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Abstract

We consider the Regenerator Location Problem (RLP) in optical fibre communication networks:
As optical signals deteriorate in dependence of the distance from the source, regenerator devices need
to be installed at a subset of the network nodes so that no segment of any communication path without
an intermediate regenerator exceeds an allowed maximum length. The objective is to place a smallest
possible number of regenerators in order to satisfy this condition. We propose two new construction
heuristics based on identifying and exploiting cliques and independent sets of the network graph.
These strategies are further extended to Greedy Randomized Adaptive Search Procedures (GRASP)
that also include new destroy and recreate local search phases. Excellent results are obtained in an
experimental comparison with a previously described GRASP.

1 Introduction

Over the past twenty years the internet has become a key technology for the modern information society.
It has sustainably influenced our every day life, having a strong impact on the way how we behave,
communicate and think. This formative potential is integrated in numerous applications and services
like video sharing, online gaming, voice over IP, mobile internet and social media in its full extent.
As a consequence an exponential growth of traffic for telecommunication networks is obligatory. To
satisfy the needs of growing demands for these underlying networks, optical fibre technology has proven
to be the best choice. Compared to copper wire it offers substantially higher bandwidths, less signal
degradation and is cheaper in acquisition. These characteristics enable optical networks to be the state-
of-the-art of high speed data transmission.

In this article we address the Regenerator Location Problem (RLP), which deals with the geograph-
ical transmission of information in optical networks. Despite the fact that optical fibre has less signal
degradation than copper wire, the strength of an optical signal still deteriorates as it gets farther from the
source. The distance a signal can travel without too much loss of quality is limited by a certain value.
For larger distances optical signal regenerators need to be installed throughout the network at a subset of
the nodes. Since regenerators are considered to be expensive the RLP aims to deploy as few such devices
as possible, while ensuring that all nodes in the network can communicate with each other.

After introducing the problem more formally in the next section and reviewing the literature, we
present two new concepts for a heuristic solution construction based on exploiting cliques and inde-
pendent sets, respectively. These strategies are then further extended to different variants of a Greedy
Randomized Adaptive Search Procedure (GRASP). Experimental comparisons indicate that a hybrid
GRASP variant in which clique as well as independent set based mechanisms are used together work
best and yield new state-of-the-art results.

2 Regenerator Location Problem and Communication Graph

An instance of the RLP is given by an undirected, connected and weighted graph G = (V,E, d), where
V is the set of nodes, E ⊆ V 2 is the set of edges and di,j ≥ 0 is the length of each edges (i, j) ∈ E.

1The second author is partly funded by the Vienna Science and Technology Fund (WWTF) through project ICT10-027.
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Figure 1: Exemplary RLP instance and its corresponding communication graph.

Moreover a constant dmax specifies the maximum distance a signal can travel without the need of regen-
eration. A solution to the RLP is a subset of nodes R ⊆ V where regenerators are to be installed. Such a
solution is feasible if each pair of nodes u, v ∈ V can communicate, i.e., either the length of the shortest
path does not exceed dmax, or a path exists with regenerator nodes placed on it in such a way that no
subpath without an intermediate regenerator node exceeds the limit dmax. Among all feasible solutions,
we are interested in a cheapest one, i.e., we minimize the number of selected regenerators |R|.

Chen et al. [3] introduced the communication graph for the RLP, which is obtained by the following
transformation from G and provides a more convenient and efficient way to check feasibility:

1. Initialize the communication graph M = (V,E′) with V being the same set of nodes as in G and
E′ being an empty edge set.

2. Utilizing an all-pair shortest path algorithm, an edge (u, v) ∈ V × V is added to E′, if and only if
the shortest path length from u to v does not exceed dmax, i.e., if no regenerators are required on
this path.

The complementary set ofE′, i.e.,E′ = V ×V \E′, contains all not directly connected node pairs (NDC
pairs), which must be connected via regenerators to obtain a feasible solution to the RLP. Since the com-
munication graph only consists of edges having lengths not exceeding dmax, the feasibility of a solution
can now also be defined in a simpler way: For each pair of nodes u, v ∈ V , u 6= v, there must exist a path
in M from u to v which either corresponds to a single edge or has regenerators placed on all its inner
nodes. Figure 1 shows an example for an RLP instance and its corresponding communication graph.

