
A Multilevel Optimization Approach for Large
Scale Battery Exchange Station Location

Planning?

Thomas Jatschka1, Tobias Rodemann2, and Günther R. Raidl1

1 Institute of Logic and Computation, TU Wien, Austria
{tjatschk,raidl}@ac.tuwien.ac.at

2 Honda Research Institute Europe, Germany
tobias.rodemann@honda-ri.de

Abstract. We propose a multilevel optimization algorithm (MLO) for
solving large scale instances of the Multi-Period Battery Swapping Sta-
tion Location Problem (MBSSLP), i.e., a problem for deciding the place-
ment of battery swapping stations in an urban area. MLO generates a
solution to an MBSSLP instance in three steps. First the problem size is
iteratively reduced by coarsening. Then, a solution to the coarsest prob-
lem instance is determined, and finally the obtained solution is projected
to more fine grained problem instances in reverse order until a solution
to the original problem instance is obtained. We test our approach on
benchmark instances with up to 10000 areas for placing stations and
100000 user trips. We compare MLO to solving a mixed integer linear
program (MILP) in a direct way as well as solving the instances with a
construction heuristic (CH). Results show that MLO scales substantially
better for such large instances than the MILP or the CH.

Keywords: multilevel optimization · mixed integer linear programming
· E-mobility

1 Introduction

Electric vehicles (EVs) are becoming an increasingly popular way of transporta-
tion for the general public. However, a major inconvenience for the owners of an
EV is the long time it takes to recharge a vehicle’s battery. For smaller vehicles,
such as electric scooters, a promising way to overcome this problem is to ex-
change a vehicle’s battery instead of recharging it. Batteries of electric scooters
are compact enough such that users can exchange their depleted batteries for
fully charged ones at dedicated battery exchange stations within short time and
without assistance. At such stations batteries are recharged, and can later be
provided to customers again.

We consider the Multi-Period Battery Swapping Station Location Problem
(MBSSLP) as introduced in [3], where the setup costs for stations should be
? Thomas Jatschka acknowledges the financial support from the Honda Research In-
stitute Europe.

minimized while a certain amount of customer demand needs to be satisfied.
Each of the swapping stations is assumed to have a configurable number of slots
at which batteries are charged and can be exchanged. Moreover, it is assumed
that customers who want to change batteries specify their trip data (origin,
destination, approximate time) online and are automatically assigned by the
system to an appropriate station for the exchange (if one exists). As not every
customer is willing to travel to a suggested station, e.g., if the detour is too long,
the MBSSLP also considers a customer dropout which scales exponentially with
the length of the detour induced by traveling to the assigned station.

In [3] a large neighborhood search (LNS) was presented for solving MBSSLP
instances with up to roughly 2000 potential locations at which battery swapping
stations can be placed and 8000 origin-destination (O/D) pairs that describe
the customer trips. However, for real world applications especially the number of
O/D-pairs can be magnitudes higher. The LNS proposed in [3] applies a destroy-
and-repair scheme and uses a mixed integer linear programming based heuristic
for repairing solutions. Unfortunately, this technique does not scale well to much
larger instances. Finding good solutions for huge instances is in general a difficult
task, even for metaheuristics, and one often resorts to clustering, refinement, or
partitioning approaches that reduce the problem size or decompose the problem
into smaller subproblems.

In this work we propose a multilevel optimization (MLO) approach for ad-
dressing large MBSSLP instances with tens of thousands of potential station
areas and up to one hundred thousand user trips at which users need to swap
batteries. The presented MLO is based on the algorithmic framework proposed
by Walshaw [15], which has already been adapted to various mobility applica-
tions such as the traveling salesman problems [14], bike sharing station plan-
ning [7], and vehicle routing [10]. The basic idea of this approach is to generate
a sequence of coarsened problem instances – referred to as multilevel coarsening
– in which the problem sizes become successively smaller. After the coarsening
process, a solution to the coarsest problem instance is generated. This solution
is then iteratively projected to the problem instances of the multilevel coarsen-
ing in reverse order. Hence, after the final projection a solution to the original
problem is obtained.

The underlying problem structure of the MBSSLP is given by a bipartite
graph with one set representing the areas in which stations can be built and
the other set representing the O/D-pairs. An MBSSLP instance is coarsened
by first partitioning the nodes of the underlying graph and then deriving a
coarsened graph by contracting the nodes in each partition. For solving the
coarsest problem instances and for iteratively projecting solutions we make use of
mixed integer linear programs (MILPs). Hereby, the MILP projecting a solution
to a more detailed problem instance can be decomposed into subproblems, with
each subproblem being responsible for projecting a single node of the underlying
graph.

Our approach is experimentally evaluated on artificial benchmark scenarios
generated as in [3]. To get a grasp of the quality of the solutions found by MLO

we compare the solutions to solutions generated by a MILP solver as well as
solutions obtained from a construction heuristic for instances with up to tens
of thousands potential station areas and up to one hundred thousand O/D-
pairs. Results show that MLO scales substantially better than the MILP or the
construction heuristic, generating reasonably good results in a short amount of
time.

In the next Section we discuss related work. Section 3 provides a formal
definition of the MBSSLP. Afterwards, in Section 4, we detail our MLO ap-
proach. Section 5 describes the benchmark instances and presents and discusses
experimental results. Section 6 concludes this work with including outlook on
promising future work.

