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Kurzfassung

In dieser Arbeit werden Algorithmen zum Lösen von Scheduling Problemen, die einem
langen Zeithorizont unterliegen, entwickelt. Diese Algorithmen werden auf ein Problem,
das durch ein Patientenplanungsszenario des Krebsbehandlungszentrums MedAustron
in Wiener Neustadt, Österreich, motiviert ist, angewandt. Ziel ist es, einen Plan für
die individuellen Behandlungstermine der Patienten zu erstellen, sodass zeitliche Ab-
hängigkeiten zwischen den Behandlungen eingehalten werden. Jede Behandlungsphase
benötigt verschiedene Ressourcen. Eine dieser Ressourcen ist der Teilchenstrahl, dessen
Nutzung insbesondere optimiert werden muss, da er für jede Behandlung benötigt wird
und abwechselnd in mehreren Behandlungsräumen eingesetzt wird. Es soll ein Plan
erstellt werden, der so dicht wie möglich ist, sodass möglichst viele Patienten behandelt
werden können. Außerdem führt ein kompakter Plan zu einer Reduzierung der Standzeit
des Teilchenstrahls.

Es werden sowohl exakte als auch heuristische Verfahren entwickelt, um das Problem
zu lösen. Als heuristisches Lösungsverfahren wird eine Greedy Randomized Adaptive
Search Procedure (GRASP) verwendet. Die exakten Algorithmen basieren auf gemischt-
ganzzahliger linearer Optimierung (engl. mixed integer linear programming (MILP)). Es
werden verschiedene MILP-Modelle entwickelt und sowohl in Bezug auf die Modellstärke
als auch mithilfe empirischer Experimente miteinander verglichen.

Der Hauptalgorithmus der Arbeit ist eine Matheuristik, die MILP mit heuristischen
Ansätzen kombiniert. Die Grundidee besteht darin, das Problem zu lösen, ohne explizit
den gesamten Zeithorizont zu berücksichtigen. Stattdessen basiert der Algorithmus auf
einem relaxierten Modell, in dem der Zeithorizont in sogenannte time-buckets partitioniert
wird. Dieses reduzierte Modell ist üblicherweise viel kleiner als das ursprüngliche und kann
daher relativ schnell gelöst werden. Eine Lösung des relaxierten Problems repräsentiert
eine duale Schranke für den tatsächlichen Lösungswert. Bei der Lösung handelt es sich
aber üblicherweise nicht um einen gültigen Plan. Daher wird eine Heuristik verwendet,
deren Ziel es ist, eine gültige Lösung (primale Schranke) aus der Lösung des relaxierten
Modells abzuleiten. Darüber hinaus zerteilt der Algorithmus mehrere time-buckets, um
nach erneutem Lösen des Modells eine bessere Schranke zu erhalten. Die Unterteilung
basiert auf Informationen, die aus der Lösung des relaxierten Modells gewonnen werden.
Durch das iterative Ausführen dieser Prozedur ergibt sich eine Matheuristik, welche
schlussendlich zu einer beweisbar optimalen Lösung konvergiert.

xi



Anhand zweier Gruppen neuer Testinstanzen werden verschiedene Strategien zur Untertei-
lung von time-buckets untersucht und ein Vergleich mit anderen exakten und heuristischen
Lösungsverfahren durchgeführt.



Abstract

In this thesis algorithms are developed for solving scheduling problems subject to a
large time horizon. We apply these algorithms on a problem motivated by a real world
patient scheduling scenario at the cancer treatment center MedAustron located in Wiener
Neustadt, Austria. The tasks involved in providing a given set of patients with their
individual particle treatments shall be scheduled in such a way that given minimum
and maximum waiting times are respected. Each task needs certain resources for its
execution. One of the resources is the particle beam which is particularly scarce as it
is required by every treatment and shared between several treatment rooms. The goal
is to find a schedule which is as dense as possible to allow treating as many patients as
possible. Moreover, a dense schedule reduces the idle time of the particle beam within
the day.

We develop different exact as well as heuristic algorithms for tackling the problem. A
greedy randomized adaptive search procedure (GRASP) is used to heuristically solve the
problem. The exact algorithms are based on mixed integer linear programming (MILP).
We provide different MILP models and compare the strength of models that are of
particular interest.

The main algorithm of this thesis is a matheuristic which combines exact mathematical
programming methods as well as heuristic approaches. The basic idea of our matheuristic
is to solve the problem without explicitly considering the complete time horizon. Instead,
the algorithm considers a relaxed model which is based on partitioning the time horizon
into so called time-buckets. This relaxation is typically much smaller than the original
model and can be solved relatively quickly. An obtained solution provides a dual bound
for the problem’s solution value but in general does not represent a feasible schedule.
Using the solution to the relaxation, the algorithm tries to heuristically derive a primal
bound, i.e., a feasible schedule. Moreover, the algorithm also subdivides some time-
buckets based on information gained from the solution to the relaxation and resolves
the resulting refined model to obtain an improved bound on the problem. Doing this
refinement iteratively yields a matheuristic that in principle converges to a provably
optimal solution.

A novel set of test instances is used to evaluate the performance of different refinement
strategies of the matheuristic and to compare the matheuristic to other exact and heuristic
methods.
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CHAPTER 1
Introduction

Scheduling problems arise in a variety of practical applications. Prominent examples are
job shop or project scheduling problems that require a set of activities to be scheduled
over time. The execution of the activities typically depends on certain resources of limited
availability and diverse other restrictions such as precedence constraints. The goal is to
find a feasible schedule that minimizes some objective function like the makespan. In
certain cases planning has to be done in a very fine grained way, i.e., in high resolution,
using, e.g., seconds or even milliseconds as unit of time.

Classical mixed integer linear programming (MILP) formulations are known to struggle
under these conditions. On the one hand time discretized models provide strong linear
programming (LP) bounds but grow too quickly with the instance size due to the fine
time discretization. Event-based and sequencing-based models on the other hand typically
have troubles as a result of their weak LP bounds.

In the following we focus on problems with these characteristics and consider a simplified
scheduling problem arising in the context of modern particle therapy used for cancer
treatment. The problem is motivated by a real world patient scheduling scenario at
the recently founded cancer treatment center MedAustron1 located in Wiener Neustadt,
Austria. The tasks involved in providing a given set of patients with their individual
particle treatments shall be scheduled in such a way that given precedence constraints
with minimum and maximum time lags are respected. Each task needs certain resources
for its execution. One of the resources is the particle beam which is particularly scarce
as it is required by every treatment and shared between several treatment rooms. For a
formal definition of the problem see Chapter 4.

The main goal therefore is to exploit in particular the availability of the particle beam
as best as possible by suitably scheduling all activities in high resolution. Ideally, the

1https://www.medaustron.at
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1. Introduction

beam is switched immediately after an irradiation has taken place in one room to another
room where the next irradiation session starts without delay. Our goal is to minimize the
makespan. This objective emerges from the practical scenario as tasks need to be executed
as densely as possible to avoid idle time within the day as well as to allow treating as
many patients as possible within the operating hours. However, makespan minimization
is clearly an abstraction from the real world scenario where more specific considerations
need to be taken into account. In the terminology of the scientific literature in scheduling,
the considered problem corresponds to a resource-constrained project scheduling problem
with minimum and maximum time lags.

1.1 Structure of the Work
The thesis is organized as follows. In Chapter 2 we review the related literature. After-
wards, in Chapter 3 we describe the methodological concepts used in the thesis. Chapter 4
formally defines the investigated problem and provides different MILP-formulations for
solving it. The main part of the thesis is Chapter 5 in which we present our matheuristic.
Implementation details are provided in Chapter 6. Afterwards, in Chapter 7, we discuss
computational experiments conducted on two sets of benchmark instances. We conclude
the thesis with Chapter 8 by giving an outlook on promising future research directions.
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CHAPTER 2
State Of The Art

In this chapter we discuss the related work relevant for this thesis. We start with a brief
overview of resource-constrained project scheduling problems (RCPSPs). Afterwards
we review the derivation of dual bounds for such scheduling problems. Then, we give a
short introduction on matheuristics applied in the scheduling domain. Finally, we review
previous work dealing with scheduling problems subject to a large time horizon.

2.1 Resource-Constrained Project Scheduling
The resource-constrained project scheduling problem (RCPSP) considers scheduling of a
project subject to resource and precedence constraints where a project is represented by
a graph with each node being an activity of the project. Precedence relations between
activities are represented as directed edges between the nodes. The RCPSP is a well
studied problem with many extensions and variations. For an overview see Kolisch [1995],
Brucker et al. [1999], Neumann et al. [2003], and Artigues et al. [2008].

Our problem is a combination of multiple extensions of the RCPSP. One of these
extensions is the RCPSP with generalized precedence constraints, extending the RCPSP
by minimal and maximal time lags between the end of one activity and the start of
another activity, see Bianco and Caramia [2012], Cesta et al. [2002], and De Reyck and
Herroelen [1998]. Minimal time lags impose a minimal waiting time between the end and
the start of activities. Analogously, maximal time lags impose a maximal waiting time
between the end and the start of activities.

Activities can also be subject to release times and deadlines (Bomsdorf and Derigs [2008],
Klein [2000], Demeulemeester and Herroelen [1997]), meaning that an activity has to be
completely processed within the time window specified by these respective bounds. An
RCPSP with release times and deadlines for the activities is referred to as generalized
RCPSP (see Klein [2000], Demeulemeester and Herroelen [1997]).

3



2. State Of The Art

For our problem resources are not always available which is usually referred to as
partially renewable resources in project scheduling (see Böttcher et al. [1999]). Note that
using release times and deadlines one can model unavailability periods of resources by
introducing additional activities (see Bomsdorf and Derigs [2008]).

There exists a wide range of exact and heuristic approaches for the RCPSP and its
extensions, for an overview see Brucker et al. [1999], Neumann et al. [2003], and Artigues
et al. [2008]. Examples of heuristic approaches can be found in Bomsdorf and Derigs
[2008] and Kolisch and Hartmann [2006]. Here we specifically want to focus on exact
approaches. Often used are branch-and-bound (B&B) algorithms (Demeulemeester and
Herroelen [1997], Bianco and Caramia [2012]) and MILP techniques. However, also
constraint programming (CP), SAT, and combinations thereof gained importance, e.g.,
Berthold et al. [2010]. For our work we are primarily interested in MILP-based approaches
and thus focus on them in the following.

A well known technique are so-called time-indexed models, see Artigues [2017]. The
classical variant uses binary variables for each time slot to represent the start of an
activity. In addition, there are also so-called step-based formulations in which variables
indicate if an activity has started at or before a certain time instant. This might lead
to a more balanced B&B tree. Both variants typically provide strong LP bounds but
struggle with larger time horizons due to the related model growth.

Also quite well known are event-based formulations. Koné et al. [2011] and Artigues et al.
[2013] provide an extensive overview. These models are based on a set of ordered events
to which activity starts and ends need to be assigned, allowing to model starting times
as continuous variables. On/Off event-based formulations use the same idea but require
even fewer variables. These models are usually independent of any time discretization and
the time horizon but feature significantly weaker LP bounds compared to time-indexed
models.

Further MILP techniques for approaching the considered scheduling problems make use
of exponentially sized models and apply advanced techniques such as column generation,
Lagrangian decomposition, or Benders decomposition, see, e.g., Hooker [2007]. While
they are frequently very successful, they are also substantially more complex to develop,
implement, and fine-tune.

2.2 Dual Bounds for Scheduling Problems

The most common method for deriving dual bounds is based on solving LP relaxations,
frequently strengthened by cutting plane methods. This approach is widely applicable
but often provides only weak bounds.

Other techniques for deriving dual bounds based on altering the MILP’s constraints are:
the constraint relaxation, the Lagrangian relaxation and the surrograte relaxation (see
Li et al. [2015]).

4



2.3. Matheuristics for Scheduling Problems

The constraint relaxation derives a dual bound of a MILP model by simply dropping
some of the model’s constraints.

The Lagrangian relaxation dualizes constraints by adding them as a penalty term to the
model’s objective function. Such a relaxation is presented by Fisher [1973] for a network
scheduling problem under resource constraints. Lagrangian relaxation is used in order to
dualize the resource constraints.

The third technique is the surrogate relaxation which derives a new constraint by
aggregating a set of constraints and replacing the original ones (see Glover [1965]).

A less common method for generating dual bounds is the dual heuristic algorithm by
Li et al. [2015]. For some nodes of the B&B tree, the heuristic attempts to improve
the current dual bound by computing an additional relaxation, e.g., a constraint or a
surrogate relaxation. The heuristic uses dual variables and slack variables of the LP
solution in order to decide which constraints to relax.

Apart from such general approaches there are some works that consider problem specific
methods. For an example see Dupin and Talbi [2016]. The contribution deals with
fulfilling energy demands over a given time horizon. The energy is provided by power
plants which have to be refuelled and maintained regularly. Moreover, during refuelling
and maintenance some power plants have to go offline. The objective function is to
minimize the expected production costs over a given set of scenarios. The time horizon
is split into intervals of the same length, so called time steps. While production periods
are planned for each time step, offline periods are scheduled in weeks. Dupin and Talbi
[2016] provide different MILPs for computing lower bounds for the production costs. In
one such MILP production time steps are aggregated to weekly production periods.

Another problem specific relaxation method is presented by Carlier and Néron [2003] for
the RCPSP. The relaxation is formulated as an MILP which is based on a partitioning
of the scheduling horizon. However, as the bounds generated by this formulation may
be too weak, Carlier and Néron [2003] encode different estimations of the makespan
(linear lower bounds (LLB)) into the model as constraints. Each LLB underestimates the
makespan and is based on different properties of the problem, e.g., resource capacities or
critical paths. The quality of the relaxation is controlled by the number of LLBs added
to the model.

Further techniques for generating dual bounds for the RCPSP can be found in Bianco
and Caramia [2011].

2.3 Matheuristics for Scheduling Problems

So far, Matheuristics have only been rarely considered to tackle the RCPSP. For an
example see Palpant et al. [2004], who developed a large scale neighbourhood search
heuristic for solving the RCPSP. Given a partial schedule, i.e., a schedule which does
not contain all activities, the neighbourhood for the heuristic is defined as the set of all

5
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schedules that also contain the partial schedule. In order to find the best schedule in the
neighbourhood, Palpant et al. [2004] suggest an MILP model which finds optimal starting
times for the missing activities w.r.t. the partial schedule. Note that the partial schedule
is derived by removing activities from an initially complete schedule. The activities are
removed according to different strategies.

Della Croce et al. [2014] use a similar approach as Palpant et al. [2004] for solving a
single machine scheduling problem. The biggest difference between these contributions
lies in the generation of the partial schedule. While Palpant et al. [2004] suggest different
strategies for deriving a partial schedule, the algorithm of Della Croce et al. [2014] chooses
a random position in a complete schedule and then removes, starting from the chosen
position, a predetermined number of successive activities from the schedule.

Further matheuristic approaches can be found in terms of the multi-mode resource-
constrained multi-project scheduling problem (MRCMPSP). This is an extension of
the RCPSP in which each activity is associated with a set of modes that decide the
processing time and resource demand. The idea behind modes is to model different trade-
offs between the processing time and the resource demands of an activity. An additional
extension of MRCMPSPs is that it is also possible to consider multiple projects.

Artigues and Hebrard [2013] solve the MRCMPSP with an algorithm consisting of four
phases. In the first phase initial modes are assigned to each activity using MILP. Phases
2 and 3 generate a schedule based on the assigned modes using CP. The last phase uses
a large neighbourhood search to improve the schedule by changing the modes of some
activities. Artigues and Hebrard [2013] use CP to find the optimal modes w.r.t. the
specified neighbourhood. Phases 2 to 4 are repeated until the time limit is exceeded.

Toffolo et al. [2016] solve the MRCMPSP using a decomposition-based matheuristic.
After fixing execution modes the problem is decomposed into time periods that are
considered by independent MILP models. Finally, a hybrid local search is employed to
improve the obtained solutions.

2.4 Time Window Discretization Models
Time discretization can be done in two ways. The first approach is to coarsen the time
horizon in order to possibly obtain feasible but also less precise solutions, which are in
general not optimal for the original problem. A different way of time discretization is
to partition the given time horizon into subsets which, in contrast to the first approach,
usually results in a relaxation of the original problem.

Early examples for time discretization by coarsening include Levin [1971] and Swersey and
Ballard [1984]. The former deals with flight scheduling and routing problems. Departure
times of aircrafts are represented as a bundle of time slots instead of continuous sets.
Swersey and Ballard [1984] follow a similar approach for solving a bus scheduling problem.

An iterative refinement algorithm based on these ideas can be found in Boland et al.
[2017] for solving the countinuous time service network design problem (CTSNDP). The

6



2.4. Time Window Discretization Models

authors solve the problem using a time-expanded network, in which each node represents
a location and a time. Initially, only a partially time-expanded network is considered to
avoid the substantial size of the complete network. The MILP model associated with the
reduced network constitutes a relaxation to the original problem. If the optimal solution
to this relaxation turns out to be feasible w.r.t. the original problem, the algorithm
terminates. Otherwise, the partially time-expanded network is extended based on the
current solution to obtain a more refined model. Iteratively applying this approach
converges to an optimal solution due to the finite size of the full time-expanded network.

Another algorithm of this type has been considered by Macedo et al. [2011] for solving
the vehicle routing problem with time windows and multiple routes (MVRPTW). The
problem is formulated as a network flow model s.t. nodes of the graph correspond to
time instants. Consequently, the formulation cannot cope with non integral travelling
times. In such a case a relaxation of the original problem is derived by rounding the
travelling times using special rounding procedures. In case the solution to the relaxation
is not feasible for the original problem, the current time discretization is locally refined
by disaggregating nodes of the current model.

A different way of time discretization is to partition the given time horizon into subsets.
Such an approach is presented by Bigras et al. [2008] for a single machine scheduling
problem. The scheduling horizon is partitioned into multiple sub periods. If a job spans
several sub periods, the job gets split into multiple subjobs. The relaxation is solved via
column generation. Each sub period with its corresponding jobs can be transferred into
a subproblem for the used Dantzig-Wolfe decomposition (see Dantzig and Wolfe [1960]).
The solution to the relaxation is then used as a lower bound in a B&B algorithm.

Other MILP approaches for solving single machine scheduling problems using time
window discretization can be found in Baptiste and Sadykov [2009] and Boland et al.
[2016]. Both contributions follow a common idea. By partitioning the given scheduling
horizon, the number of variables in the MILP model decreases. In order to ensure the
correctness of the model, additional constraints have to be added. Unlike Baptiste and
Sadykov [2009], Boland et al. [2016] impose the additional restriction that a job spans at
least two buckets.

An iterative refinement approach for the traveling salesman problem with time windows
(TSPTW) can be found in Wang and Regan [2002] and Wang and Regan [2009]. First, the
time windows of each node are partitioned into subsets. Then, for a given time window
partitioning a lower bound and an upper bound are calculated, using an underconstrained
MILP model and an overconstrained MILP model. As long as the gap between lower
and upper bound is not sufficiently small, the scheduling horizon gets further refined and
the problem is solved anew. In order to ensure that the overconstrained MILP model
does not lead to worse solutions in subsequent iterations, the applied refinement scheme
also takes the solution of the previous overconstrained MILP model into account.

Dash et al. [2012] combine the ideas of Wang and Regan [2002] and Bigras et al. [2008] in
order to solve the TSPTW. The time windows of the nodes are partitioned into buckets

7



2. State Of The Art

using an iterative refinement heuristic. Refinement decisions are based on the solution
to the current LP relaxation. Afterwards, the resulting formulation is turned into an
exact approach by adding valid inequalities and solved using branch-and-cut (B&C). In
each node of the B&B tree a primal heuristic is applied using the reduced costs of the
variables of the current LP relaxation.

Recently, Clautiaux et al. [2017] introduced an approach that is more generally applicable
to problems that can be modeled as minimum-cost circulation problems with linking
bound constraints. The proposed algorithm projects the original problem onto an
aggregated approximate one. This aggregated model is iteratively refined until a provably
optimal solution is found. Experiments have been conducted on a routing problem and a
cutting-stock problem.

8



CHAPTER 3
Methods

In this chapter we discuss various theoretical foundations and optimization techniques
upon which our algorithms are based from a theoretical point of view. First, we take a
closer look at integer linear programming (ILP) and MILP models in general, as such a
model constitutes the core of our algorithm. Afterwards, we review different heuristic
techniques relevant to our algorithm. As mentioned before, our algorithm, consisting of
an MILP component and a heuristic component, can be categorized as a matheuristic,
which we discuss at the end of this chapter.

3.1 Mathematical Programming Methods
A mathematical programming problem deals with the task of finding a maximum or
minimum value of a real valued function subject to a set of constraints. integer linear
programming (ILP) is a subfield of mathematical programming as it focuses on linear
objective functions and constraints only.

Many problems in computer science can be formulated as an ILP problem. While ILP
alone is not sufficient to solve our problem in reasonable time for instances subject to a
large time horizon, it constitutes an important part of our algorithm.

In the following, we first take a look at LP which is an “easy” variant of ILP, in the sense
that LP problems can be solved in polynomial time. We review basic properties and the
geometrical interpretation of LPs. Afterwards, we take a look at MILP. In contrast to
LP, MILP problems are NP-hard. Solving MILP problems is usually based on B&B.
Hence, finding tight bounds on the optimal value of the problem’s objective function is
vital for an efficient B&B procedure. We will see that LP proves to be very useful for
finding such bounds.

The review of mathematical programming is based on Bertsimas and Tsitsiklis [1997],
Schrijver [1998] and Wolsey [1998].
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3.1.1 Linear Programming

A linear programming (LP) problem is defined as follows:

min c′x (3.1)
s.t. ai

′x ≥ bi ∀i ∈M1 (3.2)
ai
′x ≤ bi ∀i ∈M2 (3.3)

ai
′x = bi ∀i ∈M3 (3.4)

xj ≥ 0 ∀j ∈ N1 (3.5)
xj ≤ 0 ∀j ∈ N2 (3.6)

The variables given by vector x = (x1, . . . , xn) are called decision variables.

The goal of a linear program is to find a variable assignment x that minimizes the
objective function (3.1) but does not violate any of the program’s constraints (3.2) -
(3.6).

If all constraints of the program are satisfied w.r.t. x, then x is called a feasible solution.
The set of all feasible solutions is called the feasible set or feasible region. Vector x is an
optimal solution, if it is feasible and also minimizes the objective function. Note that
more than one optimal solution may exist.

The set of all values that can be assigned to a decision variable xj is called the domain
of xj . If the domain of xj is restricted (see Constraints (3.5) - (3.6)), we refer to xj as
restricted. Otherwise xj is called free or unrestricted.

The constraints of a linear program can be expressed as either equalities or inequalities.
An equality constraint ai

′x = bi can be equivalently formulated with inequality constraints
only: ai

′x ≤ bi and ai
′x ≥ bi.

It is also possible to reverse the sign of the program’s inequalities:

Ax ≤ b
⇔ −Ax ≥ −b

Moreover, a minimization problem can be transformed into a maximization problem and
vice versa:

min c′x = max −c′x

Therefore, we can write the above general form in a more compact way:

min c′x (3.7)
s.t. Ax ≥ b (3.8)

x ∈ Rn (3.9)

Note that it is also possible to transform the Inequalities 3.9 into equalities by introducing
slack variables s:

10
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Ax ≥ b
⇔Ax + s = b s ≥ 0

Geometrical Interpretation of a Linear Program

Definition 1. A polyhedron is a set that can be described in the form {x ∈ Rn : Ax ≥ b},
where A is an m× n matrix and b is a vector in Rm.

The definition of a polyhedron bears strong similarities to the constraints of a linear
program. In fact, a polyhedron describes the feasible region of a linear program. Moreover,
for any linear program it holds that its corresponding polyhedron P is convex, i.e., if
x,y ∈ P , then λx + (1 − λ)x ∈ P for any λ ∈ [0, 1]. It is easy to see that the optimal
solution to a linear program has to be a corner point of the program’s convex hull.
Moreover, it turns out that an optimal solution to the linear program has to be an
extreme point of P , i.e., a vector x ∈ P s.t. no two vectors y, z ∈ P (different from x)
exist satisfying x = λy + (1− λ)z for any λ ∈ [0, 1].