Having a closer look at the example the set of NDC pairs in the communication graph is E′ =
{(A,D), (A,E), (A,F), (B,E), (C,D), (C,E), (C,F), (D,E)}. To connect the NDC pair (A,D) a re-
generator placed at node B is necessary. Since this regenerator also connects the NDC pairs (C,D), (A,F)
and (C,F) only the pairs {(A,E), (B,E), (C,E), (D,E)} remain. Another regenerator placed at node F
connects all NDC pairs left and for this reason an optimal solution for this example is R = {B,F}.

A successive preprocessing of the communication graph frequently reduces the number of nodes,
fixes nodes on which regenerators must be placed, adds further edges, and may divide the original graph
in several independently solvable communication graphs [3]:

• Assuming |V | ≥ 3, for each node u ∈ V having degree one in M , we must install a regenerator at
its single neighbor since otherwise u cannot communicate with the remaining node(s); node u can
then be removed as it will be able to communicate with all other nodes if and only if its neighbor
is able to do so.

• More generally, regenerator nodes need to be installed at any cut point in M . A cut point is a
node whose removal would disconnect the graph into separated components. All these cut points
must be regenerator nodes as otherwise no communication would be possible between the different
components. The cut points of a graph can be identified by a classic algorithm for determining its
biconnected components, such as the algorithm from Hopfroft and Tarjan [10] that is based on
depth-first search and runs in O(|E|) time.
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• Once we have installed a regenerator at a node u by one of the above steps, all its neighbors N(u)
in M can communicate with each other via u. Any node pair v, v′ ∈ N(u) that was so far not di-
rectly connected can now be considered connected, and consequently we add a corresponding edge
(v, v′) to E′. In this way, a regenerator node and its neighbors become a fully connected clique.

• Even more generally, if nodes with installed regenerators are directly connected, all their individual
neighbors are able to communicate with each other, and they are therefore connected to a clique.

• Knowing the biconnected components allows for an exact decomposition of the RLP into indepen-
dent subproblems: The RLP can be solved for each biconnected component independently, and
the overall solution is obtained as the union of the subproblem’s solutions.

Especially on sparse input graphs, this preprocessing typically reduces the complexity considerably.
The decomposition into independent subproblems even allows for a straight-forward parallelization. The
nodes the preprocessing already identifies as necessary places for regenerators do not need to be paid
further special attention when solving the remaining reduced problem(s): As observed in [3], an optimal
solution to the reduced problem will not have another regenerator placed there since such a regenerator
would not decrease the number of NDC pairs further – all its neighbors are already connected in M .

3 Related Work

While communication network design obviously is a huge research area, the RLP as we consider it here
has only recently gained attention and relatively few approaches for solving it exist so far.

Chen et al. [3] prove its NP-completeness via a reduction from the vertex cover problem and propose
three construction heuristics as well as an exact branch-and-cut algorithm. The first heuristic is a straight-
forward greedy approach that iteratively selects a node where the placement of a regenerator reduces the
number of NDC pairs the most; after each regenerator placement, the communication graph is updated
accordingly. The second heuristic, called H1, exploits the observation that an optimal solution to the
RLP on the communication graph M can also be represented as a spanning tree with regenerators placed
at all internal nodes of the tree. The RLP thus corresponds to finding a spanning tree in M with a
smallest number of internal nodes, or in other words, to finding a maximum leaf spanning tree [8].
Heuristic H1 builds a spanning tree iteratively by starting with a node with smallest degree and always
appending a reachable node having maximum degree and placing a regenerator on it. The procedure
terminates when all nodes are reachable. The third heuristic H2 is derived from H1 but also includes
the updating of the communication graph as in the greedy approach. Solutions obtained from one of the
construction heuristics are locally improved by utilizing a 2-for-1 neighborhood structure, which tries
to replace any pair of placed regenerators by a single regenerator placed at some other node without
becoming infeasible. The branch-and-cut approach is based on a cut-formulation of the RLP modeling
it as a Steiner arborescence problem with a unit degree constraint. Experimental results show that the
branch-and-cut is a viable approach for problems with up to 100 nodes, while especially H2 scales also
well to much larger instances.