2 Related Work

The MBSSLP, originally proposed in [3], is a capacitated multiple allocation
facility location problem [8] and is loosely based on the capacitated deviation-
flow refueling location model introduced in [2]. The MBSSLP also takes into
account that not every customer is willing to travel to a predestined station
when the detour is too long. Such customer satisfaction factors are modeled via
a decay function as also done in, e.g., [13,6]. To the best of our knowledge, no
multilevel refinement approach has yet been proposed for problems regarding
the distribution of battery swapping stations or vehicle charging stations. In [5]
a survey of charging station locations problems is provided. This review provides
an overview of the size of instances which were considered in related work. From
the approaches that also consider capacities of stations, a simulated annealing
approach is described [16] to generate solutions for instances with up to 1400
potential station locations and about 15000 O/D-pairs. The instances for the
MBSSLP in [3] contained up to 2000 potential locations and 8000 O/D-pairs.

The MLO framework for optimization problems was originally proposed by
Walshaw [15] and has been applied to various applications, such as bike shar-
ing [7], vehicle routing [10], or traveling salesman problems [14]. In [11] Valejo
et al. give on overview of MLO approaches for complex networks.

3 The Multi-Period Battery Swapping Station Location
Problem

The Multi-Period Battery Swapping Station Location Problem (MBSSLP) was
originally proposed in [3]. We slightly modify the original MBSSLP formulation
from [3] in certain aspects. First, we now consider a cyclic time horizon instead
of a non-cyclic one as this appears to be more relevant in practice. More specif-
ically, we assume a time horizon of one day that is discretized into equally long
consecutive time intervals, for example hours. These intervals are indexed by
T = {1, . . . , tmax}. As we consider the planning horizon to be cyclic the pre-
decessor of the first interval is assumed to be the last one and the successor of

the last one the first interval. Second, we generalize the problem in the sense
that instead of speaking of specific potential locations for service stations, we
consider areas that may have more than one station. This extension is done in
foresight of our MLO approach.

We assume battery swapping stations can be set up in any of n different
areas referred to as set L. Each area l ∈ L has associated a maximum number
of possible stations rl ∈ N>0, a maximum number of possible battery charging
slots sl > 0 at each of these stations, fixed setup costs cl ≥ 0 for setting up one
station in this area, and building costs per slot bl ≥ 0.

In contrast to some other work [1] that uses detailed multi-agent simulations
to optimize system parameters, we model customers in an aggregated way as
estimated travel demands in the form of a set of origin-destination (O/D) pairs
(i.e., trips) Q and corresponding numbers dqt > 0 of how often the need of
swapping batteries is expected to arise within each time interval t ∈ T for each
O/D-pair q ∈ Q. Let m = |Q| be the number of O/D-pairs. As trips in an urban
environment, as we consider it, are usually rather short, we assume for simplicity
that trips start and end in the same time interval.

Similarly to [6], we consider the satisfaction of users in dependence of detour
lengths. Users will tend to avoid swapping batteries at trips for which detours
to a swapping station are longer or for some other reason less convenient. To
this end we associate each tuple (q, l) with q ∈ Q, l ∈ L for each time interval
t ∈ T with a value gqlt ∈ [0, 1] representing the satisfaction of customers. We
make this factor also dependent of time as, e.g., in peak hours users are likely
more hesitant to make a certain detour than in hours with not much traffic,
respectively.

Let us now define the bipartite undirected graph G = (Q,L,E), where the
node sets Q and L correspond to the O/D-pairs and the areas for building
swapping stations, respectively, Edge set E ⊆ Q× L shall include an edge (q, l)
for each O/D-pair q ∈ Q and area l ∈ L whenever a swapping station with l
could potentially satisfy (part of) the demand dqt, i.e., gqlt > 0 for at least one
t ∈ T . By N(q) ⊆ L, for q ∈ Q, we denote the set of adjacent nodes of node q,
which corresponds to the subset of areas that are able to service O/D-pair Q.
Vice versa, N(l) ⊂ Q, for any l ∈ L, denotes the adjacent nodes of the area node
l, and thus, the O/D-pairs area l may service.

The number of time intervals required for completely recharging a battery is
referred to as tc. We make here the simplifying assumption that charging any
battery always takes the same time and only completely recharged batteries are
provided to customers again. We denote the set of time intervals in which a
battery is not yet fully charged when returned to a station at time t ∈ T as
T ch(t) which is defined as T ch(t) = {((t+ i− 1) mod tmax) + 1 | i = 0, . . . , tc}.

In the original MBSSLP formulation a solution is feasible if a minimum
amount of total customer demand dmin is satisfied. In foresight of our MLO
approach we relax this condition in cases where dmin exceeds the total amount
of demand that can be satisfied in any solution to G, referred to as dmax(G), and
define a solution to be feasible if at least min(dmin, dmax(G)) demand is satisfied.

For the development of MLO, we also store for each edge (q, l) ∈ E(G)

the maximum demand d̂qlt that can be assigned from q to l in each time in-
terval t ∈ T , which is calculated by d̂qlt = min

(
d̄l

gqlt
, dqt

)
where d̄l refers to

the maximal necessary capacity of the stations in an area l ∈ L, i.e., d̄l =

min
(
rlsl, maxt∈T

∑
t′∈T ch(t)

∑
q∈N(l) gqlt′dqt′

)
.