Solving Linear Programs

LP problems are P-hard, i.e., they can be solved in polynomial time. There exist many
different algorithms for solving LP problems. The first polynomial time algorithm for
solving LP problems was the ellipsoid method, see Khachiyan [1980]. However, due to its
poor performance in practice the ellipsoid method is only of theoretical interest. Other
polynomial time algorithms are interior point methods, see Karmarkar [1984]. In contrast
to the ellipsoid method, interior point methods are efficient in practice. One of the most
effective methods is the simplex method by Dantzig [1951]. Although the simplex method
has exponential worst case complexity, the algorithm is usually very fast in practice. The
basic idea of the simplex method is to travel from one extreme point of the program’s
polyhedron to another extreme point along the edges of the polyhedron. If an extreme
point is adjacent to more than one extreme point, the algorithm chooses the most cost
reducing direction (w.r.t. minimization problems).

Note that there also exists polynomial time algorithms for solving LP problems (see
Khachiyan [1979] and Karmarkar [1984]).

3.1.2 Mixed Integer Linear Programming

A mixed integer linear programming (MILP) problem is defined as follows:

min c′x + d′y (3.10)
s.t. Ax + By ≤ b (3.11)
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x,y ≥ 0 (3.12)
x ∈ Zn (3.13)

MILP extends LP by allowing variables whose domains are restricted to the set of integers.
If the program is based on integer variables only, we refer to the program as ILP. If the
integer variables are additionally restricted to be either 0 or 1, the program is called
binary integer linear program (BILP).

Solving MILP problems

In contrast to LP, MILP is NP-hard (Papadimitriou [1981]). A basic procedure for
solving an MILP problem is an algorithm which generates an increasing sequence of lower
bounds (dual bounds)

x1 < x2 < . . . < xs ≤ x

and a decreasing sequence of upper bounds (primal bounds)

x1 > x2 > . . . > xt ≥ x

and terminates when
xs − xt ≤ ε

where ε is some small nonnegative value.

A primal bound is a lower bound for maximization problems and an upper bound for
a minimization problems. Moreover, every feasible solution to an MILP problem is a
primal bound.

A dual bound is a lower bound for minimization problems and an upper bound for
maximization problems. Dual bounds are usually obtained by solving relaxations of the
MILP problem.

Definition 2. A problem zR = min{f(x) : x ∈ T ⊆ Rn} is a relaxation of z = min{c(x) :
x ∈ X ⊆ Rn} if:

(i) T ⊆ X, and

(ii) f(x) ≤ c(x) ∀x ∈ X.

The idea of using a relaxation is to replace a difficult problem with a problem that is
easier to solve. An MILP problem can for example be relaxed by discarding some of
its constraints, which enlarges the set of feasible solutions. A common approach in this
sense is the LP relaxation:

Definition 3. For the MILP min{cx : x ∈ P ∩ Zn} with P = {x ∈ Rn : Ax ≤ b}, the
linear programming relaxation is the linear program zLP = min{cx : x ∈ P}.
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For each problem there exists an ideal formulation z s.t. z = zLP. Such a formulation
usually has a large number of constraints and is hard to find. However, in order to find
an optimal solution, usually only a small amount of constraints is needed. The cutting
plane method tries to utilize this fact and solves a given MILP formulation as follows:
First, a relaxed version of the formulation is solved. If the solution of the relaxation
is also a solution to the original MILP, then the solution is optimal. Otherwise, there
exists at least one inequality of the MILP formulation that is violated. By adding these
inequalities (cutting planes) to the relaxed formulation, the relaxation is strengthened and
therefore provides a stronger lower bound. This procedure is repeated until an optimal
solution is found. It is important to note that these added inequalities are required for
obtaining a feasible solution. One could also use the same approach to add a set of
strengthening inequalities which are not necessary for obtaining a feasible solution but
may reduce the search space and hence speed up the solving process.

A very prominent procedure for solving MILPs is branch-and-bound (B&B) which divides
the set of feasible solutions into subproblems and computes primal and dual bounds to
decide whether a subproblem should be refined or discarded.

The cutting plane method can be embedded into a B&B procedure yielding the branch-
and-cut (B&C) procedure. B&C usually generates cutting planes for each subproblem of
the B&B tree, in order to generate stronger dual bounds for the subproblems.

Comparing Formulations

On the one hand, MILP is more expressive than LP, on the other hand, MILP problems
are much harder to solve. A problem can be formulated in infinitely many (non equivalent)
ways. MILP formulations can be compared by the polyhedra of their corresponding linear
programming relaxation:

Definition 4. Given a set X ∈ Rn and two formulations P1 and P2 for X, then

(i) P1 and P2 are equivalent if P1 = P2,

(ii) P1 is a stronger formulation than P2 if P1 ⊂ P2, and

(iii) P1 and P2 are incomparable if P1 6⊂ P2 and P2 6⊂ P21.

3.2 Heuristics

There exist many problems for which exact methods are unsuitable, as they cannot solve
the problem within reasonable time. Alternatively, one can resort to heuristic approaches
for solving the problem. Heuristics focus on generating solutions of high quality, which
can usually be found in significantly less computation time. However, they provide no
dual bounds and therefore no quality guarantee on the computed solutions. In this
chapter we review two basic heuristic concepts: construction heuristics and local search.
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Afterwards we show how these two concepts can be combined to a new heuristic. We use
Blum and Raidl [2016] as the basis of this review.

3.2.1 Construction Heuristics

Construction heuristics serve as basis for many other heuristic approaches. Starting from
an empty solution, a construction heuristic iteratively expands the solution until it is
complete. While the procedure is very fast, the generated solution usually leaves great
room for improvement. A prominent example for a construction heuristic is a greedy
heuristics, which chooses at each step of the solution generation the best element from a
local point of view. Construction heuristics can also be randomized by simply choosing a
random element to expand the current solution. The probability for an element to be
chosen is usually weighted, depending on the impact the element has on the solution.

3.2.2 Local Search

In contrast to a construction heuristic, a local search procedure does not generate solutions
from scratch. Instead, the goal of a local search procedure is to improve the quality of
already existing solutions.

A local search procedure consists of three components. The first component is the
neighbourhood function which assigns to a solution S a set of neighbours N(S). Instead
of explicitly defining the set of neighbours, a neighbourhood is usually defined by some
(small) operation which, applied to S, generates all neighbours of S. The goal of local
search is to find a local optimum, i.e., a solution S whose quality is not worse than any
other solution in N(S). Hence, a local optimum is a solution which is optimal w.r.t. some
neighbourhood. A solution S can be improved by replacing it with a solution S′ in N(S)
s.t. the quality of S′ is higher than the quality of S. By repeating this procedure as long
as possible one eventually reaches a local optimum.

The second local search component is the step function that decides which solution in
N(S) replaces the original solution S. One possibility is the so called first improvement
method, which replaces S with the first found solution that has higher quality. Another
way to replace S is the best improvement method, which replaces S with the solution
that has the highest quality in N(S). Moreover, the replacement for S can also be chosen
randomly. Note that the choice of the most suitable step function is problem specific.

The last local search component is the termination criterion, which decides when to
terminate the local search. A local optimum of a neighbourhood cannot always be found
in reasonable time. Therefore, we prematurely terminate the local search if a specific
criterion is met. A time limit is one of the most common termination criteria. However,
the total number of iterations or the number of iterations without improvement are also
popular choices.

Algorithm 3.1 shows a basic pseudocode for a local search.
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Algorithm 3.1: Local Search
Input: initial solution S

1: while ∃S′ ∈ N(S) s.t. f(S′) < f(S) and termination criteria not met do
2: S ← step function(N(S));
3: end while
4: return S;

Algorithm 3.2: GRASP
1: S′ ← S; // stores the best found solution
2: while termination criteria not met do
3: create a solution S using a randomized construction heuristic;
4: S ← Local Search(S);
5: if f(S) < f(S′) then S′ ← S;
6: end while
7: return S′;

3.2.3 GRASP

Metaheuristics are combinations of construction heuristics and/or local search procedures
with other algorithms. The idea behind metaheuristics is to explore the search space more
effectively than simple local search procedures. A greedy randomized adaptive search
procedure (GRASP) is a prominent metaheuristic that applies a randomized variant of
a construction heuristic followed by a local search component independently for many
times, where the best found solution is kept as the result, see Resende and Ribeiro [2010].
Algorithm 3.2 shows a basic pseudocode for a GRASP algorithm.

3.3 Matheuristics

Matheuristics belong to the group of hybrid approaches. Hybrid approaches are usually
a combination of two different algorithmic procedures. Matheuristics are a combination
of mathematical programming and metaheuristics. The idea of matheursitics is to
either improve the metaheuristic by exploiting mathematical programming techniques
or improve the mathematical programming technique with the time efficiency of the
metaheuristic (Caserta and Voß [2010]).

Matheuristics can be categorized in two types (Caserta and Voß [2010]). In the first
type, a mathematical programming technique is embedded into a metaheuristic. For an
example recall Palpant et al. [2004], who uses mathematical programming techniques in
order to solve a large scale neighbourhood search heuristic for an RCPSP problem.

In the second type, the mathematical programming technique controls the calls to the
metaheuristic. Typical applications for such matheuristics are MILP models which use
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heuristics to generate feasible solutions or dual bounds. To generate dual bounds, one
can use the dual heuristic algorithm (Li et al. [2015]) mentioned in Section 2.2.

Feasible solutions can for example be generated by heuristics based on decomposition
approaches of MILP models, e.g., the Lagrangian decomposition. The solution generated
from a Lagrangian relaxation can in many cases be easily repaired s.t. the solution to
the relaxation becomes feasible. Procedures to repair solutions are usually based on
metaheuristics. For further examples of decomposition based heuristics see Raidl [2015].
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CHAPTER 4
The Simplified Intraday Particle

Therapy Patient Scheduling
Problem

The simplified intraday particle therapy patient scheduling problem (SI-PTPSP) is defined
on a set of activities A = {1, . . . , α} and a set of unit-capacity resources R = {1, . . . , ρ}.
Each activity a ∈ A is associated with a processing time pa ∈ N>0, a release time tra ∈ N≥0
and a deadline tda ∈ N≥0 with tra ≤ tda. For its execution an activity a ∈ A requires a
subset Qa ⊆ R of the resources. Activities need to be executed without preemption.
The considered set of time slots T = {Tmin, . . . , Tmax} is derived from the properties
of the activities as follows: Tmin = mina∈A tra and Tmax = maxa∈A tda − 1. We denote
by Ya(t) the set of time points during which activity a ∈ A executes when starting at
time t, i.e., Ya(t) = {t, . . . , t+ pa − 1}. To model dependencies among the activities we
consider a directed acyclic precedence graph G = (A,P ) with P ⊂ A × A. Each arc
(a, a′) ∈ P is associated with a minimum and a maximum time lag Lmin

a,a′ , L
max
a,a′ ∈ N≥0

with Lmin
a,a′ ≤ Lmax

a,a′ , respectively. For each resource r ∈ R a set of availability windows
Wr =

⋃
w=1,...,ωr Wr,w withWr,w = {W start

r,w , . . . ,W end
r,w } ⊆ T is given. Resource availability

windows are non-overlapping and ordered according to starting timeW start
r,w . Based on the

resource availabilities and the precedence relations among the activities we can deduce
for each activity a set of feasible starting times, denoted by Ta ⊆ {tra, . . . , tda − pa}; for
details on the computation of this set see Section 6.1.

A feasible solution S (also called schedule) to the SI-PTPSP is a vector of values Sa ∈ Ta
assigning each activity a ∈ A a starting time within its release time and deadline s.t.
the availabilities of the required resources and all precedence relations are respected.
The goal is to find a feasible solution having minimum makespan, i.e., a schedule with
minimal total length.
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Using the notation introduced in Brucker et al. [1999] our problem can be classified as
PSm, ·, 1|rj , dj , temp|Cmax.

4.1 Complexity

Lawler and Lenstra [1982] have shown that finding a solution for the non preemptive
single machine scheduling problem with deadlines and release times (1|rj |Cmax according
to the notation by Graham et al. [1979]) is NP-hard by providing a reduction from the
well known NP-complete Partition problem.

Partition

INSTANCE: A finite set of n positive integers B = {b0, b1, . . . , bn−1}.
QUESTION: Can the set B be partitioned into two subsets B1, B2 s.t. the sum
of the numbers in B1 equals the sum of the numbers in B2?

We adapt the aforementioned proof to show NP-hardness of the SI-PTPSP. For this
purpose we consider the decision problem variant of the SI-PTPSP, the k-SI-PTPSP:

k-SI-PTPSP

INSTANCE: An instance I of the SI-PTPSP and a non negative integer k.
QUESTION: Does there exist a solution to I with makespan less than or equal
to k ?

Proposition 1. The k-SI-PTPSP is NP-complete.

Proof. The proof consists of two parts. First, we show that k-SI-PTPSP is in NP . Then,
we show that k-SI-PTPSP is NP-hard.

To show NP-membership, consider the certificate relation R = (I, S), where I is an
instance of the k-SI-PTPSP and S is a schedule to I with makespan less than or equal to
k. Since S is of size linear in I, it follows that R is polynomially balanced. Moreover, R is
polynomially decidable as the schedule can be verified in O(|A|). Therefore, k-SI-PTPSP
is in NP.

NP-hardness of k-SI-PTPSP is shown by a reduction from Partition. Consider an
instance I of Partition as described above. Note that

∑n−1
i=0 bi has to be even, otherwise

I cannot be a positive instance. Table 4.1 shows how to construct an instance I ′ of the
k-SI-PTPSP from I.

Let (B1, B2) be a solution to I. Then, the following equation is valid:

18



4.2. Mathematical Formulations

A = {0, 1, . . . , n} tdn =
∑n−1

i=0 bi
2 + 1

pi = bi ∀i ∈ {0, . . . , n− 1} R = {0}
pn = 1 W0 = {{0, . . . , Tmax}}
tri = 0 ∀i ∈ {0, . . . , n− 1} Qi = {0} ∀i ∈ {0, . . . , n}

trn =
∑n−1

i=0 bi
2 G = (A, ∅)

tdi = Tmax + 1 ∀i ∈ {0, . . . , n− 1} Tmax =
∑n−1
i=0 bi + 1

Table 4.1: Rules for transforming an instance of Partition into an instance of the
k-SI-PTPSP

∑
bi∈B1

bi =
∑
bi∈B2

bi = trn = Tmax − tdn =
∑n−1
i=0 bi
2 (4.1)

Next, we show that I is a positive instance of Partition if I ′ is a positive instance of the
k-SI-PTPSP. Let S = {S0, . . . , Sn} be a solution to I ′. Moreover, let, B1 = {pi : Si < trn}
and B2 = {pi : Si ≥ tdn}. Note that B1 ∪ B2 = B. From Equation (4.1) it follows that∑
bi∈B1 bi =

∑
bi∈B2 bi. Therefore, I is a positive instance of Partition.

It remains to show that I ′ is a positive instance of the k-SI-PTPSP if I is a positive instance
of Partition: Let (B1, B2) be a solution to I. Moreover, let A(Bi) = {aj : bj ∈ Bi}
for i ∈ {1, 2}. W.l.o.g. assume that A(B1) = {a0, . . . am} and A(B2) = {am+1, . . . an−1}.
Then, since Equation (4.1) is valid, the activities ai ∈ B1 can be scheduled at Si =

∑i−1
j=0 bj .

Moreover, the activities ai ∈ B2 can be scheduled at Si = tdpn +
∑i−1
j=m+1 bj . Let Sn = trn.⋃n

i=0 Si is a solution to I ′, since tri ≤ Si ≤ tdi − pi for all i ∈ {0, . . . , n}. Therefore, I ′ is a
positive instance of the k-SI-PTPSP.

4.2 Mathematical Formulations
In this chapter we present various MILP models for the SI-PTPSP. We start by intro-
ducing two classical approaches: a discrete-event formulation (DEF) and a time-indexed
formulation (TIF). Both serve as reference approaches to which we will compare our
matheuristic. We show different time-indexed models and compare their strength. After-
wards, we present the time-bucket relaxation (TBR) formulation which is a relaxation of
TIF and constitutes the central component of our matheuristic. We conclude the chapter
by discussing additional inequalities for strengthening TBR.

4.2.1 Discrete Event Formulation

Discrete-event formulations (DEFs) are based on the idea of considering certain events
that need to be ordered and for which respective times need to be found. Resource
constraints then only have to be checked at the times associated with these events.
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In regard to our problem, the considered events are the start and the end of each activity
(activity events), and times at which the availability of a resource changes (resource
events). To simplify the model, we transform all resource events into activity events by
introducing a new artificial activity for each period during which a resource r ∈ R is
unavailable.

To this end, we create a new activity for each maximal interval in T \Wr requiring
resource r, where the processing time is the length of the interval, and the release time
and the deadline are the start and the end of the interval, respectively. Then, we define
a new set of activities A′ being the union of A and the artificial activities; let α′ = |A′|.
Consequently, we denote by K = {1, . . . , 2α′} the set of chronologically ordered events.

To state the model we use binary variables xa,k that are one if event k ∈ K is the start
of activity a ∈ A and zero otherwise. Similarly, binary variables ya,k indicate whether
event k is the end of activity a. Variables Ek represent the time assigned to each event
k. The starting times of the activities a ∈ A′ are modelled using variables Sa. Having
transformed all resource events into activity events, the capacity of a resource now
determines how many activities sharing a common resource can overlap in the schedule.
As the capacity of all resources is one, no activities may overlap in the schedule. It
suffices to check activity overlaps at events as resource requirements can only change
there. For this purpose, we introduce variables Dr,k which are one if resource r ∈ R is
used by any activity immediately after event k and zero otherwise. Variable MS denotes
the makespan.

min MS (4.2)
Sa + pa ≤ MS ∀a ∈ A (4.3)
Sa′ − Sa ≥ pa + Lmin

a,a′ ∀(a, a′) ∈ P (4.4)
Sa′ − Sa ≤ pa + Lmax

a,a′ ∀(a, a′) ∈ P (4.5)∑
k∈K

xa,k = 1 ∀a ∈ A′ (4.6)

∑
k∈K

ya,k = 1 ∀a ∈ A′ (4.7)

∑
a∈A′

(xa,k + ya,k) = 1 ∀k ∈ K (4.8)

Ek−1 ≤ Ek ∀k ∈ K \ {1} (4.9)

Ek −M
(4.10)
a,k (1− xa,k) ≤ Sa ∀k ∈ K, a ∈ A′ (4.10)

Ek +M
(4.11)
a,k (1− xa,k) ≥ Sa ∀k ∈ K, a ∈ A′ (4.11)

Ek −M
(4.12)
a,k (1− ya,k) ≤ Sa + pa ∀k ∈ K, a ∈ A′ (4.12)

Ek +M
(4.13)
a,k (1− ya,k) ≥ Sa + pa ∀k ∈ K, a ∈ A′ (4.13)
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Dr,0 =
∑

a∈A′:r∈Qa
xa,0 ∀r ∈ R (4.14)

Dr,k = Dr,k−1 +
∑

a∈A′:r∈Qa
xa,k −

∑
a∈A′:r∈Qa

ya,k ∀k ∈ K \ {1}, r ∈ R (4.15)

Dr,k ≤ 1 ∀k ∈ K, r ∈ R (4.16)
tra ≤ Sa ≤ tda − pa a ∈ A′ (4.17)
MS , Ek, Dr,k ≥ 0 ∀k ∈ K, r ∈ R (4.18)
xa,k, ya,k ∈ {0, 1} ∀k ∈ K, a ∈ A′ (4.19)

Inequalities (4.3) are used for determining the makespan. Precedence relations are
enforced by Inequalities (4.4) and (4.5). According to Equalities (4.6) and (4.7) each
activity starts and ends at precisely one event. Equalities (4.8) ensure that each event
is assigned to either exactly one starting time or exactly one ending time of an activity.
Events are chronologically ordered by Inequalities (4.9). Starting times of activities are
linked to the corresponding start events by Inequalities (4.10) and (4.11). Similarly,
Inequalities (4.12) and (4.13) link the event at which an activity a ends to the time at
which the activity ends. We do not know in advance which event corresponds to which
activity starting time. Hence, it is necessary to construct Inequalities (4.10) to (4.13) in
such a way that they are valid for all feasible permutations of activities. This can be
achieved by the so called big-M method, which puts events and activity starting times
into relation w.r.t. a constant, usually large, offset M . The constraints are constructed
in such a way that, M drops out of the constraint if an event coincides with an activity
staring time. Otherwise, the offset M remains in the constraints in order to ensure that
the constraints are valid. It is easy to find a high value for M s.t. the constraints are
satisfied, e.g., Tmax. However, to make the LP relaxation as tight as possible, M should
be as small as possible. In Section 6.2 we discuss how to find tight Big-M values for
Constraints (4.10) to (4.13). Equalities (4.14) and (4.15) compute the total demand of
a resource of all activities running during an event. Finally, Inequalities (4.16) ensure
that all resource demands are met at all events. Inequalities (4.17) ensure that activities
can only start during their release-time deadline windows. Inequalities (4.18) and (4.19)
restrict the domains of the model’s variables.

The formulation has O(|A′|2) variables and O(|R| · |A′|2) constraints. Thus, DEF is a
compact model, i.e., the model uses only one variable to represent an activity’s starting
time. However, its LP relaxation typically yields rather weak bounds primarily due to
the inequalities involving the Big-M constants. Consequently, solving DEF to integrality
frequently requires a huge number of B&B nodes and, thus, too much time. Our
computational results in Chapter 7 will show that DEF is clearly not competitive with
the other approaches we consider here.
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4.2.2 Time-indexed Formulation

In a classical MILP way, we can model the SI-PTPSP by the following time-indexed
formulation (TIF) using binary variables xa,t for indicating whether an activity a ∈ A
starts at time t ∈ Ta.

min MS (4.20)∑
t∈Ta

xa,t = 1 ∀a ∈ A (4.21)

∑
t∈Ta

t · xa,t + pa ≤ MS ∀a ∈ A (4.22)

∑
a∈A:r∈Qa

∑
t′∈Ta:t∈Ya(t′)

xa,t′ ≤ 1 ∀r ∈ R, t ∈Wr (4.23)

∑
t∈Ta′

txa′,t −
∑
t∈Ta

txa,t ≥ pa + Lmin
a,a′ ∀(a, a′) ∈ P (4.24)

∑
t∈Ta′

txa′,t −
∑
t∈Ta

txa,t ≤ pa + Lmax
a,a′ ∀(a, a′) ∈ P (4.25)

xa,t ∈ {0, 1} ∀a ∈ A, t ∈ Ta (4.26)
MS ≥ 0 (4.27)

Equations (4.21) ensure that exactly one starting time is chosen for each activity. Inequal-
ities (4.22) are used to determine the makespan MS . Resource restrictions are enforced
by Inequalities (4.23). Last but not least, Constraints (4.24) and (4.25) guarantee that
the precedence relations with their minimum and maximum time lags are respected. The
remaining constraints specify the variable domains.

The model has O(|A| · |T |) variables and O(|T | · (|A|+ |R|+ |P |)) constraints. Its size
thus depends strongly on the resolution of the time discretization. Typically, the LP
relaxation of TIF yields substantially tighter lower bounds than the LP relaxation of
DEF, and thus less B&B nodes are usually required to solve TIF.

In the following we discuss two alternative stronger time-indexed formulations. Stronger
formulations yield stronger LP relaxations, however their models are usually larger in
size, which may make them harder to solve. For a comparison of different time-indexed
models for a scheduling problem see Cavalcante et al. [2001].

Time-Indexed Formulation using Disaggregated Precedence Constraints

The precedence constraints of TIF can be disaggregated by replacing (4.24) with

∑
t′∈Ta:t′≤t−pa−Lmin

a,a′

xa,t′ ≥
∑

t′∈Ta′ :t′≤t
xa′,t′ ∀(a, a′) ∈ P, t ∈ Ta′ (4.28)
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and (4.25) with ∑
t′∈Ta′ :t′≤t+pa+Lmax

a,a′

xa′,t′ ≥
∑

t′∈Ta:t′≤t
xa,t′ ∀(a, a′) ∈ P, t ∈ Ta (4.29)

yielding the disaggregated time-indexed formulation (DTIF). Informally, constraints
(4.28) enforce that if an activity a does not start after time t, then activity a′ with
(a, a′) ∈ P cannot start after time t + pa + Lmax

a,a′ . Similarly, constraints (4.29) enforce
that if an activity a′ does not start after time t, then activity a with (a, a′) ∈ P cannot
start after time t− pa − Lmin

a,a′ . See Artigues [2013] for more details about disaggregated
precedence constraints.