Duarte et al. [5] propose a GRASP using a randomized variant of the greedy algorithm and the
2-for-1 local search from [3]. The randomization of the greedy heuristic takes place in a GRASP-typical
way: In each iteration the set of all feasible candidate elements, i.e., the nodes considered for placing a
regenerator, is reduced to a restricted candidate list RCL and one element is selected from it uniformly
at random. A regenerator is placed on the corresponding node, the communication graph updated and
the process repeated until M is complete. The reduction to the RCL is done by including only candidate
nodes where the installation of a regenerator would reduce the number of NDC pairs above a cutoff-value
that is determined from the respective minimum and maximum values.

In an earlier technical report [4], Duarte et al. also investigated other variants of GRASP based on
the H1 and H2 from [3] and a random-key genetic algorithm. They perform tests with instances of up to
100 nodes and in particular conclude that GRASP is superior to the genetic algorithm.
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Figure 2: Placing regenerators merges adjacent maximal cliques.

Chen et al. [2] introduce the Generalized RLP in which they distinguish between two different kinds
of nodes, the nodes for which communication needs to be ensured and nodes that may be selected for
placing regenerators. The RLP as defined before can be considered the special case where these two
node sets coincide. The authors present a greedy heuristic as well as a multi-commodity flow based
mixed integer linear programming approach for it, which are based on similar ideas as their work in [3].

In the related Regenerator Placement Problem (RPP) [1, 12, 13, 15], a set of requests is given, e.g.,
in the form of a connection demand matrix, in addition to the network graph G. The objective is then
to find appropriate routes in combination with installing a minimum number of regenerators to realize
the specified communication demands. Thus, RPP differs from our RLP by considering specific routes.
Flammini et al. [7] investigated the complexity of diverse variants of this problem.

Further related work addresses the issue of regenerator placement within larger network design prob-
lems. E.g., Yetginer and Karasan [9, 14] consider regenerator placement in the context of traffic engi-
neering with restoration, and Gouveia et al. [9] focus on an MPLS over WDM network design problem
in which the so-called WDM path constraint forbids path segments between two components that are
longer than a given maximum length.

4 Clique and Independent Set Based GRASP

We utilize two basic structures of graph theory, cliques and independent sets, to exploit further structural
aspects of the RLP on the communication graph by guiding the heuristic construction of solutions in
promising ways. Considering the communication graph M = (V,E′), a clique is a subset of the nodes
C ⊆ V such that for every pair of nodes u, v ∈ C, u 6= v, there exists an edge (u, v) ∈ E′. An
independent set in M is a node set I ⊆ V where no two nodes are adjacent, i.e., for every pair of nodes
u, v ∈ I , (u, v) /∈ E′ holds.

We consider two different concepts for utilizing cliques and independent sets in construction and
local search procedures,

• one which subsequently merges existing cliques by the introduction of regenerators until only one
big clique is left,

• and another strategy which tries to identify independent sets whose nodes should be connected
with as few as possible regenerators.

4.1 Clique Based Solution Construction

Updating the communication graph iteratively by adding additional edges to E′ each time a regenerator
is introduced implies that M is fully connected once a feasible solution is found; i.e., in the end the
communication graph forms one large clique. The placement of a regenerator at some node u ∈ V can
therefore be perceived as a merge process of two or more maximal cliques incident to u into a bigger
one. Looking at the example graph 1 in Fig. 2, the two maximal cliques {A,B,C} and {C,D,E} share
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Figure 3: Clique based solution construction heuristic.

the common node C. The placement of a regenerator in node C leads to the single maximum clique
{A,B,C,D,E}. In graph 2 the two cliques {A,B,C} and {D,E,F} are disjoint, and it is not possible
to merge them by placing a single regenerator. A first regenerator installed in node D would be a possible
choice yielding the cliques {B,D,E,F} and {A,B,C}, both sharing now the common node B, where a
second regenerator would finally yield the complete graph. This observations lead to the assumption that
it is desirable to identify as large cliques as possible while getting along with few clique merge steps.
Another noticeable fact is that a node within a clique having no adjacent nodes outside the clique needs
not to be considered as a candidate to house a regenerator. Therefore candidate nodes can frequently be
eliminated when bigger cliques are obtained.

