activity of each connected component.
For the subsequent activities a random time lag in { g}i{}, e ,Lgfﬁ‘} is enforced. If a
determined starting time of an activity conflicts with an already scheduled one, then the
connected component is reconsidered.

From this preliminary schedule we derive tentative release times and deadlines which
are then scaled to receive a challenging instance. The functions f"(a) = w .
S uea(Pa + 10000) and fe¥(a) = 0.8 - f*9(a) control the distance between release
time and deadline. For a preliminary starting time S/, of an activity a and a difficulty
diff € {easy, hard}, the tentative release time is calculated by &, = max(0, S’ — f% (a)).
The tentative deadline is calculated by t3 = min(>,c 4(pq + 10000), S, + pa + f40 ().
Up to this point the instance is trivially solvable. To make the instance more challenging,
the tentative release times and deadlines are scaled by a factor s € (0, 1]. We have chosen

a scaling factor depending on the number of activities s(a) = %.

Finally, the availability of the resources is restricted. Each resource has five to seven time
windows during which it is unavailable. The duration of these time windows is randomly
chosen from the set {700,...,1500}. The positions of these unavailability windows are
chosen uniformly at random from the set {0, ...,7™**}.

To our best knowledge benchmark instances considering a comparable scenario do not exist.
Our newly introduced test instances are made available at http://www.ac.tuwien|
ac.at/research/problem-instances. An overview of the basic characteristics
of the test instances is provided in Table [7.1. Instance sets are named according to
[e|h]o where e stands for the “easy” group of instances and h for the “hard” ones, and «
indicates the considered number of activities. Each instance set consists of 15 instances.

7.2 Computational Experiments

The test runs have been executed on an Intel Xeon E5540 with 2.53 GHz using a time
limit of 7200 seconds and a memory limit of 4GB RAM. IMILP! models have been solved

http://www.ac.tuwien.ac.at/research/problem-instances
http://www.ac.tuwien.ac.at/research/problem-instances

7.2. Computational Experiments

Table 7.1: Characteristics of the test instances grouped by difficulty and number of
activities. The subscripts indicate the number of activities per instance. T™#* denotes
the average scheduling horizon. The number of resources p and the number of chains
(chains) is the same per instance set.

set Tmax p chains set Tmax p chains
egp 104649 7 4 hoo 104575 7 4
esp 138808 8 6 hsg 137745 8 6
eqp 169642 9 8 hsyp 167003 9 8
eso 198386 10 10 hso 201269 10 10
ego 220792 11 12 heo 220606 11 12
ero 244279 12 14 h7o 244788 12 14
egp 271461 13 16 hso 271327 13 16
ego 293110 14 18 hgo 289278 14 18
elpo0 316316 15 20 higo 317324 15 20

using Gurobi 7 with a single thread.

The results of the test instances are grouped by difficulty and number of activities. Unless
otherwise indicated, computation times are stated using the median and for all other
properties we use the mean. Let pb denote the primal bound and db the dual bound
of the investigated algorithm. The starred versions denote the respective best bounds

obtained across all algorithms. Optimality gaps are computed by 100 - Z bcﬁffb*. Primal
bounds are compared using 100 - pbp_TIjb* and dual bounds are compared using 100 - db;b:db

We first deal with the parametrization of the primal heuristics used within ITTBRAL Then,

we compare different combinations of refinement strategies for use within the matheuristic.

Finally, we compare ITBRA!to a simple metaheuristic and the reference MILP| models.

7.2.1 Parametrization of the Primal Heuristics

GRASP!| from Section 5.2.3| can also be applied outside the context of the matheuristic,
thus, as stand-alone algorithm for SI-PTPSP) when simply applied using an empty initial
schedule. We start by explaining how the involved parameters are set, since they serve
as basis for deriving appropriate values for use within the matheuristic.

The stand-alone (GRASP! terminates if a time limit of two hours is reached. We chose
this criterion primarily to match the time limit of the other approaches, a reasonable
degree of convergence is usually reached much earlier. Parameter kirgré% has been set to
8 for all benchmark instances. We applied irace (Lépez-Ibanez et al. [2016]) to determine
this value. However, it turned out that the performance of our (GRASP! is very robust

. d
against changes to kirgréH.

For the (GRASP| embedded in ITBRA we imposed a time limit of 300 seconds and a
maximal number of 10,000 iterations without improvement. The latter is set high enough

59

7. COMPUTATIONAL RESULTS

60

to be non-restrictive in most cases but avoid wasting time if the algorithm already
converged sufficiently. The values of the parameters kérgrf{d and kfﬁrg}{ of the embedded
GRASP! have been determined experimentally starting with the values from the stand-
alone variant. For the parameter k(g;grf{d we first assumed a value of k(g;grf{d =5- kirglé% as
all activity chains in the test instances consist of five activities. Afterwards, we fine-tuned
these parameters by iterative adjustment. The parameter kirgré% is set to 6 and k:ggrﬁd is
set to 35. The randomization itself is based on a fixed seed. Tests showed that the chosen
termination criteria provide a reasonable balance between result quality and execution
speed. Objective values obtained from the embedded (GRASP! are on average only 0.21%
larger than those obtained from the stand-alone variant. The embedded (GRASP| provides

on average solutions with 16.7% smaller objective value than ABCH.

The local search uses a best improvement strategy. Preliminary experiments confirmed
that this strategy works slightly better than a first improvement strategy since the aggre-
gation in terms of activity blocks typically results in only few moves with improvement
potential. For the same reason the local optimum is usually reached after a few iterations.
Thus, the overhead of the best improvement strategy is not that large. The locally
optimal solutions obtained by the best improvement strategy, however, turned out to
pay off in terms of a better average quality that is achieved. Tests with irace confirmed
this observation, although the differences are quite small. However, for instances with
different properties this might not be the case. For a larger number of activity blocks a
first improvement strategy might be superior.

7.2.2 Comparison of Bucket Refinement Strategies

Due to the large number of possible combinations of refinement techniques (cf. Figure 5.2)
we did not test every variant. Instead we employ a local search strategy to identify good
options: starting from an initial reference strategy, we investigate the impact of replacing
each of the three parts of the refinement process. At each stage, we choose the strategy
with the best performance as new reference strategy.

As initial refinement strategy we choose ASEL,B,UR as it is one of the most straightfor-
ward refinement strategies as it refines all bucket sequences in the identified optimal TBR
solution. Moreover, refinement decisions are made by only considering the TBR! solution.

We evaluate the performance of a refinement strategy based on the size of the optimality
gaps, the number of solved instances, and the computation times.

Starting with the strategy ASEL,B,UR, we first replace the strategy deciding which
buckets to refine. To this end, we replace ASEL with ISCC, AIGS, and VDUE. The results
of the corresponding strategies are shown in Table 7.2l Note that we evaluate the bucket
selection strategies that cannot be applied alone at a later point (see Tables 7.6-7.7).

VDUE,B,UR dominates the other strategies in every aspect, which indicates that the
strategy deciding which buckets to refine has a large impact on the performance of the
algorithm. Another interesting result is that ASEL,B,UR and ISCC,B,UR produce the

7.2. Computational Experiments

Table 7.2: Comparison of ASEL, ISCC, AIGS, and VDUE in combination with B and
UR. We consider the average optimality gaps (gap), the number of solved instances (opt)
and the median computation times in seconds (¢). Entries marked with “t]” indicate
that the experiment terminated due to the time limit. The summary is obtained by

aggregating over the preceding rows using the same function as for the respective column.

The best values per instance set are highlighted bold.

ASEL ISCC AIGS VDUE
B B B B
UR UR UR UR

set gap[%] opt t[s] gap[%] opt t[s] gap[%] opt [s] gap[%] opt {[s]

€20 0.0 15 12 0.0 15 12 0.0 15 22 0.0 15 12
€30 0.6 14 219 0.6 14 206 29 13 197 0.0 15 129
€40 46 10 836 46 10 860 4.6 9 243 4.2 10 92
€50 1.1 14 189 1.1 14 188 0.5 14 758 0.0 15 188
€60 1.2 14 82 1.2 14 83 2.1 12 171 1.2 14 63
[Z0) 2.1 8 6957 2.1 8 6965 2.0 8 3385 1.4 11 614
€80 2.0 7 tl 2.0 7 tl 14 9 2888 0.6 11 1906
€90 1.7 6 tl 1.7 6 tl 1.7 6 tl 1.6 7 tl
€100 0.9 5 tl 0.9 5 tl 14 5 tl 1.3 6 tl
summary 1.6 93 836 1.6 93 860 1.8 91 758 1.1 104 188
hao 0.0 15 17 0.0 15 16 0.0 15 13 0.0 15 18
h3o 10.7 9 4341 10.7 9 4225 10.5 7 tl 6.4 12 1045
hao 13.8 4 tl 13.8 4 tl 11.6 4 tl 7.0 6 tl
hso 18.4 2 tl 18.4 2 tl 19.4 2 tl 19.0 2 tl
heo 16.8 1 tl 16.8 1 tl 16.4 2 tl 15.0 2 tl
h7o 21.1 0 tl 21.1 0 tl 21.0 0 tl 19.8 2 tl
hso 14.6 1 tl 14.6 1 tl 14.6 1 tl 14.6 1 tl
hoo 10.5 1 tl 10.5 1 tl 10.4 1 tl 9.6 1 tl
h1i0o 10.6 0 tl 10.6 0 tl 10.6 0 tl 10.6 0 tl
summary 12.9 33 tl 12.9 33 tl 12.7 32 tl 11.3 41 tl

same results. The reason for this behaviour is that (GCH| fails to completely schedule

any whole activity block. Hence, ISCC selects the exact same buckets to refine as ASEL.

This is however an instance specific property and ASEL,B,UR and ISCC,B,UR may
indeed produce different results for other test instances. Note that for the set of easy
instances AIGS,B,UR produces worse optimality gaps than ASEL,B,UR. Hence, refining
fewer buckets does not always lead to better results. However, considering VDUE, it
also becomes evident that refining only a small set of carefully chosen buckets greatly
improves the quality of the solutions.

Next, we examine how the results are affected when refining buckets at different positions.

We evaluate the strategies for identifying splitting positions B, LSEE, and SET+B, using
VDUE,B,UR as reference model. The results are shown in Table |7.3. VDUE,LSEE,UR
performs worse than the reference strategy. LSEE refines more buckets than B but does
not incorporate as much information as SET+B. Consequently, LSEE does not seem to
be a good strategy for identifying splitting positions. Moreover, LSEE and SET+LSEE
seem to be inferior to B and SET+B, correspondingly, implying that the TBRI model

61

7.

COMPUTATIONAL RESULTS

62

Table 7.3: Comparison of B, LSEE, SET+B, and SET+LSEE in combination with VDUE
and UR. We consider the average optimality gaps (gap), the number of solved instances
(opt) and the median computation times in seconds (¢). Entries marked with “t]” indicate
that the experiment terminated due to the time limit. The summary is obtained by
aggregating over the preceding rows using the same function as for the respective column.
The best values per instance set are highlighted bold.