It is well known that time-indexed formulations using disaggregated precedence constraints
are usually stronger formulations than their disaggregated equivalents (Artigues [2017]).
Subsequently, we show that this also holds for TIF and DTIF.

Theorem 1. The polyhedron of DTIF is a strict subset of the polyhedron of TIF.

Proof. The proof consists of two parts. In the first part we show that DTIF is at least
as strong as TIF. In the second part we show that the polyhedra are not isomorphic.

TIF differs from DTIF only by its minimum and maximum lag constraints. Hence, we
have to show that Constraints (4.24) and (4.25) are implied by the constraints of DTIF.

For this purpose let τa ∈ Ta be the minimal time point for an activity a ∈ A s.t.∑
t∈Ta:t≤τa

xa,t = 1 ∀a ∈ A (4.30)

holds. Such a time point has to exist due to Inequalities (4.21). From Inequalities (4.28)
it follows that ∑

t′∈Ta:t≤τa
xa,t′ ≥

∑
t′∈Ta′ :t′≤τa+pa+Lmin

a,a′

xa′,t′ ∀(a, a′) ∈ P (4.31)

and
τa ≤ τa′ (4.32)

Now assume that
∑
t′∈Ta′ :t′≤τa+pa+Lmin

a,a′
xa′,t′ = 0. Then, due to Inequalities (4.21) and

(4.32) it follows that∑
t∈Ta

t · xa,t + pa + Lmin
a,a′ ≤

∑
t∈Ta′

t · xa′,t ∀(a, a′) ∈ P (4.33)

Hence, let us assume that
∑
t′∈Ta′ :t′≤τa+pa+Lmin

a,a′
xa′,t′ =

∑
t∈Ta:t≤τa xa,t′ = 1.

Then, the following inequalities can be derived:
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∑
t∈Ta

t · xa,t + pa + Lmin
a,a′ =

∑
t∈Ta′

t · xa′,t ∀(a, a′) ∈ P (4.34)

Therefore, Inequalities (4.24) are implied by Inequalities (4.28) and (4.21). Analogously,
it can be shown that Inequalities (4.25) are implied by Inequalities (4.29) and (4.21).

Next, we show that there exists a solution to the LP relaxation of TIF which is not a
solution to the LP relaxation of DTIF. For this purpose consider the instance I described
in Table (4.2).

A = {0, 1} W0 = {[0, Tmax]}
pi = 1 ∀i ∈ {0, 1} Qi = 0 ∀i ∈ {0, 1}
tri = 0 ∀i ∈ {0, 1} G = (A, {(0, 1)})
tdi = 6 ∀i ∈ {0, 1} Lmin

0,1 = 0
Tmax = 5 Lmax

0,1 = Tmax

R = {0}

Table 4.2: An instance of the SI-PTPSP for which a solution to the LP relaxation of TIF
exists, but no solution to the LP relaxation of DTIF.

One can easily verify that the following is an LP-solution to I w.r.t. TIF:

x0,3 = 1
x1,1 = 0.1
x1,5 = 0.9
MS = 5.6

However, Inequalities (4.28) are clearly violated for t = 3 since
∑
t∈{1,2} x0,t = 0 ,∑

t∈{1,...,3} x1,t = 0.1 and 0 6≥ 0.1 Hence, the solution is not an LP-solution w.r.t. DTIF.

Time-Indexed Formulation based on Step Variables

It is also possible to model the SI-PTPSP by the following time-indexed formulation
with step variables (STIF) using binary variables ya,t for indicating that activity a ∈ A
has started at some time t′ ≤ t ∈ Ta, and thus is finished at time t + pa. While the
polyhedra of STIF and DTIF are isomorphic (see 4.2.3), STIF may have a computational
advantage over DTIF w.r.t. B&B as branching on the variables of STIF may divide the
search space more evenly, than branching on the variables of DTIF (see Cavalcante et al.
[2001]). More details about time-indexed models based on step variables can be found in
Artigues [2013].

Let Tmin
a = min(Ta), Tmax

a = max(Ta) and

preda(t) = max{t′ ∈ Ta : t′ < t} and succa(t) = min{t′ ∈ Ta : t′ > t} (4.35)
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indicate the predecessor and successor time points existing in Ta for some Tmin
a < t and

t < Tmax
a , respectively.

Furthermore, let

ξa,t =


ya,t for t ∈ Ta,
0 for t < Tmin

a ,

1 for t > Tmax
a ,

ya,preda(t) else

(4.36)

be a generalization of the variables ya,t that is safely defined for any t ∈ Z.

We can now define STIF as follows.

min MS (4.37)

Tmax
a −

 ∑
t∈Ta\{Tmax

a }
(succa(t)− t) · ya,t

+ pa ≤ MS ∀a ∈ A (4.38)

∑
a∈A:(r∈Qa∧t∈{Tmin

a ,...,Tmax
a +pa})

ξa,t − ξa,t−pa ≤ 1 ∀r ∈ R, t ∈Wr (4.39)

ξa,t−pa−Lmin
a,a′
≥ ya′,t ∀(a, a′) ∈ P, t ∈ Ta′ (4.40)

ξa,t−pa−Lmax
a,a′
≤ ya′,t ∀(a, a′) ∈ P, t ∈ Ta′ (4.41)

ya,t ≤ ya,succa(t) ∀a ∈ A, t ∈ Ta \ {Tmax
a } (4.42)

ya,Tmax
a

= 1 ∀a ∈ A (4.43)
ya,t ∈ {0, 1} ∀a ∈ A, t ∈ Ta \ {Tmax

a } (4.44)
MS ≥ 0 (4.45)

Inequalities (4.38) are used to determine the makespan MS . They essentially count
the number of time slots at which each activity a ∈ A has not yet started. Note
that ya,Tmax

a
must always be one (also cf. (4.43)) and therefore is omitted in the sum.

Resource restrictions are enforced for each time slot in which a resource r ∈ R is available
by Inequalities (4.39). Constraints (4.40) and (4.41) guarantee that the precedence
relations with their minimum and maximum time lags are respected. Last but not least,
Inequalities (4.42) and (4.43) ensure that for each a ∈ A the sequence ya,Tmin , . . . , ya,Tmax

never decreases and ends with one, i.e., the activity is actually started at some time.

Proposition 2. Let (y,MS) be a solution to STIF. Then, the vector S with the values
Sa = Tmax

a −
∑
t∈Ta\{Tmax

a }(succa(t)− t) · ya,t for all a ∈ A is a solution to the SI-PTPSP.

4.2.3 Comparison of STIF and DTIF

Consider the following bijection between the variables of STIF and the variables of DTIF:
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ξa,t =
∑

t′∈Ta:t′≤t
xa,t′ ∀a ∈ A, t ∈ Z (4.46)

Equation (4.46) can be reformulated as

ξa,t = xa,t +
∑

t′∈Ta:t′≤t−1
xa,t′

= xa,t + ξa,t−1

yielding a new identity
xa,t = ξa,t − ξa,t−1 (4.47)

Theorem 2. The polyhedra of STIF and DTIF are isomorphic.

Proof. We prove Theorem 2 by showing that the constraints of STIF are a transformation
of the constraints of DTIF and vice versa. The variables of the constraints can be
transformed by Identities (4.46) and (4.47).

First, we show how Inequalities (4.43) can be transformed into Inequalities (4.21) and
vice versa using Equation (4.46):

ya,Tmax
a

= ξa,Tmax
a

=
∑

t′∈Ta:t′≤Tmax
a

xa,t′ =
∑
t′∈Ta

xa,t′ = 1 ∀a ∈ A

Next, we show the transformation between Inequalities (4.22) and Inequalities (4.38):∑
t∈Ta

t · xa,t + pa ≤ MS ∀a ∈ A

Substituting according to Equation (4.47) on the left-hand side of the inequality yields:∑
t∈Ta

t · xa,t =
∑
t∈Ta

t · (ξa,t − ξa,t−1)

Note that ξa,t−1 = ya,preda(t) for all t ∈ Ta ∧ t > Tmin
a and ξa,Tmin

a −1 = 0. Let Ta =
{t1, . . . , tk} with t1 = Tmin

a and tk = Tmax
a . Then, it follows that∑

t∈Ta
t · (ξa,t − ξa,t−1) = Tmin

a · ya,Tmin
a

+
∑

t∈Ta\Tmin
a

t · (ya,t − ya,preda(t))

= t1 · ya,t1 + t2 · (ya,t2 − ya,t1) + t3 · (ya,t3 − ya,t2) + . . .+ tk · (ya,tk − ya,tk−1)
= ya,t1 · (t1 − t2) + ya,t2 · (t2 − t3) + . . .+ ya,tk−1 · (tk−1 − tk) + tk · ya,tk
=

∑
t∈Ta\Tmax

(t− succa(t)) · ya,t + Tmax · ya,Tmax

Hence, ∑
t∈Ta

t · xa,t = Tmax −
∑

t∈Ta\Tmax

(succa(t)− t) · ya,t
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as desired.

Next, we focus on transforming the resource constraints of STIF and DTIF. For this
purpose, we prove the following identity for arbitrary t:

ξa,t − ξa,t−pa =
∑

t′∈Ta:t∈Ya(t′)
xa,t′

We first reformulate the right-hand side of the equation as the difference of two sums and
then show that each sum corresponds to a ξ term of the left-hand side of the identity.

From the definition of Ya(t′) it follows that t− pa + 1 ≤ t′ ≤ t. Let t′1 denote the earliest
time point s.t. t′1 ∈ Ta ∧ t − pa + 1 ≤ t′1. Equivalently, we define t′k as the latest time
point s.t. t′k ∈ Ta ∧ t′k ≤ t. Then,∑

t′∈Ta:t∈Ya(t′)
xa,t′ =

∑
t′∈Ta:t′≤t′

k

xa,t′ −
∑

t′∈Ta:t′<t′1

xa,t′

From the definition of t′1 and t′k it follows that∑
t′∈Ta:t′≤t′

k

xa,t′ = ξa,t′
k

= ξa,t

∑
t′∈Ta:t′<t′1

xa,t′ = ξa,t′1 = ξa,preda(t−pa+1) = ξa,t−pa

Therefore, the identity holds. By applying the identity on Constraints (4.23), we get∑
a∈A:r∈Qa

ξa,t − ξa,t−pa ≤ 1 ∀r ∈ R, t ∈Wr

which is equivalent to Constraints (4.39) due to the definition of the ξ variables.

Moreover, applying the identity on Constraints (4.39), yields∑
a∈A:(r∈Qa∧t∈{Tmin

a ,...,Tmax
a +pa})

∑
t′∈Ta:t∈Ya(t′)

xa,t′ ≤ 1 ∀r ∈ R, t ∈Wr

which corresponds to Constraints (4.23) since t′ ∈ Ta : t ∈ Ya(t′) implies that t ∈
{Tmin

a , . . . , Tmax
a + pa}.

Next, we show the transformation between the minimum time lag Constraints (4.28) and
(4.40). Consider Inequalities (4.28):∑

t′∈Ta:t′≤t−pa−Lmin
a,a′

xa,t′ ≥
∑

t′∈Ta′ :t′≤t
xa′,t′ ∀(a, a′) ∈ P, t ∈ Ta′ (4.48)
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By Equation (4.46) it must hold that∑
t′∈Ta:t′≤t−pa−Lmin

a,a′

xa,t′ = ξa,t−pa−Lmin
a,a′

and

∑
t′∈Ta′ :t′≤t

xa′,t′ = ya′,t

Therefore, the transformation holds. The maximum lag constraints of the models can be
transformed analogously.

Inequalities (4.42) of STIF do not have an equivalent in DTIF but we can show that
they are implied. By substituting according to Equation (4.46), Inequalities (4.42) are
transformed to:

ya,t =
∑

t′∈Ta:t′≤t
xa,t (4.49)

ya,succa(t) =
∑

t′∈Ta:t′≤succa(t)
xa,t (4.50)

Therefore, the transformation yields∑
t′∈Ta:t′≤t

xa,t ≤
∑

t′∈Ta:t′≤succa(t)
xa,t ∀a ∈ A, t ∈ Ta \ {Tmax} (4.51)

As t < succa(t), it follows that
∑
t′∈Ta:t′≤t xa,t is contained in

∑
t′∈Ta:t′≤succa(t) xa,t. There-

fore, the transformation yields an inequality which always holds.

4.2.4 Time-bucket Relaxation

As the number of variables and constraints of TIF can become huge when considering a
fine-grained time discretization, directly solving the model may not be a viable approach
in practice. We therefore consider a relaxation of it in which we combine subsequent time
slots into so-called time-buckets. This model, which we call time-bucket relaxation (TBR),
yields a lower bound to the optimal value of the original problem but in general not
directly a valid solution to it. Note that this stays in contrast to a more common
approach in which the time-discretization is coarsened in order to obtain a feasible but
also less precise solution, which is not necessarily optimal (or even feasible) for the
original problem. Based on TBR we will build our iterative refinement approach in the
subsequent chapter that is guaranteed to converge to an optimal solution for SI-PTPSP.

Let B = {B1, . . . , Bβ} be such a partitioning of T into subsequent time-buckets. Note
that the individual buckets do not need to have the same size. We denote by I(B) =
{1, . . . , β} the index set of B. For all b ∈ I(B) we define the set of consecutive time slots
Bb = {Bstart

b , . . . , Bend
b } contained in the bucket. Since B is a partitioning of T we have
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B1 B2 B3 B4 B5 B6 · · · Bβ

Tmin Tmax

Figure 4.1: Bucket partitioning of T .

Bstart
1 = Tmin, Bend

β = Tmax, and Bend
b + 1 = Bstart

b+1 , ∀b ∈ I(B) \ {β}. For an illustration
see Figure 4.1. Additionally, let WB

r (b) = |Bb ∩Wr| denote the aggregated amount of
resource r ∈ R available over the whole bucket b ∈ I(B).

Considering a bucket partitioning we now derive for each activity a ∈ A all subsets of
buckets in which the activity can possibly be completely performed s.t. it executes at
least partially in every bucket. We call these subsets bucket sequences of activity a and
denote them by Ca = {Ca,1, . . . , Ca,γa} ⊆ 2I(B). Let functions bfirst(a, c) and blast(a, c)
for a ∈ A and c = 1, . . . , γa provide the index of the first and the last bucket of bucket
sequence Ca,c, respectively. The bucket sequences in Ca are assumed to be ordered
according to increasing starting time, or, more precisely, lexicographically according to
(bfirst(a, c),blast(a, c)). We can determine all bucket sequences for an activity in time
O(|T |) by “sliding” the activity over all time slots and taking the covered buckets. With a
more careful approach this can be brought down to run in O(|B| log |B|), see Section 6.3
on how this is done in detail. Analogous to set Ta we do not consider bucket sequences
that involve only infeasible starting times.

For each bucket sequence let Smin
a,c ∈ T be the earliest time slot at which activity a can

possibly start when it is assigned to bucket sequence Ca,c ∈ Ca. Similarly, let Smax
a,c ∈ T be

the latest possible starting point. Moreover, values zmin
a,b,c and zmax

a,b,c provide bounds on the
number of utilized time slots within bucket b ∈ Ca,c when activity a uses bucket-sequence
Ca,c ∈ Ca. Note that for inner buckets b with bfirst(a, c) < b < blast(a, c) we always
have zmin

a,b,c = zmax
a,b,c = |Bb|.

Figure 4.2 shows an example of a set of bucket sequences for a given activity. Observe
that for bucket sequence Ca,2 we need to shift the execution window s.t. the activity
executes at least for one time slot in bucket B3, i.e., we require zmin

a,3,2 > 0 to avoid an
overlap with bucket sequence Ca,1.

Our relaxation of TIF uses binary variables ya,c indicating whether activity a ∈ A is
completely performed in bucket sequence Ca,c for c ∈ 1, . . . , γa. Model TBR is stated as
follows:

min MS (4.52)
γa−1∑
c=0

ya,c = 1 ∀a ∈ A (4.53)

γa−1∑
c=0

Smin
a,c · ya,c + pa ≤ MS ∀a ∈ A (4.54)
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B1 B2 B3 B4 B5 Ca,1 = {B1, B2}

tra tdapa

zmin
a,2,1zmax

a,1,1

pa

zmin
a,1,1 zmax

a,2,1

B1 B2 B3 B4 B5 Ca,2 = {B1, B2, B3}

pa

zmin
a,3,2zmax

a,1,2

pa

zmin
a,1,2 zmax

a,3,2

B1 B2 B3 B4 B5 Ca,3 = {B2, B3, B4}

pa

zmin
a,4,3zmax

a,2,3

pa

zmin
a,2,3 zmin

a,4,3

B1 B2 B3 B4 B5 Ca,4 = {B3, B4, B5}

pa

zmin
a,5,4zmax

a,3,4

pa

zmin
a,3,4 zmax

a,5,4

B1 B2 B3 B4 B5
Ca,5 = {B4, B5}

pa

zmin
a,5,5zmax

a,4,5

pa

zmin
a,4,5 zmax

a,5,5

Figure 4.2: Bucket sequences Ca of an activity a with processing time pa. Descriptions
of inner buckets of a sequence are omitted since we always have zmin

a,b,c = zmax
a,b,c = |Bb| for

them.
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∑
a∈A:r∈Qa

∑
Ca,c∈Ca:b∈Ca,c

zmin
a,b,c · ya,c ≤WB

r (b) ∀r ∈ R, b ∈ I(B) (4.55)

γa′∑
c′=1

Smax
a′,c′ · ya′,c′ −

γa∑
c=1

Smin
a,c · ya,c ≥ pa + Lmin

a,a′ ∀(a, a′) ∈ P (4.56)

γa′∑
c′=1

Smin
a′,c′ · ya′,c′ −

γa∑
c=1

Smax
a,c · ya,c ≤ pa + Lmax

a,a′ ∀(a, a′) ∈ P (4.57)

ya,c ∈ {0, 1} ∀a ∈ A,
c = 1, . . . , γa

(4.58)

MS ≥ 0 (4.59)

Equations (4.53) ensure that exactly one bucket sequence is chosen for each activity. The
makespan MS is determined using Inequalities (4.54). Constraints (4.55) consider the
resource availabilities individually for each bucket in an accumulated fashion. Determined
resource consumptions of activities are precise for all used inner buckets of a sequence but
might underestimate the actually required amount in the first and last bucket. Finally,
Inequalities (4.56) and (4.57) realize the precedence constraints with their minimum
and maximum time lags, respectively. These restrictions are also a relaxation of the
corresponding ones in TIF since the precise starting times within the buckets are not
known (unless dealing with buckets of unit size).

The model has O(|A| · |B|) variables and O(|A|+ |R| · |B|+ |P |) constraints, and thus its
size does not directly depend on |T |.

Similar to TIF, we can disaggregate the precedence constraints by replacing (4.56) by

∑
c′=1,...,γa:Smin

a,c′≤S
max
a′,c −pa−L

min
a,a′

ya,c′ ≥
∑

c′=1,...,c
ya′,c′ ∀(a, a′) ∈ P,

c = 1, . . . , γa′
(4.60)

and (4.57) by

∑
c′=1,...,γa′ :Smin

a′,c′≤S
max
a,c +pa+Lmax

a,a′

ya′,c′ ≥
∑

c′=1,...,c
ya,c′ ∀(a, a′) ∈ P,

c = 1, . . . , γa
(4.61)

yielding the disaggregated time-bucket relaxation (DTBR).

Extended Time-bucket Relaxation

We originally started with a more elaborate TBR formulation documented here. This
formulation, however, turned out to not perform well in practice due to its substantially
larger number of variables and constraints.

We strengthen the TBR by guaranteeing that the total execution time of an activity
spent across all buckets equals its processing time. To this end we introduce additional
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variables za,b ≥ 0 indicating the number of time-slots, activity a ∈ A is performed within
bucket b ∈ I(B, a).

Set I(B, a) =
⋃
c=1,...,γ1 Ca,c refers to the set of all buckets in which a part of activity

a ∈ A may possibly be performed.

The extended time-bucket relaxation (ETBR) is stated as follows:

min MS (4.62)
γa∑
c=1

ya,c = 1 ∀a ∈ A (4.63)

γa∑
c=1

Smin
a,c · ya,c + pa ≤ MS ∀a ∈ A (4.64)

γa′∑
c′=1

Smax
a′,c′ · ya′,c′ −

γa∑
c=1

Smin
a,c · ya,c ≥ pa + Lmin

a,a′ ∀(a, a′) ∈ P (4.65)

γa′∑
c′=1

Smin
a′,c′ · ya′,c′ −

γa∑
c=1

Smax
a,c · ya,c ≤ pa + Lmax

a,a′ ∀(a, a′) ∈ P (4.66)

Bstart
blast(a,c) · ya,c + za,blast(a,c) ≤ MS ∀a,∈ A, b ∈ I(B, a) (4.67)

za,b ≥
∑

c=1,...,γa:b∈Ca,c
zmin
a,b,c · ya,c ∀a ∈ A, b ∈ I(B, a) (4.68)

za,b ≤
∑

c=1,...,γa:b∈Ca,c
zmax
a,b,c · ya,c ∀a ∈ A, b ∈ I(B, a) (4.69)

∑
b∈I(B,a)

za,b = pa ∀a ∈ A (4.70)

∑
a:b∈I(B,a)∧r∈Qa

za,b ≤WB
r (b) ∀r ∈ R, b ∈ I(B) (4.71)

0 ≤ za,b ≤ max
c:b∈Ca,c

zmax
a,b,c ∀a ∈ A, b ∈ I(B, a) (4.72)

ya,c ∈ {0, 1} ∀a ∈ A,
c = 1, . . . , γa

(4.73)

MS ≥ 0 (4.74)

Inequalities (4.63)–(4.67),(4.72)–(4.74) correspond to Inequalities (4.52)–(4.54), (4.56)–
(4.59) of TBR. Inequalities (4.68) and (4.69) link the za,b variables and the ya,c variables.
Equations (4.70) ensure that each activity’s whole processing time is allocated. Inequali-
ties (4.71) consider the resource availabilities for performing the activities.

The ETBR model has O((|A|+ |R|) · |B|+ |P |) constraints, while TBR only has O(|A|+
|R| · |B| + |P |) constraints. Hence, for a high number of activities the number of
constraints drastically increases. Preliminary tests have shown that the additional
constraints slow down the model significantly compared to TBR. Moreover, the accuracy
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gained by introducing the z variables is only very small, especially for a coarse bucket
partitioning. Therefore, the costs of the ETBR model outweigh its benefits. Note that
Inequalities (4.67)–(4.69) add O(|A| · |B|) constraints to the model.

4.2.5 Comparison of TIF and TBR

In this section we compare TIF and TBR. We first show that the LP relaxations of TIF
and TBR are equally strong if all buckets of TBR have unit size. Afterwards, we prove
that TBR is a relaxation of TIF for an arbitrary bucket partitioning of TBR.

First, let us consider the case of TBR in which all buckets have unit size, i.e., B =
{{Tmin}, {Tmin + 1}, . . . , {Tmax}}. Let us denote this special case by TBR1. This leads
to several simplifications. All buckets b belonging to some sequence Ca,c are fully used,
i.e., zmin

a,b,c = zmax
a,b,c = |Bb| = 1. Moreover, minimum and maximum starting times are equal

and equivalent to the first time slot of the initial bucket of the sequence: Smin
a,c = Smax

a,c =
Bstart

bfirst(a,c). Essentially, this means that Ta = {Smin
a,c : Ca,c ∈ Ca} = {Smax

a,c : Ca,c ∈ Ca}
and |Ta| = |Ca| for all a ∈ A. Moreover, since buckets correspond to time points in this
scenario, resource availabilities become binary per bucket.

For TIF and TBR1 we consider ϕa : {1, . . . γa} → Ta for each activity a ∈ A with
ϕa(c) := Smin

a,c .

Proposition 3. Function ϕ is bijective.

Proof. Each bucket sequence w.r.t. TBR1 corresponds to a specific starting time. For
each activity Ca considers all feasible bucket sequences and Ta all feasible starting times.
Thus, there exists a unique mapping between these sets.

Proposition 4. The polyhedra of TBR1 and TIF are isomorphic.