Our construction procedure exploiting this clique-merge point-of-view determines in each iteration
cliques in M so that each node belongs to exactly one clique; i.e., the node set V is partitioned into
disjoint cliques. Note that single nodes may also form individual cliques in this context. Each clique is
greedily constructed by starting with a node u ∈ V not being part of a clique so far and having highest
degree. All its neighbors U = N(u) are determined, and the clique is iteratively grown by always adding
a node v ∈ U which has the most adjacent nodes in U . U is updated by removing v and all nodes that
are not adjacent to v. Ties are broken randomly.

Having determined the partitioning ofM into cliques, a new regenerator is deployed on a node that is
chosen according to a valuation function Φ(u), u ∈ V . As motivated before, the next regenerator should
be one that is expected to lead to a small overall number of clique merges. Therefore Φ(u) first considers
all neighbors N(u) and their associated cliques. Since we cannot expect that placing a regenerator at u
will in general be able to merge all these cliques, we define Φ(u) as the sum of the number of adjacent
nodes per neighboring clique divided by the cardinality of the neighboring clique. More specifically, let
C(u) = {C1, . . . , C|C(u)|} be the set of all neighboring cliques of u, then

Φ(u) =

|C(u)|∑
i=1

|N(u) ∩ Ci|
|Ci|

. (1)

The node u ∈ V with the highest score Φ(u) is added to the set of regenerator nodes R. In case of ties
the node having higher degree is favored, and if node degrees are also equal, ties are broken randomly.

Finally the communication graph is updated accordingly, adding for each NDC node pair which is
now connected an edge to E′. The whole process is iterated until M is complete.

Considering the example in Fig. 3, the clique construction procedure determines at the beginning of
the first iteration cliques {(A,C,H), (F, I, J), (E,G), (B), (D)}. The score for each candidate node is
listed in the table on the right hand side. For example, candidate node C has a score of Φ(C) = 2

2+ 1
1 = 2,

which is together with the equal score of E highest among all nodes’ scores. Since node C has higher
degree than E, C is considered most promising, and a regenerator is installed on it.
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4.2 Independent Set Based Solution Construction

Our second strategy follows a dual point-of-view and is based on independent sets. Since the identifi-
cation of NDC node pairs which would become connected in case of a regenerator placement can be
computationally relatively costly, we consider a faster alternative. In principle, an NDC node pair cor-
responds to an independent set of cardinality two. An independent set of cardinality larger than two
therefore can be interpreted as a generalization; i.e., it is a larger set of nodes among which no com-
munication is possible so far at all. If we can place a regenerator at a node with many of its neighbors
being part of an identified independent set, this is in general highly desirable, since a quadratic number
of NDC pairs can be connected in this way. An evaluation based on the number of nodes being part of
an independent set may be computationally significantly less expensive than iteratively determining the
exact number of NDC pairs that would be connected for each candidate node.

In more detail, our approach determines in each major iteration maximal independent sets by greedily
finding maximal cliques on the complementary graph M of the communication graph M . Note that any
clique of some graph always is an independent set for its complementary graph. For finding the cliques,
we essentially use the same algorithm as in the clique based heuristic described above, but with one
major difference: The cliques are now not required to be disjoint anymore, i.e., one node can be part
of several cliques, and the construction of each clique is thus stopped only when a maximal clique is
reached. Further cliques are constructed until each node appears in at least one clique.