VDUE VDUE VDUE VDUE
B LSEE SET+B SET+LSEE
UR UR UR UR

set gap[%] opt t[s] gap[%] opt {[s] gap[%] opt t[s] gap[%] opt ¢t[s]

€20 0.0 15 12 17 12 12 0.0 15 11 0.0 15 15
es0 0.0 15 129 29 13 77 06 14 84 0.6 14 48
€10 4.2 10 92 46 9 283 46 10 72 44 10 247
es0 0.0 15 188 0.0 14 87 0.0 15 89 0.0 15 76
€60 1.2 14 63 15 13 64 1.2 14 56 1.2 14 70
e 14 11 614 08 11 1601 0.7 12 446 14 12 990
€80 0.6 11 1906 0.6 10 487 07 12 774 0.9 10 146
€90 16 7 1.4 9 1766 1.6 9 1103 16 7
€100 13 6 11 8 3396 12 9 833 1.0 9 1419
summary 1.1 104 188 1.6 99 283 12 110 89 12 106 146
hao 0.0 15 18 0.0 15 12 0.0 15 17 0.0 15 15
hso 6.4 12 1045 111 8 5889 6.7 12 575 6.6 11 476
hao 70 6 tl 81 7 tl 103 6 tl 86 7 il
hso 190 2t 183 2 tl 182 4 tl 183 3 il
heo 150 2 tl 156 3 tl 156 3 tl 157 3 tl
hro 198 2 tt 27 0 ot 195 1 1 221 0 il
hso 146 1 tl 144 1 tl 142 1 tl 146 2 tl
hoo 96 1 tl 9.5 1 t1 103 1 tl 9.5 1 tl
100 106 0 t 106 O tI 106 0 t1 10.6 0 tl
summary 11.3 41 tl 12.0 37 tl 11.7 43 tl 11.8 42 tl

profits less from splitting buckets at positions chosen by LSEE and SET+LSEE than
positions chosen by B or SET+B.

While VDUE,B,UR produces the better optimality gaps, VDUE,SET+B,UR is able to
solve more instances to optimality. The faster computation times of VDUE,SET+B,UR
seem to be a direct consequence of the higher number of solved instances. The pure
binary approach requires fewer refinements per iteration, consequently the strategy is able
to process more iterations than VDUE,SET+B,UR. A larger number of iterations usually
results in a higher degree of convergence and thus a smaller optimality gap. However,
VDUE,B,UR struggles to completely close the gap. The combination of SET and B
tries to address this shortcoming by choosing refinement positions in a more elaborate
way which, however, results in a larger number of refinements per iteration. Therefore,
VDUE,SET+B,UR is not able to process as many iterations as VDUE,B,UR. Since it
is not clear which of these approaches is preferable, we use both strategies as reference
model for the remaining evaluation stages.

7.2. Computational Experiments

Next, we evaluate the strategies for selecting splitting positions UR, BR, CPR, and MPR.

In Table|7.4| we provide the results with VDUE,B,UR as reference model. The results with
VDUE,SET+B,UR as reference model are shown in Table [7.5. The experiments show
that UR and BR work better in combination with B, while CPR and MPR, provide better
results when combined with SET+B. The easy instances seem to generally profit from
further reducing the number of refinements per iteration. This, however, is not true for the

hard instances as VDUE,B,UR features the best gaps together with VDUE,SET+B,CPR.

This shows that especially for the hard instances it is crucial to find a good balance

between the number of refinements per iteration and its associated information gain.

Refining more buckets may provide more information but also increases the model size
of TBR. Hence, VDUE,SET+B,UR performs worse than VDUE,B,UR. By refining
fewer buckets per iteration the size of the TBR! grows slower. However, refining fewer

buckets may result in a TBR| model that barely profits from the additional buckets.

This becomes especially evident when comparing the performance of VDUE,B,CPR and
VDUE,SET+B,CPR on the hard instances as VDUE,SET+B,CPR provides significantly
better results.

In total, VDUE,SET+B,MPR yields the best results for the easy instance sets, while
VDUE,SET+B,CPR yields the best results for the hard instance sets. It is, however, not
clear whether CPR or MPR is the better strategy in general.

Last, we evaluate the bucket selection strategies that cannot be applied alone, i.e.,

LUSED, CPATH, and ACPATHS. First, we use VDUE,SET+B,CPR as reference model.

Afterwards, we evaluate these strategies again, using VDUE,SET+B,MPR as reference
model. Results for VDUE,SET+B,CPR are shown in Table [7.6 and the results for
VDUE,SET+B,MPR are shown in Table |7.7. The results indicate that adding further
selection strategies results in better results for some instance sets. However, in general

the additional selection strategies have no positive impact on the performance of [ITBRAL

The additional selection strategies reduce the total number of iterations in general but
also greatly increase the number of buckets which seems to be the reason for their bad
performance.

Summing up, we can say that the bucket selection strategy has by far the highest impact
on the performance. The results show that the quality of a bucket refinement is much
more important than the number of refinements. Neither a strategy with a high number
of refinements nor a strategy with a low number of refinements works particularly well in
general.

Moreover, it turns out that the strategies, that show a good performance, follow two
different approaches for solving an instance. The first approach is to keep the number of
refinements as small as possible in order to achieve a high number of iterations. This

approach usually produces low optimality gaps but struggles to completely close the gap.

The other approach is to try closing the optimality gap as fast as possible, by allowing a
larger number of refinements. This usually yields a higher number of solved instances
but also results in larger optimality gaps due to the faster growth of the model.

63

7. COMPUTATIONAL RESULTS

64

Table 7.4: Comparison of UR, BR, CPR, and MPR in combination with VDUE and B.
We consider the average optimality gaps (gap), the number of solved instances (opt) and
the median computation times in seconds (t). Entries marked with “t1” indicate that the
experiment terminated due to the time limit. The summary is obtained by aggregating
over the preceding rows using the same function as for the respective column. The best
values per instance set are highlighted bold.

VDUE VDUE VDUE VDUE
B B B B
UR BR CPR MPR

set gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s]

€20 00 15 12 0.0 15 19 00 15 27 0.0 15 14
es0 00 15 129 00 15 135 0.0 15 91 0.0 15 156
€40 42 10 92 2.7 10 267 45 10 200 45 10 178
eso 0.0 15 188 11 14 187 00 15 183 0.0 15 174
e6o 1.2 14 63 1.2 13 54 1.2 14 100 1.2 13 7
e 14 11 614 05 14 923 04 13 742 0.0 14 1494
es0 0.6 11 1906 0.6 10 3064 0.8 10 1197 08 10 2287
€90 1.6 7 tl 77t 1.6 6 tl 1.6 8 6710
€100 13 6 tl 117 0 0T 7 tl 127 ol
summary 11 104 188 1.0 105 267 1.0 105 200 1.0 107 178
hao 00 15 18 0.0 15 17 00 15 22 0.0 15 22
hao 6.4 12 1045 66 11 1088 6.4 12 1860 6.4 12 1411
hao 7.0 6 tl 91 6 tl 83 6 tl 82 7 1
hso 190 2 t 178 4t 170 4 tl 184 3 tl
heo 150 2 ¢ 154 3 tl 165 3 t 161 2 ol
hro 19.8 2 & 201 1t 203 0 t 201 1 tl
hso 146 1 tl 146 1t 146 1 1 146 1 ol
hoo 96 1 tl 92 1 il 98 1 t1 89 1 tl
h10o 106 0 t 106 0 tl 106 0 tl 10.6 0]

—

summary 11.3 4 tl 11.5 42 tl 11.5 42 tl 11.5 42 tl

For our test instances the second approach seems to be slightly superior to the first
approach. We further investigate the difference between these two approaches in Table|7.8.
We have chosen the refinement strategy VDUE,B,CPR for representing the first approach
and VDUE,SET+B,CPR for representing the second approach. Moreover, we also
compare both strategies to the inferior strategies ASEL,B,UR and AIGS,B,UR. In
particular we consider the increase in the number of buckets, the number of iterations,
and the average computation time spent per iteration. The former is considered as ratio
between the final and the initial number of buckets. The higher this ratio, the more
buckets were needed to solve the instance.

Strategy ASEL,B,UR and AIGS,B,UR generate significantly more buckets than the
remaining approaches. However, the high number of buckets results from different
reasons for these strategies. ASEL,B,UR generates a high number of new buckets in each
iteration , which typically keeps the number of iterations low. However, this is paid for
excessively in terms of higher computation times per iteration due to the fast increase in
model size. In general, the number of buckets grows too fast and unguided to obtain a

7.2. Computational Experiments

Table 7.5: Comparison of UR, BR, CPR, and MPR in combination with VDUE and
SET+B. We consider the average optimality gaps (gap), the number of solved instances
(opt) and the median computation times in seconds (¢). Entries marked with “t1” indicate
that the experiment terminated due to the time limit. The summary is obtained by
aggregating over the preceding rows using the same function as for the respective column.
The best values per instance set are highlighted bold.

VDUE VDUE VDUE VDUE
SET+B SET+B SET+B SET+B
UR BR CPR MPR

set gap(%] opt t[s] gap[%] opt t[s] gap[%] opt ¢[s] gap[%] opt ¢[s]

€20 00 15 11 00 15 19 0.0 15 13 00 15 14
e30 06 14 84 0.0 15 59 06 14 66 0.0 15 49
e40 46 10 72 47 10 172 48 10 160 45 11 281
es0 0.0 15 89 11 14 110 0.0 15 105 00 15 78
€60 12 14 56 1.1 14 64 12 14 78 12 14 75
er0 07 12 446 09 12 325 0.3 14 528 06 11 460
eso 07 12 774 09 11 295 0.4 13 266 05 13 1081
€90 16 9 1103 15 9 1715 15 9 1908 1.3 10 1835
€100 12 9 833 12 8 1125 1.2 8 4740 1.1 9 2845
summary 12 110 89 1.3 108 172 11 112 160 1.0 113 281
hao 00 15 17 00 15 24 0.0 15 20 00 15 24
hao 67 12 575 77 10 856 64 12 985 6.3 12 720
hao 103 6t 96 6 tl 81 7 91 6t
hso 182 4 1 182 4 t1 182 4 t 182 4 tl
heo 156 3 ¢ 157 2 ¢ 153 4t 155 2t
hro 195 1t 203 1 ¢ 199 3 t 198 2
hso 142 1t 143 1 ¢ 143 2 ot 142 1 tl
hoo 103 1t 93 1 ¢ 100 1 t 101 1
h1oo 106 0 t 106 ©0 t 106 0 t 106 0 tl
summary 11.7 43 tl 117 40 tl 11.4 48 tl 11.5 43 tl

successful approach. For AIGS,B,UR the number of refinements per iteration is lower
which results in a higher number of iterations. However, using only buckets related to
activities scheduled by (GCH| turned out to be too restrictive. This strategy causes some
important splits to be delayed until the bucket partitioning is rather fine-grained.

VDUE is again a strategy that can be expected to generate only few new buckets per
iteration. However, compared to AIGS their choice appears to be much more meaningful.
Nevertheless, splitting only few buckets leads to a high number of iterations. Fortunately,
this is not too problematic due to the small computations times per iteration. Identifying
splitting positions with the pure binary strategy leads to only few bucket splits which
proves to be beneficial. As SET+B typically selects more candidates, one could expect
this strategy to be inferior. However, this is compensated for by incorporating more
information obtained from the [T'BR/solution.