Proof. We establish an isomorphism between the variables of the models using function
ϕa and its inverse: xa,t = ya,ϕ−1

a (t) and ya,c = xa,ϕa(c). Moreover, we can use these
functions to immediately transform (4.21) into (4.53), (4.22) into (4.54), (4.24) into
(4.56), and (4.25) into (4.57) and vice versa. To provide the isomorphism between (4.23)
and (4.55) we need a few further things. First recall that all zmin

a,b,c constants are equal to 1.
Secondly, using t↔ {t} as isomorphism between T and the set of unit buckets we obtain
WB
r (b) = 1 if the corresponding time point t ∈ Wr and WB

r (b) = 0 otherwise. Finally,
this correspondence between time points and unit buckets guarantees that Ya(t) and Ca,c
are isomorphic for ϕ−1

a (t) = c. Putting things together also the resource constraints can
be transformed into one another.

Corollary 1. The LP relaxations of TBR1 and TIF are equally strong.

In the following we show that TBR with an arbitrary bucket partitioning is a relaxation
of TBR1 and thus of TIF.
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Definition 5. Let TBRB and TBRB′ be two TBR-models with bucket partitionings B
and B′, respectively. TBRB′ is called a refined model of TBRB iff ∀b′ ∈ B′ ∃b ∈ B(b′ ⊆ b).

Definition 6. Let TBRB be a TBR-model and let TBRB′ be a refined model of TBRB.
Then, σ : C ′a → Ca defines a (surjective) mapping from bucket sequences C ′a w.r.t. TBRB′

to bucket sequences Ca w.r.t. TBRB satisfying for all C ′a,c′ ∈ C ′a:

⋃
b′∈C′

a,c′

b′ ⊆
⋃

b∈σ(C′
a,c′ )

b ∧ ∀Ca,ci ∈ Ca

 ⋃
b′∈C′

a,c′

b′ *
⋃

b∈Ca,ci

b ∨ σ(C ′a,c′) ⊆ Ca,ci


This means sigma provides the inclusion minimal bucket sequence from TBRB that
contains at least the time slots that the bucket sequence from TBRB′ contains.

Lemma 1. Function σ can be implemented by:

σ(C ′a,c′) = Ca,c s.t. Ca,c ∈ Ca ∧ Smin
a,c′ ∈ bfirst(a, c) ∧ (Smin

a,c′ + pa) ∈ blast(a, c)

Proof. Feasibility of C ′a,c′ together with the fact that buckets in TBRB′ are subsets of
those in TBRB implies that there exists a sequence Ca,c ∈ Ca satisfying Smin

a,c′ ∈ bfirst(a, c)
and (Smin

a,c′ + pa) ∈ blast(a, c).

Bucket sequences C ′a,c′ and Ca,c satisfy
⋃
b′∈C′

a,c′
b′ ⊆

⋃
b∈Ca,c b. Moreover, Ca,c is uniquely

determined since by definition two different bucket sequences cannot have the same first
and last buckets. Therefore, every other sequence covering the buckets from C ′a,c′ must
be strictly larger than Ca,c.

Theorem 3. Let TBRB be a TBR-model and let TBRB′ be a refined model of TBRB.
Then, TBRB is a relaxation of TBRB′.

Proof. Using function σ according to Lemma 1, we create a solution y to TBRB from an
optimal solution y∗ to TBRB′ as follows:

ya,c =
{

1 ∃C ′a,c′ ∈ C ′a(y∗a,c′ = 1 ∧ σ(C ′a,c′) = Ca,c)
0 otherwise

(4.75)

We first show that y is a feasible solution to TBRB . Constraints (4.53) are satisfied since
y∗a,c′ is feasible and σ is surjective. As bfirst(a, c′) ⊆ bfirst(a, c) for all Ca,c = σ(C ′a,c′) it
holds that Smin

a,c ≤ Smin
a,c′ and Smax

a,c′ ≤ Smax
a,c , hence Constraints (4.54),(4.56), and (4.57)

must hold. If Inequalities (4.55) are satisfied for y∗, then the resource constraints are
also satisfied for y since the refined resource allocation entails the coarser one. Therefore,
y is a feasible solution to TBRB.

Since Smin
a,c ≤ Smin

a,c′ , the objective can only decline due to the transformation. Thus, the
optimal solution to TBRB can be at most as large as the value of the optimal solution to
TBRB′ . Thus, TBRB is a relaxation of TBRB′ .

Corollary 2. TBR is a relaxation of TIF.
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4.2. Mathematical Formulations

4.2.6 Strengthening TBR by Valid Inequalities

In the following we introduce two types of valid inequalities to compensate for the loss of
accuracy in TBR due to the bucket aggregation. Note that these inequalities strengthen
the relaxation in general but might become redundant for more fine-grained bucket
partitionings.

Clique Inequalities

Observe that two activities, represented by non-unit bucket sequences, cannot feasibly
start in the same bucket if both require a certain resource. The same holds for two or
more bucket sequences with these properties ending in the same bucket. This can be
used to derive sets of incompatible bucket sequences that give rise to clique inequalities,
see Demassey et al. [2005], Hardin et al. [2008].

The respective constraints are specified in terms of the following sets. First we determine
for each b ∈ I(B) sets Sb = {(a, c) : a ∈ A, c ∈ Ca, zmin

a,b,c < |Bb|, |Ca,c| > 1,bfirst(a, c) = b}
and Fb = {(a, c) : a ∈ A, c ∈ Ca, z

min
a,b,c < |Bb|, |Ca,c| > 1, blast(a, c) = b} of non-unit

bucket sequences starting and ending in bucket Bb, respectively. For each of these sets we
consider a graph having the respective set as vertices and an edge between two vertices if
the activities of the corresponding bucket sequences share a resource. Let CSb and CFb be
the sets of all maximal cliques with a minimum size of two within these graphs. Then,
we add the following inequalities to TBR:∑

(a,c)∈κ
ya,c ≤ 1, ∀b ∈ I(B),∀κ ∈ CSb (4.76)

∑
(a,c)∈κ

ya,c ≤ 1, ∀b ∈ I(B),∀κ ∈ CFb (4.77)

Some of these constraints might be redundant if the sum of zmin
a,b,c of the smallest two

sequences is already large enough to prohibit them from being in the same bucket by
means of Inequalities (4.55). The most trivial form of this case is excluded in the above
sets by the condition zmin

a,b,c < |Bb|.

The considered cliques can be computed using the algorithm by Bron and Kerbosch
[1973]. Cazals and Karande [2008]) show that this algorithm is worst-case optimal, i.e.,
it runs in O(3

n
3 ) which is the largest possible number of maximal cliques in a graph on n

vertices. Although problematic in general this might still be reasonable considering the
rather small expected size of the conflict graphs.

Nevertheless, in our implementation we decided to avoid clique computations and resort
to a simpler variant. We do so by considering a separate graph per resource obtaining a
set of not necessarily maximal cliques. This leads to conceptually weaker inequalities
but requires almost no computational overhead. More specifically, we consider subsets
Sb,r = Sb ∩ {(a, c) : a ∈ A, c ∈ Ca, r ∈ Qa} of Sb and subsets Fb,r = Fb ∩ {(a, c) : a ∈
A, c ∈ Ca, r ∈ Qa} of Fb , respectively for b ∈ I(B) and r ∈ R, s.t. within these subsets
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4. The Simplified Intraday Particle Therapy Patient Scheduling Problem

all activities require a common resource. Using these sets we build the same type of
constraints: ∑

(a,c)∈Sb,r

ya,c ≤ 1, ∀b ∈ I(B),∀r ∈ R : |Sb,r| ≥ 2 (4.78)

∑
(a,c)∈Fb,r

ya,c ≤ 1, ∀b ∈ I(B), ∀r ∈ R : |Fb,r| ≥ 2 (4.79)

If mutual overlap of the resources required by the activities is rare, the simpler inequalities
are often almost as powerful as the full clique inequalities.

Path Inequalities

The idea of this kind of inequalities is to extend the precedence constraints (4.56) and
(4.57) and the makespan constraints (4.59) to be valid for paths in the precedence graph
instead of only for adjacent activities.

We consider the acyclic directed precedence graph G = (A,P ). Let πa0,am = (a0, . . . , am)
be a directed path from activity a0 to activity am in G. Moreover, let dLmin(πa0,am) =∑m−1
i=0 pai + Lmin

ai,ai+1 and dLmax(πa0,am) =
∑m−1
i=0 pai + Lmax

ai,ai+1 be the minimum and
maximum makespan of the activities within the path, respectively. Let Πa,a′ denote
the set of all distinct paths from node a to node a′. Since G is acyclic, Πa,a′ is finite
(but in general exponential in the number of edges) for all pairs of nodes a, a′ ∈ A. Let
Π =

⋃
{a,a′}⊆A Πa,a′ denote the union of all these paths between any two nodes.

Let S be a feasible solution to SI-PTPSP. Then, for each path πa,a′ in G it must hold
that Sa + dLmin(πa,a′) ≤ Sa′ and Sa + dLmax(πa,a′) ≥ Sa′ . Hence, adding the following
inequalities for all πa,a′ ∈ Π to TBR yields a strengthened relaxation of TIF:

γa∑
c=1

Smin
a,c · ya,c + dLmin(πa,a′) ≤

γa′∑
c′=1

Smax
a′,c′ · ya′,c′ (4.80)

γa∑
c=1

Smax
a,c · ya,c + dLmax(πa,a′) ≥

γa′∑
c′=1

Smin
a′,c′ · ya′,c′ (4.81)

γa∑
c=1

Smin
a,c · ya,c + dLmin(πa,a′) + pa′ ≤ MS (4.82)

Due to the exponential number of these inequalities we only consider a reasonable subset
of them in our implementation, for details see Section 6.4.
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CHAPTER 5
Iterative Time-Bucket Refinement

Algorithm

Solving instances of the SI-PTPSP using a MILP formulation is possible in theory, however
in practice this approach may suffer from the disadvantages of the MILP formulation in
use, especially for instances with a large time horizon. While DEF is expected to yield
weak LP relaxations, the performance of TIF (and TBR) strongly depends on the size of
the time horizon as it is proportional to the number of variables in the model.

The basic idea of our iterative time-bucket refinement algorithm (ITBRA) is to solve
instances of the SI-PTPSP without explicitly considering the complete time horizon
of the instance. Solving an instance of SI-PTPSP using TBR w.r.t. a coarse bucket
partitioning usually only results in a lower bound for the instance’s makespan. However,
by repeatedly refining the bucket partitioning, i.e., splitting a set of buckets into smaller
buckets, and resolving the model, we will eventually reach an optimal solution.

We speed this procedure up by employing two primal heuristics at each iteration of the
algorithm. The purpose of these heuristics is to construct a valid SI-PTPSP solution from
a relaxed solution S yielded by TBR. The first heuristic is the gap closing heuristic (GCH).
The goal of GCH is to derive a valid SI-PTPSP solution S′ from S s.t. the makespan
of S′ does not exceed the makespan of S. This way it is guaranteed that S is optimal.
However, GCH may not always succeed in deriving such a solution, especially in early
iterations of the algorithm.

In case GCH cannot provide a solution, we apply a follow-up heuristic, whose goal is to
derive any feasible SI-PTPSP solution from S. If this heuristic cannot close the gap to
the TBR bound, we proceed with the bucket refinement process and solve TBR again
(see Algorithm 5.1).

Effective refinement strategies are of utter importance for the performance of ITBRA.
If the bucket partitioning is too coarse, the primal heuristics may fail to construct a
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5. Iterative Time-Bucket Refinement Algorithm

Algorithm 5.1: Iterative time-bucket refinement algorithm (ITBRA)
Input: SI-PTPSP instance
Output: solution to SI-PTPSP and lower bound

1: compute initial bucket partitioning;
2: compute initial primal solution;
3: do
4: solve TBR for the current bucket partitioning;
5: apply gap closing heuristic (GCH): try to find an SI-PTPSP solution in

accordance with the TBR solution;
6: if unscheduled activities remain then
7: apply follow-up heuristic to find feasible SI-PTPSP solution
8: end if
9: if gap closed then

10: return optimal solution
11: end if
12: derive refined bucket partitioning for the next iteration;
13: while termination criteria not met;
14: return best heuristic solution and lower bound from TBR

good bound which increases the number of iterations of ITBRA. On the other hand, if
the bucket partitioning is too fine-grained, the number of variables in the TBR model
increases too fast, resulting in higher computation times for solving the TBR model. We
will see that the quality of a bucket partitioning depends not only on the number of
created buckets but also on the structure of the partitioning. Some parts of the time
horizon are more important than others and need to be refined to a higher degree. In
Section 5.3 we suggest several refinement strategies. Most of these strategies exploit
information obtained from the TBR solution and the applied primal heuristics.

The pseudocode of ITBRA is shown in Algorithm 5.1. The individual components of
ITBRA will be explained in detail in the next sections.

5.1 Initial Bucket Partitioning

We create the initial bucket partitioning B in such a way that buckets start/end at any
time where a resource availability interval starts or ends and at any release time and
deadline of the activities. For details see Algorithm 5.2.

5.2 Primal Heuristics

We consider heuristics that attempt to derive feasible SI-PTPSP solutions and corre-
sponding primal bounds based on TBR solutions. If ITBRA is terminated early, the best
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5.2. Primal Heuristics

Algorithm 5.2: Computing an initial bucket partitioning
Output: the initial bucket partitioning

1: B ← ∅; // bucket partitioning
2: T ← {Tmin} ∪ {Tmax + 1}; // bucket starting times
3: T ← T ∪ {W start

r,w ,W end
r,w + 1 : r ∈ R, w = 1, . . . , ωr};

4: T ← T ∪ {tra, tda : a ∈ A};
5: sort T ;
6: for i← 1 to |T | − 1 do
7: B ← B ∪ {{T [i], . . . , T [i+ 1]− 1}}; // add bucket
8: end for
9: return B;

solution found in this way is returned. Note, however, that depending on the instance
properties, these heuristics might also fail and then yield no feasible solution.

5.2.1 Gap Closing Heuristic (GCH)

This is the first heuristic applied during an iteration of ITBRA. It attempts to construct
an optimal solution according to TBR’s result to close the optimality gap. Thus, it
may only fully succeed when the relaxation’s objective value does not underestimate the
optimal SI-PTPSP solution value. If the gap cannot be closed, GCH provides only a
partial solution and no primal bound. Information on the unscheduled activities then
forms an important basis for the subsequent bucket refinement.

Let (y∗,MS∗) be the current optimal TBR solution. Initially, GCH receives for each
activity a ∈ A the interval STBR

a = {STBR,min
a , . . . , STBR,max

a } of potential starting times,
where STBR,min

a =
∑γa
c=1 S

min
a,c · y∗a,c and STBR,max

a =
∑γa
c=1 S

max
a,c · y∗a,c. These intervals

can in general be further reduced by removing for each a ∈ A all time slots t ∈ STBR
a

violating at least one of the following conditions in relation to the precedence constraints
and the calculation of the makespan:

∃t′ ∈ STBR
a′ (t+ pa + Lmin

a,a′ ≤ t′ ≤ t+ pa + Lmax
a,a′ ) ∀(a, a′) ∈ P (5.1)

∃t′ ∈ STBR
a′ (t′ + pa′ + Lmin

a′,a ≤ t ≤ t′ + pa′ + Lmax
a′,a ) ∀(a′, a) ∈ P (5.2)

t+ pa ≤ MS∗ (5.3)

We repeatedly prune the set of intervals of potential activity starting times for all activities
STBR = {STBR

a : a ∈ A} w.r.t. Conditions (5.1)–(5.3) until no more starting times can
be discarded. This is done by Algorithm 5.3 which is based on the well-known AC3
algorithm, see Mackworth [1977]. Algorithm 5.3 utilizes the fact that the precedence
graph has to be acyclic. The order in which the activities are considered for pruning,
may have a negative impact on the number of iterations of Algorithm 5.3. Therefore,
Algorithm 5.3 reverses the pruning order after each iteration.
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5. Iterative Time-Bucket Refinement Algorithm

Algorithm 5.3: PruneStartingTimes
Input : intervals of potential starting times STBR = {STBR

a : a ∈ A},
an ordered set of activities A′

Output: STBR pruned w.r.t. Conditions (5.1)–(5.3)
1: while A′ 6= ∅ do
2: (STBR, A′)←PruneOrdered(STBR, A′);
3: reverse the order of A′ ;
4: end while
5: return STBR;

While Algorithm 5.3 determines the order in which the starting times are pruned,
Algorithm 5.4 does the actual pruning. For each STBR

a Algorithm 5.4 removes all times
violating Conditions (5.1)–(5.3). The algorithm returns the pruned starting times and a
set of activities whose starting times can possibly be pruned again. This set contains the
activities a′ and a′′ s.t. (a, a′), (a′′, a) ∈ P for each STBR

a that has been pruned.

Activities for which only a single feasible starting time remains can be handled more
efficiently since no further pruning is applicable for them. This is particularly relevant
during GCH since the pruning is repeated whenever an activity’s starting time is fixed.
Hence, Algorithm 5.5 partitions the set of all activities into a set A1 containing all
activities that topologically appear before a and a set A2 containing all activities that
topologically appear after a. Then, Algorithm 5.3 is applied on A1 and A2.

Note that the pruning algorithms may yield empty intervals for some activities (i.e.,
intervals with STBR,min

a > STBR,max
a ), indicating that there remains no feasible starting

time assignment respecting all constraints. In this case the pruning algorithm will give
up on this activity and continues with the remaining ones deviating from the usual arc
consistency concept to allow further activities to be scheduled.

The pseudocode of GCH is shown in Algorithm 5.6. After the initial pruning of starting
time intervals, GCH constructs the (partial) schedule S by iteratively scheduling the
activities respecting all constraints. If this is not possible for some activities, they remain
unscheduled. Using a greedy strategy the activities are considered in non-decreasing
order of STBR,max

a + pa, i.e., according to their earliest possible finishing times. Activities
are always scheduled at the earliest feasible time from STBR

a . Note that any explicit
enumeration of time slots from an interval can be efficiently avoided by using basic
interval arithmetic. Whenever an activity starting time is set, constraint propagation
is repeated to ensure arc consistency according to Conditions (5.1)–(5.3). Remaining
unscheduled activities are partitioned into two sets, depending on the reason for which
they could not be scheduled. This information is relevant for the bucket refinement
process (see Section 5.3).
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5.2. Primal Heuristics

Algorithm 5.4: PruneOrdered
Input : intervals of potential starting times STBR = {STBR

a : a ∈ A} with
STBR
a = {STBR,min

a , . . . , STBR,max
a },

an ordered set of activities A′ whose corresponding starting time intervals
have to be be pruned

Output: partially pruned set STBR w.r.t. Constraints (5.1)–(5.3), a set of
activities whose starting times can possibly be pruned again

1: A′′ ← ∅; // set of activities whose starting times can
possibly be pruned again

2: forall a ∈ A′ do
3: forall a′ : ((a, a′) ∈ P ∨ (a′, a) ∈ P ) ∧ STBR,min

a′ ≤ STBR,max
a′ do

4: STBR,min
a ← max{STBR,min

a , STBR,min
a′ + pa′ + Lmin

a′,a} ;
5: STBR,max

a ← min{STBR,max
a , STBR,max

a′ + pa′ + Lmax
a′,a };

6: STBR,min
a ← max{STBR,min

a , STBR,min
a′ − pa − Lmax

a,a′ };
7: STBR,max

a ← min{STBR,max
a , STBR,max

a′ − pa − Lmin
a′,a};

8: STBR,max
a ← min{STBR,max,MS − pa};

9: end
10: if new values assigned to STBR,min

a or STBR,max
a then

11: A′′ ← A′′ ∪ {a′ : (a, a′) ∈ P ∨ (a′, a) ∈ P};
12: end if
13: end
14: return STBR, A′′;

5.2.2 Activity Block Construction Heuristic (ABCH)

If GCH fails to close the gap, we attempt to compute a feasible solution instead that
might have a larger objective value than the current TBR bound. The idea of ABCH is
to simplify an SI-PTPSP instance by combining the activities of the weakly connected
components of the precedence graph into so-called activity blocks, i.e., all the activities
belonging to one such activity block are statically linked considering the precedence
constraints and minimum time lags in between them.

ABCH then tries to construct a schedule using the activity blocks instead of the individual
activities. The activity blocks are considered in order of their release times and are
scheduled at the first time slot where no resource constraint is violated w.r.t. the activity
block’s individual activities and resource requirements.

Applying ABCH on an empty schedule may lead to poor results. Hence, we apply the
algorithm on partial schedules S generated by GCH. For this purpose we remove all
weakly connected components from S which are not completely scheduled. Details are
provided in Algorithm 5.7.

41



5. Iterative Time-Bucket Refinement Algorithm

Algorithm 5.5: PruneSinglePoint
Input : intervals of potential starting times STBR = {STBR

a : a ∈ A},
the set of activities A′ in topological order w.r.t. P ,
an activity a with STBR,min

a = STBR,max
a

Output: STBR pruned w.r.t. violations of conditions (5.1)–(5.3)
1: A1 ← {a′ : a′ ∈ A ∧ a′topologically appears in A′ before a} ∪ {a} ;
2: A2 ← {a′ : a′ ∈ A ∧ a′topologically appears in A′ after a} ∪ {a} ;
3: sort A1 and A2 topologically ;
4: reverse the order of A1 ;
5: STBR ← PruneStartingTimes(STBR, A1);
6: STBR ← PruneStartingTimes(STBR, A2);
7: return STBR;

5.2.3 Greedy Randomized Adaptive Search Procedure (GRASP)

We can improve ABCH by extending it to a GRASP. The approach provides a reasonable
balance between being still relatively simple but providing considerably better results
than ABCH.

In the following, we will first discuss the construction heuristic of the GRASP and
afterwards its local search component. The construction heuristic of the GRASP is a
combination of GCH and ABCH. First, we construct a partial schedule using GCH. Then,
the schedule is completed with ABCH. The GRASP requires a randomized construction
heuristic. Both, GCH and ABCH, can be randomized. The randomization procedure is
the similar for both algorithms. Randomization is done by allowing the order in which the
activities or activity blocks are scheduled to deviate from the strict greedy criterion. In
particular, we choose uniformly at random from the kgrand

GCH (kgrand
ABCH) candidates with the

highest priority. Parameters kgrand
GCH and kgrand

ABCH control the strength of the randomization.
Note that the success of ABCH and hence also of the GRASP strongly depends on the
partial solution provided by GCH. Therefore, we primarily choose to randomize GCH.
However, note that we also try to compute a primal solution at the very beginning before
solving TBR for the first time. Hence, there is no GCH solution available at this point.
In this case we randomize ABCH instead.

As mentioned before, many of our bucket refinement strategies exploit information
obtained from partial GCH schedules. However, as GCH is randomized in the GRASP,
we have multiple schedules to choose from. To get a strong guidance for the bucket
refinement process we prefer GCH solutions that schedule as many activities as possible.
However, these solutions might not necessarily correspond to those solutions that work
best in conjunction with ABCH. Therefore, we track the best complete solution and
the best partial GCH solution separately during GRASP. This means that our GRASP
returns a feasible SI-PTPSP solution as well as a partial GCH solution (which might be
unrelated). Since GRASP combines the functionalities of GCH and ABCH, it effectively
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5.2. Primal Heuristics

Algorithm 5.6: Gap closing heuristic (GCH)
Input : intervals of potential starting times STBR = {STBR

a : a ∈ A} with
STBR
a = {STBR,min

a , . . . , STBR,max
a },

the set of activities A′ in topological order w.r.t. P
Output: (partial) schedule S and all activities that cannot be scheduled w.r.t.

STBR grouped by violation type, a set of activities with violated
precedence constraints AP , a set of activities with violated resource
constraints AR

1: AP ← ∅;
2: AR ← ∅;
3: AU ← A; // unscheduled activities
4: A′ ←topSort(A); // sort A topologically
5: W ′r ←Wr; // resource availabilities
6: PruneStartingTimes(STBR,A′);
7: while AU 6= ∅ do
8: select and remove an activity a ∈ AU with minimal STBR,max

a + pa;
9: if STBR

a = ∅ then // precedence constraints violated
10: AP ← AP ∪ {a};
11: continue;
12: end if
13: STBR

a ← {t ∈ STBR
a : {t, . . . , t+ pa − 1} ⊆W ′r,∀r ∈ Qa};

14: if STBR
a = ∅ then // resource constraints violated

15: AR ← AR ∪ {a};
16: continue;
17: end if
18: Sa ← min STBR

a ;
19: STBR

a ← {Sa};
20: W ′r ←W ′r \ {t, . . . , t+ pa − 1}, ∀r ∈ Qa;
21: pruneSinglePoint(STBR, A′);
22: end while
23: return S,AP , AR;

replaces Lines 5–8 in Algorithm 5.1.