Next it is checked if there is an independent set consisting of only a single node. As all independent
sets are now maximal, this would mean that there is no other node which is not adjacent to the particular
candidate node in M . In this case we therefore place a regenerator at this node which immediately
connects all remaining NDC node pairs.

Otherwise we evaluate all candidate nodes u ∈ V again by a valuation function Ψ(u), which is now
aimed at finding the place where an additional regenerator would connect most independent set nodes.
More precisely, let I be the set of independent sets, then

Ψ(u) =

|I|∏
j=1

max(1, |N(u) ∩ Ij |)
|Ij |

. (2)

We consider each independent set Ij , j = 1, . . . , |I|, and determine its fraction of nodes that are
neighbors of u and would therefore be connected by placing a regenerator at u. These fractions are
multiplied for all independent sets so that more emphasis is put on nodes u connecting several nodes
from several independent sets instead of possibly more nodes from only a single or very few independent
set(s). This latter aspect is important as in this way, typically the more “central” nodes are also preferred.
Again, the candidate node u ∈ V with highest score is added to the set of regenerator nodes R. In case
of ties nodes with higher degree are favored or, in case of also equal degree, ties are broken randomly.
Finally, the communication graph and its complementary graph are updated, i.e., edges are added for
newly connected nodes to M and removed from M , respectively. The whole process is repeated until M
is complete.

In Fig. 4 the independent set construction procedure first determines all independent sets using the
described strategy and then calculates Ψ(u) for each node u ∈ V , see the table at the right side. As node
B has the highest score, a regenerator is installed on it.

A simplified variant of the independent set construction heuristic determines only a single indepen-
dent set in each iteration. While it is considerably faster, we lose some quality in the selection of the
next regenerator node. This single maximum independent set is derived using a marking algorithm on
the communication graph: The node which has the fewest adjacent umarked neighbors is marked as next
independent set node and its neighbors are marked as “already used”. To partly compensate the loss
of quality in the selection of the best candidate node the valuation function Φ(u) is enhanced taking
an adaptive aspect into account. Let I1 be the single independent set and SP (v, w) be the length of a
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Figure 4: Independent set based solution construction heuristic.

shortest path between two vertices v, w ∈ V in terms of the number of edges in M , then

Φ(u) =
|N(u) ∩ I1|
|I1|

+
|R|
|V |
·

maxv∈V,w∈R SP (v, w)

max(minw∈R SP (u,w), 1)
. (3)

At the beginning of the solution construction the cardinality of R is small and the second term therefore
also tends to be small. In this phase the preferred regenerator is the one, which primarily connects most
independent set nodes. The more regenerators are identified, the more it is important for a candidate node
to have a short (relative) distance to another regenerator, which is expressed by the second term. This
assumption makes sense since a feasible solution to the RLP can always be obtained by constructing a
spanning tree on the communication graph M and placing regenerators on all its internal nodes. The se-
lection of the next regenerator node as well as updating the communication graph and its complementary
graph is done as usual.

4.3 Advanced Local Search

As mentioned, previous work [5] only considered a 2-for-1 neighborhood structure for locally improving
candidate solutions. Frequently, only few improvement steps are possible in such a local search. Some-
times, a reordering of regenerator nodes would allow for further reductions, but this option has so far not
been considered. Hence we introduce larger destruct and recreate neighborhood structures based on our
clique and independent set construction mechanisms.

Each one consists of two phases, starting with a destruction phase where some regenerators are tem-
porarily removed followed by a recreation phase where the previously presented clique or independent
set based strategy is used to complete the infeasible solution again. Note that this approach can also be
perceived as a Very Large Neighborhood Search. We used a combination of two different destruction
methods, i.e., ways to select the regenerators to be removed:

The first one is based on the observation that a solution to the RLP on M can also be interpreted as
maximum leaf spanning tree. Since a feasible set of regenerators corresponds to all the internal nodes of
such a spanning tree, the idea is to flatten its branches and to remove redundant regenerators. Therefore
each regenerator node u ∈ R is evaluated w.r.t. its number of adjacent regenerators r(u). Given a cutoff
value α and the minimum as well as maximum values rmin and rmax, a regenerator node u is removed
from R, if

r(u) ≤ rmin + α · (rmax − rmin). (4)

In case of the situation that all regenerator nodes share exactly the same number of adjacent regenerators,
only those with the highest node degree remain in the temporary solution.