A solution to the MBSSLP is primarily given by a pair of vectors x = (xl)l∈L
with xl ∈ {0, . . . , rl} and y = (yl)l∈L with yl ∈ {0, . . . ,

⌈
d̄l
⌉
}, where xl indicates

the number of swapping stations to be established in area l and yl represents the
respective total number of battery slots at these stations. Moreover, a solution
also has to specify which demand is fulfilled where. This is done by variables aqlt
that denote the part of dqt, q ∈ Q, which is assigned to an area l ∈ N(q) in time
interval t ∈ T . Customer satisfaction is considered by multiplying this assigned
demand aqlt with the factor gqlt in order to obtain the actually fulfilled demand
āqlt = gqltaqlt of O/D-pair q in area l in time interval t.

Based on the variables x, y, a, and ā the MBSSLP can be expressed as the
following MILP:

min
∑
l∈L

(clxl + blyl) (1)

xl · sl ≥ yl l ∈ L (2)
āqlt = gqlt · aqlt t ∈ T , q ∈ Q, l ∈ N(q) (3)∑
l∈N(q)

aqlt ≤ dqt t ∈ T , q ∈ Q (4)

∑
t′∈T ch(t)

∑
q∈N(l)

āqlt′ ≤ yl t ∈ T , l ∈ L (5)

∑
t∈T

∑
q∈Q

∑
l∈N(q)

āqlt ≥ min(dmin, dmax(G)) (6)

xl ∈ {0, . . . , rl} l ∈ L (7)

yl ∈ {0, . . . ,
⌈
d̄l
⌉
} l ∈ L (8)

0 ≤ aqlt ≤ d̂qlt t ∈ T , q ∈ Q, l ∈ N(q) (9)

0 ≤ āqlt ≤ gqltd̂qlt t ∈ T , q ∈ Q, l ∈ N(q) (10)

The goal of the objective function (1) is to find a feasible solution that mini-
mizes the setup costs for stations and their battery slots. Inequalities (2) ensure
that battery slots can only be allocated to an area l ∈ L if a sufficient num-
ber of stations is opened there. Equalities (3) calculate fulfilled demands āqlt
by applying the customer satisfaction factors gqlt to the assigned demands aqlt.
Constraints (4) enforce that the total demand assigned from an O/D-pair q to
areas does not exceed dqt for all t ∈ T . Inequalities (5) ensure that the capacity
yl is not exceeded at all areas over all time intervals. Note that by using āqlt
instead of aqlt in (5), we “overbook” areas to consider the expected case, simi-
larly as in [9]. Inequalities (5) also model that swapped batteries can be reused

after tc time intervals. The minimal satisfied demand to be fulfilled over all time
intervals is expressed by inequality (6). Finally, the domains of the variables are
given in (7)–(10). Note that dmax(G) can be calculated by replacing the objective
function (1) with

max

tmax∑
t=1

∑
q∈QK

∑
l∈N(q)

gqlt · aqlt (11)

and removing Constraint (6).

4 Multilevel Refinement Algorithm

Our Multilevel Optimization (MLO) approach follows the basic scheme proposed
by [15] and consists of three steps: iteratively coarsening the problem instance
by partitioning and contraction, solving the coarsest instance, and iteratively
uncoarsening by projection and possible refinement. During the coarsening step
the problem complexity is iteratively reduced by merging areas for setting up
stations and O/D-pairs until the size of the problem instance falls below a certain
threshold. Then, a solution to the coarsest instance is generated. Afterwards, this
solution is successively extended by projecting it to the less coarsened instances
and refining it, eventually resulting in a feasible solution to the original instance.

We define a multilevel coarsening for the MBSSLP by the graph sequence
{G0, . . . , GK} of G with Gi = (Qi, Li, Ei), for i = 0, . . . ,K. The graph on the
lowest level corresponds to the original graph G, i.e., G0 = G. As the original
problem graph G, each graph Gi also have respective associated values rl, sl, cl,
bl, and d̄l for the nodes l ∈ Li, values dqt for nodes q ∈ Qi, and values gqlt and
d̂qlt for the edges (q, l) ∈ Ei and t ∈ T . A graph Gi+1 with i ∈ {0, . . . ,K − 1}
is derived from Gi by partitioning Qi and Li and merging all nodes within
each partition. The vertices q ∈ Qi+1 and l ∈ Li+1 are associated with a non-
empty subset of Qi and Li, denoted as Qi

q and Li
l, referring to the respective

partitions of Gi. Hence, it must hold that Qi
q ∩Qi

q′ = ∅ and Li
l ∩Li

l′ = ∅ for any
q, q′ ∈ Qi, q 6= q′ and l, l′ ∈ Li, l 6= l′, and i = 1, . . . ,K. Finally, (q, l) is an edge
in Ei+1 if there is at least one edge between the nodes Qi

q and Li
l in G

i.
Algorithm 1 shows our MLO approach in pseudo-code. Note that in our

approach it cannot be guaranteed that a solution obtained for a graph Gi+1

can be projected to Gi such that the projected solution satisfies at least the
same amount of demand as the previous solution. Therefore, after projecting a
solution to a graph Gi, we refine it to increase the amount of satisfied demand
until the solution becomes feasible w.r.t. Gi.