The applied local search component considers a classical 2-exchange neighbourhood on
the order of the activity blocks scheduled by ABCH. A best improvement strategy is
applied, and the local search is always performed until a local optimum is reached.

As termination criterion for the GRASP a combination of a time limit and a maximal
number of iterations without improvement is used, details will be given in Chapter 7.
Moreover, in the first iteration of the GRASP the deterministic versions of GCH and
ABCH are used. This guarantees, especially for short executions, that the final result of
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Algorithm 5.7: Activity block construction heuristic (ABCH)
Input: a partial schedule SGCH computed by GCH
Output: a feasible schedule S or no solution if SGCH cannot be completed

1: C ← set of subsets of A corresponding to the weakly connected components in the
precedence graph which are not completely scheduled in SGCH;

2: AC ← ∅; // the set of activity blocks
3: forall weakly connected components c ∈ C do
4: Sc ← ∅ ; // a schedule representing the activity block of c
5: forall activities a ∈ c in topological order do
6: schedule a in Sc at the earliest possible time w.r.t. precedence constraints

and resource consumptions of activities in c but ignoring all other
activities as well as release times and deadlines, and resource availabilities;

7: end
8: the release time of the activity block is mina∈c tra;
9: AC ← AC ∪ {Sc} ;

10: end
11: forall activity blocks Sc ∈ AC ordered according to release time do
12: try to schedule the activity block at the earliest feasible time in S s.t. activity

release times and deadlines as well as resource constraints are satisfied;
13: if no feasible time found then
14: return no solution;
15: end if
16: end
17: return S;

the GRASP is never worse than the one of the pure heuristics.

5.3 Bucket Refinement Strategies

In general, the bucket refinement is done by selecting one or more existing buckets and
splitting each of them at selected points into two or more new buckets. If a bucket only
consists of a single time slot, it cannot be subdivided further and becomes irrelevant for
subsequent splitting decisions. Buckets are never merged or extended in our approach, i.e.,
the number of buckets always strictly increases due to the refinement. This guarantees
that ITBRA eventually terminates if at least one bucket is subdivided in each iteration
(cf. Theorem 3).

More formally, a refinement of some bucket Bb ∈ B is given by an ordered set of splitting
points τ b = {τ b1 , . . . , τ bm} ⊆ {Bstart

b + 1, . . . , Bend
b } with τ b1 < . . . < τ bm. Based on τ b we

get |τ b| + 1 new buckets replacing the original one: {Bstart
b , . . . , τ b1 − 1}, {τ b1 , . . . , τ b2 −

1}, . . . , {τ bm, . . . , Bend
b }. For an example see Figure 5.1.
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B1 B2 B3 B4 B5 B6 · · · Bβ

Tmin Tmaxτ2
1 τ4

1 τ4
2

B′1 B′2 B′3 B′4 B′5 B′6 B′7 B′8 B′9 · · · B′β

Figure 5.1: An example of a bucket refinement for τ2 = {τ2
1 }, τ4 = {τ4

1 , τ
4
2 }, and τ b = ∅

for b ∈ I(B) \ {2, 4}.

In general, the decisions to be made in the bucket refinement process are (a) which
buckets are to be refined, (b) at which positions, and (c) how many splits to apply. To
address these tasks we need criteria that identify promising bucket refinements. A bucket
refinement should be done in such a way that the current optimal TBR solution becomes
invalid. In this way, it is ensured that in each iteration we obtain a more refined solution.
Furthermore, bucket refinements should resolve conflicts between activities that cannot
be scheduled together. Therefore, information from constraints that are responsible for
such conflicting activities should be exploited to prevent these situations from occurring
again. Last but not least, we want to obtain a dual bound for the SI-PTPSP that is
as tight as possible. Hence, a bucket refinement that likely has implications on TBR’s
objective value is desirable.

Selecting Buckets to Refine

Observe that refining inner buckets of selected bucket sequences does not directly affect
the current TBR solution. Refining first and last buckets (if they are non-unit buckets),
however, ensures that the bucket sequence that contained them does not exist in the
refined TBR model anymore and therefore cannot be used again. Furthermore, some of
the newly introduced buckets might not be part of feasible bucket sequences anymore,
resulting in a more restricted scenario. Hence, we want to either split only first or last
buckets of selected sequences or both. If we use just one bucket, we need to resort to the
other one if otherwise no progress can be made. During preliminary tests it turned out
that always using both boundary buckets for refinement is superior. Another question is
for which bucket sequences the bounding buckets shall be refined. In the following we
propose different strategies that will be experimentally compared in Section 7.2.2.

All Selected (ASEL) We refine all first and last buckets of all bucket sequences
selected in the identified optimal TBR solution. This can, however, be inefficient as it
may increase the total number of buckets in each iteration substantially. The following
strategies will therefore only consider certain subsets of the buckets from ASEL.
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All In GCH Schedule (AIGS) Considering the partial schedule S generated by
GCH we only refine all first and last buckets of those bucket sequences Ca,c whose
corresponding activities a are feasibly scheduled in S. The idea is to improve accuracy
for the activities that could be scheduled in order to reveal sources of infeasibility w.r.t.
the activities that could not be scheduled once TBR is solved the next time.

Incompletely Scheduled Connected Components (ISCC) We split the first and
last buckets of all bucket sequences selected in the optimal TBR solution for activities
belonging to weakly connected components for which not all activities could be feasi-
bly scheduled by GCH. This approach is conceptually similar to AIGS, however, we
additionally take the activity blocks of the unscheduled activities into account to obtain
additional candidates for refinement.

Violated Due (VDUE) If GCH fails to schedule all activities, it provides a set of
activities AP that cannot be scheduled due to precedence constraint violations and a
set of activities AR that cannot be scheduled due to resource constraint violations. The
basic idea is to refine first and last buckets of bucket sequences selected for activities in
the schedule that immediately prevent the activities in AP and AR from being scheduled.
To identify those activities we again consider the partial schedule S generated by GCH.
Let AGCH = A \ (AR ∪AP ) be the set of feasibly scheduled activities.

Refinements based on resource infeasibilities are derived from sets NR(a) = {a′ ∈ AGCH :
Qa ∩ Qa′ 6= ∅ ∧ {Sa′ , . . . , Sa′ + pa′ − 1} ∩ {STBR,min

a , . . . , STBR,max
a + pa − 1} 6= ∅} for

a ∈ AR. For each activity a′ ∈ NR(a) we refine the first and last bucket of the bucket
sequence Ca′,c in the TBR solution.

The activities potentially responsible for a ∈ AP having no valid starting time are the
activities a′ in AGCH s.t. (a, a′) ∈ P or (a′, a) ∈ P . However, we do not have to consider
all activities incident to a for the refinement. Let N−P (a) = {a′ : (a′, a) ∈ P ∧ a′ ∈ AGCH}
and N+

P (a) = {a′ : (a, a′) ∈ P ∧ a′ ∈ AGCH} for all a ∈ AP . Then, calculate:

NP (a) = arg max
a′∈N−P (a)

{Sa′ + pa′ + Lmin
a′,a} ∪ arg min

a′∈N−P (a)
{Sa′ + pa′ + Lmax

a′,a } ∪

arg min
a′∈N+

P (a)
{Sa′ − Lmax

a,a′ } ∪ arg max
a′∈N+

P (a)
{Sa′ − Lmin

a,a′} (5.4)

We refine the first and last buckets of all bucket sequences of activities a′ ∈ NP (a) that
are selected in the current TBR solution.

If no refinement is possible for bucket sequences corresponding to a′ ∈ NR(a) ∪NP (a),
we refine the first and last bucket of Ca,c instead.

Last Used Bucket (LUSED) Refining the first and last bucket(s) used in selected
bucket sequences that are directly responsible for the objective value appears promising
for improving the lower bound in the next iteration. With the makespan as objective,
these are all bucket sequences that fulfill equations (4.54) or equations (4.82) at equality.
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Critical Path (CPATH) We consider a complete directed graph with all activities as
nodes. A critical path in this graph is a sequence of activities whose selection of bucket
sequences successively depends on each other and who are jointly directly responsible for
the obtained objective value.

Such a critical path is obtained in reverse order as follows. We start with an activity
whose selected bucket sequence fulfills equation (4.54) without slack (compare LUSED).
If path inequalities are used, we start with an activity whose selected bucket sequence
fulfills equation (4.82) without slack.

In general, an activity a ∈ A on a critical path may have a predecessor if and only if
its selected bucket sequence Ca,c is not the first one possible w.r.t. Ca, i.e., Ca,1, when
considering no other activities. In this case, we try to determine a predecessor as follows.

First we deal with activities reachable via the precedence graph. We only consider
initial resource availabilities for the current activity and do not take the consumption
of the other activities into account. Feasible predecessors w.r.t. a are activities a′ with
(a′, a) ∈ P s.t. a′ is assigned to a bucket sequence preventing selection of an earlier
sequence for a (considering the ordering of Ca). Note that multiple candidates might
exist; we simply take the first one identified.

Every time no further predecessors can be identified using the precedence graph we
resort to information obtained from the resource consumptions instead. We consider
bucket sequence Ca,c−1 directly preceding the one selected by TBR w.r.t. Ca. If there is
a resource r ∈ Qa required by other activities so that less than zmin

a,b,c−1 capacity would
remain in a bucket b ∈ Ca,c−1 for activity a, then these respective other activities are
feasible predecessors of a. Among these candidates we choose one for which the bucket
sequence c′ selected in TBR’s solution maximizes bfirst(a, c− 1)− bfirst(a′, c′).

Finally, we split first and last buckets of the bucket sequences selected by TBR for all
activities being part of the determined critical path.

All Critical Paths (ACPATHS) As already mentioned above, there is in general no
unique critical path. Therefore, it appears to be also meaningful to consider all activities
involved in any critical path. To derive them, we start from all activities whose selected
bucket sequence fulfills equation (4.54) (or equation (4.82)) without slack, and determine
all predecessors in a recursive manner following the same considerations as in CPATHS.

Combinations Note that approaches LUSED, CPATH and ACPATHS might not
always be able to identify feasible, i.e., non-unit, buckets for refinement. Thus, we need
to combine them with some of the other strategies to avoid getting stuck. Additionally,
it also makes sense in general to consider combinations of the above strategies to obtain
a larger variety of refinement candidates. To reduce the already large number of possible
options we only consider combinations for the strategies that cannot be applied on their
own in our experiments.
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Identifying Splitting Positions

Once a bucket has been selected for refinement, we have to decide at which position(s) it
shall be subdivided. Again, we consider different strategies. The challenge is to identify
candidate positions that usually have a large impact on the subsequent TBR and its
solution while resulting in well balanced sub-buckets.

Binary (B) Let Ca,c be the bucket sequence causing its first and last buckets to be
selected for refinement. We split the selected buckets in such a way that the interval of
potential starting and finishing times of the respective activity is bisected. In particular,
for bfirst(a, c) and blast(a, c), we consider the splitting positions d(Smin

a,c + Smax
a,c )/2e and

d(Smin
a,c + Smax

a,c )/2e + pa, respectively. We have to round up in case of non integral
refinement positions, since it is not feasible to refine w.r.t. the bucket start. Although
this approach typically leads to well balanced sub-buckets it might often have a rather
weak impact on the subsequent TBR solution since the resulting buckets might still be
too large to reveal certain sources of infeasibility.

Latest Start/Earliest End (LSEE) Instead of doing the splitting so that an activ-
ity’s interval of potential starting times is bisected, we split in this variant at times Smax

a,c

and Smin
a,c +pa. Note that the obtained splitting positions are typically far from the center

of the bucket and often even lead to unit buckets. However, this strategy is still worth
considering since the border cases are explicitly split off.

Start/End Time (SET) Let a be an activity that could be scheduled by GCH and
Ca,c the corresponding bucket sequence in TBR whose first and last buckets shall be
refined. We split bfirst(a, c) at the activity’s starting time Sa and blast(a, c) at Sa + pa,
i.e., after activity a has ended according to GCH’s schedule. Thus, the specifically chosen
time assignment of GCH gets an individual bucket sequence in the next iteration.

As this method is defined only for activities that could be scheduled by GCH, it is
applicable only in direct combination with AIGS. To overcome this limitation we resort
to B or LSEE if SET is not applicable. The obtained strategies are denoted by SET+B
and SET+LSEE, respectively.

Selecting Splitting Positions

The strategies introduced above may yield several splitting positions for a single bucket,
especially since one and the same bucket may be selected multiple times for refinement
for different activities. In principle we want to generate as few new buckets as possible
while ensuring strong progress w.r.t. the dual bound and narrowing down the activities’
possible starting time intervals. Splitting at all identified positions might therefore not
be the best option. In the following we propose different strategies for selecting for each
selected bucket the splitting positions to be actually used from all positions determined
in the previous step. Let set τ b be this union of identified splitting positions for bucket b.
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Union Refinement (UR) We simply use all identified splitting positions. As already
mentioned, however, this approach may lead to a high increase in the number of buckets
and may therefore not be justified.

Binary Refinement (BR) We use the splitting position τ ′ ∈ τ b closest to the center
of the bucket, i.e., τ ′ = arg mint∈τb

∣∣∣∣Bstart
b +Bend

b
2 − t

∣∣∣∣; ties are broken according to the
order in which the splitting positions have been obtained. This approach clearly tends to
keep the number of buckets low but may increase the total number of required iterations
of ITBRA.

Median Partition Refinement (MPR) We first partition τ b into two sets at
t = Bstart

b +Bend
b

2 : Let τ b,l = {t ∈ τ b : t ≤ t} and τ b,r = {t ∈ τ b : t > t}. The refine-
ment we apply splits the bucket into three buckets using the median of each set, i.e.,
{median(τ b,l),median(τ b,r)}. Note that either of the sets might be empty and then we
only obtain two sub-buckets.

The idea of partitioning the potential splitting positions in this way is to give candidate
positions close to either boundary of the bucket equal chances of being selected. This
is motivated by the fact that splitting a bucket close to its end usually has a strong
influence on (non-unit) bucket sequences starting in the bucket while choosing a splitting
position close to the start typically has a higher impact on (non-unit) bucket sequences
ending in this bucket. Both cases might be equally relevant and thus it makes sense to
apply a bucket refinement considering each of them.

Centered Partition Refinement (CPR) We again partition τ b into two sets at
t = Bstart

b +Bend
b

2 . Let τ b,l = {t ∈ τ b : t ≤ t} and τ b,r = {t ∈ τ b : t > t}. To obtain up to
three new buckets we choose as splitting points the two “innermost” elements, i.e., we
apply the refinement {max τ b,l,min τ b,r}. If one of the sets is empty, we only apply a
single split.

The idea is similar to the one of MPR; however, this time we prefer splitting positions
close to the center of the bucket. This might be beneficial in situations where candidate
positions are (too) strongly clustered at the boundaries of the bucket.

Figure 5.2 provides an overview of the discussed bucket selection, splitting position
identification, and splitting position selection strategies and their possible combinations.
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LUSED

CPATH

ACPATHS

VDUE

ISCC

AIGS

ASEL

SET

B

LSEE

SET

UR

BR

MPR

NPR

Selecting buckets Identifying
splitting positions

Selecting
splitting positions

Figure 5.2: Overview of the proposed strategies to perform a bucket refinement and how
they can be combined.
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CHAPTER 6
Implementation Details

In this chapter we discuss further algorithmic details that are important for an efficient
implementation of ITBRA and the associated heuristics.

6.1 Preprocessing Activity Starting Times

To obtain the restricted set of possible activity starting times Ta we start by removing
the starting times leading to resource infeasibilities:

Ta = {t ∈ T : tra ≤ t ≤ tda − pa, ∀r ∈ Qa, t′ ∈ Ya(t)(t′ ∈Wr)}

The obtained set is then further reduced by taking also precedence relations into account.
In particular, only starting times respecting the following conditions are feasible:

∀(a, a′) ∈ P ∃t′ ∈ Ta′(t+ pa + Lmin
a,a′ ≤ t′ ≤ t+ pa + Lmax

a,a′ )
∀(a′, a) ∈ P ∃t′ ∈ Ta′(t′ + pa′ + Lmin

a′,a ≤ t ≤ t′ + pa′ + Lmax
a′,a )

We can use constraint propagation for this purpose similar as in GCH to achieve arc
consistency w.r.t. these conditions. All these calculations can be performed based
on interval arithmetic without enumerating individual time slots, and thus in time
independent of |T |.

Finally, the originally given release times and deadlines can be tightened according to
the pruned sets Ta, i.e., we set

tra ← minTa ∀a ∈ A
tda ← pa + max Ta ∀a ∈ A
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6.2 On Determining Big-M Constants for DEF
Choosing smallest possible Big-M constants for Inequalities (4.10)–(4.13) in DEF is
important for making its LP relaxation as tight as possible. To this end we compute
bounds on the number of events that precede and succeed each activity event. Let kS

a be
the event at which activity a ∈ A′ starts and kF

a be the event at which it ends. Now let
Kpre
k and Ksuc

k be sets of events that must precede and succeed event k in any feasible
solution.

Note that it is not known in advance which event corresponds to which activity. Con-
sequently, it is difficult to determine complete sets Kpre

k and Ksuc
k . However, using

release times, deadlines, and precedence relations we can derive reasonable, but in general
incomplete sets Kpre

k and Ksuc
k efficiently. Since the events are ordered, it follows that

the ith event ki ∈ K is contained in Kpre
k for i = 1, . . . , |Kpre

k | and ki is contained in Ksuc
k

for i = |K| − |Ksuc
k |+ 1, . . . , |K|. Thus, we can set the big-M constants in Inequalities

(4.10)–(4.13) as follows:

M
(4.10)
a,k =

0 for k ∈ {k1, . . . , k|Kpre
kS
a
|}

Tmax − tra otherwise
(6.1)

M
(4.11)
a,k =

0 for k ∈ {k|K|−|Ksuc
kF
a
|+1, . . . , k|K|}

tda − pa − Tmin otherwise
(6.2)

M
(4.12)
a,k =

0 for k ∈ {k1, . . . , k|Kpre
kF
a
|}

Tmax − tra − pa otherwise
(6.3)

M
(4.13)
a,k =

0 for k ∈ {k|K|−|Ksuc
kF
a
|+1, . . . , k|K|}

tda − Tmin otherwise
(6.4)

Obtaining complete setsKpre
k andKsuc

k is usually difficult. Thus, we determine reasonable,
but in general incomplete sets efficiently by Algorithm 6.1. Over all a′ ∈ A′ together, the
procedure requires time O(|A′|2).

The estimation for Ksuc
k is analogous to the estimation of Kpre

k .

6.3 Computing Bucket Sequences
Algorithm 6.2 calculates the bucket sequences Ca for an activity a ∈ A using the fact
that bucket sequences are uniquely determined by their earliest possible starting times
Smin
a,c . In particular, we can efficiently compute the next such time point that needs to be

considered from the previous one.

If the current bucket sequence consists of a single bucket, we proceed with the time point
ensuring that only pa− 1 time can be spent in the current bucket, see Line 12. Otherwise,
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Algorithm 6.1: Efficiently determining not necessarily complete sets Kpre
kS
a

of events
that must precede a given activity start event kS

a in DEF.
Input: activity a ∈ A′
Output: sets Kpre

kS
a

and Kpre
kF
a

1: Kpre
kS
a
,Kpre

kF
a
← ∅ ;

2: forall a′ ∈ A′ \ {a} do
3: if tda′ − pa′ < tra ∨ (tda′ − pa′ = tra ∧ a′ < a) then
4: Kpre

kS
a
← Kpre

kS
a
∪ {kS

a′};
5: Kpre

kF
a
← Kpre

kF
a
∪ {kS

a′};
6: end if
7: if tda′ < tra ∨ tda′ = tra ∧ a′ < a then
8: Kpre

kS
a
← Kpre

kS
a
∪ {kF

a′};
9: Kpre

kF
a
← Kpre

kF
a
∪ {kF

a′};
10: end if
11: if tda′ − pa′ < tra + pa ∨ tda′ − pa′ = tra + pa ∧ a′ < a then
12: Kpre

kF
a
← Kpre

kF
a
∪ {kS

a′};
13: end if
14: if tda′ < tra + pa ∨ tda′ = tra + pa ∧ a′ < a then
15: Kpre

kF
a
← Kpre

kF
a
∪ {kF

a′};
16: end if
17: end
18: return Kpre

kS
a
,Kpre

kF
a
;

we try to find the earliest time point that guarantees that we start in bfirst and finish in
the earliest bucket succeeding blast. If no such time point exists, we proceed with the
earliest time slot in bucket bfirst + 1 instead. The offset, denoted by δ, to the sought time
point can be computed according to Line 16.

Iterating over the earliest starting times is linear in the number of buckets. The bucket
to which a certain time slot belongs can be determined in logarithmic time w.r.t. the
number of buckets. Hence, the overall time required by the algorithm is in O(|B| log |B|).
Note that the zmin

a,b,c and zmax
a,b,c values are only set for the first and last buckets of the

computed sequences since these values are always equal to the bucket size for all inner
buckets.

For Ca,c ∈ Ca let T s
a,c = {Smin

a,c , . . . , S
max
a,c } ∩ Ta. We can discard all bucket sequences for

which T s
a,c = ∅. Moreover, Smin

a,c and Smax
a,c can be strengthened as follows:

Smin
a,c = min(T s

a,c)
Smax
a,c = max(T s

a,c)
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Algorithm 6.2: Computing all bucket sequences for an activity.
Input: Activity a ∈ A
Output: Set of bucket sequences Ca, associated values Smin

a,c , Smax
a,c , zmin

a,b,c, and zmax
a,b,c

1: Ca ← ∅;
2: t← tra;
3: c← 1;
4: while t ≤ tda − pa do
5: bfirst ← b : t ∈ Bb;
6: blast ← b : t+ pa − 1 ∈ Bb;
7: Ca,c ← {Bbfirst , . . . , Bblast};
8: Smin

a,c ← t;
9: if bfirst = blast then

10: zmin
a,blast,c ← pa;

11: zmax
a,blast,c ← pa;

12: t← Bend
blast − pa + 2;

13: else
14: zmax

a,bfirst,c ← Bend
bfirst − t+ 1;

15: zmin
a,blast,c ← Smin

a,c + pa −Bstart
blast ;

16: δ ← min
{
zmax
a,bfirst,c − 1,min

{
Bend
blast , t

d
a − 1

}
−
(
Smin
a,c + pa − 1

)}
;

17: zmin
a,bfirst,c ← zmax

a,bfirst,c − δ;
18: zmax

a,blast,c ← zmin
a,blast,c + δ;

19: t← Smin
a,c + δ + 1;

20: end if
21: Smax

a,c = Bend
bfirst − zmin

a,bfirst,c + 1;
22: Ca ← Ca ∪ {Ca,c};
23: c← c+ 1;
24: end while
25: return Ca;
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6.4 Valid Inequalities
As already mentioned we only consider the simplified version of the clique inequalities
(4.78) and (4.79) to avoid the overhead for computing maximal cliques. The number of
these inequalities grows significantly as the buckets get more fine-grained. Fortunately,
the final bucket partitionings turned out to be still sufficiently coarse to add all inequalities
of this type to the initial formulation.

Recall that the number of path inequalities (4.80)–(4.82) is in general exponential. In
favour of keeping the model compact we avoided dynamic separation and only consider a
reasonable subset of these inequalities that is added in the beginning. Clearly, we want
to use a subset of the paths Π still having a strong influence on the relaxation. The idea
is to use all paths targeting vertices of the precedence graph with an out-degree of zero.
This guarantees that precedence relations are enforced more strictly between all sinks
and their predecessors. Since the sinks in the precedence graph are the nodes that will
define the makespan, this appears to be particularly important.