In addition we use as second destruction mechanism a uniform random selection of regenerator
nodes, where each node is selected with probability α. Based on preliminary experiments we finally
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RN1
Algorithm �-Iter �-|R| #-Best �-tBest

CG-GRASP 365.1 4.54 985 (98.5%) 5.43
CL-GRASP 2280.9 4.53 996 (99.6%) 1.10
IS-GRASP 2604.1 4.53 1000 (100.0%) 0.33
SIS-GRASP 3009.8 4.53 1000 (100.0%) 0.31
Hyb-GRASP 2506.9 4.53 1000 (100.0%) 0.24

EN1
Algorithm �-Iter �-|R| #-Best �-tBest

CG-GRASP 4626.2 11.97 783 (97.9%) 9.05s
CL-GRASP 970.3 11.95 793 (99.1%) 3.85s
IS-GRASP 1049.0 11.94 800 (100.0%) 0.81s
SIS-GRASP 1769.0 11.95 795 (99.4%) 2.96s
Hyb-GRASP 1014.0 11.94 800 (100.0%) 0.33s

Table 1: Results on the small instance sets RN1 and EN1.

RN2
Algorithm �-Iter �-|R| #-Best �-tBest

CG-GRASP 21.7 7.97 428 (42.8%) 354.75s
CL-GRASP 29.1 7.17 741 (74.1%) 193.48s
IS-GRASP 187.9 7.10 819 (81.9%) 131.49s
SIS-GRASP 297.6 7.24 720 (72.0%) 188.90s
Hyb-GRASP 85.0 7.07 848 (84.8%) 115.00s

EN2
Algorithm �-Iter �-|R| #-Best �-tBest

CG-GRASP 9.0 12.57 149 (18.6%) 575.72s
CL-GRASP 18.2 11.88 377 (47.1%) 394.22s
IS-GRASP 41.5 11.39 670 (83.8%) 135.81s
SIS-GRASP 143.9 11.80 375 (46.9%) 387.59s
Hyb-GRASP 34.4 11.37 688 (86.0%) 123.17s

Table 2: Results on the large instance sets RN2 and EN2.

decided to apply the spanning tree based selection with a probability of 2/3 and otherwise the random
selection.

4.4 GRASP

For a general introduction to GRASP see e.g. [6]. Its basic principle is to iteratively apply a randomized
version of a construction heuristic for the problem at hand to create a set of diverse, meaningful initial
solutions. These are typically further improved by some local search. The overall best solution is finally
returned as result.

Our construction procedures described in the paragraphs above already include random decisions:
As mentioned, ties are finally always broken uniformly at random. Experimental investigations indicated
that such ties occur relatively frequently, and consequently, solutions created in different runs are already
relatively diverse. We considered a further randomization as it is usually done in GRASP by randomly
selecting from restricted candidate lists, but in the end decided to stay with the already originally available
randomness. A further significant randomization appeared to most likely degrade performance.

As local improvement within our GRASP, we apply the above advanced local search. In the course
of this paper we studied the following GRASP variants: CG-GRASP is an efficient reimplementation
from [5], parameterized by α = 0.6 as suggested. CL-GRASP, IS-GRASP, and SIS-GRASP make use
of the clique, independent set, and simplified independent set mechanisms, respectively, using them for
the construction of starting solutions as well as in the destroy-and-recreate local search. Hyb-GRASP
is a fifth variant in which we combine the independent set based construction approach with the clique
based destroy and recreate neighborhood structure.

For further algorithmic details and variants, especially also a Variable Neighborhood Search making
use of the clique and independent set based mechanisms, we refer to the first author’s master thesis [11].