In general, it can be observed that the number of applied splits has a strong influence on
the performance. However, the quality of the bucket refinement is also very important.

65

7.

COMPUTATIONAL RESULTS

66

Table 7.6: Comparison of ACPATHS, CPATH, and LUSED in combination with VDUE,
SET+B and CPR. We consider the average optimality gaps (gap), the number of solved
instances (opt) and the median computation times in seconds (¢). Entries marked with
“t]” indicate that the experiment terminated due to the time limit. The summary is
obtained by aggregating over the preceding rows using the same function as for the
respective column. The best values per instance set are highlighted bold.

VDUE+ACPATHS VDUE+CPATH VDUE+LUSED VDUE
SET+B SET+B SET+B SET+B
CPR CPR CPR CPR

set gap(%] opt t[s] gap[%] opt t[s] gap[%] opt t[s] gap[%] opt {[s]

€20 00 15 14 00 15 13 00 15 28 00 15 13
es0 00 15 71 06 14 T4 06 14 54 06 14 66
e 2.9 10 215 44 10 179 50 10 186 48 10 160
eso 0.0 15 105 L1 14 128 11 14 119 0.0 15 105
€60 1.8 13 69 1.8 13 113 1.2 13 58 1.2 14 78
e 1.7 9 2301 0.9 13 1343 23 7t 0.3 14 528
eso 06 11 1834 08 12 294 06 11 190 04 13 266
€90 15 8 5746 1.1 10 1830 L7 6 il 15 9 1908
€100 14 7l 14 7 tl 1.2 6t 1.2 8 4740
summary 1.1 103 215 1.3 108 179 15 96 186 1.1 112 160
hao 23 14 20 00 15 25 00 15 16 00 15 20
hso 89 9 1550 68 12 839 86 10 4344 6.4 12 985
hao 68 7 85 6 t 119 5t 81 7 tl
hso 189 3t 182 4 t 182 3 tl 182 4 tl
heo 162 2t 163 2 tl 168 2 tl 153 4 tl
hro 205 0 ot 201 1 &1 200 0 tl 19.9 3 tl
hso 146 1t 145 1 tl 146 1t 143 2 tl
hoo 94 1t 99 1 tl 99 1t 100 1 tl
h10o 106 0 tI 106 0 tt 106 0 t 106 0 tl
summary 12.0 37 tl 11.7 42 tl 124 37 tl 11.4 48 tl

For an illustration see Figure [7.1. As mentioned before, the large number of buckets
generated by ASEL raises the computation time within a few iterations to a problematic
level causing an overall bad performance. VDUE,B,CPR features the smallest increase
in buckets but requires more iterations to converge. Here it becomes clearly visible that
SET+B excels by incorporating more knowledge for making its decision.

In Figure 7.2 we also compared all investigated refinement strategies in a pairwise
fashion checking the assumption that one strategy yields smaller gaps than the other
by a one-tailed Wilcoxon rank-sum test with a significance level of 0.05 per difficulty
setting and in total. The Wilcoxon test coincides with our evaluation with one exception.
Considering the optimality gaps only, VDUE,B,CPR performs best for the easy instance
sets. However, when also considering the number of solved instances, VDUE,SET+B,MPR
performs best for the easy instance sets, as the strategy solves the highest number of easy
instances and yields only non-significantly worse gaps than VDUE,B,CPR. The bucket
selection strategies AIGS, ASEL and ISSC are vastly outperformed by VDUE. In total
VDUE,SET+B,CPR and VDUE,SET+B,MPR provide the best gaps.

7.2. Computational Experiments

Table 7.7: Comparison of ACPATHS, CPATH, and LUSED in combination with VDUE,
SET+B and MPR. We consider the average optimality gaps (gap), the number of solved
instances (opt) and the median computation times in seconds (¢). Entries marked with
“t1” indicate that the experiment terminated due to the time limit. The summary is
obtained by aggregating over the preceding rows using the same function as for the
respective column. The best values per instance set are highlighted bold.

VDUE+ACPATHS VDUE+CPATH VDUE+LUSED VDUE
SET+B SET+B SET+B SET+B
MPR MPR MPR MPR

set gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s] gap[%] opt ¢[s]

€20 0.0 15 12 0.0 15 11 0.0 15 10 0.0 15 14
€30 0.6 14 59 0.6 14 70 0.6 14 51 0.0 15 49
€40 4.3 9 138 5.0 9 262 4.6 9 514 45 11 281
€50 1.1 14 116 0.0 15 138 1.1 14 182 0.0 15 78
€60 1.7 13 65 1.2 14 e 1.8 12 75 1.2 14 75
€70 1.4 11 1885 0.9 12 635 1.9 9 3105 0.6 11 460
€80 09 10 1178 06 11 607 1.1 9 3570 0.5 13 1081
€90 14 9 4397 1.7 7 tl 1.7 8 2264 1.3 10 1835
€100 1.0 7 tl 1.2 9 492 14 7 tl 1.1 9 2845
summary 1.4 102 138 1.2 106 262 1.6 97 514 1.0 113 281
hao 2.3 14 15 0.0 15 15 0.0 15 16 0.0 15 24
hs3o 8.6 10 712 6.4 12 568 6.9 9 784 6.3 12 720
hao 6.5 7 tl 6.0 7 tl 8.7 6 tl 9.1 6 tl
hso 18.9 3 tl 18.0 4 tl 18.9 3 tl 18.2 4 tl
heo 16.6 2 tl 17.0 2 tl 14.9 3 tl 15.5 2 tl
h7o 21.5 0 tl 21.9 0 tl 21.9 1 tl 19.8 2 tl
hso 14.6 1 tl 14.6 1 tl 14.6 1 tl 14.2 1 tl
hoo 9.5 1 tl 9.7 2 tl 10.2 1 tl 10.1 1 tl
h10o 10.6 0 tl 10.6 0 tl 10.6 0 tl 10.6 0 tl
summary 12.1 38 tl 11.6 43 tl 11.9 39 tl 11.5 43 tl

Figure 7.3 shows a comparison of the average number of iterations and the average
final number of buckets for a broad selection of refinement strategies on the set of easy
instances with 30 activities. A successful approach is typically characterized by being
able to solve an instance by refining only relatively few buckets. Variants that generate
many buckets within few iterations usually do not work well. Refinement strategies using
ACAPTHS, CPATH and LUSED are part of this category. One can clearly see that these
strategies generate much more buckets in usually fewer iterations than their counterparts
without additional bucket selection strategies. Observe that the ASEL, ISCC, and AIGS
variants are all located in the left upper half of the figure due to the large number of
bucket splits they apply. The superior strategies are situated near the bottom. It is
also clearly visible that SET+B allows to solve an instance in fewer iterations than the
pure binary variant. This is also true for SET4+LSEE and LSEE. Note that UR and
BR are able to solve an instance using fewer buckets and iterations than CPR. This is a
peculiarity of the small instances considered here that does not generalize to the larger
ones.

67

7. COMPUTATIONAL RESULTS

68

Table 7.8: Comparison of the characteristics of selected bucket refinement strategies.
We consider the ratio between the number of buckets at the start and at the end of the
algorithm (ratio®), the average number of iterations (ni'), and the average computation
time spent per iteration in seconds (#*[s]). Column |B™| provides the average number
of buckets contained in the initial bucket partitioning. The summary is obtained by
aggregating over the preceding rows using the same function as for the respective column.
The best values per instance set are highlighted bold.

ASEL AIGS VDUE VDUE
B B B SET+B
UR UR CPR CPR
set |BMit| ratioP nlt #%[s] ratioP wlt #%[s] ratioP nl® #%[s] ratioP nit #i[s]
€20 43 4.73 9 5 5.59 11 6 1.93 16 2 1.69 9 2
€30 44 7.30 9 85 8.30 12 88 2.89 24 17 291 16 22
€40 47 7.14 7 454 6.72 8 383 2.99 19 158 291 13 191
es50 45 8.53 7 152 12.17 11 144 2.83 15 25 2.87 12 33
€60 49 5.30 4 218 6.00 5 270 2.50 11 72 2.30 6 81
ero 49 10.18 6 573 10.61 7 420 3.59 18 89 3.52 12 103
€80 52 7.45 4 629 7.01 4 435 3.35 13 131 3.23 9 118
€90 52 6.94 3 809 7.53 4 640 3.54 11 270 3.53 8 235
€100 58 7.69 3 951 7.11 3 904 3.99 13 266 3.75 9 312
summary 48 7.25 6 431 7.89 7 366 3.07 16 114 2.97 10 122
hao 43 4.25 8 8 5.55 12 11 1.93 17 3 2.00 13 3
hs3o 44 6.84 9 418 7.90 11 388 3.08 23 121 3.37 19 109
hao 43 6.98 6 924 7.84 7 770 3.39 17 276 3.29 12 313
hso 48 5.27 3 1812 5.14 3 1529 2.93 11 743 3.06 9 820
heo 44 5.49 2 1926 6.58 3 1728 3.50 11 803 3.59 9 855
hro 48 4.86 1 2629 5.05 2 2446 3.08 7 1280 3.17 6 1332
hgo 49 4.94 1 2362 4.80 2 2162 3.01 7 1043 3.15 5 1112
hoo 54 4.97 1 2239 4.99 2 2087 3.04 6 1017 3.22 5 1161
h100 55 4.96 1 2617 4.84 1 2433 2.86 4 1287 3.02 4 1430
summary 48 540 4 1659 5.85 5 1506 2.98 11 730 3.10 9 793

7.2.3 Comparing ITBRA to Other Algorithms

After having identified good refinement strategies for ITBRA| we can now proceed with
the comparison to other algorithms. AsITBRA! produces optimal solutions as well as
heuristic solutions when it terminates prematurely, we compare our algorithm to exact
methods and heuristics. We start by comparing the matheuristic to the stand-alone
GRASP. Afterwards, we compare [TBRA! to DEF| and TIF. Finally, we compare our
matheuristic with a heuristic based on TIF. For the comparisons we choose the refinement
strategies VDUE,SET+B,MPR and VDUE,SET+B,CPR for [ITBRA| as they produced
the best results in our previous experiments.