To this end, we consider the following subsets of Π with deg+(·) denoting the out-degree
of a node:

ΠLmin =
⋃

{a,a′}⊆A
{ arg max
πa,a′∈Πa,a′

dLmin(πa,a′) : Πa,a′ 6= ∅, deg+(a′) = 0}

ΠLmax =
⋃

{a,a′}⊆A
{ arg min
πa,a′∈Πa,a′

dLmax(πa,a′) : Πa,a′ 6= ∅, deg+(a′) = 0}

We then add Inequalities (4.80) and (4.82) only for paths πa,a′ ∈ ΠLmin and Inequali-
ties (4.81) for paths πa,a′ ∈ ΠLmax .
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CHAPTER 7
Computational Results

In this chapter we are going to present the computational results for the considered
algorithms with their variants. We first show how our test instances are generated. Then,
we provide details on the actually used configurations. Finally, we present the obtained
results.

7.1 Test Instances
The benchmark instances are motivated by the real world patient scheduling scenario
at cancer treatment center MedAustron that requires planning of particle therapies.
In general, each treatment session consists of five activities that have to be performed
sequentially. The modeled resources are the particle beam, irradiation rooms, radio
oncologists, and the anesthetist. In principle, resources are assumed to be available for
the whole time horizon except for short time periods. The most critical resource is the
particle beam that is required by exactly one activity of each treatment. This particle
beam is shared between three irradiation rooms, in which also additional preparation
and follow-up tasks have to be performed. A radio oncologist is required for the first
and the last activity. In addition, some patients require sedation, which means that the
anesthetist is involved in all activities.

The main characteristic of our benchmark instances is the number of activities. We have
generated two groups of benchmark instances, each consisting of 15 instances per number
of activities α ∈ {20, 30, . . . , 100}. These two groups differ in the size of the interval
between release time and deadline of the activities and with it their difficulty.

Activities are generated treatment-wise, i.e., by considering sequences of five activities
at a time. The particle beam resource is needed by the middle activity, i.e., the third
one. The second, third, and fourth activity demand one of the room resources selected
uniformly at random. We assume that d α10e radio oncologists are available and select one

57



7. Computational Results

of them for the first and last activity. Moreover, 25% of the treatments are assumed to
require sedation and are therefore associated with the anesthetist resource. We add for
each consecutive activity in the treatment sequence a minimum and maximum time lag.
Hence, the resulting precedence graph consists of connected components, each being a
path of length five. In the following we refer to these paths, that essentially are equivalent
to the treatments, also as chains. The processing times of the activities are randomly
chosen from the set {100, . . . , 10000}. Minimum lags are always 100 and maximum lags
are always 10000.

It remains to set the release times and deadlines of the activities and the resources’
availability windows in such a way that the resulting benchmark instances are feasible
with high probability but not trivial. For this reason a preliminary naïve schedule is
generated from which release times and deadlines are derived. To this end, the activities
are placed treatment-wise in the tentative time horizon {0, . . . ,

∑
a∈A(pa + 10000)}, by

randomly selecting a starting time for the first activity of each connected component.
For the subsequent activities a random time lag in {Lmin

a,a′ , . . . , L
max
a,a′ } is enforced. If a

determined starting time of an activity conflicts with an already scheduled one, then the
connected component is reconsidered.

From this preliminary schedule we derive tentative release times and deadlines which
are then scaled to receive a challenging instance. The functions fhard(α) = 40−0.08·α

80 ·∑
a∈A(pa + 10000) and feasy(α) = 0.8 · fhard(α) control the distance between release

time and deadline. For a preliminary starting time S′a of an activity a and a difficulty
diff ∈ {easy, hard}, the tentative release time is calculated by tra = max(0, S′a − fdiff (α)).
The tentative deadline is calculated by tda = min(

∑
a∈A(pa + 10000), S′a + pa + fdiff (α)).

Up to this point the instance is trivially solvable. To make the instance more challenging,
the tentative release times and deadlines are scaled by a factor s ∈ (0, 1]. We have chosen
a scaling factor depending on the number of activities s(α) = 44.6−0.23·α

80 .

Finally, the availability of the resources is restricted. Each resource has five to seven time
windows during which it is unavailable. The duration of these time windows is randomly
chosen from the set {700, . . . , 1500}. The positions of these unavailability windows are
chosen uniformly at random from the set {0, . . . , Tmax}.

To our best knowledge benchmark instances considering a comparable scenario do not exist.
Our newly introduced test instances are made available at http://www.ac.tuwien.
ac.at/research/problem-instances. An overview of the basic characteristics
of the test instances is provided in Table 7.1. Instance sets are named according to
[e|h]α where e stands for the “easy” group of instances and h for the “hard” ones, and α
indicates the considered number of activities. Each instance set consists of 15 instances.

7.2 Computational Experiments

The test runs have been executed on an Intel Xeon E5540 with 2.53 GHz using a time
limit of 7200 seconds and a memory limit of 4GB RAM. MILP models have been solved
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Table 7.1: Characteristics of the test instances grouped by difficulty and number of
activities. The subscripts indicate the number of activities per instance. Tmax denotes
the average scheduling horizon. The number of resources ρ and the number of chains
(chains) is the same per instance set.

set Tmax ρ chains

e20 104 649 7 4
e30 138 808 8 6
e40 169 642 9 8
e50 198 386 10 10
e60 220 792 11 12
e70 244 279 12 14
e80 271 461 13 16
e90 293 110 14 18
e100 316 316 15 20

set Tmax ρ chains

h20 104 575 7 4
h30 137 745 8 6
h40 167 003 9 8
h50 201 269 10 10
h60 220 606 11 12
h70 244 788 12 14
h80 271 327 13 16
h90 289 278 14 18
h100 317 324 15 20

using Gurobi 7 with a single thread.

The results of the test instances are grouped by difficulty and number of activities. Unless
otherwise indicated, computation times are stated using the median and for all other
properties we use the mean. Let pb denote the primal bound and db the dual bound
of the investigated algorithm. The starred versions denote the respective best bounds
obtained across all algorithms. Optimality gaps are computed by 100 · pb−db

∗

db∗ . Primal
bounds are compared using 100 · pb−pb

∗

pb∗ and dual bounds are compared using 100 · db∗−dbdb∗ .

We first deal with the parametrization of the primal heuristics used within ITBRA. Then,
we compare different combinations of refinement strategies for use within the matheuristic.
Finally, we compare ITBRA to a simple metaheuristic and the reference MILP models.

7.2.1 Parametrization of the Primal Heuristics

GRASP from Section 5.2.3 can also be applied outside the context of the matheuristic,
thus, as stand-alone algorithm for SI-PTPSP, when simply applied using an empty initial
schedule. We start by explaining how the involved parameters are set, since they serve
as basis for deriving appropriate values for use within the matheuristic.

The stand-alone GRASP terminates if a time limit of two hours is reached. We chose
this criterion primarily to match the time limit of the other approaches, a reasonable
degree of convergence is usually reached much earlier. Parameter kgrand

ABCH has been set to
8 for all benchmark instances. We applied irace (López-Ibáñez et al. [2016]) to determine
this value. However, it turned out that the performance of our GRASP is very robust
against changes to kgrand

ABCH.

For the GRASP embedded in ITBRA we imposed a time limit of 300 seconds and a
maximal number of 10,000 iterations without improvement. The latter is set high enough
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to be non-restrictive in most cases but avoid wasting time if the algorithm already
converged sufficiently. The values of the parameters kgrand

GCH and kgrand
ABCH of the embedded

GRASP have been determined experimentally starting with the values from the stand-
alone variant. For the parameter kgrand

GCH we first assumed a value of kgrand
GCH = 5 · kgrand

ABCH as
all activity chains in the test instances consist of five activities. Afterwards, we fine-tuned
these parameters by iterative adjustment. The parameter kgrand

ABCH is set to 6 and kgrand
GCH is

set to 35. The randomization itself is based on a fixed seed. Tests showed that the chosen
termination criteria provide a reasonable balance between result quality and execution
speed. Objective values obtained from the embedded GRASP are on average only 0.21%
larger than those obtained from the stand-alone variant. The embedded GRASP provides
on average solutions with 16.7% smaller objective value than ABCH.

The local search uses a best improvement strategy. Preliminary experiments confirmed
that this strategy works slightly better than a first improvement strategy since the aggre-
gation in terms of activity blocks typically results in only few moves with improvement
potential. For the same reason the local optimum is usually reached after a few iterations.
Thus, the overhead of the best improvement strategy is not that large. The locally
optimal solutions obtained by the best improvement strategy, however, turned out to
pay off in terms of a better average quality that is achieved. Tests with irace confirmed
this observation, although the differences are quite small. However, for instances with
different properties this might not be the case. For a larger number of activity blocks a
first improvement strategy might be superior.

7.2.2 Comparison of Bucket Refinement Strategies

Due to the large number of possible combinations of refinement techniques (cf. Figure 5.2)
we did not test every variant. Instead we employ a local search strategy to identify good
options: starting from an initial reference strategy, we investigate the impact of replacing
each of the three parts of the refinement process. At each stage, we choose the strategy
with the best performance as new reference strategy.

As initial refinement strategy we choose ASEL,B,UR as it is one of the most straightfor-
ward refinement strategies as it refines all bucket sequences in the identified optimal TBR
solution. Moreover, refinement decisions are made by only considering the TBR solution.

We evaluate the performance of a refinement strategy based on the size of the optimality
gaps, the number of solved instances, and the computation times.

Starting with the strategy ASEL,B,UR, we first replace the strategy deciding which
buckets to refine. To this end, we replace ASEL with ISCC, AIGS, and VDUE. The results
of the corresponding strategies are shown in Table 7.2. Note that we evaluate the bucket
selection strategies that cannot be applied alone at a later point (see Tables 7.6–7.7).

VDUE,B,UR dominates the other strategies in every aspect, which indicates that the
strategy deciding which buckets to refine has a large impact on the performance of the
algorithm. Another interesting result is that ASEL,B,UR and ISCC,B,UR produce the
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Table 7.2: Comparison of ASEL, ISCC, AIGS, and VDUE in combination with B and
UR. We consider the average optimality gaps (gap), the number of solved instances (opt)
and the median computation times in seconds (t). Entries marked with “tl” indicate
that the experiment terminated due to the time limit. The summary is obtained by
aggregating over the preceding rows using the same function as for the respective column.
The best values per instance set are highlighted bold.

ASEL ISCC AIGS VDUE
B B B B
UR UR UR UR

set gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s]

e20 0.0 15 12 0.0 15 12 0.0 15 22 0.0 15 12
e30 0.6 14 219 0.6 14 206 2.9 13 197 0.0 15 129
e40 4.6 10 836 4.6 10 860 4.6 9 243 4.2 10 92
e50 1.1 14 189 1.1 14 188 0.5 14 758 0.0 15 188
e60 1.2 14 82 1.2 14 83 2.1 12 171 1.2 14 63
e70 2.1 8 6957 2.1 8 6965 2.0 8 3385 1.4 11 614
e80 2.0 7 tl 2.0 7 tl 1.4 9 2888 0.6 11 1906
e90 1.7 6 tl 1.7 6 tl 1.7 6 tl 1.6 7 tl
e100 0.9 5 tl 0.9 5 tl 1.4 5 tl 1.3 6 tl
summary 1.6 93 836 1.6 93 860 1.8 91 758 1.1 104 188
h20 0.0 15 17 0.0 15 16 0.0 15 13 0.0 15 18
h30 10.7 9 4341 10.7 9 4225 10.5 7 tl 6.4 12 1045
h40 13.8 4 tl 13.8 4 tl 11.6 4 tl 7.0 6 tl
h50 18.4 2 tl 18.4 2 tl 19.4 2 tl 19.0 2 tl
h60 16.8 1 tl 16.8 1 tl 16.4 2 tl 15.0 2 tl
h70 21.1 0 tl 21.1 0 tl 21.0 0 tl 19.8 2 tl
h80 14.6 1 tl 14.6 1 tl 14.6 1 tl 14.6 1 tl
h90 10.5 1 tl 10.5 1 tl 10.4 1 tl 9.6 1 tl
h100 10.6 0 tl 10.6 0 tl 10.6 0 tl 10.6 0 tl
summary 12.9 33 tl 12.9 33 tl 12.7 32 tl 11.3 41 tl

same results. The reason for this behaviour is that GCH fails to completely schedule
any whole activity block. Hence, ISCC selects the exact same buckets to refine as ASEL.
This is however an instance specific property and ASEL,B,UR and ISCC,B,UR may
indeed produce different results for other test instances. Note that for the set of easy
instances AIGS,B,UR produces worse optimality gaps than ASEL,B,UR. Hence, refining
fewer buckets does not always lead to better results. However, considering VDUE, it
also becomes evident that refining only a small set of carefully chosen buckets greatly
improves the quality of the solutions.

Next, we examine how the results are affected when refining buckets at different positions.
We evaluate the strategies for identifying splitting positions B, LSEE, and SET+B, using
VDUE,B,UR as reference model. The results are shown in Table 7.3. VDUE,LSEE,UR
performs worse than the reference strategy. LSEE refines more buckets than B but does
not incorporate as much information as SET+B. Consequently, LSEE does not seem to
be a good strategy for identifying splitting positions. Moreover, LSEE and SET+LSEE
seem to be inferior to B and SET+B, correspondingly, implying that the TBR model
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Table 7.3: Comparison of B, LSEE, SET+B, and SET+LSEE in combination with VDUE
and UR. We consider the average optimality gaps (gap), the number of solved instances
(opt) and the median computation times in seconds (t). Entries marked with “tl” indicate
that the experiment terminated due to the time limit. The summary is obtained by
aggregating over the preceding rows using the same function as for the respective column.
The best values per instance set are highlighted bold.

VDUE VDUE VDUE VDUE
B LSEE SET+B SET+LSEE
UR UR UR UR

set gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s]

e20 0.0 15 12 1.7 12 12 0.0 15 11 0.0 15 15
e30 0.0 15 129 2.9 13 77 0.6 14 84 0.6 14 48
e40 4.2 10 92 4.6 9 283 4.6 10 72 4.4 10 247
e50 0.0 15 188 0.0 14 87 0.0 15 89 0.0 15 76
e60 1.2 14 63 1.5 13 64 1.2 14 56 1.2 14 70
e70 1.4 11 614 0.8 11 1601 0.7 12 446 1.4 12 990
e80 0.6 11 1906 0.6 10 487 0.7 12 774 0.9 10 146
e90 1.6 7 tl 1.4 9 1766 1.6 9 1103 1.6 7 tl
e100 1.3 6 tl 1.1 8 3396 1.2 9 833 1.0 9 1419
summary 1.1 104 188 1.6 99 283 1.2 110 89 1.2 106 146
h20 0.0 15 18 0.0 15 12 0.0 15 17 0.0 15 15
h30 6.4 12 1045 11.1 8 5889 6.7 12 575 6.6 11 476
h40 7.0 6 tl 8.1 7 tl 10.3 6 tl 8.6 7 tl
h50 19.0 2 tl 18.3 2 tl 18.2 4 tl 18.3 3 tl
h60 15.0 2 tl 15.6 3 tl 15.6 3 tl 15.7 3 tl
h70 19.8 2 tl 20.7 0 tl 19.5 1 tl 22.1 0 tl
h80 14.6 1 tl 14.4 1 tl 14.2 1 tl 14.6 2 tl
h90 9.6 1 tl 9.5 1 tl 10.3 1 tl 9.5 1 tl
h100 10.6 0 tl 10.6 0 tl 10.6 0 tl 10.6 0 tl
summary 11.3 41 tl 12.0 37 tl 11.7 43 tl 11.8 42 tl

profits less from splitting buckets at positions chosen by LSEE and SET+LSEE than
positions chosen by B or SET+B.

While VDUE,B,UR produces the better optimality gaps, VDUE,SET+B,UR is able to
solve more instances to optimality. The faster computation times of VDUE,SET+B,UR
seem to be a direct consequence of the higher number of solved instances. The pure
binary approach requires fewer refinements per iteration, consequently the strategy is able
to process more iterations than VDUE,SET+B,UR. A larger number of iterations usually
results in a higher degree of convergence and thus a smaller optimality gap. However,
VDUE,B,UR struggles to completely close the gap. The combination of SET and B
tries to address this shortcoming by choosing refinement positions in a more elaborate
way which, however, results in a larger number of refinements per iteration. Therefore,
VDUE,SET+B,UR is not able to process as many iterations as VDUE,B,UR. Since it
is not clear which of these approaches is preferable, we use both strategies as reference
model for the remaining evaluation stages.
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Next, we evaluate the strategies for selecting splitting positions UR, BR, CPR, and MPR.
In Table 7.4 we provide the results with VDUE,B,UR as reference model. The results with
VDUE,SET+B,UR as reference model are shown in Table 7.5. The experiments show
that UR and BR work better in combination with B, while CPR and MPR provide better
results when combined with SET+B. The easy instances seem to generally profit from
further reducing the number of refinements per iteration. This, however, is not true for the
hard instances as VDUE,B,UR features the best gaps together with VDUE,SET+B,CPR.
This shows that especially for the hard instances it is crucial to find a good balance
between the number of refinements per iteration and its associated information gain.
Refining more buckets may provide more information but also increases the model size
of TBR. Hence, VDUE,SET+B,UR performs worse than VDUE,B,UR. By refining
fewer buckets per iteration the size of the TBR grows slower. However, refining fewer
buckets may result in a TBR model that barely profits from the additional buckets.
This becomes especially evident when comparing the performance of VDUE,B,CPR and
VDUE,SET+B,CPR on the hard instances as VDUE,SET+B,CPR provides significantly
better results.

In total, VDUE,SET+B,MPR yields the best results for the easy instance sets, while
VDUE,SET+B,CPR yields the best results for the hard instance sets. It is, however, not
clear whether CPR or MPR is the better strategy in general.

Last, we evaluate the bucket selection strategies that cannot be applied alone, i.e.,
LUSED, CPATH, and ACPATHS. First, we use VDUE,SET+B,CPR as reference model.
Afterwards, we evaluate these strategies again, using VDUE,SET+B,MPR as reference
model. Results for VDUE,SET+B,CPR are shown in Table 7.6 and the results for
VDUE,SET+B,MPR are shown in Table 7.7. The results indicate that adding further
selection strategies results in better results for some instance sets. However, in general
the additional selection strategies have no positive impact on the performance of ITBRA.
The additional selection strategies reduce the total number of iterations in general but
also greatly increase the number of buckets which seems to be the reason for their bad
performance.

Summing up, we can say that the bucket selection strategy has by far the highest impact
on the performance. The results show that the quality of a bucket refinement is much
more important than the number of refinements. Neither a strategy with a high number
of refinements nor a strategy with a low number of refinements works particularly well in
general.

Moreover, it turns out that the strategies, that show a good performance, follow two
different approaches for solving an instance. The first approach is to keep the number of
refinements as small as possible in order to achieve a high number of iterations. This
approach usually produces low optimality gaps but struggles to completely close the gap.
The other approach is to try closing the optimality gap as fast as possible, by allowing a
larger number of refinements. This usually yields a higher number of solved instances
but also results in larger optimality gaps due to the faster growth of the model.
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Table 7.4: Comparison of UR, BR, CPR, and MPR in combination with VDUE and B.
We consider the average optimality gaps (gap), the number of solved instances (opt) and
the median computation times in seconds (t). Entries marked with “tl” indicate that the
experiment terminated due to the time limit. The summary is obtained by aggregating
over the preceding rows using the same function as for the respective column. The best
values per instance set are highlighted bold.

VDUE VDUE VDUE VDUE
B B B B
UR BR CPR MPR

set gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s]

e20 0.0 15 12 0.0 15 19 0.0 15 27 0.0 15 14
e30 0.0 15 129 0.0 15 135 0.0 15 91 0.0 15 156
e40 4.2 10 92 2.7 10 267 4.5 10 200 4.5 10 178
e50 0.0 15 188 1.1 14 187 0.0 15 183 0.0 15 174
e60 1.2 14 63 1.2 13 54 1.2 14 100 1.2 13 75
e70 1.4 11 614 0.5 14 923 0.4 13 742 0.0 14 1494
e80 0.6 11 1906 0.6 10 3064 0.8 10 1197 0.8 10 2287
e90 1.6 7 tl 1.7 7 tl 1.6 6 tl 1.6 8 6710
e100 1.3 6 tl 1.1 7 tl 0.7 7 tl 1.2 7 tl
summary 1.1 104 188 1.0 105 267 1.0 105 200 1.0 107 178
h20 0.0 15 18 0.0 15 17 0.0 15 22 0.0 15 22
h30 6.4 12 1045 6.6 11 1088 6.4 12 1860 6.4 12 1411
h40 7.0 6 tl 9.1 6 tl 8.3 6 tl 8.2 7 tl
h50 19.0 2 tl 17.8 4 tl 17.0 4 tl 18.4 3 tl
h60 15.0 2 tl 15.4 3 tl 16.5 3 tl 16.1 2 tl
h70 19.8 2 tl 20.1 1 tl 20.3 0 tl 20.1 1 tl
h80 14.6 1 tl 14.6 1 tl 14.6 1 tl 14.6 1 tl
h90 9.6 1 tl 9.2 1 tl 9.8 1 tl 8.9 1 tl
h100 10.6 0 tl 10.6 0 tl 10.6 0 tl 10.6 0 tl
summary 11.3 41 tl 11.5 42 tl 11.5 42 tl 11.5 42 tl

For our test instances the second approach seems to be slightly superior to the first
approach. We further investigate the difference between these two approaches in Table 7.8.
We have chosen the refinement strategy VDUE,B,CPR for representing the first approach
and VDUE,SET+B,CPR for representing the second approach. Moreover, we also
compare both strategies to the inferior strategies ASEL,B,UR and AIGS,B,UR. In
particular we consider the increase in the number of buckets, the number of iterations,
and the average computation time spent per iteration. The former is considered as ratio
between the final and the initial number of buckets. The higher this ratio, the more
buckets were needed to solve the instance.

Strategy ASEL,B,UR and AIGS,B,UR generate significantly more buckets than the
remaining approaches. However, the high number of buckets results from different
reasons for these strategies. ASEL,B,UR generates a high number of new buckets in each
iteration , which typically keeps the number of iterations low. However, this is paid for
excessively in terms of higher computation times per iteration due to the fast increase in
model size. In general, the number of buckets grows too fast and unguided to obtain a
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Table 7.5: Comparison of UR, BR, CPR, and MPR in combination with VDUE and
SET+B. We consider the average optimality gaps (gap), the number of solved instances
(opt) and the median computation times in seconds (t). Entries marked with “tl” indicate
that the experiment terminated due to the time limit. The summary is obtained by
aggregating over the preceding rows using the same function as for the respective column.
The best values per instance set are highlighted bold.

VDUE VDUE VDUE VDUE
SET+B SET+B SET+B SET+B
UR BR CPR MPR

set gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s]

e20 0.0 15 11 0.0 15 19 0.0 15 13 0.0 15 14
e30 0.6 14 84 0.0 15 59 0.6 14 66 0.0 15 49
e40 4.6 10 72 4.7 10 172 4.8 10 160 4.5 11 281
e50 0.0 15 89 1.1 14 110 0.0 15 105 0.0 15 78
e60 1.2 14 56 1.1 14 64 1.2 14 78 1.2 14 75
e70 0.7 12 446 0.9 12 325 0.3 14 528 0.6 11 460
e80 0.7 12 774 0.9 11 295 0.4 13 266 0.5 13 1081
e90 1.6 9 1103 1.5 9 715 1.5 9 1908 1.3 10 1835
e100 1.2 9 833 1.2 8 1125 1.2 8 4740 1.1 9 2845
summary 1.2 110 89 1.3 108 172 1.1 112 160 1.0 113 281
h20 0.0 15 17 0.0 15 24 0.0 15 20 0.0 15 24
h30 6.7 12 575 7.7 10 856 6.4 12 985 6.3 12 720
h40 10.3 6 tl 9.6 6 tl 8.1 7 tl 9.1 6 tl
h50 18.2 4 tl 18.2 4 tl 18.2 4 tl 18.2 4 tl
h60 15.6 3 tl 15.7 2 tl 15.3 4 tl 15.5 2 tl
h70 19.5 1 tl 20.3 1 tl 19.9 3 tl 19.8 2 tl
h80 14.2 1 tl 14.3 1 tl 14.3 2 tl 14.2 1 tl
h90 10.3 1 tl 9.3 1 tl 10.0 1 tl 10.1 1 tl
h100 10.6 0 tl 10.6 0 tl 10.6 0 tl 10.6 0 tl
summary 11.7 43 tl 11.7 40 tl 11.4 48 tl 11.5 43 tl

successful approach. For AIGS,B,UR the number of refinements per iteration is lower
which results in a higher number of iterations. However, using only buckets related to
activities scheduled by GCH turned out to be too restrictive. This strategy causes some
important splits to be delayed until the bucket partitioning is rather fine-grained.