In the following we describe the concrete steps of our MLO approach in more
detail.

Partitioning. A graph Gi+1 is derived from Gi by first partitioning the node
sets of Gi and then contracting the nodes within each partition. For deriving
the partitioning of our bipartite graphs we use the same approach as proposed
by Valejo et al. [12]. We first generate two unipartite graphs for each vertex set

Algorithm 1: MLO
Input : an MBSSLP instance, the number of coarsening steps K
Output: a solution (x, y, a)

1: i← 0;
2: Gi ← G;
3: while i < K do
4: Gi+1 ← coarsen(Gi);
5: i← i+ 1;
6: end while
7: (x, y, a)← solve problem w.r.t. Gi; // coarsest problem instance
8: while i > 0 do
9: (x, y, a)← project solution (x, y, a) for Gi to a solution for Gi−1;

10: (x, y, a)← refine solution (x, y, a);
11: i← i− 1;
12: end while
13: return (x, y, a);

Li, Qi of Gi via one-mode projection, i.e., the vertices of these unipartite graphs
are given by the vertices of the corresponding vertex set of Gi with two vertices
being adjacent if they have common neighbors in Gi. For calculating weights
between two nodes of u, v of Li or Qi, respectively, we use the Jaccard similarity
measure

χ(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

. (12)

Afterwards, each unipartite graph is partitioned independently via greedy
heavy-edge-matching (GHEM) [11]. GHEM is a variation of heavy-edge match-
ing [4]. The GHEM heuristic iterates over all edges of a graph in descending
order and in every iteration partitions the incident nodes of the current edge
and removes them from the graph.

Contracting. Recall that we denote a partition of nodes of Gi−1 as Qi−1
q and

Li−1
l , respectively, with q ∈ Qi, l ∈ Li, for i = 1, . . . ,K.
When contracting nodes, one has to also aggregate the associated node and

edge properties in meaningful ways. To facilitate the later projection of solutions,
we split the coarsening of Gi−1 into two steps, first deriving from Gi−1 an in-
termediate graph G̃i, in which only the partitions on Li−1 are merged, and then
from G̃i the actual Gi in which also the partitions on Qi−1 are merged. In the
following we denote the node and edge sets of G̃i as well as all associated values
correspondingly with a tilde, i.e., G̃i = (Q̃i, L̃i, Ẽi). Moreover, Ñ i(·) refers to
adjacent nodes of nodes in G̃i, whereas N i(·) refers only to neighbors of nodes
in Gi.

To obtain G̃i, we thus directly adopt Q̃i = Qi−1 together with the properties
associated with these nodes, i.e., the respective demands. The partitions on Li−1

on the other hand are merged to obtain the new area node set L̃i.

Maximum allowed demand assignments for (q, l) ∈ Ẽi pairs are now calcu-
lated as

d̂qlt = min

 ∑
l′∈Li−1

l

d̂ql′t, dqt

 , (13)

and the customer satisfaction factors are determined as weighted average

gqlt =

∑
l′∈Li−1

l
d̂ql′t · gql′t∑

l′∈Li−1
l

d̂ql′t
. (14)

The maximum demand that can be fulfilled by the stations in an area l ∈ L̃i

in any time interval is determined by

d̄l = min

 ∑
l′∈Li−1

l

d̄l, max
t∈T

∑
t′∈T ch(t)

∑
q∈Ñi(l)

gqlt′ d̂qlt′

 . (15)

For each l ∈ L̃i, sl, cl, and bl are averaged in a weighted manner:

sl =

⌈∑
l′∈Li−1

l′
d̄l′sl′∑

l′∈Li−1
l

d̄l′

⌉
, cl =

∑
l′∈Li−1

l
d̄l′cl′∑

l′∈Li−1
l

d̄l′
, bl =

∑
l′∈Li−1

l
d̄l′bl′∑

l′∈Li−1
l

d̄l′
(16)

Finally, maximum station numbers are derived by

rl =

⌈
d̄l
sl

⌉
. (17)

To finally obtain Gi from the intermediate G̃i, we directly adopt Li = L̃i

together with all the properties associated with these nodes, while merging the
partitions on Q̃i obtaining the new O/D-pair node set Qi.

Customer satisfaction factors are aggregated again by taking the weighted
average

gqlt =

∑
q′∈Q̃i−1

q
d̂q′lt · gq′lt∑

q′∈Q̃i
q
d̂q′lt

. (18)

For each edge (q, l) ∈ Ẽi and each t ∈ T , the maximum assignable demand
is calculated by

d̂qlt = min

 ∑
q′∈Q̃i

q

d̂q′lt,
d̄l
gqlt

 . (19)

The demands of these O/D-pairs are aggregated by taking the respective
sums for all q ∈ Q̃i and t ∈ T while also considering the maximal amount of
demand dqlt that can be assigned to stations at all adjacent areas l ∈ N i(q) :

dqt = min

 ∑
q′∈Q̃i

q

dq′t,
∑

l∈Ni(q)

d̂qlt

 . (20)

Note that due to the aggregation of the customer satisfaction factors g, it can-
not be guaranteed that dmax(Gi) ≥ dmin. Therefore, as previously discussed we
have relaxed the original feasibility criterion of the MBSSLP such that a solution
to a graph Gi is feasible if at least min(dmin, dmax(Gi)) demand is satisfied.