GRASP

We start by comparing the matheuristic to the stand-alone GRASP) see Table [7.9.
ITBRAlis in general able to provide better results. However, when dealing with the most
difficult instances, it is sometimes the case that the matheuristic only completes very
few iterations and [(GRASP!is able to compute a slightly better solution. As the number

7.2. Computational Experiments

: ! ! — 2,500 : ! ! 2,500
—— buckets ’ —— buckets ’
800 - —a— computation time 800 |- —a— computation time
-2,000 g -{2,000 o
600 |- = 600 - =
2 11,500 2 3 1,500 g
] ’ g] ’ g
é 400 |- E é 400 E
= 11,000 2 ~° 11,000 Z,
g £
3 8
B / 1500 200 | 500
O Il Il Il Il Il Il 0 0 Il Il Il Il Il Il O
0 10 20 30 40 50 60 0 10 20 30 40 50 60
iterations iterations
(a) VDUE,SET+B,CPR (b) VDUE,B,CPR
T T T T
00 —— buckets 12,500
8 | —a— computation time
42,000
600 |- E
B 41,500 g
% 400 |- é
- {1,000 2
g
8
200 - 1500
Il Il Il 0

| | |
0 0 10 20 30 40 50 60

iterations

(c) ASEL,B,UR

Figure 7.1: Comparison of the relation between computation time and increase in the
number of buckets for the same ey instance when using different bucket refinement
strategies.

of activities increases, [TBRA| struggles more and more to improve upon the initially
obtained primal bound. This is caused by the originally high computation times per
iteration that prevent the algorithm from reaching a sufficient degree of convergence.
Remember, however, that ITBRA!also puts much effort in determining good dual bounds
which (GRASP| cannot provide at all.

DEF

DEF was not able to find a primal solution for any instance but at least always computed
a dual bound. Table [7.10| provides the comparison with the matheuristic. The bounds
obtained from IDEF' are always worse than those found by ITBRA| and turned out to be
particularly weak for the group of hard instances which can be expected due to the looser
restrictions featured in this instance group; by the construction of the test instances,
the activity time windows of the hard instances are significantly larger than the activity
time windows of the easy instances, which results in larger domains of the starting time
variables of DEF| and thus also potentially larger big-M constraints.

69

7. COMPUTATIONAL RESULTS

70

[0 easy

lohard

]]
E15,t0tal -
g
%10* n
@
&

i III I
1 L a4
TR R TR LR R ELELELERSRL LSRR
%Q“@@%b“@@@@z@@&?%@é&@@f?&g&&§§
Py O R Y FYYy FEFYY XYY Y
F & O 8 & & & F & & 8 §F & X & KX
Yy 9 9 & LN &S5 F LK LS &Yy TS &S &S K
SRR S A T -

ST FFFTFEFsFess
55 LR § & 7 8588
S g &SI &F & &8

L& & £ 7
- g & & &
£ T8 8§88
& & S S S
S & L L L 8
IS

Figure 7.2: Comparison of refinement strategies using a one-tailed Wilcoxon rank-sum
test with a significance level of 0.05 per difficulty setting and in total w.r.t. optimality

gaps.

Time-Indexed Models

As a result of the extremely large time horizons and the memory restriction of 4GB, none
of the TTF models even fit into the RAM. Therefore, we consider coarsened [TTF/ models
by only taking a subset of the original time horizon into account. Let x € N5 be the
coarsening measure and TIF" the associated model. Then, the new time horizon T of
TIF" is defined as T" = {t € T : t =0 (mod k)}. Consequently, we obtain reduced sets
of feasible starting times 7% = T,, NT" for the activities a € A. Reducing the number of
considered time slots decreases the size of the model, which leads to faster computation
times. However, an optimal solution to TITF" is in general not optimal w.r.t. the original
problem due to the disregarded time slots, making it a heuristic approach. A coarsened
model might even become infeasible when discarding too many time slots.

Table [7.11] provides the results of the differently coarsened TTF| models. We increase the
value of k stepwise until all instances can either be solved within the time limit or do
not permit feasible solutions anymore. For k < 100 the models fail to generate a primal
bound for almost all instances due to memory or time limitations. Missing table entries
(marked with “-”) indicate that the coarsened model is not able to find a primal bound
for any instance of the corresponding set. For smaller instances the TIF" models are able
to produce reasonable primal solutions. However, the quality of the solutions deteriorates
drastically as more time slots are disregarded. No TIF" variant is able to find a primal
solution for all instances. When using a small value for k, many instances cannot be
solved due to the time limit. For larger x-values we can solve more instances but at the

7.2. Computational Experiments

350 |- [0 ASEL,B,UR
x AIGS,B,UR
300 . +ISCC,B,UR
o VDUE,B,BR
o VDUE,B,CPR
oVDUE,B,MPR
A VDUE,B,UR
* VDUE,LSEE,UR
200 | | | * VDUE,SET+LSEE,UR
® ¢ VDUE,SET+B,BR
® + VDUE,SET+B,CPR
150 | ® | |mVDUE,SET+B,MPR
A VDUE,SET+B,UR
. a0 O ® VDUE+ACPATHS,SET+B,MPR
100 1 | |e VDUE+LUSED,SET+B,MPR

‘ ‘ . ! |« VDUE+CPATH,SET+B,MPR
10 15 20 25

iterations

250 - a

’Bﬁna1|

Figure 7.3: Comparison of the average number of iterations and average final number of
buckets on the set of e3g instances.

cost of much larger gaps. Moreover, as we reduce the precision even further, the models
start to become infeasible. The number of infeasible instances strongly increases for
k > 10000 and the few instances that still permit feasible solutions feature gaps of over
80%. Therefore, further increasing the value of £ does not seem meaningful anymore.
It appears that there does not exist an appropriate value for x allowing a reasonable
balance between computation time and result quality. Due to the many missing entries
we decided to use median instead of average gaps in the summary table.

According to our experiments the best variants are those with x = 1000 and x = 2000,
respectively. The former provides better solutions but the latter is able to find more
feasible solutions. For some instances the coarsened TTE! variants even find better primal
solutions than the matheuristic. Especially for instance sets hqg, hs50, and hgg we obtain
a high number of good solutions s.t. also the median gaps are smaller here. Overall,
however, ITBRA! still provides the better results. Moreover, recall that the TIF" models
can only provide heuristic solutions and no dual bounds.

Comparing TIF to DTIF, STIF, and ITBRA

Models DTIF and [TIF!lead to similar memory consumption issues as the basic TIF/ model.
Thus, we compare TIF® to DTIF" and STIF" in the following. Tables 7.12-7.16| show
the results of these comparisons for different values of k. For k < 200, TIF" produces
the best results as DTIF® and STIF" struggle with the time and memory limit.

Starting at & = 1000, DTIF'%% starts to catch up to TIF'0%0, TIF19 jg still able to beat
the results generated by ITBRA! more often than DTIF'%°. However, DTIF'°% is able

71

7.

COMPUTATIONAL RESULTS

72

Table 7.9: Comparison of the best found refinement strategies with GRASP. For each
algorithm the average gaps to the best primal bound (gap), the standard deviation of
the gaps (o), and the median computation times in seconds(t) are presented. Entries
marked with “t]" indicate the termination of the experiment due to the time limit. For
GRASP, we also provide the number of instances for which a feasible solution could
be computed (feas). For the calculation of the gaps we considered only instances for
which all algorithms were able to compute a primal bound. The summary is obtained by
aggregating over the preceding rows using the same function as for the respective column.
The best values per instance set are highlighted bold.

VDUE VDUE
SET+B SET+B
CPR MPR GRASP
set gap[%] o tls] gap(%] o tls] gap[%] o t[s] feas
e 0.0 0.0 13 0.0 0.0 14 38.6 173 tl 12
€30 0.6 2.1 66 0.0 0.0 49 28.0 16.0 tl 14
e40 4.6 7.7 160 4.3 7.6 281 131 7.5 tl 15
es50 0.0 0.0 105 0.0 0.0 78 7.8 8.0 tl 15
€60 0.8 2.9 T8 0.8 29 75 34 46 tl 15
ero 0.3 1.0 528 0.6 1.3 460 3.8 39 tl 15
€80 0.1 0.4 266 0.2 0.8 1081 22 3.7 tl 15
€9 0.8 1.2 1908 0.6 1.1 1835 1.0 1.2 tl 15
€100 0.7 1.5 4740 0.6 1.4 2845 1.3 21 tl 15
summary 0.9 1.9 160 0.8 1.7 281 11.0 7.1 tl 131
hao 0.0 0.0 20 0.0 0.0 24 23.3 127 tl 12
h3o 5.2 11.4 985 5.0 11.4 720 34.1 119 tl 15
hao 5.9 8.1 tl 7.3 8.7 tl 216 11.6 tl 15
hso 8.9 8.0 tl 8.9 8.0 tl 119 6.7 tl 15
heo 6.8 69 tl 71 6.3 tl 95 65 tl 15
o 25 34 1 2.4 3.0 tl 48 62 tl 15
hso 14 2.3 tl 1.3 2.3 tl 1.6 31 tl 15
hoo 2.4 4.3 tl 2.5 4.8 tl 2.8 6.4 tl 15
h10o 1.0 09 il 1.0 0.9 tl 01 05 tl 15
summary 3.8 5.0 tl 3.9 5.0 tl 122 7.3 tl 132

to find a higher number of feasible solution and generates slightly better gaps. STIF'9%0

is still far behind the other two algorithms w.r.t. the number of feasible solutions and
the number of solved instances.

For k = 2000, DTIF?°% starts to pull ahead of TIF?°°. For most instance sets TIF29%°
and DTIF?"% perform almost equally well. However, for the instance sets hrg, hgo, and
hoo, DTIF?°% significantly outperforms TIF2°%. STIF?0% is still not able to catch up
to the other two algorithms. Moreover, for some instance sets STIF?% still fails to
produce feasible solutions due to the time and memory limit.

Finally, for x = 10000, most instances have become infeasible and all three algorithms
generate the same gaps for the few instances still permitting a feasible solution. However,
even now STIF'%9 struggles with the time and memory limit.

7.2. Computational Experiments

Table 7.10: Comparison of ITBRA with DEF. For each algorithm we provide the average
gaps to the best dual bound (gap), the standard deviation of the gaps (o) and the median
computation times (¢). “tl" indicates the termination of the program due to the time
limit. The summary is obtained by aggregating over the preceding rows using the same

function as for the respective column. The best values per instance set are highlighted
bold.

VDUE VDUE
SET+B SET+B
CPR MPR DEF
set gap|%] o t[s] gap[%] o tls] gap[%] o t[s]
€20 0.0 0.0 13 0.0 0.0 14 15.3 10.6 tl
€30 0.0 0.0 66 0.0 0.0 49 76 6.5 tl
€40 09 2.7 160 0.6 2.1 281 5.0 9.3 tl
€50 0.0 0.0 105 0.0 0.0 78 3.0 64 tl
€60 0.0 0.0 78 0.0 0.0 75 1.8 32 tl
€70 0.0 0.0 528 03 1.1 460 1.6 24 tl
€80 0.0 0.1 266 0.0 0.1 1081 1.0 1.7 tl
€90 0.1 0.2 1908 0.0 0.0 1835 1.5 28 tl
€100 0.1 0.1 4740 0.0 0.1 2845 2.0 1.8 tl
summary 0.1 0.3 160 0.1 04 281 4.3 5.0 tl
hao 0.0 0.0 20 0.0 0.0 24 19.6 114 tl
hso 04 1.1 985 0.2 0.6 720 32.0 126 tl
hao 0.8 2.3 tl 1.2 33 tl 19.2 128 tl
hso 2.3 2.7 il 25 3.1 t 154 90 tl
heo 2.1 44 tl 1.9 3.9 tl 52 59 tl
hro 35 51 tl 3.4 4.9 tl 74 76 tl
hso 0.1 04 tl 0.1 0.3 tl 1.0 1.6 tl
hoo 08 1.7 il 0.8 1.7 t1 44 58 tl
hi100 0.3 0.6 tl 0.2 0.3 tl 1.0 15 tl
summary 1.1 2.0 tl 1.1 2.0 tl 117 76 tl

Similar to Figure|7.4, we compared all investigated time-indexed models using a one-tailed
Wilcoxon rank-sum test with a significance level of 0.05 based on the gaps to the best
found primal bounds of the instances. The results are shown in Figure [7.4) and coincide
with our evaluation. TIF" produces smaller models and has therefore an advantage over
the other two algorithms for small values of k. As k increases, so does the performance
of DTIF®. While TIF?*™ yields the best gaps for the easy instance sets, DTIF%% turns
out to be the best algorithm in general. STIF" produces by far the worst results for high
values of k even though STIF is a stronger formulation than TIF and equally strong as
DTIFL This can mostly be explained due to the larger size of the model of STIF.