VDUE is again a strategy that can be expected to generate only few new buckets per
iteration. However, compared to AIGS their choice appears to be much more meaningful.
Nevertheless, splitting only few buckets leads to a high number of iterations. Fortunately,
this is not too problematic due to the small computations times per iteration. Identifying
splitting positions with the pure binary strategy leads to only few bucket splits which
proves to be beneficial. As SET+B typically selects more candidates, one could expect
this strategy to be inferior. However, this is compensated for by incorporating more
information obtained from the TBR solution.

In general, it can be observed that the number of applied splits has a strong influence on
the performance. However, the quality of the bucket refinement is also very important.
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Table 7.6: Comparison of ACPATHS, CPATH, and LUSED in combination with VDUE,
SET+B and CPR. We consider the average optimality gaps (gap), the number of solved
instances (opt) and the median computation times in seconds (t). Entries marked with
“tl” indicate that the experiment terminated due to the time limit. The summary is
obtained by aggregating over the preceding rows using the same function as for the
respective column. The best values per instance set are highlighted bold.

VDUE+ACPATHS VDUE+CPATH VDUE+LUSED VDUE
SET+B SET+B SET+B SET+B
CPR CPR CPR CPR

set gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s]

e20 0.0 15 14 0.0 15 13 0.0 15 28 0.0 15 13
e30 0.0 15 71 0.6 14 74 0.6 14 54 0.6 14 66
e40 2.9 10 215 4.4 10 179 5.0 10 186 4.8 10 160
e50 0.0 15 105 1.1 14 128 1.1 14 119 0.0 15 105
e60 1.8 13 69 1.8 13 113 1.2 13 58 1.2 14 78
e70 1.7 9 2301 0.9 13 1343 2.3 7 tl 0.3 14 528
e80 0.6 11 1834 0.8 12 294 0.6 11 190 0.4 13 266
e90 1.5 8 5746 1.1 10 1830 1.7 6 tl 1.5 9 1908
e100 1.4 7 tl 1.4 7 tl 1.2 6 tl 1.2 8 4740
summary 1.1 103 215 1.3 108 179 1.5 96 186 1.1 112 160
h20 2.3 14 20 0.0 15 25 0.0 15 16 0.0 15 20
h30 8.9 9 1550 6.8 12 839 8.6 10 4344 6.4 12 985
h40 6.8 7 tl 8.5 6 tl 11.9 5 tl 8.1 7 tl
h50 18.9 3 tl 18.2 4 tl 18.2 3 tl 18.2 4 tl
h60 16.2 2 tl 16.3 2 tl 16.8 2 tl 15.3 4 tl
h70 20.5 0 tl 20.1 1 tl 21.0 0 tl 19.9 3 tl
h80 14.6 1 tl 14.5 1 tl 14.6 1 tl 14.3 2 tl
h90 9.4 1 tl 9.9 1 tl 9.9 1 tl 10.0 1 tl
h100 10.6 0 tl 10.6 0 tl 10.6 0 tl 10.6 0 tl
summary 12.0 37 tl 11.7 42 tl 12.4 37 tl 11.4 48 tl

For an illustration see Figure 7.1. As mentioned before, the large number of buckets
generated by ASEL raises the computation time within a few iterations to a problematic
level causing an overall bad performance. VDUE,B,CPR features the smallest increase
in buckets but requires more iterations to converge. Here it becomes clearly visible that
SET+B excels by incorporating more knowledge for making its decision.

In Figure 7.2 we also compared all investigated refinement strategies in a pairwise
fashion checking the assumption that one strategy yields smaller gaps than the other
by a one-tailed Wilcoxon rank-sum test with a significance level of 0.05 per difficulty
setting and in total. The Wilcoxon test coincides with our evaluation with one exception.
Considering the optimality gaps only, VDUE,B,CPR performs best for the easy instance
sets. However, when also considering the number of solved instances, VDUE,SET+B,MPR
performs best for the easy instance sets, as the strategy solves the highest number of easy
instances and yields only non-significantly worse gaps than VDUE,B,CPR. The bucket
selection strategies AIGS, ASEL and ISSC are vastly outperformed by VDUE. In total
VDUE,SET+B,CPR and VDUE,SET+B,MPR provide the best gaps.
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Table 7.7: Comparison of ACPATHS, CPATH, and LUSED in combination with VDUE,
SET+B and MPR. We consider the average optimality gaps (gap), the number of solved
instances (opt) and the median computation times in seconds (t). Entries marked with
“tl” indicate that the experiment terminated due to the time limit. The summary is
obtained by aggregating over the preceding rows using the same function as for the
respective column. The best values per instance set are highlighted bold.

VDUE+ACPATHS VDUE+CPATH VDUE+LUSED VDUE
SET+B SET+B SET+B SET+B
MPR MPR MPR MPR

set gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s] gap[%] opt t[s]

e20 0.0 15 12 0.0 15 11 0.0 15 10 0.0 15 14
e30 0.6 14 59 0.6 14 70 0.6 14 51 0.0 15 49
e40 4.3 9 138 5.0 9 262 4.6 9 514 4.5 11 281
e50 1.1 14 116 0.0 15 138 1.1 14 182 0.0 15 78
e60 1.7 13 65 1.2 14 77 1.8 12 75 1.2 14 75
e70 1.4 11 1885 0.9 12 635 1.9 9 3105 0.6 11 460
e80 0.9 10 1178 0.6 11 607 1.1 9 3570 0.5 13 1081
e90 1.4 9 4397 1.7 7 tl 1.7 8 2264 1.3 10 1835
e100 1.0 7 tl 1.2 9 492 1.4 7 tl 1.1 9 2845
summary 1.4 102 138 1.2 106 262 1.6 97 514 1.0 113 281
h20 2.3 14 15 0.0 15 15 0.0 15 16 0.0 15 24
h30 8.6 10 712 6.4 12 568 6.9 9 784 6.3 12 720
h40 6.5 7 tl 6.0 7 tl 8.7 6 tl 9.1 6 tl
h50 18.9 3 tl 18.0 4 tl 18.9 3 tl 18.2 4 tl
h60 16.6 2 tl 17.0 2 tl 14.9 3 tl 15.5 2 tl
h70 21.5 0 tl 21.9 0 tl 21.9 1 tl 19.8 2 tl
h80 14.6 1 tl 14.6 1 tl 14.6 1 tl 14.2 1 tl
h90 9.5 1 tl 9.7 2 tl 10.2 1 tl 10.1 1 tl
h100 10.6 0 tl 10.6 0 tl 10.6 0 tl 10.6 0 tl
summary 12.1 38 tl 11.6 43 tl 11.9 39 tl 11.5 43 tl

Figure 7.3 shows a comparison of the average number of iterations and the average
final number of buckets for a broad selection of refinement strategies on the set of easy
instances with 30 activities. A successful approach is typically characterized by being
able to solve an instance by refining only relatively few buckets. Variants that generate
many buckets within few iterations usually do not work well. Refinement strategies using
ACAPTHS, CPATH and LUSED are part of this category. One can clearly see that these
strategies generate much more buckets in usually fewer iterations than their counterparts
without additional bucket selection strategies. Observe that the ASEL, ISCC, and AIGS
variants are all located in the left upper half of the figure due to the large number of
bucket splits they apply. The superior strategies are situated near the bottom. It is
also clearly visible that SET+B allows to solve an instance in fewer iterations than the
pure binary variant. This is also true for SET+LSEE and LSEE. Note that UR and
BR are able to solve an instance using fewer buckets and iterations than CPR. This is a
peculiarity of the small instances considered here that does not generalize to the larger
ones.
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Table 7.8: Comparison of the characteristics of selected bucket refinement strategies.
We consider the ratio between the number of buckets at the start and at the end of the
algorithm (ratioB), the average number of iterations (nit), and the average computation
time spent per iteration in seconds (tit[s]). Column |Binit| provides the average number
of buckets contained in the initial bucket partitioning. The summary is obtained by
aggregating over the preceding rows using the same function as for the respective column.
The best values per instance set are highlighted bold.

ASEL AIGS VDUE VDUE
B B B SET+B
UR UR CPR CPR

set |Binit| ratioB nit tit[s] ratioB nit tit[s] ratioB nit tit[s] ratioB nit tit[s]

e20 43 4.73 9 5 5.59 11 6 1.93 16 2 1.69 9 2
e30 44 7.30 9 85 8.30 12 88 2.89 24 17 2.91 16 22
e40 47 7.14 7 454 6.72 8 383 2.99 19 158 2.91 13 191
e50 45 8.53 7 152 12.17 11 144 2.83 15 25 2.87 12 33
e60 49 5.30 4 218 6.00 5 270 2.50 11 72 2.30 6 81
e70 49 10.18 6 573 10.61 7 420 3.59 18 89 3.52 12 103
e80 52 7.45 4 629 7.01 4 435 3.35 13 131 3.23 9 118
e90 52 6.94 3 809 7.53 4 640 3.54 11 270 3.53 8 235
e100 58 7.69 3 951 7.11 3 904 3.99 13 266 3.75 9 312
summary 48 7.25 6 431 7.89 7 366 3.07 16 114 2.97 10 122
h20 43 4.25 8 8 5.55 12 11 1.93 17 3 2.00 13 3
h30 44 6.84 9 418 7.90 11 388 3.08 23 121 3.37 19 109
h40 43 6.98 6 924 7.84 7 770 3.39 17 276 3.29 12 313
h50 48 5.27 3 1812 5.14 3 1529 2.93 11 743 3.06 9 820
h60 44 5.49 2 1926 6.58 3 1728 3.50 11 803 3.59 9 855
h70 48 4.86 1 2629 5.05 2 2446 3.08 7 1280 3.17 6 1332
h80 49 4.94 1 2362 4.80 2 2162 3.01 7 1043 3.15 5 1112
h90 54 4.97 1 2239 4.99 2 2087 3.04 6 1017 3.22 5 1161
h100 55 4.96 1 2617 4.84 1 2433 2.86 4 1287 3.02 4 1430
summary 48 5.40 4 1659 5.85 5 1506 2.98 11 730 3.10 9 793

7.2.3 Comparing ITBRA to Other Algorithms

After having identified good refinement strategies for ITBRA, we can now proceed with
the comparison to other algorithms. As ITBRA produces optimal solutions as well as
heuristic solutions when it terminates prematurely, we compare our algorithm to exact
methods and heuristics. We start by comparing the matheuristic to the stand-alone
GRASP. Afterwards, we compare ITBRA to DEF and TIF. Finally, we compare our
matheuristic with a heuristic based on TIF. For the comparisons we choose the refinement
strategies VDUE,SET+B,MPR and VDUE,SET+B,CPR for ITBRA, as they produced
the best results in our previous experiments.

GRASP

We start by comparing the matheuristic to the stand-alone GRASP, see Table 7.9.
ITBRA is in general able to provide better results. However, when dealing with the most
difficult instances, it is sometimes the case that the matheuristic only completes very
few iterations and GRASP is able to compute a slightly better solution. As the number
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(b) VDUE,B,CPR
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Figure 7.1: Comparison of the relation between computation time and increase in the
number of buckets for the same e40 instance when using different bucket refinement
strategies.

of activities increases, ITBRA struggles more and more to improve upon the initially
obtained primal bound. This is caused by the originally high computation times per
iteration that prevent the algorithm from reaching a sufficient degree of convergence.
Remember, however, that ITBRA also puts much effort in determining good dual bounds
which GRASP cannot provide at all.

DEF

DEF was not able to find a primal solution for any instance but at least always computed
a dual bound. Table 7.10 provides the comparison with the matheuristic. The bounds
obtained from DEF are always worse than those found by ITBRA and turned out to be
particularly weak for the group of hard instances which can be expected due to the looser
restrictions featured in this instance group; by the construction of the test instances,
the activity time windows of the hard instances are significantly larger than the activity
time windows of the easy instances, which results in larger domains of the starting time
variables of DEF and thus also potentially larger big-M constraints.
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Figure 7.2: Comparison of refinement strategies using a one-tailed Wilcoxon rank-sum
test with a significance level of 0.05 per difficulty setting and in total w.r.t. optimality
gaps.

Time-Indexed Models

As a result of the extremely large time horizons and the memory restriction of 4GB, none
of the TIF models even fit into the RAM. Therefore, we consider coarsened TIF models
by only taking a subset of the original time horizon into account. Let κ ∈ N>1 be the
coarsening measure and TIFκ the associated model. Then, the new time horizon T κ of
TIFκ is defined as T κ = {t ∈ T : t ≡ 0 (mod κ)}. Consequently, we obtain reduced sets
of feasible starting times T κa = Ta ∩ T κ for the activities a ∈ A. Reducing the number of
considered time slots decreases the size of the model, which leads to faster computation
times. However, an optimal solution to TIFκ is in general not optimal w.r.t. the original
problem due to the disregarded time slots, making it a heuristic approach. A coarsened
model might even become infeasible when discarding too many time slots.

Table 7.11 provides the results of the differently coarsened TIF models. We increase the
value of κ stepwise until all instances can either be solved within the time limit or do
not permit feasible solutions anymore. For κ < 100 the models fail to generate a primal
bound for almost all instances due to memory or time limitations. Missing table entries
(marked with “-”) indicate that the coarsened model is not able to find a primal bound
for any instance of the corresponding set. For smaller instances the TIFκ models are able
to produce reasonable primal solutions. However, the quality of the solutions deteriorates
drastically as more time slots are disregarded. No TIFκ variant is able to find a primal
solution for all instances. When using a small value for κ, many instances cannot be
solved due to the time limit. For larger κ-values we can solve more instances but at the
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Figure 7.3: Comparison of the average number of iterations and average final number of
buckets on the set of e30 instances.

cost of much larger gaps. Moreover, as we reduce the precision even further, the models
start to become infeasible. The number of infeasible instances strongly increases for
κ ≥ 10000 and the few instances that still permit feasible solutions feature gaps of over
80%. Therefore, further increasing the value of κ does not seem meaningful anymore.
It appears that there does not exist an appropriate value for κ allowing a reasonable
balance between computation time and result quality. Due to the many missing entries
we decided to use median instead of average gaps in the summary table.

According to our experiments the best variants are those with κ = 1000 and κ = 2000,
respectively. The former provides better solutions but the latter is able to find more
feasible solutions. For some instances the coarsened TIF variants even find better primal
solutions than the matheuristic. Especially for instance sets h40, h50, and h60 we obtain
a high number of good solutions s.t. also the median gaps are smaller here. Overall,
however, ITBRA still provides the better results. Moreover, recall that the TIFκ models
can only provide heuristic solutions and no dual bounds.

Comparing TIF to DTIF, STIF, and ITBRA

Models DTIF and TIF lead to similar memory consumption issues as the basic TIF model.
Thus, we compare TIFκ to DTIFκ and STIFκ in the following. Tables 7.12–7.16 show
the results of these comparisons for different values of κ. For κ ≤ 200, TIFκ produces
the best results as DTIFκ and STIFκ struggle with the time and memory limit.

Starting at κ = 1000, DTIF1000 starts to catch up to TIF1000. TIF1000 is still able to beat
the results generated by ITBRA more often than DTIF1000. However, DTIF1000 is able
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Table 7.9: Comparison of the best found refinement strategies with GRASP. For each
algorithm the average gaps to the best primal bound (gap), the standard deviation of
the gaps (σ), and the median computation times in seconds(t) are presented. Entries
marked with “tl" indicate the termination of the experiment due to the time limit. For
GRASP, we also provide the number of instances for which a feasible solution could
be computed (feas). For the calculation of the gaps we considered only instances for
which all algorithms were able to compute a primal bound. The summary is obtained by
aggregating over the preceding rows using the same function as for the respective column.
The best values per instance set are highlighted bold.

VDUE VDUE
SET+B SET+B
CPR MPR GRASP

set gap[%] σ t[s] gap[%] σ t[s] gap[%] σ t[s] feas

e20 0.0 0.0 13 0.0 0.0 14 38.6 17.3 tl 12
e30 0.6 2.1 66 0.0 0.0 49 28.0 16.0 tl 14
e40 4.6 7.7 160 4.3 7.6 281 13.1 7.5 tl 15
e50 0.0 0.0 105 0.0 0.0 78 7.8 8.0 tl 15
e60 0.8 2.9 78 0.8 2.9 75 3.4 4.6 tl 15
e70 0.3 1.0 528 0.6 1.3 460 3.8 3.9 tl 15
e80 0.1 0.4 266 0.2 0.8 1081 2.2 3.7 tl 15
e90 0.8 1.2 1908 0.6 1.1 1835 1.0 1.2 tl 15
e100 0.7 1.5 4740 0.6 1.4 2845 1.3 2.1 tl 15
summary 0.9 1.9 160 0.8 1.7 281 11.0 7.1 tl 131
h20 0.0 0.0 20 0.0 0.0 24 23.3 12.7 tl 12
h30 5.2 11.4 985 5.0 11.4 720 34.1 11.9 tl 15
h40 5.9 8.1 tl 7.3 8.7 tl 21.6 11.6 tl 15
h50 8.9 8.0 tl 8.9 8.0 tl 11.9 6.7 tl 15
h60 6.8 6.9 tl 7.1 6.3 tl 9.5 6.5 tl 15
h70 2.5 3.4 tl 2.4 3.0 tl 4.8 6.2 tl 15
h80 1.4 2.3 tl 1.3 2.3 tl 1.6 3.1 tl 15
h90 2.4 4.3 tl 2.5 4.8 tl 2.8 6.4 tl 15
h100 1.0 0.9 tl 1.0 0.9 tl 0.1 0.5 tl 15
summary 3.8 5.0 tl 3.9 5.0 tl 12.2 7.3 tl 132

to find a higher number of feasible solution and generates slightly better gaps. STIF1000

is still far behind the other two algorithms w.r.t. the number of feasible solutions and
the number of solved instances.

For κ = 2000, DTIF2000 starts to pull ahead of TIF2000. For most instance sets TIF2000

and DTIF2000 perform almost equally well. However, for the instance sets h70, h80, and
h90, DTIF2000 significantly outperforms TIF2000. STIF2000 is still not able to catch up
to the other two algorithms. Moreover, for some instance sets STIF2000 still fails to
produce feasible solutions due to the time and memory limit.

Finally, for κ = 10000, most instances have become infeasible and all three algorithms
generate the same gaps for the few instances still permitting a feasible solution. However,
even now STIF10000 struggles with the time and memory limit.
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Table 7.10: Comparison of ITBRA with DEF. For each algorithm we provide the average
gaps to the best dual bound (gap), the standard deviation of the gaps (σ) and the median
computation times (t). “tl" indicates the termination of the program due to the time
limit. The summary is obtained by aggregating over the preceding rows using the same
function as for the respective column. The best values per instance set are highlighted
bold.

VDUE VDUE
SET+B SET+B
CPR MPR DEF

set gap[%] σ t[s] gap[%] σ t[s] gap[%] σ t[s]

e20 0.0 0.0 13 0.0 0.0 14 15.3 10.6 tl
e30 0.0 0.0 66 0.0 0.0 49 7.6 6.5 tl
e40 0.9 2.7 160 0.6 2.1 281 5.0 9.3 tl
e50 0.0 0.0 105 0.0 0.0 78 3.0 6.4 tl
e60 0.0 0.0 78 0.0 0.0 75 1.8 3.2 tl
e70 0.0 0.0 528 0.3 1.1 460 1.6 2.4 tl
e80 0.0 0.1 266 0.0 0.1 1081 1.0 1.7 tl
e90 0.1 0.2 1908 0.0 0.0 1835 1.5 2.8 tl
e100 0.1 0.1 4740 0.0 0.1 2845 2.0 1.8 tl
summary 0.1 0.3 160 0.1 0.4 281 4.3 5.0 tl
h20 0.0 0.0 20 0.0 0.0 24 19.6 11.4 tl
h30 0.4 1.1 985 0.2 0.6 720 32.0 12.6 tl
h40 0.8 2.3 tl 1.2 3.3 tl 19.2 12.8 tl
h50 2.3 2.7 tl 2.5 3.1 tl 15.4 9.0 tl
h60 2.1 4.4 tl 1.9 3.9 tl 5.2 5.9 tl
h70 3.5 5.1 tl 3.4 4.9 tl 7.4 7.6 tl
h80 0.1 0.4 tl 0.1 0.3 tl 1.0 1.6 tl
h90 0.8 1.7 tl 0.8 1.7 tl 4.4 5.8 tl
h100 0.3 0.6 tl 0.2 0.3 tl 1.0 1.5 tl
summary 1.1 2.0 tl 1.1 2.0 tl 11.7 7.6 tl

Similar to Figure 7.4, we compared all investigated time-indexed models using a one-tailed
Wilcoxon rank-sum test with a significance level of 0.05 based on the gaps to the best
found primal bounds of the instances. The results are shown in Figure 7.4 and coincide
with our evaluation. TIFκ produces smaller models and has therefore an advantage over
the other two algorithms for small values of κ. As κ increases, so does the performance
of DTIFκ. While TIF200 yields the best gaps for the easy instance sets, DTIF1000 turns
out to be the best algorithm in general. STIFκ produces by far the worst results for high
values of κ even though STIF is a stronger formulation than TIF and equally strong as
DTIF. This can mostly be explained due to the larger size of the model of STIF .

Finally, in Figure 7.5 we compare a selection of ITBRA strategies, GRASP, and differently
coarsened time-indexed models. The comparison is done by a one-tailed Wilcoxon rank-
sum test with a significance level of 0.05 and is based on the gaps to the best found
primal bounds of the instances. We have chosen the best as well as two inferior reference
bucket refinement strategies for ITBRA and compare them to the best found time-
indexed models and GRASP. The time-indexed models featured in Figure 7.5 are slightly
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Table 7.11: Comparison of differently coarsened TIF models with ITBRA. We provide
the median gaps to the best primal bound of the original problem (gap) and the median
computation times in seconds (t). Missing entries (“-”) indicate that the coarsened model
is not able to find a primal bound for any instance of the corresponding set. Moreover,
for each instance set we indicate the number of optimally (optc) and feasibly (feas) solved
instances w.r.t. the coarsened model. Column infeas denotes the number of instances with
proven infeasible model. Finally, we indicate the number of instances that terminated due
to the time limit (tl) or the memory limit (ml), respectively. The summary is obtained
by aggregating over the preceding rows using the same function as for the respective
column. The best values per instance set are highlighted bold.