Solving the Coarsest Graph. The MILP (1)–(10) is used to generate a solu-
tion to the coarsest graph GK .

Projecting. A solution to a graph Gi is projected to the graph Gi−1 in two
steps. First the solution is projected to G̃i and then further projected to Gi−1.

Let x, y, and a be defined as described in Section 3. Projecting a solution
from Gi to G̃i is done by solving a linear program (LP) for each q ∈ Qi:

max
∑

q′∈Qi
q

∑
l∈Ñi(q)

∑
t∈T

gq′ltaq′lt
bl

(21)

∑
l∈Ñi(q′)

aq′lt ≤ dq′t t ∈ T , q′ ∈ Qi−1
q (22)

∑
q′∈Ñi(l)∩Qi

q

gq′lt · aq′lt ≤ gqlt · aqlt t ∈ T , l ∈ N i(q) (23)

0 ≤ aq′lt ≤ d̂q′lt t ∈ T , q′ ∈ Qi
q, l ∈ Ñ i(q′) (24)

The objective function of this LP maximizes the ratio of assigned demand
to costs for building modules at the respective areas. Constraints (22) ensure
that assigned demand does not exceed an O/D-pair’s available demand. Con-
straints (23) ensure that the total demand assigned from all q′ ∈ Qi−1

q to some
l ∈ L̃i does not exceed the demand assigned from q to l. Hence, the total num-
ber of battery slots required in an area does not increase when projecting the
solution to G̃i. Note that the sub-problems induced by q ∈ Qi can be solved in-
dependently of each other. However, the total satisfied demand for the obtained
solution might be smaller than the satisfied demand in the solution to Gi.

When the solution is projected from G̃i to Gi−1, we again have one sub-
problem for each l ∈ L̃i. In this step we also aim to compensate for satisfied
demand lost in previous solution projections. Let dmissing denote the difference
between dmin and the amount of demand satisfied in a solution and let δmin(l) =∑

q∈Ñi(l) gqlt · aqlt + dmissing for l ∈ L̃i. Then, when projecting the solution
w.r.t. l, the minimal amount of demand to be satisfied by the areas in Li

l is
min(δmin(l), dmax(Li−1

l)) where dmax(Li−1
l) is the maximal amount of demand

that can be satisfied by the areas in Li−1
l . Moreover, when projecting the solution

w.r.t. L̃i we do not only consider the demand allocated at the areas in the solution
but also take into account the so far unassigned demand of all O/D-pairs in Q̃i.
Hence, a sub-problem for l ∈ L̃i induces a sub-instance with the areas Li−1

l ,
the O/D-pairs q ∈ Ñ i(l) with available demands δqt for t ∈ T , and a minimal
amount of demand to be satisfied δmin(l). This sub-instance can then be solved

Algorithm 2: Project Solution from G̃i to Gi

Input : a solution (x, y, a) to G̃i

Output: a solution to Gi−1

1: Λ← {l ∈ L̃i | xl > 0}; //areas to be extended

2: ρ←
(∑

q∈Ñi(l)
gqlt·aqlt

xl·cl+yl·bl

)
l∈Λ

;

3: δmin ← dmin −
∑
t∈T ,l∈Λ,q∈Ñi(l) aqlt;

4: δ ←
(
dqt −

∑
l∈Ñi(q) aqlt

)
q∈Q̃i,t∈T

; //unassigned demand

5: while |Λ| > 0 do
6: if δmin > 0 then
7: l← arg maxl∈Λ{ρl};
8: else
9: l← arg minl∈Λ{ρl};

10: end if
11: Λ← Λ \ {l};

12: δmin ← δmin +
∑
q∈Ñi(l) gqlt · aqlt;

13: δqt ← δqt +
∑
q∈Ñi(l) aqlt;

14: (x′, y′, a′)← solve(Li−1
l , Ñ i(l), δmin, δ) //apply MILP (1)–(10)

15: for l′ ∈ Li−1
l do

16: xl′ ← x′l′ , yl′ ← y′l′ ;
17: for q ∈ N i−1(l′), t ∈ T do
18: aql′t ← a′ql′t;
19: δmin ← δmin − gql′t · aql′t;
20: δqt ← δqt − aql′t;
21: end for
22: end for
23: end while
24: return (x, y, a);

by the MILP (1)–(10). Algorithm 2 gives a detailed description of how δ and
δmin(l) are calculated for each sub-problem. Note that these sub-problems are
no longer independent of each other. Therefore, the order in which they are
solved impacts the quality of the projected solution. To keep the setup costs of
the projected solution as low as possible, Algorithm 2 chooses the sub-problem
induced by the most cost efficient area l ∈ L̃i if dmissing is greater than zero
as next one. Otherwise, if the current solution satisfies dmin demand, the sub-
problem induced by the least cost efficient area is solved next.