Finally, in Figure|7.5 we compare a selection of [TBRA|strategies, GRASP, and differently
coarsened time-indexed models. The comparison is done by a one-tailed Wilcoxon rank-
sum test with a significance level of 0.05 and is based on the gaps to the best found
primal bounds of the instances. We have chosen the best as well as two inferior reference
bucket refinement strategies for ITBRA| and compare them to the best found time-
indexed models and [GRASPL The time-indexed models featured in Figure 7.5 are slightly

73

7. COMPUTATIONAL RESULTS

74

Table 7.11: Comparison of differently coarsened 'TIF| models with ITBRA. We provide
the median gaps to the best primal bound of the original problem (gap) and the median
computation times in seconds (¢). Missing entries (“-”) indicate that the coarsened model
is not able to find a primal bound for any instance of the corresponding set. Moreover,
for each instance set we indicate the number of optimally (opt®) and feasibly (feas) solved
instances w.r.t. the coarsened model. Column infeas denotes the number of instances with
proven infeasible model. Finally, we indicate the number of instances that terminated due
to the time limit (tl) or the memory limit (ml), respectively. The summary is obtained
by aggregating over the preceding rows using the same function as for the respective
column. The best values per instance set are highlighted bold.

VDUE VDUE
B SET+B
TIRL00 TIF200 TIF1000 TIR2000 TIF10000 CPR CPR
set gap[%)™d tls] gap(%]™! #s] gap[%)™! t[s] gap[%)™! 5] gap[%]™! t[s] gap[%)™! t[s] gap[%]™! i[s)
€20 0.3 15 0.6 4 21.7 <1 24.0 <1 - - 0.0 13 0.0 14
€30 0.1 310 0.4 58 4.0 4 18.3 2 - - 0.0 66 0.0 49
eq0 0.4 2940 0.5 698 3.8 40 13.5 6 - - 0.0 160 0.0 281
es0 0.2 409 04 113 1.9 17 6.4 5 - <1 0.0 105 0.0 78
) 0.3 5569 04 839 2.4 52 4.7 21 - <1 0.0 78 0.0 75
ero 14.3 t1 0.3 2713 1.9 165 4.7 s - <1 0.0 528 0.0 460
ego - tl 0.3 5630 1.7 292 34 108 - <1 0.0 266 0.0 1081
90 - tl - tl 1.1 555 3.0 327 T 0.0 1908 0.0 1835
e100 - tl - tl 18 652 40 263 -6 0.0 4740 0.0 2845
summary 0.4 5569 04 839 1.9 52 4.7 21 - <1 0.0 160 0.0 281
hao 0.4 39 0.5 8 6.4 1 19.8 <1 - <1 0.0 20 0.0 24
hso 11.8 6106 0.6 1129 11.1 42 24.6 13 - - 0.0 985 0.0 720
hao 354 t1 0.6 tl 55 227 13.7 65 - <1 3.2 tl 6.5 tl
hso - tl - tl 2.6 2815 11.3 381 - <1 8.4 tl 8.4 tl
heo - t1 8.9 tl 2.5 1532 9.3 940 - <1 6.5 t1 6.2 tl
hro - t1 - tl 14.3 t1 10.4 3052 82,5 <1 0.0 tl 0.7 tl
hso - tl - tl 5.8 tl 12.1 tl 770 3 0.0 tl 0.0 tl
heo - tl - tl 9.0 tl 14.2 tl 938 8 0.3 tl 0.3 tl
100 - tl - tl 39.6 tl 22.7 tl - 16 1.2 tl 1.2 tl
summary - tl - tl 6.4 2815 13.7 940 - <1 0.3 tl 0.7 tl
TTF00 TIF200 TIF1000 TTF2000 TIF10000
set opt® feas infeas tI ml opt® feas infeas tl opt® feas infeas tl opt® feas infeas tl opt® feas infeas tl
€20 15 15 [V) 0 15 15 0o o0 15 15 0 13 13 2 0 0 0 15 0
€30 15 15 [V) 0 15 15 0o o0 15 15 [V) 15 15 0o 0 0 0 15 0
€40 9 12 0 6 0 12 14 0 3 15 15 0o o 15 15 0o o0 0 0 15 0
€50 13 14 0 2 0 14 14 0o 1 15 15 0o 0 15 15 0 0 2 2 13 0
€60 9 9 0 6 0 14 15 0 1 15 15 0 o0 15 15 0 0 6 6 9 0
€7 6 9 0o 9 0 12 14 0 3 15 15 0 o0 15 15 0 0 2 2 13 0
€0 3 3 0 12 0 9 11 0 6 15 15 0 o0 15 15 0 0 7 7 8 0
(&) 0 0 0 13 2 6 7 0 9 14 14 0 1 14 15 0 1 4 4 11 0
€100 1 1 0 38 6 4 5 0 11 13 15 0o 2 15 15 0 0 2 2 13 0
summary 71 78 0 56 8 101 110 0 34 132 134 0 3 132 133 2 1 23 23 112 0
hao 15 15 [V) 0 15 15 0o o0 15 15 0o o 15 15 0o o0 2 2 13 0
hso 8 12 0 7 0 14 15 0 1 15 15 [V) 14 14 1 0 0 0 15 0
hao 4 9 0 11 0 8 12 o 7 15 15 0 o0 15 15 0 0 5 5 10 0
hso 1 4 0 14 0 4 7 0 11 12 15 0o 3 15 15 0 0 6 6 9 0
heo 0 0 0 15 0 2 9 0 13 9 15 0 6 14 15 0 1 6 6 9 0
hro 0 0 0 15 0 0 1 0 15 4 10 0 11 10 15 0 5 8 8 70
hso 0 0 0 11 4 1 4 0 14 5 11 0 10 4 15 0 11 9 9 6 0
hgo 0 0 0 12 3 1 1 0 14 4 12 0 11 6 12 0o 9 8 8 70
hioo 0 0 0 1 14 0 0 0 15 1 8 0 14 0 11 0 15 5 5 10 0
summary 28 40 0 8 21 45 64 0 90 80 116 0 55 93 127 1 41 49 49 86 0

7.2. Computational Experiments

Table 7.12: Comparison of different time-indexed models for x = 100. We provide the
median gaps to the best primal bound of the original problem (gap) and the median
computation times in seconds (¢). Missing entries (“-”) indicate that the coarsened model
is not able to find a primal bound for any instance of the corresponding set. Moreover,
for each instance set we indicate the number of optimally (opt®) and feasibly (feas) solved
instances w.r.t. the coarsened model. Column infeas denotes the number of instances
with proven infeasible model. We also provide the number of instances per instances
set for which a time-indexed model has found a better solution than ITBRA! (better).
Finally, we indicate the number of instances that terminated due to the time limit (tl) or
the memory limit (ml), respectively. The summary is obtained by aggregating over the
preceding rows using the same function as for the respective column. The best values
per instance set are highlighted bold.

TIFI DTIF!® STIF!0

set gap[%)med t[s] gap[%]™ed t[s] gap[%|™ed t[s]

€20 0.3 15 0.3 64 0.3 279

€30 0.1 310 " 109

e 0.4 2940 - tl 92.7 tl

es0 0.2 409 - tl 79.4 tl

€60 0.3 5569 - tl 122.9 tl

e 14.3 t1 - - - t1

eso - t1 - - - t1

2 - tl - - - tl

€100 - tl - - - tl

summary 0.4 5569 - tl 122.9 tl

hao 0.4 39 0.4 185 0.4 429

h3o 11.8 6106 - tl 36.8 tl

hao 35.4 tl - tl 192.8 tl

hso - tl - tl - tl

heo - tl - - - tl

h7o - tl - - - tl

hgo - tl - - - tl

hoo - tl - - - t1

h1oo - tl - - - tl

summary - tl - tl - tl

TIF' DTIF!? STIF!%
set opt feas infeas better mem opt feas infeas better mem opt feas infeas better mem
€20 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
€30 15 15 0 0 0 2 2 0 0 13 4 15 0 0 0
€40 9 12 0 0 0 0 0 0 0 15 0 13 0 0 0
es50 13 14 0 0 0 0 0 0 0 15 0 11 0 0 0
€60 9 9 0 0 0 0 0 0 0 15 0 8 0 0 0
€70 6 9 0 0 0 0 0 0 0 15 0 2 0 0 0
g0 3 3 0 0 0 0 0 0 0 15 0 0 0 0 12
€90 0 0 0 0 2 0 0 0 0 14 0 0 0 0 15
€100 11 0 0 6 0 0 0 0 14 0 0 0 0o 15
summary 71 78 0 0 8 17 17 0 0 116 19 64 0 0 42
hao 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
hao 8 12 0 1 0 1 1 0 0 14 2 14 0 0 0
hao 4 9 0 1 0 0 0 0 0 15 0 8 0 0 0
hso 1 4 0 0 0 0 0 0 0 15 0 1 0 0 0
heo 0 0 0 0 0 0 0 0 0 15 0 1 0 0 0
hro 0 0 0 0 0 0 0 0 0 15 0 0 0 0 14
hgo 0 0 0 0 4 0 0 0 0 14 0 0 0 0 15
hgo 0 0 0 0 3 0 0 0 0 13 0 0 0 0 15
hioo 0 0 0 0 14 0 0 0 0 15 0 0 0 0 14
summary 28 40 0 2 21 16 16 0 0 116 17 39 0 0 58

7. COMPUTATIONAL RESULTS

76

Table 7.13: Comparison of different time-indexed models for k = 200. We provide the
median gaps to the best primal bound of the original problem (gap) and the median
computation times in seconds (¢). Missing entries (“-”) indicate that the coarsened model
is not able to find a primal bound for any instance of the corresponding set. Moreover,
for each instance set we indicate the number of optimally (opt®) and feasibly (feas) solved
instances w.r.t. the coarsened model. Column infeas denotes the number of instances
with proven infeasible model. We also provide the number of instances per instances
set for which a time-indexed model has found a better solution than ITTBRA/ (better).
Finally, we indicate the number of instances that terminated due to the time limit (tl) or
the memory limit (ml), respectively. The summary is obtained by aggregating over the
preceding rows using the same function as for the respective column. The best values
per instance set are highlighted bold.