VDUE VDUE
B SET+B

TIF100 TIF200 TIF1000 TIF2000 TIF10000 CPR CPR

set gap[%]med t[s] gap[%]med t[s] gap[%]med t[s] gap[%]med t[s] gap[%]med t[s] gap[%]med t[s] gap[%]med t[s]

e20 0.3 15 0.6 4 21.7 <1 24.0 <1 - - 0.0 13 0.0 14
e30 0.1 310 0.4 58 4.0 4 18.3 2 - - 0.0 66 0.0 49
e40 0.4 2940 0.5 698 3.8 40 13.5 6 - - 0.0 160 0.0 281
e50 0.2 409 0.4 113 1.9 17 6.4 5 - <1 0.0 105 0.0 78
e60 0.3 5569 0.4 839 2.4 52 4.7 21 - <1 0.0 78 0.0 75
e70 14.3 tl 0.3 2713 1.9 165 4.7 77 - <1 0.0 528 0.0 460
e80 - tl 0.3 5630 1.7 292 3.4 108 - <1 0.0 266 0.0 1081
e90 - tl - tl 1.1 555 3.0 327 - 1 0.0 1908 0.0 1835
e100 - tl - tl 1.8 652 4.0 263 - 6 0.0 4740 0.0 2845
summary 0.4 5569 0.4 839 1.9 52 4.7 21 - <1 0.0 160 0.0 281
h20 0.4 39 0.5 8 6.4 1 19.8 <1 - <1 0.0 20 0.0 24
h30 11.8 6106 0.6 1129 11.1 42 24.6 13 - - 0.0 985 0.0 720
h40 35.4 tl 0.6 tl 5.5 227 13.7 65 - <1 3.2 tl 6.5 tl
h50 - tl - tl 2.6 2815 11.3 381 - <1 8.4 tl 8.4 tl
h60 - tl 8.9 tl 2.5 1532 9.3 940 - <1 6.5 tl 6.2 tl
h70 - tl - tl 14.3 tl 10.4 3052 82.5 <1 0.0 tl 0.7 tl
h80 - tl - tl 5.8 tl 12.1 tl 77.0 3 0.0 tl 0.0 tl
h90 - tl - tl 9.0 tl 14.2 tl 93.8 8 0.3 tl 0.3 tl
h100 - tl - tl 39.6 tl 22.7 tl - 16 1.2 tl 1.2 tl
summary - tl - tl 6.4 2815 13.7 940 - <1 0.3 tl 0.7 tl

TIF100 TIF200 TIF1000 TIF2000 TIF10000

set optc feas infeas tl ml optc feas infeas tl optc feas infeas tl optc feas infeas tl optc feas infeas tl

e20 15 15 0 0 0 15 15 0 0 15 15 0 0 13 13 2 0 0 0 15 0
e30 15 15 0 0 0 15 15 0 0 15 15 0 0 15 15 0 0 0 0 15 0
e40 9 12 0 6 0 12 14 0 3 15 15 0 0 15 15 0 0 0 0 15 0
e50 13 14 0 2 0 14 14 0 1 15 15 0 0 15 15 0 0 2 2 13 0
e60 9 9 0 6 0 14 15 0 1 15 15 0 0 15 15 0 0 6 6 9 0
e70 6 9 0 9 0 12 14 0 3 15 15 0 0 15 15 0 0 2 2 13 0
e80 3 3 0 12 0 9 11 0 6 15 15 0 0 15 15 0 0 7 7 8 0
e90 0 0 0 13 2 6 7 0 9 14 14 0 1 14 15 0 1 4 4 11 0
e100 1 1 0 8 6 4 5 0 11 13 15 0 2 15 15 0 0 2 2 13 0
summary 71 78 0 56 8 101 110 0 34 132 134 0 3 132 133 2 1 23 23 112 0
h20 15 15 0 0 0 15 15 0 0 15 15 0 0 15 15 0 0 2 2 13 0
h30 8 12 0 7 0 14 15 0 1 15 15 0 0 14 14 1 0 0 0 15 0
h40 4 9 0 11 0 8 12 0 7 15 15 0 0 15 15 0 0 5 5 10 0
h50 1 4 0 14 0 4 7 0 11 12 15 0 3 15 15 0 0 6 6 9 0
h60 0 0 0 15 0 2 9 0 13 9 15 0 6 14 15 0 1 6 6 9 0
h70 0 0 0 15 0 0 1 0 15 4 10 0 11 10 15 0 5 8 8 7 0
h80 0 0 0 11 4 1 4 0 14 5 11 0 10 4 15 0 11 9 9 6 0
h90 0 0 0 12 3 1 1 0 14 4 12 0 11 6 12 0 9 8 8 7 0
h100 0 0 0 1 14 0 0 0 15 1 8 0 14 0 11 0 15 5 5 10 0
summary 28 40 0 86 21 45 64 0 90 80 116 0 55 93 127 1 41 49 49 86 0
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Table 7.12: Comparison of different time-indexed models for κ = 100. We provide the
median gaps to the best primal bound of the original problem (gap) and the median
computation times in seconds (t). Missing entries (“-”) indicate that the coarsened model
is not able to find a primal bound for any instance of the corresponding set. Moreover,
for each instance set we indicate the number of optimally (optc) and feasibly (feas) solved
instances w.r.t. the coarsened model. Column infeas denotes the number of instances
with proven infeasible model. We also provide the number of instances per instances
set for which a time-indexed model has found a better solution than ITBRA (better).
Finally, we indicate the number of instances that terminated due to the time limit (tl) or
the memory limit (ml), respectively. The summary is obtained by aggregating over the
preceding rows using the same function as for the respective column. The best values
per instance set are highlighted bold.

TIF100 DTIF100 STIF100

set gap[%]med t[s] gap[%]med t[s] gap[%]med t[s]

e20 0.3 15 0.3 64 0.3 279
e30 0.1 310 - tl 10.9 tl
e40 0.4 2940 - tl 92.7 tl
e50 0.2 409 - tl 79.4 tl
e60 0.3 5569 - tl 122.9 tl
e70 14.3 tl - - - tl
e80 - tl - - - tl
e90 - tl - - - tl
e100 - tl - - - tl
summary 0.4 5569 - tl 122.9 tl
h20 0.4 39 0.4 185 0.4 429
h30 11.8 6106 - tl 36.8 tl
h40 35.4 tl - tl 192.8 tl
h50 - tl - tl - tl
h60 - tl - - - tl
h70 - tl - - - tl
h80 - tl - - - tl
h90 - tl - - - tl
h100 - tl - - - tl
summary - tl - tl - tl

TIF100 DTIF100 STIF100

set opt feas infeas better mem opt feas infeas better mem opt feas infeas better mem

e20 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e30 15 15 0 0 0 2 2 0 0 13 4 15 0 0 0
e40 9 12 0 0 0 0 0 0 0 15 0 13 0 0 0
e50 13 14 0 0 0 0 0 0 0 15 0 11 0 0 0
e60 9 9 0 0 0 0 0 0 0 15 0 8 0 0 0
e70 6 9 0 0 0 0 0 0 0 15 0 2 0 0 0
e80 3 3 0 0 0 0 0 0 0 15 0 0 0 0 12
e90 0 0 0 0 2 0 0 0 0 14 0 0 0 0 15
e100 1 1 0 0 6 0 0 0 0 14 0 0 0 0 15
summary 71 78 0 0 8 17 17 0 0 116 19 64 0 0 42
h20 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
h30 8 12 0 1 0 1 1 0 0 14 2 14 0 0 0
h40 4 9 0 1 0 0 0 0 0 15 0 8 0 0 0
h50 1 4 0 0 0 0 0 0 0 15 0 1 0 0 0
h60 0 0 0 0 0 0 0 0 0 15 0 1 0 0 0
h70 0 0 0 0 0 0 0 0 0 15 0 0 0 0 14
h80 0 0 0 0 4 0 0 0 0 14 0 0 0 0 15
h90 0 0 0 0 3 0 0 0 0 13 0 0 0 0 15
h100 0 0 0 0 14 0 0 0 0 15 0 0 0 0 14
summary 28 40 0 2 21 16 16 0 0 116 17 39 0 0 58
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Table 7.13: Comparison of different time-indexed models for κ = 200. We provide the
median gaps to the best primal bound of the original problem (gap) and the median
computation times in seconds (t). Missing entries (“-”) indicate that the coarsened model
is not able to find a primal bound for any instance of the corresponding set. Moreover,
for each instance set we indicate the number of optimally (optc) and feasibly (feas) solved
instances w.r.t. the coarsened model. Column infeas denotes the number of instances
with proven infeasible model. We also provide the number of instances per instances
set for which a time-indexed model has found a better solution than ITBRA (better).
Finally, we indicate the number of instances that terminated due to the time limit (tl) or
the memory limit (ml), respectively. The summary is obtained by aggregating over the
preceding rows using the same function as for the respective column. The best values
per instance set are highlighted bold.

TIF200 DTIF200 STIF200

set gap[%]med t[s] gap[%]med t[s] gap[%]med t[s]

e20 0.6 4 0.6 16 0.6 46
e30 0.4 58 0.4 225 0.4 1158
e40 0.5 698 0.5 1403 14.7 tl
e50 0.4 113 - tl 78.8 tl
e60 0.4 839 - tl 78.1 tl
e70 0.3 2713 - tl - tl
e80 0.3 5630 - tl - tl
e90 - tl - tl - tl
e100 - tl - tl - tl
summary 0.4 839 - tl 78.8 tl
h20 0.5 8 0.5 40 0.5 59
h30 0.6 1129 1.4 861 1.6 2653
h40 0.6 tl - tl 20.9 tl
h50 - tl - tl - tl
h60 8.9 tl - tl - tl
h70 - tl - tl - tl
h80 - tl - tl - tl
h90 - tl - tl - tl
h100 - tl - - - tl
summary - tl - tl - tl

TIF200 DTIF200 STIF200

set opt feas infeas better mem opt feas infeas better mem opt feas infeas better mem

e20 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e30 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e40 12 14 0 1 0 10 14 0 2 1 4 15 0 1 0
e50 14 14 0 0 0 1 1 0 0 14 1 9 0 0 0
e60 14 15 0 1 0 0 0 0 0 15 0 9 0 0 0
e70 12 14 0 0 0 0 0 0 0 15 0 4 0 0 0
e80 9 11 0 0 0 0 0 0 0 15 0 0 0 0 11
e90 6 7 0 0 0 0 0 0 0 15 0 0 0 0 15
e100 4 5 0 0 0 0 0 0 0 15 0 0 0 0 15
summary 101 110 0 2 0 41 45 0 2 90 35 67 0 1 41
h20 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
h30 14 15 0 3 0 12 15 0 3 0 11 15 0 3 0
h40 8 12 0 5 0 1 1 0 0 14 3 11 0 0 0
h50 4 7 0 1 0 0 0 0 0 13 0 2 0 0 0
h60 2 9 0 4 0 0 0 0 0 15 0 0 0 0 0
h70 0 1 0 0 0 0 0 0 0 15 0 0 0 0 11
h80 1 4 0 0 0 0 0 0 0 15 0 0 0 0 15
h90 1 1 0 0 0 0 0 0 0 15 0 0 0 0 15
h100 0 0 0 0 0 0 0 0 0 13 0 0 0 0 14
summary 45 64 0 13 0 28 31 0 3 100 29 43 0 3 55
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Table 7.14: Comparison of different time-indexed models for κ = 1000. We provide the
median gaps to the best primal bound of the original problem (gap) and the median
computation times in seconds (t). Missing entries (“-”) indicate that the coarsened model
is not able to find a primal bound for any instance of the corresponding set. Moreover,
for each instance set we indicate the number of optimally (optc) and feasibly (feas) solved
instances w.r.t. the coarsened model. Column infeas denotes the number of instances
with proven infeasible model. We also provide the number of instances per instances
set for which a time-indexed model has found a better solution than ITBRA (better).
Finally, we indicate the number of instances that terminated due to the time limit (tl) or
the memory limit (ml), respectively. The summary is obtained by aggregating over the
preceding rows using the same function as for the respective column. The best values
per instance set are highlighted bold.

TIF1000 DTIF1000 STIF1000

set gap[%]med t[s] gap[%]med t[s] gap[%]med t[s]

e20 21.7 <1 21.7 1 21.7 4
e30 4.0 4 4.0 6 4.0 16
e40 3.8 40 3.8 30 3.8 70
e50 1.9 17 1.9 20 1.9 318
e60 2.4 52 2.4 67 2.4 892
e70 1.9 165 1.9 215 2.0 3326
e80 1.7 292 1.7 443 1.9 6350
e90 1.1 555 1.1 885 - tl
e100 1.8 652 1.8 1160 - tl
summary 1.9 52 1.9 67 3.8 892
h20 6.4 1 6.4 1 6.4 5
h30 11.1 42 11.1 19 11.1 39
h40 5.5 227 5.5 134 5.5 274
h50 2.6 2815 0.0 1291 0.0 1536
h60 2.5 1532 1.3 3496 3.2 2582
h70 14.3 tl 13.4 tl 26.0 tl
h80 5.8 tl 10.8 tl - tl
h90 9.0 tl 20.1 tl - tl
h100 39.6 tl 35.7 tl - tl
summary 6.4 2815 10.8 3496 11.1 2582

TIF1000 DTIF1000 STIF1000

set opt feas infeas better mem opt feas infeas better mem opt feas infeas better mem

e20 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e30 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e40 15 15 0 1 0 15 15 0 1 0 15 15 0 1 0
e50 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e60 15 15 0 1 0 15 15 0 1 0 15 15 0 1 0
e70 15 15 0 0 0 15 15 0 0 0 13 15 0 0 0
e80 15 15 0 0 0 15 15 0 0 0 10 13 0 0 1
e90 14 14 0 2 0 15 15 0 2 0 0 0 0 0 15
e100 13 15 0 0 0 14 15 0 0 0 0 0 0 0 15
summary 132 134 0 4 0 134 135 0 4 0 98 103 0 2 31
h20 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
h30 15 15 0 3 0 15 15 0 3 0 15 15 0 3 0
h40 15 15 0 5 0 15 15 0 5 0 15 15 0 5 0
h50 12 15 0 8 0 14 15 0 8 0 15 15 0 8 0
h60 9 15 0 7 0 9 15 0 8 0 9 15 0 6 0
h70 4 10 0 3 0 2 15 0 1 0 0 8 0 3 4
h80 5 11 0 2 0 4 15 0 1 0 0 0 0 0 15
h90 4 12 0 1 0 4 15 0 1 0 0 0 0 0 15
h100 1 8 0 1 0 1 15 0 1 0 0 0 0 0 15
summary 80 116 0 30 0 79 135 0 28 0 69 83 0 25 49
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Table 7.15: Comparison of different time-indexed models for κ = 2000. We provide the
median gaps to the best primal bound of the original problem (gap) and the median
computation times in seconds (t). Missing entries (“-”) indicate that the coarsened model
is not able to find a primal bound for any instance of the corresponding set. Moreover,
for each instance set we indicate the number of optimally (optc) and feasibly (feas) solved
instances w.r.t. the coarsened model. Column infeas denotes the number of instances
with proven infeasible model. We also provide the number of instances per instances
set for which a time-indexed model has found a better solution than ITBRA (better).
Finally, we indicate the number of instances that terminated due to the time limit (tl) or
the memory limit (ml), respectively. The summary is obtained by aggregating over the
preceding rows using the same function as for the respective column. The best values
per instance set are highlighted bold.

TIF2000 DTIF2000 STIF2000

set gap[%]med t[s] gap[%]med t[s] gap[%]med t[s]

e20 24.0 <1 24.0 <1 24.0 3
e30 18.3 2 18.3 2 18.3 8
e40 13.5 6 13.5 11 13.5 16
e50 6.4 5 6.4 7 6.4 36
e60 4.7 21 4.7 20 4.7 84
e70 4.7 77 4.7 89 4.7 341
e80 3.4 108 3.4 119 3.4 584
e90 3.0 327 2.9 177 - tl
e100 4.0 263 4.0 208 - tl
summary 4.7 21 4.7 20 13.5 84
h20 19.8 <1 19.8 <1 19.8 3
h30 24.6 13 24.6 5 24.6 15
h40 13.7 65 13.7 22 13.7 39
h50 11.3 381 11.3 136 11.3 241
h60 9.3 940 9.3 359 9.3 770
h70 10.4 3052 3.8 2555 5.7 2067
h80 12.1 tl 5.2 6823 - tl
h90 14.2 tl 8.1 tl - tl
h100 22.7 tl 25.7 tl - tl
summary 13.7 940 11.3 359 19.8 770

TIF2000 DTIF2000 STIF2000

set opt feas infeas better mem opt feas infeas better mem opt feas infeas better mem

e20 13 13 2 0 0 13 13 2 0 0 13 13 2 0 0
e30 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e40 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e50 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e60 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e70 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e80 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
e90 14 15 0 0 0 15 15 0 0 0 0 0 0 0 15
e100 15 15 0 0 0 15 15 0 0 0 0 0 0 0 13
summary 132 133 2 0 0 133 133 2 0 0 103 103 2 0 28
h20 15 15 0 0 0 15 15 0 0 0 15 15 0 0 0
h30 14 14 1 1 0 14 14 1 1 0 14 14 1 1 0
h40 15 15 0 1 0 15 15 0 1 0 15 15 0 1 0
h50 15 15 0 5 0 15 15 0 5 0 15 15 0 5 0
h60 14 15 0 5 0 14 15 0 5 0 15 15 0 5 0
h70 10 15 0 0 0 12 15 0 1 0 11 15 0 1 0
h80 4 15 0 0 0 9 15 0 2 0 0 0 0 0 14
h90 6 12 0 1 0 7 15 0 1 0 0 0 0 0 15
h100 0 11 0 0 0 1 15 0 1 0 0 0 0 0 15
summary 93 127 1 13 0 102 134 1 17 0 85 89 1 13 44
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Table 7.16: Comparison of different time-indexed models for κ = 10000. We provide the
median gaps to the best primal bound of the original problem (gap) and the median
computation times in seconds (t). Missing entries (“-”) indicate that the coarsened model
is not able to find a primal bound for any instance of the corresponding set. Moreover,
for each instance set we indicate the number of optimally (optc) and feasibly (feas) solved
instances w.r.t. the coarsened model. Column infeas denotes the number of instances
with proven infeasible model. We also provide the number of instances per instances
set for which a time-indexed model has found a better solution than ITBRA (better).
Finally, we indicate the number of instances that terminated due to the time limit (tl) or
the memory limit (ml), respectively. The summary is obtained by aggregating over the
preceding rows using the same function as for the respective column. The best values
per instance set are highlighted bold.

TIF10000 DTIF10000 STIF10000

set gap[%]med t[s] gap[%]med t[s] gap[%]med t[s]

e20 - - - - - -
e30 - - - - - -
e40 - - - - - -
e50 - <1 - <1 - 10
e60 - <1 - <1 - 15
e70 - <1 - <1 - 17
e80 - <1 - <1 - 22
e90 - 1 - <1 - 28
e100 - 6 - 1 - tl
summary - <1 - <1 - 22
h20 - <1 - <1 - 2
h30 - - - - - -
h40 - <1 - <1 - 7
h50 - <1 - <1 - 14
h60 - <1 - <1 - 18
h70 82.5 <1 82.5 <1 82.5 23
h80 77.0 3 77.0 <1 77.0 31
h90 93.8 8 93.8 <1 93.8 35
h100 - 16 - 1 - tl
summary - <1 - <1 - 23

TIF10000 DTIF10000 STIF10000

set opt feas infeas better mem opt feas infeas better mem opt feas infeas better mem

e20 0 0 15 0 0 0 0 15 0 0 0 0 15 0 0
e30 0 0 15 0 0 0 0 15 0 0 0 0 15 0 0
e40 0 0 15 0 0 0 0 15 0 0 0 0 15 0 0
e50 2 2 13 0 0 2 2 13 0 0 2 2 13 0 0
e60 6 6 9 0 0 6 6 9 0 0 6 6 9 0 0
e70 2 2 13 0 0 2 2 13 0 0 2 2 13 0 0
e80 7 7 8 0 0 7 7 8 0 0 7 7 8 0 0
e90 4 4 11 0 0 4 4 11 0 0 4 4 11 0 0
e100 2 2 13 0 0 2 2 13 0 0 0 0 12 0 3
summary 23 23 112 0 0 23 23 112 0 0 21 21 111 0 3
h20 2 2 13 0 0 2 2 13 0 0 2 2 13 0 0
h30 0 0 15 0 0 0 0 15 0 0 0 0 15 0 0
h40 5 5 10 0 0 5 5 10 0 0 5 5 10 0 0
h50 6 6 9 0 0 6 6 9 0 0 6 6 9 0 0
h60 6 6 9 0 0 6 6 9 0 0 6 6 9 0 0
h70 8 8 7 0 0 8 8 7 0 0 8 8 7 0 0
h80 9 9 6 0 0 9 9 6 0 0 9 9 6 0 0
h90 8 8 7 0 0 8 8 7 0 0 8 8 7 0 0
h100 5 5 10 0 0 5 5 10 0 0 0 0 0 0 15
summary 49 49 86 0 0 49 49 86 0 0 44 44 76 0 15
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Figure 7.4: Comparison of time-indexed models using a one-tailed Wilcoxon rank-sum
test with a significance level of 0.05 per difficulty setting and in total w.r.t. the gaps to
the best found primal bounds.

superior to GRASP especially w.r.t. the easy instance sets. Tables 7.12–7.16 show that
the time-indexed models are able to generate better primal bounds than ITBRA for some
instance sets. However, in general, even the most simple ITBRA refinement strategies
vastly outperform all time-indexed models w.r.t. generating primal bounds.
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Figure 7.5: Comparison of a selection of algorithms using a one-tailed Wilcoxon rank-sum
test with a significance level of 0.05 per difficulty setting and in total w.r.t. gaps to the
best found primal bounds.

80



CHAPTER 8
Conclusion and Future Work

In this work we considered a matheuristic, referred to as iterative time-bucket refine-
ment algorithm (ITBRA), intended for solving a resource-constrained project scheduling
problem (RCPSP) that requires scheduling in high resolution. We proposed a relaxation
for the original problem based on aggregating consecutive integral time points into
so-called time-buckets. Exploiting this relaxation we constructed a matheuristic that
solves this relaxation based on iteratively refined bucket partitionings. Moreover, we
heuristically derive primal bounds incorporating information from the relaxed solution.
The matheuristic then attempts to close the gap between dual bounds obtained from
the relaxation and primal bounds determined by (meta-)heuristics. The crucial part of
this approach is how to determine the subsequent (more refined) bucket partitioning
for the next iteration. We considered a variety of strategies and investigated them on a
novel benchmark set motivated by an application arising in particle therapy for cancer
treatment.

Our experiments indicate that it is most critical to limit the increase in the number of
buckets. However, the quality of the applied bucket splits has a substantial impact on
the convergence speed. Strategies VDUE,SET+B,CPR and VDUE,SET+B,MPR turned
out to work best in this respect.

The matheuristic works better than a simple greedy randomized adaptive search procedure
(GRASP) on all instance sets except for the most difficult one. There it fails to complete
a sufficient number of iterations to make reasonable improvements to the primal bound.

ITBRA clearly outperforms the compact mixed integer linear programming (MILP) for-
mulations. The considered discrete-event formulation (DEF) is only capable of computing
dual bounds for all of our benchmark instances but no primal bounds and the considered
time-indexed formulation (TIF) cannot even be solved due to its model size. Variants of
TIF based on a coarsened time horizon are manageable but become infeasible once too
many time points are disregarded. For some instances good primal solutions could be
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obtained but there exists no coarsening factor that works well in general by providing a
good balance between model size and result quality.

The disaggregated time-indexed formulation (DTIF) and the time-indexed formulation
with step variables (STIF) are also not able to keep up with ITBRA. STIF generates the
largest models which drastically increases the memory consumption and computation
time. For less coarsened time horizons DTIF struggles as well with the memory limit.
However, the more coarsened the time horizon is, the better is the performance of DTIF.
DTIF starts outperforming TIF shortly before the instances become infeasible due to
the crude time horizon.

8.1 Future Work
We primarily focused on MILP-based algorithms here. Another well-known exact tech-
nique often used to deal with scheduling problems is constraint programming (CP).
Consequently, it appears to be interesting to compare our matheuristic also to a suitable
CP approach. Moreover, it might also be relevant to consider CP techniques within
ITBRA to improve its performance. In general the (meta-)heuristics currently used
within the matheuristic are rather simple. In particular, they suffer from the effects of
fixing the time lags which prevents them from considering a large variety of possible
solutions. This is a crucial part of the matheuristic for which more elaborated techniques
should be identified and tested.

The bucket refinement strategies have a major impact on the total performance of ITBRA.
While the bucket selection strategy VDUE is unarguably superior to the other bucket
selection strategies, we could not identify a clear best strategy for the other parts of
the refinement strategy. Hence, developing more elaborate refinement strategies might
greatly improve the performance of ITBRA.

In this thesis bucket refinement strategies are only compared empirically. However, a
theoretical comparison of the investigated bucket refinement is necessary in order to
confirm our empirical evaluation and may also be useful for finding new refinement
strategies. In the context of comparing bucket refinement strategies, deriving minimal
bucket partitionings, i.e., bucket partitionings with a minimal number of buckets s.t. the
time-bucket relaxation (TBR) yields a feasible (and therefore optimal) solution, may also
be of interest. Even more interesting are minimum bucket partitionings, i.e., minimal
refinements with the smallest number of buckets. However, computing (and proving)
such refinements appears to be at least as challenging as finding optimal solutions.

In the computational study we investigated the power of our algorithm on a rather specific
set of benchmark instances. The fundamental approach, however, is in principle much
more generally applicable to problems that require scheduling in high resolution. To verify
this a more diversified set of benchmark instances, originating from different application
domains, has to be considered. Of course this requires adjusted MILP formulations and
adapted as well as novel bucket refinement strategies.
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