Refine Solution. After projecting a solution from G̃i+1 to Gi via Algorithm 2,
the obtained solution may be infeasible as it cannot be guaranteed that a solution
to a sub-problem w.r.t. l ∈ L̃i can actually satisfy δmin(l) demand. Therefore, it

Algorithm 3: Refine Solution
Input : a solution (x, y, a) to Gi

Output: a refined solution to Gi

1: Λ← Li;
2: ρ←

(
(rl − xl) · cl + (dd̄le − yl) · bl

)
l∈Λ;

3: δmin ← dmin −
∑
t∈T ,l∈Λ,q∈Ni(l) aqlt;

4: δ ←
(
dqt −

∑
l∈N(q) aqlt

)
q∈Q̃i,t∈T

; //unassigned demand

5: while δmin > 0 do
6: l← arg minl∈Λ{ρl};
7: Λ← Λ \ l;
8: δmin ← δmin +

∑
q∈Ni(l) gqlt · aqlt;

9: δqt ← δqt +
∑
q∈Ni(l) aqlt;

10: (x′, y′, a′)← solve(l, N i(l), δmin, δ); //apply MILP (1)–(10)

11: xl ← x′l, yl ← y′l;
12: for q ∈ N(l′), t ∈ T do
13: aqlt ← a′qlt;
14: δmin ← δmin − gqlt · aqlt;
15: δqt ← δqt − aqlt;
16: end for
17: end while
18: return (x, y, a);

may be necessary to further refine the obtained solution, i.e., to open additional
modules or areas and assign demand to them. Our refinement procedure is shown
in Algorithm 3. Similar to Algorithm 2 for each l ∈ Li with xl = 0 we define
a sub-instance with area l, O/D-pairs q ∈ N i(l) with available demands δqt for
t ∈ T , and a minimal amount of demand to be satisfied δmin(l). Again, this sub-
instance can be solved by the MILP (1)–(10). While the solution is infeasible the
sub-instance induced by the cheapest area is chosen and solved. Note that we
use Algorithm 3 also as standalone construction heuristic (CH) and will compare
the performance of MLO to the performance of CH.

5 Computational Results

We test our approach on artificial instances generated as described in [3]. A total
of eight groups of instances identified by their number of station areas n and
number of O/D pairs m as (n,m) is created. Each group contains 30 instances.
Note that the instances contain some station areas that have no O/D pairs in
the vicinity and vice versa. These unconnected nodes are deleted during prepro-
cessing. Table 1 gives an overview over all instance groups. Columns npp and
mpp list the average numbers of station areas and O/D pairs, respectively after
preprocessing. Note that the number of actually usable station areas strongly

Table 1: Test instance groups and the average numbers of nodes after prepro-
cessing.

n m npp mpp

5000 5000 2354 4936
12500 3086 12410
25000 3663 24821
50000 4194 49634

n m npp mpp

10000 10000 4658 9457
25000 6130 24845
50000 7300 49714

100000 8394 99407

Table 2: Results obtained by solving the MILP with Gurobi.
n m γLB[%] nfeasible τ [s]

5000 5000 3.47 30 7200
12500 12.01 30 7200
25000 6.40 25 7200
50000 4.41 7 7202

10000 10000 21.79 30 7200
25000 13.77 24 7201
50000 - 0 -

100000 - 0 -

depends on the number of O/D pairs, i.e., the more O/D pairs a graph with
a fixed number of station areas has, the more station areas are adjacent to an
O/D pair.

MLO was implemented in Julia3 1.8.1 using Gurobi4 9.1 as underlying MILP
solver. All test runs have been executed on an AMD EPYC 7402, 2.80GHz ma-
chine in single-threaded mode with a global memory limit of 100GB. When solv-
ing MILPs during MLO we have set a time limit of ten minutes and terminated
the solving when an optimality gap of ≤ 0.5% was reached.

First, Table 2 shows the results for generating solutions to the benchmark
instances by solving the MILP (1)–(10) with Gurobi with a runtime limit of
two hours. Column γLB shows average optimality gaps between the best found
solutions and the respective lower bounds. Additionally, column nfeasible shows
for how many instances in a group the solver was able to find a feasible solution.
Finally, column τ shows median computation times. We can see that the MILP
solver was not able to find a feasible solution within the given time limit for
a large part of the instances. In general, the larger the instances, the fewer
solutions were found by the MILP solver. However, there are three groups for
which the MILP solver was able to find a feasible solution to all instances:
(5000, 5000), (5000, 12500), and (10000, 10000). Looking at these groups we can
also see that the optimality gaps are strongly increasing the larger the instances

3 https://julialang.org/
4 https://www.gurobi.com/

https://julialang.org/
https://www.gurobi.com/

(5000, 5000) (5000, 12500) (5000, 25000) (5000, 50000) (10000, 10000) (10000, 25000) (10000, 50000) (10000, 100000)
(n,m)

0

10

20

30

40

LB
[%

]

K=3
K=4
K=5
MILP

Fig. 1: Comparison of results obtained by a MILP solver to results obtained by
MLO with different values for K.

become. Moreover, for the two largest instance groups the MILP solver was not
able to find any feasible solution at all within the time limit.