TIF20 DTIF2 STIF?

set gap[%]™! t[s] gap[%]™ tls] gap[%]™! t[s]

e 0.6 4 0.6 16 0.6 46

€30 0.4 58 0.4 225 0.4 1158

€40 0.5 698 0.5 1403 14.7 tl

es0 0.4 113 - tl 78.8 tl

€60 0.4 839 - tl 78.1 tl

e 0.3 2713 - tl - tl

€80 0.3 5630 - tl - tl

egp - tl - tl - tl

€100 - tl - tl - tl

summary 0.4 839 - tl 78.8 tl

hao 0.5 8 0.5 40 0.5 59

hao 0.6 1129 14 861 1.6 2653

hao 0.6 tl - tl 20.9 tl

hso - tl - tl - tl

heo 8.9 tl - tl - tl

hro - tl - tl - tl

hgo - tl - tl - tl

hgo - tl - tl - tl

hioo - tl - - - tl

summary - tl - tl - tl

TIF20 DTIF2 STIF?
set opt feas infeas better mem opt feas infeas better mem opt feas infeas better mem
€20 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
€30 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
€40 12 14 0 1 0 10 14 0 2 1 4 15 0 1 0
es50 14 14 0 0 0 1 1 0 0 14 1 9 0 0 0
€60 14 15 0 1 0 0 0 0 0 15 0 9 0 0 0
e 12 14 0 0 0 0 0 0 0 15 0 4 0 0 0
eso 9 11 0 0 0 0 0 0 0 15 0 0 0 0 11
€90 6 7 0 0 0 0 0 0 0 15 0 0 0 0 15
€100 4 5 0 0 0 0 0 0 0 15 0 0 0 0 15
summary 101 110 0 2 0 41 45 0 2 90 35 67 0 1 41
hao 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
hso 14 15 0 3 0 12 15 0 3 0 11 15 0 3 0
hao 8 12 0 5 0 1 1 0 0 14 3 11 0 0 0
hso 4 7 0 1 0 0 0 0 0 13 0 2 0 0 0
heo 2 9 0 4 0 0 0 0 0 15 0 0 0 0 0
hro 0 1 0 0 0 0 0 0 0 15 0 0 0 0 11
hgo 1 4 0 0 0 0 0 0 0 15 0 0 0 0 15
hoo 1 1 0 0 0 0 0 0 0 15 0 0 0 0 15
hioo 0 0 0 0 0 0 0 0 0 13 0 0 0 0 14
summary 45 64 0 13 0 28 31 0 3 100 29 43 0 3 55

7.2. Computational Experiments

Table 7.14: Comparison of different time-indexed models for x = 1000. We provide the
median gaps to the best primal bound of the original problem (gap) and the median
computation times in seconds (¢). Missing entries (“-”) indicate that the coarsened model
is not able to find a primal bound for any instance of the corresponding set. Moreover,
for each instance set we indicate the number of optimally (opt®) and feasibly (feas) solved
instances w.r.t. the coarsened model. Column infeas denotes the number of instances
with proven infeasible model. We also provide the number of instances per instances

set for which a time-indexed model has found a better solution than ITBRA! (better).

Finally, we indicate the number of instances that terminated due to the time limit (tl) or
the memory limit (ml), respectively. The summary is obtained by aggregating over the
preceding rows using the same function as for the respective column. The best values
per instance set are highlighted bold.

TTR1000 DTIF1000 STTRL000

set gap[%]™ed t[s] gap[%]™d t[s] gap[%|™ed t[s]

€20 21.7 <1 21.7 1 21.7 4

€30 4.0 4 4.0 6 4.0 16

€40 3.8 40 3.8 30 3.8 70

e50 1.9 17 1.9 20 1.9 318

€60 2.4 52 2.4 67 2.4 892

e7 1.9 165 1.9 215 2.0 3326

€s0 1.7 292 1.7 443 1.9 6350

€90 1.1 555 1.1 885 - tl

€100 1.8 652 1.8 1160 - tl

summary 1.9 52 1.9 67 3.8 892

hao 6.4 1 6.4 1 6.4 5

hao 11.1 42 11.1 19 11.1 39

hao 5.5 227 5.5 134 5.5 274

hso 2.6 2815 0.0 1291 0.0 1536

heo 2.5 1532 1.3 3496 3.2 2582

hro 14.3 tl 13.4 tl 26.0 tl

hgo 5.8 tl 10.8 tl - tl

hgo 9.0 tl 20.1 tl - tl

hioo 39.6 tl 35.7 tl - tl

summary 6.4 2815 10.8 3496 11.1 2582

TIF1000 DTTFL000 QTIFL000
set opt feas infeas better mem opt feas infeas better mem opt feas infeas better mem
€20 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
€30 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
€40 15 15 0 1 0 15 15 0 1 0 15 15 0 1 0
es50 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
€60 15 15 0 1 0 15 15 0 1 0 15 15 0 1 0
e 15 15 0 0 0 15 15 0 0 0 13 15 0 0 0
€g0 15 15 0 0 0 15 15 0 0 0 10 13 0 0 1
€90 14 14 0 2 0 15 15 0 2 0 0 0 0 0 15
€100 13 15 0 0 0 14 15 0 0 0 0 0 0 0 15
summary 132 134 0 4 0 134 135 0 4 0 98 103 0 2 31
hao 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
h3o 15 15 0 3 0 15 15 0 3 0 15 15 0 3 0
hao 15 15 0 5 0 15 15 0 5 0 15 15 0 5 0
hso 12 15 0 8 0 14 15 0 8 0 15 15 0 8 0
heo 9 15 0 7 0 9 15 0 8 0 9 15 0 6 0
h7o 4 10 0 3 0 2 15 0 1 0 0 8 0 3 4
hso 5 11 0 2 0 4 15 0 1 0 0 0 0 0 15
hgo 4 12 0 1 0 4 15 0 1 0 0 0 0 0 15
hioo 1 8 0 1 0 1 15 0 1 0 0 0 0 0 15
summary 80 116 0 30 0 79 135 0 28 0 69 83 0 25 49

7

7. COMPUTATIONAL RESULTS

78

Table 7.15: Comparison of different time-indexed models for x = 2000. We provide the
median gaps to the best primal bound of the original problem (gap) and the median
computation times in seconds (¢). Missing entries (“-”) indicate that the coarsened model
is not able to find a primal bound for any instance of the corresponding set. Moreover,
for each instance set we indicate the number of optimally (opt®) and feasibly (feas) solved
instances w.r.t. the coarsened model. Column infeas denotes the number of instances
with proven infeasible model. We also provide the number of instances per instances
set for which a time-indexed model has found a better solution than ITTBRA/ (better).
Finally, we indicate the number of instances that terminated due to the time limit (tl) or
the memory limit (ml), respectively. The summary is obtained by aggregating over the
preceding rows using the same function as for the respective column. The best values
per instance set are highlighted bold.

TTR2000 DTTR2000 QTTR2000

set gap[%]™! t[s] gap[%)™! t[s] gap[%™ i[s]

e20 24.0 <1 24.0 <1 24.0 3

€30 18.3 2 18.3 2 18.3 8

eq0 13.5 6 13.5 11 13.5 16

e50 6.4 5 6.4 7 6.4 36

€60 4.7 21 4.7 20 4.7 84

e7 4.7 ™ 4.7 89 4.7 341

eg0 3.4 108 3.4 119 3.4 584

€90 3.0 327 2.9 177 - tl

€100 4.0 263 4.0 208 - tl

summary 4.7 21 4.7 20 13.5 84

hao 19.8 <1 19.8 <1 19.8 3

hao 24.6 13 24.6 5 24.6 15

hao 13.7 65 13.7 22 13.7 39

hso 11.3 381 11.3 136 11.3 241

heo 9.3 940 9.3 359 9.3 770

h7o 10.4 3052 3.8 2555 5.7 2067

hgo 12.1 tl 5.2 6823 - tl

hoo 14.2 tl 8.1 tl - tl

hioo 22.7 tl 25.7 tl - tl

summary 13.7 940 11.3 359 19.8 770

TIF2000 DTTF2000 QTTR2000
set opt feas infeas better mem opt feas infeas better mem opt feas infeas better mem
€20 13 13 2 0 0 13 13 2 0 0 13 13 2 0 0
€30 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
€40 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
es50 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
€60 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
ego 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
€90 14 15 0 0 0 15 15 0 0 0 0 0 0 0 15
€100 15 15 0 0 0 15 15 0 0 0 0 0 0 0 13
summary 132 133 2 0 0 133 133 2 0 0 103 103 2 0 28
hao 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
hs3o 14 14 1 1 0 14 14 1 1 0 14 14 1 1 0
hao 15 15 0 1 0 15 15 0 1 0 15 15 0 1 0
hso 15 15 0 5 0 15 15 0 5 0 15 15 0 5 0
heo 14 15 0 5 0 14 15 0 5 0 15 15 0 5 0
h7o 10 15 0 0 0 12 15 0 1 0 11 15 0 1 0
hgo 4 15 0 0 0 9 15 0 2 0 0 0 0 0 14
hgo 6 12 0 1 0 7 15 0 1 0 0 0 0 0 15
hioo 0 1 0 0 0 1 15 0 1 0 0 0 0 0 15
summary 93 127 1 13 0 102 134 1 17 0 85 89 1 13 44

7.2. Computational Experiments

Table 7.16: Comparison of different time-indexed models for x = 10000. We provide the
median gaps to the best primal bound of the original problem (gap) and the median
computation times in seconds (¢). Missing entries (“-”) indicate that the coarsened model
is not able to find a primal bound for any instance of the corresponding set. Moreover,
for each instance set we indicate the number of optimally (opt®) and feasibly (feas) solved
instances w.r.t. the coarsened model. Column infeas denotes the number of instances
with proven infeasible model. We also provide the number of instances per instances

set for which a time-indexed model has found a better solution than ITBRA! (better).

Finally, we indicate the number of instances that terminated due to the time limit (tl) or
the memory limit (ml), respectively. The summary is obtained by aggregating over the
preceding rows using the same function as for the respective column. The best values
per instance set are highlighted bold.

TIF10000 DTIFL0000 STTRL0000

set gap[%]™! t[s] gap[%]™ tls] gap[%]™! #[s]

€0 - - - - - -

€30 - - - - - -

€40 - - - - - -

es50 - <1 - <1 - 10

€60 - <1 - <1 - 15

€70 - <1 - <1 - 17

eso - <1 - <1 - 22

€90 - 1 - <1 - 28

€100 - 6 - 1 - tl

summary - <1 - <1 - 22

hao - <1 - <1 - 2

h3o - - - - - -

hao - <1 - <1 - 7

hso - <1 - <1 - 14

heo - <1 - <1 - 18

hro 82.5 <1 82,5 <1 82.5 23

hso 77.0 3 77.0 <1 77.0 31

hgo 93.8 8 93.8 <1 93.8 35

hioo - 16 - 1 - tl

summary - <1 - <1 - 23

TTF10000 DTTRL0000 QTTFL0000

set opt feas infeas better mem opt feas infeas better mem opt feas infeas better mem
€20 0 0 15 0 0 0 0 15 0 0 0 0 15 0 0
€30 0 0 15 0 0 0 0 15 0 0 0 0 15 0 0
€40 0 0 15 0 0 0 0 15 0 0 0 0 15 0 0
es0 2 2 13 0 0 2 2 13 0 0 2 2 13 0 0
€60 6 6 9 0 0 6 6 9 0 0 6 6 9 0 0
e 2 2 13 0 0 2 2 13 0 0 2 2 13 0 0
€80 7 7 8 0 0 7 7 8 0 0 7 7 8 0 0
€90 4 4 11 0 0 4 4 11 0 0 4 4 11 0 0
€100 2 2 13 0 0 2 2 13 0 0 0 0 12 0 3
summary 23 23 112 0 0 23 23 112 0 0 21 21 111 0 3
hao 2 2 13 0 0 2 2 13 0 0 2 2 13 0 0
hso 0 0 15 0 0 0 0 15 0 0 0 0 15 0 0
hao 5 5 10 0 0 5 5 10 0 0 5 5 10 0 0
hso 6 6 9 0 0 6 6 9 0 0 6 6 9 0 0
heo 6 6 9 0 0 6 6 9 0 0 6 6 9 0 0
hro 8 8 7 0 0 8 8 7 0 0 8 8 7 0 0
hso 9 9 6 0 0 9 9 6 0 0 9 9 6 0 0
hgo 8 8 7 0 0 8 8 7 0 0 8 8 7 0 0
hioo 5 5 10 0 0 5 5 10 0 0 0 0 0 0 15
summary 49 49 86 0 0 49 49 86 0 0 44 44 76 0 15

79

7.

COMPUTATIONAL RESULTS

80

significanlty better

[0 easy
Iohard
Intotal

[

Nl

o

jfngo

< < K K &
§ & 8 & 58
N PSS

N N} S N N} N N N} S
S & & & & & & & &
IS g @ & & &

Figure 7.4: Comparison of time-indexed models using a one-tailed Wilcoxon rank-sum
test with a significance level of 0.05 per difficulty setting and in total w.r.t. the gaps to
the best found primal bounds.

superior to (GRASP) especially w.r.t. the easy instance sets. Tables |7.12-7.16| show that
the time-indexed models are able to generate better primal bounds than I'TBR.A|for some
instance sets. However, in general, even the most simple ITBRA! refinement strategies
vastly outperform all time-indexed models w.r.t. generating primal bounds.

ot
T

significanlty better
w
T

[0 easy
Inhard
Intotal

W o

$
3
&
Q

Figure 7.5: Comparison of a selection of algorithms using a one-tailed Wilcoxon rank-sum
test with a significance level of 0.05 per difficulty setting and in total w.r.t. gaps to the

best found primal bounds.

CHAPTER

Conclusion and Future Work

In this work we considered a matheuristic, referred to as iterative time-bucket refine-
ment algorithm (ITBRAJ), intended for solving a resource-constrained project scheduling
problem (RCPSP) that requires scheduling in high resolution. We proposed a relaxation
for the original problem based on aggregating consecutive integral time points into
so-called time-buckets. Exploiting this relaxation we constructed a matheuristic that
solves this relaxation based on iteratively refined bucket partitionings. Moreover, we
heuristically derive primal bounds incorporating information from the relaxed solution.
The matheuristic then attempts to close the gap between dual bounds obtained from
the relaxation and primal bounds determined by (meta-)heuristics. The crucial part of
this approach is how to determine the subsequent (more refined) bucket partitioning
for the next iteration. We considered a variety of strategies and investigated them on a
novel benchmark set motivated by an application arising in particle therapy for cancer
treatment.

Our experiments indicate that it is most critical to limit the increase in the number of
buckets. However, the quality of the applied bucket splits has a substantial impact on
the convergence speed. Strategies VDUE,SET+B,CPR and VDUE,SET+B,MPR turned
out to work best in this respect.

The matheuristic works better than a simple greedy randomized adaptive search procedure
(GRASP) on all instance sets except for the most difficult one. There it fails to complete
a sufficient number of iterations to make reasonable improvements to the primal bound.

ITBRAI clearly outperforms the compact mixed integer linear programming (MILP) for-
mulations. The considered discrete-event formulation (DEF)) is only capable of computing
dual bounds for all of our benchmark instances but no primal bounds and the considered
time-indexed formulation (TIF) cannot even be solved due to its model size. Variants of
TIF based on a coarsened time horizon are manageable but become infeasible once too
many time points are disregarded. For some instances good primal solutions could be

81

8.

CONCLUSION AND FUTURE WORK

82

obtained but there exists no coarsening factor that works well in general by providing a
good balance between model size and result quality.

The disaggregated time-indexed formulation (DTIF) and the time-indexed formulation
with step variables (STIF) are also not able to keep up with ITBRAL [STIF generates the
largest models which drastically increases the memory consumption and computation
time. For less coarsened time horizons ID'TIE struggles as well with the memory limit.
However, the more coarsened the time horizon is, the better is the performance of [DTIF.
DTIF| starts outperforming T1F| shortly before the instances become infeasible due to
the crude time horizon.

8.1 Future Work

We primarily focused on MILP-based algorithms here. Another well-known exact tech-
nique often used to deal with scheduling problems is constraint programming (CP).
Consequently, it appears to be interesting to compare our matheuristic also to a suitable
CP| approach. Moreover, it might also be relevant to consider (CP! techniques within
ITBRA! to improve its performance. In general the (meta-)heuristics currently used
within the matheuristic are rather simple. In particular, they suffer from the effects of
fixing the time lags which prevents them from considering a large variety of possible
solutions. This is a crucial part of the matheuristic for which more elaborated techniques
should be identified and tested.

The bucket refinement strategies have a major impact on the total performance of TTBRAL
While the bucket selection strategy VDUE is unarguably superior to the other bucket
selection strategies, we could not identify a clear best strategy for the other parts of
the refinement strategy. Hence, developing more elaborate refinement strategies might
greatly improve the performance of ITBRAL

In this thesis bucket refinement strategies are only compared empirically. However, a
theoretical comparison of the investigated bucket refinement is necessary in order to
confirm our empirical evaluation and may also be useful for finding new refinement
strategies. In the context of comparing bucket refinement strategies, deriving minimal
bucket partitionings, i.e., bucket partitionings with a minimal number of buckets s.t. the
time-bucket relaxation (TBRJ) yields a feasible (and therefore optimal) solution, may also
be of interest. Even more interesting are minimum bucket partitionings, i.e., minimal
refinements with the smallest number of buckets. However, computing (and proving)
such refinements appears to be at least as challenging as finding optimal solutions.

In the computational study we investigated the power of our algorithm on a rather specific
set of benchmark instances. The fundamental approach, however, is in principle much
more generally applicable to problems that require scheduling in high resolution. To verify
this a more diversified set of benchmark instances, originating from different application
domains, has to be considered. Of course this requires adjusted MILP! formulations and
adapted as well as novel bucket refinement strategies.

4.1
4.2

0.1
0.2

7.1

7.2

7.3
7.4

7.5

List of Figures

Bucket partitioning of 7.,o
Example of a set of bucket sequences for a given activity|.

An example of a bucket refinement L.
Overview of all proposed bucket refinement strategies

Comparison of the relation between computation time and increase in the
number of buckets.] o o
Comparison of refinement strategies using a one-tailed Wilcoxon rank-sum
test . . o e e
Scatterplot for the number of iterations and final number of buckets.|
Comparison of time-indexed models using a one-tailed Wilcoxon rank-sum
testl . . o e e
Comparison of a selection of algorithms using a one-tailed Wilcoxon rank-sum
test.l . . o e e

29
30

45
50

69

70
71

80

80

83

List of Tables

4.1 _PARTITION to k-SI-PTPSP transformation rules/ 19
4.2 A counterexample for the relaxation of DTIF 24
7.1 _Characteristics of the test instances 59
7.2 Comparison of ASEL, ISCC, AIGS, and VDUE|. 61
7.3 Comparison of B, LSEE, SET+B, and SET+LSEE, 62

7.4 Comparison of UR, BR, CPR, and MPR in combination with VDUE and B 64
7.5 Comparison of UR, BR, CPR, and MPR in combination with VDUE and

SETHB| 65
7.6 Comparison of ACPATHS, CPATH, and LUSED in combination with VDUE,

SET+B and CPR. 66
7.7 Comparison of ACPATHS, CPATH, and LUSED in combination with VDUE,

SET+B and MPR. 67
7.8 Comparison of the characteristics of selected bucket refinement strategies. 68
7.9 Comparison of ITBRA with GRASP... 72
7.10 Comparison of ITBRA with DEF. 73
7.11 Comparison of differently coarsened TIF models with ITBRA.| 74
7.12 Comparison of different time-indexed models for k = 100., 75
7.13 Comparison of different time-indexed models for k =200. 76
7.14 Comparison of different time-indexed models for xk = 1000., 77
7.15 Comparison of different time-indexed models for xk = 2000., 78
7.16 Comparison of different time-indexed models for x = 10000./ 79

85

List of Algorithms

3.1 Local Search 15
3.2 GRASP 15
5.1 Iterative time-bucket refinement algorithm (ITBRA) 38
5.2 Computing an initial bucket partitioningl 39
5.3 PruneStartingTimes oL 40
5.4 PruneOrdered 41
5.5 PruneSinglePoint|.o 42
5.6 Gap closing heuristic (GCH) 43
5.7 Activity block construction heuristic (ABCH) 44

6.1 Efficiently determining not necessarily complete sets K]Sée of events that

must precede a given activity start event kg’ in DEF.|. 53

6.2 Computing all bucket sequences for an activity.|. 54

87

Acronyms

SI-PTPSP simplified intraday particle therapy patient scheduling problem
GCH gap closing heuristic

ABCH activity block construction heuristic

RCMPSP resource-constrained multi-project scheduling problem
MRCMPSP multi-mode resource-constrained multi-project scheduling problem
RCPSP resource-constrained project scheduling problem

TSPTW traveling salesman problem with time windows

MVRPTW vehicle routing problem with time windows and multiple routes
CTSNDP countinuous time service network design problem

LLB linear lower bounds

VNS variable neighborhood search

GA genetic algorithm

GRASP greedy randomized adaptive search procedure

CP constraint programming

LP linear programming

MILP mixed integer linear programming

ILP integer linear programming

BILP binary integer linear program

B&B branch-and-bound

B&C branch-and-cut

89

TTIF time-indexed formulation

DTIF disaggregated time-indexed formulation
STIF time-indexed formulation with step variables
DEF discrete-event formulation

TBR time-bucket relaxation

DTBR disaggregated time-bucket relaxation
ETBR extended time-bucket relaxation

ITBRA iterative time-bucket refinement algorithm

90

Bibliography

C. Artigues. A note on time-indexed formulations for the resource-constrained project
scheduling problem. Operations Research Letters, pages 1-15, 2013.

C. Artigues. On the strength of time-indexed formulations for the resource-constrained
project scheduling problem. Operations Research Letters, 45(2):154 — 159, 2017.