Next, in Figure 1 we compare different variants of MLO to the pure MILP
approach. MLO was able to find feasible solutions for all instances, however,
for this comparison we only consider instances to which MLO as well as the
MILP solver were able to find solutions. To compare the two approaches we use
the best found lowest bound for each instance reported by Gurobi to calculate
optimality gaps for the MLO results. We test MLO with different numbers of
coarsening levels K ∈ {3, 4, 5}. The figure shows that for the reported instances,
MLO achieves optimality gaps between 6% to 18%. For the instance groups
(5000, 12500), and (10000, 10000), for which the MILP solver found solutions to
all instances and the group (10000, 25000), MLO is able to achieve better results
than the MILP. Otherwise, the MILP solutions are usually better than the MLO
solutions. However, one has to consider, that the MILP solver was not able find
solutions to a large part of the instances at all. Additionally, the MILP solver
terminated after two hours, while MLO was much faster.

To get a better impression of how well MLO performs, Tables 3–5 give more
detailed results for MLO. As previously mentioned the construction heuristic
used for refining solutions after projection can also be used as a standalone
construction heuristic (CH). Therefore, we also compare the results obtained
by MLO to the results achieved with this construction heuristic. Columns γCH

show the average gap between the MLO results and the CH results for each
instance group. More specifically, let fMLO refer to the objective value of a
solution obtained with MLO and let fCH refer to the objective value of a solution
(to the same instance) generated by CH. Then, γCH = fCH−fMLO

fCH
· 100. Hence,

if γCH is negative, MLO achieved better results, otherwise the better result was
achieved by CH. Additionally, the tables also show the average number of sub-
problems nproj solved when projecting the solution, the average time τc needed
for generating all coarsened graphs, the average time τcp for generating a solution
to the coarsest graph, as well as the average total computation time τ . Results
indicated that MLO clearly outperforms CH w.r.t. the obtained solution quality,
yielding solutions that are up to ≈ 49% better on average. Note that the gaps

Table 3: MLO results for K = 3.
n m γCH[%] nproj τc[s] τcp[s] τ [s]

5000 5000 -37.38 5279 6 36 103
12500 -48.54 13032 12 123 265
25000 -36.84 24688 28 96 385
50000 -22.09 47304 77 81 663

10000 10000 -37.62 10156 10 132 241
25000 -48.93 26035 24 457 747
50000 -36.88 49348 58 358 954

100000 -22.09 94635 173 292 1624

Table 4: MLO results for K = 4.
n m γCH[%] nproj τc[s] τcp[s] τ [s]

5000 5000 -34.30 5950 6 20 86
12500 -46.85 14275 11 14 154
25000 -35.68 26764 26 12 277
50000 -21.63 51073 71 17 552

10000 10000 -34.32 11466 9 39 149
25000 -47.21 28480 22 50 325
50000 -35.59 53482 54 41 603
100000 -21.46 102171 160 60 1301

Table 5: MLO results for K = 5.
n m γCH[%] nproj τc[s] τcp[s] τ [s]

5000 5000 -33.50 6276 6 3 68
12500 -46.12 14920 11 2 139
25000 -34.71 27870 25 3 271
50000 -21.44 53064 70 5 543

10000 10000 -33.67 12113 9 8 117
25000 -46.75 29759 21 6 281
50000 -34.76 55703 51 9 576

100000 -21.42 106172 155 15 1255

generally decrease as m increases. Due to a higher number of O/D pairs, a
larger number of opened stations is required. Hence, the difference between the
worst solution (the solution in which all stations are opened with a maximum
number of modules) and an optimal solution becomes smaller. Therefore, one can
also expect to achieve “better" results more easily as m increases. As expected,
one can also observe that the number of sub-problems that need to be solved
during the projection phase increases proportionally to K. However, in general
the number of sub-problems solved is roughly equal to m. As the number of
sub-problems increases, the total computation times actually decrease as the
coarsest problem instance can be solved significantly faster for larger values of
K. In general, it seems that the computation times grow proportional to n and
m. For the largest instance group MLO needed up to 27 minutes on average to
generate solutions. Moreover, coarsening of the graphs contributes only a small
part of the total computation time. Finally, we can also observe that the solution
quality slightly deteriorates as K increases. This behavior is not surprising as the
coarsest instance becomes a less accurate representation of the original instance
the more often it was coarsened.

6 Conclusion and Future Work

We presented a Multilevel Optimization (MLO) approach for solving huge in-
stances of the Multi-Period Battery Swapping Station Location Problem (MB-
SSLP) proposed in [3]. MLO first generates series of coarsened graphs with each

new graph becoming smaller in size. Afterwards, a solution to the coarsest graph
is generated and iteratively projected to the coarsened graphs in reverse order
until and refined a solution to the original problem graph is obtained.

The approach was tested on artificial benchmark instances with up to 10000
areas for placing stations and 100000 origin-destination (O/D) pairs describing
the trips of users. Evaluating our approach on these benchmark instances shows
that MLO is able to generate reasonably good solutions within at most half an
hour. On the other hand, when formulating and solving the problem as a mixed
integer linear program (MILP), the MILP solver struggles to even find any fea-
sible solutions to many instances. As the size of the instances increases, MLO
clearly outperform the MILP solver w.r.t. the achieved solution quality. When
confronted with such huge instances, classical metaheuristics usually struggle as
well to obtain good results. Therefore, we also compared MLO to the construc-
tion heuristic (CH) that was used within MLO for refining solutions. Our results
show that MLO significantly outperforms CH w.r.t. all instances.

Still, there are multiple ways in which MLO can possibly be improved, espe-
cially w.r.t. deriving the coarsened graphs. Using greedy heavy-edge matching
we obtain a graph partitioning that contains at most two nodes in each parti-
tion. However, it seems promising to adapt this approach such that partitions
of larger size can be generated if, for example, one can identify large similarities
between multiple nodes. In order to identify similar nodes more reliably it seems
also necessary to derive a more problem specific similarity criterion. A possible
way to achieve this is to use machine learning for learning the similarity between
two nodes.

A particular issue for MLO is that the amount of satisfied demand can de-
crease when projecting a solution. A potential way to alleviate this problem is to
derive constraints that restrict the possibilities in how a node can be projected.

In this contribution we have explicitly specified how often a graph should be
coarsened. Additionally, in each iteration both the set of station areas as well as
the set of O/D-pairs is coarsened. In future work we aim to adapt MLO such
that a graph is coarsened until both of its vertex sets have in some sense ideal
sizes.

Finally, in the real world a solution obtained by MLO is in general not build
at once but gradually over time. Therefore, an interesting further problem is to
also optimize the schedule by which the stations should be built when realizing
the obtained solution.

References

1. Brulin, S., Bujny, M., Puphal, T., Menzel, S.: Data-driven evolutionary optimiza-
tion of eVTOL design concepts based on multi-agent simulations. In: Proceedings
of the American Institute of Aeronautics and Astronautics SciTech Forum (to ap-
pear)

2. Hosseini, M., MirHassani, S., Hooshmand, F.: Deviation-flow refueling location
problem with capacitated facilities: Model and algorithm. Transportation Research
Part D: Transport and Environment 54, 269–281 (2017)

3. Jatschka, T., Oberweger, F.F., Rodemann, T., Raidl, G.R.: Distributing battery
swapping stations for electric scooters in an urban area. In: Olenev, N., Evtushenko,
Y., Khachay, M., Malkova, V. (eds.) Optimization and Applications, Proceedings
of OPTIMA 2020 – XI International Conference Optimization and Applications.
LNCS, vol. 12422, pp. 150–165. Springer (2020)

4. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20(1), 359–392 (1998).
https://doi.org/10.1137/S1064827595287997

5. Kchaou-Boujelben, M.: Charging station location problem: A comprehensive re-
view on models and solution approaches. Transportation Research Part C: Emerg-
ing Technologies 132 (2021)

6. Kim, J.G., Kuby, M.: The deviation-flow refueling location model for optimizing
a network of refueling stations. International Journal of Hydrogen Energy 37(6),
5406–5420 (2012)

7. Kloimüllner, C., Raidl, G.R.: Hierarchical clustering and multilevel refinement for
the bike-sharing station planning problem. In: Battiti, R., Kvasov, D.E., Sergeyev,
Y.D. (eds.) Learning and Intelligent Optimization. LNCS, vol. 10556, pp. 150–165.
Springer International Publishing, Cham (2017)

8. Laporte, G., Nickel, S., da Gama, F.S. (eds.): Location science. Springer (2015)
9. Murali, P., Ordóñez, F., Dessouky, M.M.: Facility location under demand uncer-

tainty: Response to a large-scale bio-terror attack. Socio-Economic Planning Sci-
ences 46(1), 78–87 (2012), special Issue: Disaster Planning and Logistics: Part
1

10. Pirkwieser, S., Raidl, G.R.: Multilevel variable neighborhood search for periodic
routing problems. In: Cowling, P., Merz, P. (eds.) Evolutionary Computation
in Combinatorial Optimization. LNCS, vol. 6022, pp. 226–238. Springer (2010).
https://doi.org/10.1007/978-3-642-12139-5_20

11. Valejo, A., Ferreira, V., Fabbri, R., Oliveira, M.C.F.d., Lopes, A.d.A.: A critical
survey of the multilevel method in complex networks. ACM Computing Surveys
53(2) (2020)

12. Valejo, A., Ferreira, V., de Oliveira, M.C.F., de Andrade Lopes, A.: Community
detection in bipartite network: A modified coarsening approach. In: Lossio-Ventura,
J.A., Alatrista-Salas, H. (eds.) Information Management and Big Data. pp. 123–
136. Communications in Computer and Information Science, Springer International
Publishing (2018)

13. Verter, V., Lapierre, S.D.: Location of preventive health care facilities. Annals of
Operations Research 110(1), 123–132 (2002)

14. Walshaw, C.: A multilevel approach to the travelling salesman problem. Oper. Res.
50(5), 862–877 (2002)

15. Walshaw, C.: Multilevel refinement for combinatorial optimisation problems. Ann.
Oper. Res. 131(1), 325–372 (2004)

16. Zockaie, A., Aashtiani, H.Z., Ghamami, M., (Marco) Nie, Y.: Solving detour-based
fuel stations location problems. Computer-Aided Civil and Infrastructure Engi-
neering 31(2), 132–144 (2016)

https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1007/978-3-642-12139-5_20
https://doi.org/10.1007/978-3-642-12139-5_20

	A Multilevel Optimization Approach for Large Scale Battery Exchange Station Location Planning