C Artigues and E Hebrard. MIP relaxation and large neighborhood search for a multi-
mode resource-constrained multi-project scheduling problem. In Proceedings of the 6th
Multidisciplinary International Scheduling Conference, pages 815-819, Ghent, Belgium,
27-30 Aug. 2013.

C. Artigues, S. Demassey, and E. Neron. Resource-Constrained Project Scheduling:
Models, Algorithms, Extensions and Applications. Wiley-ISTE, ISTE Ltd: 6 Fitzroy
Square London W1T 5DX, John Wiley & Sons: 111 River Street Hoboken, NJ 07030
USA, 2008.

C. Artigues, P. Brucker, S. Knust, O. Koné, and P. Lopez. A note on “event-based
MILP models for resource-constrained project scheduling problems”. Computers and
Operations Research, 40(4):1060-1063, 2013.

P. Baptiste and R. Sadykov. On scheduling a single machine to minimize a piecewise
linear objective function: A compact MIP formulation. Naval Research Logistics, 56
(6):487-502, 20009.

T. Berthold, S. Heinz, M. E. Liibbecke, R. H. Méhring, and J. Schulz. A constraint integer
programming approach for resource-constrained project scheduling. In International
Conference on Integration of Artificial Intelligence (AI) and Operations Research
(OR) Techniques in Constraint Programming, pages 313-317, Berlin, Heidelberg, 2010.
Springer.

D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization, volume 6. Athena
Scientific Belmont, MA, 1997.

L. Bianco and M. Caramia. A new lower bound for the resource-constrained project
scheduling problem with generalized precedence relations. Computers € Operations
Research, 38(1):14-20, 2011.

91

L. Bianco and M. Caramia. An exact algorithm to minimize the makespan in project
scheduling with scarce resources and generalized precedence relations. Furopean Journal
of Operational Research, 219(1):73-85, 2012.

L. P. Bigras, M. Gamache, and G. Savard. Time-indexed formulations and the total
weighted tardiness problem. INFORMS Journal on Computing, 20(1):133-142, 2008.

C. Blum and G. R. Raidl. Hybrid Metaheuristics — Powerful Tools for Optimization.
Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, 2016.

N. Boland, R. Clement, and H. Waterer. A Bucket Indexed Formulation for Nonpreemptive
Single Machine Scheduling Problems. INFORMS Journal on Computing, 28(1):14-30,
2016.

N. Boland, M. Hewitt, L. Marshall, and M. Savelsbergh. The continuous-time service
network design problem. Operations Research, 65(5):1303-1321, 2017.

F. Bomsdorf and U. Derigs. A model, heuristic procedure and decision support system
for solving the movie shoot scheduling problem. OR Spectrum, 30(4):751-772, 2008.

J. Bottcher, A. Drexl, R. Kolisch, and F. Salewski. Project Scheduling Under Partially
Renewable Resource Constraints. Management Science, 45(4):543-559, 1999.

C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575-577, 1973.

P. Brucker, A. Drexl, R. Méhring, K. Neumann, and E. Pesch. Resource-constrained
project scheduling: Notation, classification, models, and methods. Furopean journal of
operational research, 112(1):3-41, 1999.

J. Carlier and E. Néron. On linear lower bounds for the resource constrained project
scheduling problem. Furopean Journal of Operational Research, 149(2):314-324, 2003.

M. Caserta and S. Vofi. Metaheuristics: Intelligent Problem Solving, pages 1-38. Springer
US, Boston, MA, 2010.

C. Cavalcante, C. Carvalho De Souza, M. W P Savelsbergh, Y. Wang, and L. A. Wolsey.
Scheduling projects with labor constraints. Discrete Applied Mathematics, 112(1-3):
27-52, 2001.

F. Cazals and C. Karande. A note on the problem of reporting maximal cliques. Theoretical
Computer Science, 407(1-3):564 — 568, 2008. ISSN 0304-3975.

A. Cesta, A. Oddi, and S. F. Smith. A Constraint-Based Method for Project Scheduling
with Time Windows. Journal of Heuristics, 8(1):109-136, 2002.

F. Clautiaux, S. Hanafi, R. Macedo, M. Voge, and C. Alves. Iterative aggregation
and disaggregation algorithm for pseudo-polynomial network flow models with side
constraints. Furopean Journal of Operational Research, 258(2):467-477, 2017.

92

G. B. Dantzig. Maximization of a linear function of variables subject to linear inequalities.
New York, 1951.

G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
research, 8(1):101-111, 1960.

S. Dash, O. Gunliik, A. Lodi, and A. Tramontani. A time bucket formulation for the
traveling salesman problem with time windows. INFORMS Journal on Computing, 24
(1):132-147, 2012.

B. De Reyck and W. Herroelen. A branch-and-bound procedure for the resource-
constrained project scheduling problem with generalized precedence relations. Furopean
Journal of Operational Research, 111(1):152-174, 1998.

F. Della Croce, F. Salassa, and V. T’Kindt. A hybrid heuristic approach for single
machine scheduling with release times. Computers and Operations Research, 45:7-11,
2014.

S. Demassey, C. Artigues, and P. Michelon. Constraint-propagation-based cutting planes:
An application to the resource-constrained project scheduling problem. INFORMS
Journal on Computing, 17(1):52-65, 2005.

E. L. Demeulemeester and W. S. Herroelen. A Branch-and-Bound Procedure for the
Generalized Resource-Constrained Project Scheduling Problem. Operations Research,
45(2):201-212, 1997.

N. Dupin and E. G. Talbi. Dual Heuristics and New Lower Bounds for the Challenge
EURO/ROADEF 2010. In Matheuristics 2016 - Proceedings of the Sixth International
Workshop on Model-based Metaheuristics, pages 60—71, Brussels, Belgium, 4-7 Sep.
2016.

M. L. Fisher. Optimal Solution of Scheduling Problems Using Lagrange Multipliers: Part
I. Operations Research, 21(5):1114-1127, 1973.

F. Glover. A multiphase-dual algorithm for the zero-one integer programming problem.
Operations Research, 13(6):879-919, 1965.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of
discrete mathematics, 5:287-326, 1979.

J. R. Hardin, G. L. Nemhauser, and M. W. P. Savelsbergh. Strong valid inequalities
for the resource-constrained scheduling problem with uniform resource requirements.
Discrete Optimization, 5(1):19 — 35, 2008. ISSN 1572-5286.

J. N. Hooker. Planning and Scheduling by Logic-Based Benders Decomposition. Opera-
tions Research, 55(3):588-602, 2007.

93

N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the sizteenth annual ACM symposium on Theory of computing, pages 302-311. ACM,
1984.

L. G. Khachiyan. A polynomial algorithm in linear programming. In Doklady Akademiia
Nauk SSSR, volume 244, pages 1093—-1096, 1979.

L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53-72, 1980.

R. Klein. Project scheduling with time-varying resource constraints. International Journal
of Production Research, 38(16):3937-3952, 2000.

R. Kolisch. Project Scheduling under Resource Constraints. Physica-Verlag HD, Heidel-
berg, 1995.

R. Kolisch and S. Hartmann. Experimental Investigation of Heuristics for Resource
Constrained Project Scheduling: An Update. Furopean Journal of Operational Research,
174(1):23-37, 2006.

0. Koné, C. Artigues, P. Lopez, and M. Mongeau. Event-based MILP models for resource-
constrained project scheduling problems. Computers € Operations Research, 38(1):
3-13, 2011.

E. L. Lawler and J. K. Lenstra. Machine Scheduling with Precedence Constraints. In
I. Rival, editor, Ordered Sets, pages 655—675. Springer Netherlands, 1982.

A. Levin. Scheduling and Fleet Routing Models for Transportation Systems. Transporta-
tion Science, 5(3):232-255, 1971.

Y. Li, O. Ergun, and G. L. Nemhauser. A dual heuristic for mixed integer programming.
Operations Research Letters, 43(4):411-417, 2015.

M. Loépez-Ibafiez, J. Dubois-Lacoste, L. P. Caceres, M. Birattari, and T. Stiitzle. The
irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3:43-58, 2016.

R. Macedo, C. Alves, J. De Carvalho, F. Clautiaux, and S. Hanafi. Solving the vehicle
routing problem with time windows and multiple routes exactly using a pseudo-
polynomial model. European Journal of Operational Research, 214(3):536-545, 2011.

A. K. Mackworth. Consistency in networks of relations. Artificial intelligence, 8(1):
99-118, 1977.

K. Neumann, C. Schwindt, and J. Zimmermann. Project Scheduling with Time Windows
and Scarce Resources. Springer Berlin Heidelberg, 2003.

94

M. Palpant, C. Artigues, and P. Michelon. LSSPER: Solving the resource-constrained
project scheduling problem with large neighbourhood search. Annals of Operations
Research, 131(1-4):237-257, 2004.

C. H. Papadimitriou. On the complexity of integer programming. Journal of the ACM
(JACM), 28(4):765-768, 1981.

G. R. Raidl. Decomposition based hybrid metaheuristics. Furopean Journal of Operational
Research, 244(1):66-76, 2015.

M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search procedures:
Advances, hybridizations, and applications. In M. Gendreau and J. Potvin, editors,
Handbook of Metaheuristics, pages 283-319. Springer US, Boston, MA, 2010.

M. Riedler, T. Jatschka, J. Maschler, and G. R. Raidl. An iterative time-bucket re-
finement algorithm for a high-resolution resource-constrained project scheduling prob-
lem. International Transactions in Operational Research, to appear. available at
http://dx.doi.org/10.1111/itor.12445|

A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

A. J. Swersey and W. Ballard. Scheduling school buses. Management Science, 30(7):
844-853, 1984.

T. A. M. Toffolo, H. G. Santos, M. A. M. Carvalho, and J. A. Soares. An integer
programming approach to the multimode resource-constrained multiproject scheduling
problem. Journal of Scheduling, 19(3):295-307, 2016.

X. Wang and A. C. Regan. Local truckload pickup and delivery with hard time window
constraints. Transportation Research Part B: Methodological, 36(2):97-112, 2002.

X. Wang and A. C. Regan. On the Convergence of a New Time Window Discretization
Method for the Traveling Salesman Problem with Time Window Constraints. Computers
& Industrial Engineering, 56(1):161-164, 20009.

L. A. Wolsey. Integer programming. Wiley, 1998.

95

http://dx.doi.org/10.1111/itor.12445

	Kurzfassung
	Abstract
	Contents
	Introduction
	Structure of the Work

	State Of The Art
	Resource-Constrained Project Scheduling
	Dual Bounds for Scheduling Problems
	Matheuristics for Scheduling Problems
	Time Window Discretization Models

	Methods
	Mathematical Programming Methods
	Heuristics
	Matheuristics

	The Simplified Intraday Particle Therapy Patient Scheduling Problem
	Complexity
	Mathematical Formulations

	Iterative Time-Bucket Refinement Algorithm
	Initial Bucket Partitioning
	Primal Heuristics
	Bucket Refinement Strategies

	Implementation Details
	Preprocessing Activity Starting Times
	On Determining Big-M Constants for DEF
	Computing Bucket Sequences
	Valid Inequalities

	Computational Results
	Test Instances
	Computational Experiments

	Conclusion and Future Work
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