5 Experimental Results

In our computational experiments we use four test sets. Sets RN1 and RN2 are the smaller and larger
random network instances from [3], respectively. There are 10 instances for each combination of |V | ∈
{40, 60, 80, 100} (RN1) as well as |V | ∈ {200, 300, 400, 500} (RN2) and proportion of NDC node pairs
p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The other two benchmark sets contain small and large self-generated Eu-
clidean network instances EN1 and EN2. In these cases, nodes correspond to randomly selected points in
a square of size 100×100. There are again 10 instances for each combination of |V | ∈ {40, 60, 80, 100}
(EN1) as well as |V | ∈ {200, 300, 400, 500} (EN2) and dmax ∈ {20, 30, 40, 50}.
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For a fair comparison among the different GRASP variants, we terminated each metaheuristic run
after the same instance-specific CPU-time, which was chosen by preliminary tests so that the slowest
GRASP variant could achieve at least 100 iterations in RN1 and EN1. Due to time limitations for the
evaluation of RN2 and EN2 the metaheuristic runs had to be terminated after a maximum period of
two hours per instance. For each instance five independent runs were executed with each metaheuristic,
collecting the information on the average total number of iterations�-Iter, the average number of needed
regenerators�-|R|, the number of times a finally obtained solution corresponds to the overall best-known
solution #-Best, and the average runtime until a best-known solution was found �-tBest (or the total
runtime if the best-known solution was not found). The destruct and recreate local search was continued
until ten consecutive iterations had not been able to improve the solution, and the cutoff value α for
selecting nodes in the destruction phase was set to 0.55. Results are listed in Table 1 and Table 2. Since
the test sets RN1 and RN2 consists of 200 instances, the maximum number of best-known solutions is
1000 in these cases, and for EN1 and EN2 it is 800.

We can observe that the GRASP-variants using the new clique and independent set based strategies
perform in general much more average iterations per instance than the CG-GRASP. There is only one
outlier in the EN1 test set, where the CG-GRASP performs on instances consisting of 40 nodes consid-
erably more average iterations than the other heuristics. Due to the effects of preprocessing on sparse
graphs CG-GRASP is able to evaluate candidate nodes in these cases in a very fast way, without having
the overhead of determining cliques or independent sets first. On instances consisting of 60,80 and 100
nodes, our new GRASP variants are faster again and thus perform more iterations.

Especially on the large instance sets RN2 and EN2 our approaches in general obtain significantly
more often best-known solutions than the previously introduced CG-GRASP. Overall, the best results
are achieved by Hyb-GRASP. Its independent set based strategy for constructing starting solutions is
complemented very well by the clique based destroy and recreate local search, and due to the combi-
nation of these different strategies more diverse solutions are investigated. It is also remarkable that
SIS-GRASP performs very well in comparison to CG-GRASP and consistently executes the most itera-
tions per instance due to its short running times, although it cannot catch up with Hyb-GRASP.

To check if observed performance differences w.r.t. the numbers of obtained best-known solutions are
significant among the different GRASP variants, we applied paired Wilcoxon signed rank tests. Results
indicate that Hyb-GRASP and IS-GRASP dominate all other algorithms on error levels of less than 2.5%.
Hyb-GRASP dominates IS-GRASP on an error level of 3.9%. The third place was shared by CL-GRASP
and SIS-GRASP achieving significantly more best-known solutions than CG-GRASP on an error level
of again less than 2.5%.

6 Conclusions

In this article we have introduced new strategies for selecting regenerator nodes in the course of heuris-
tically constructing solutions to the RLP. These strategies make use of two fundamental principles from
graph theory, i.e., cliques and independent sets. The construction techniques are further utilized in an
advanced local search based on a destroy and recreate concept. Ultimately, we iteratively apply our con-
struction procedures together with the destroy and recreate local search, representing different variants
of GRASP. No explicit additional randomization of the construction heuristics turned out to be neces-
sary due to the already originally included randomized tie breaking. Our experimental results indicate
that within the same time, the new GRASP variants obtain significantly more best-known solutions than
CG-GRASP from [5]. Especially Hyb-GRASP, where the independent set based construction of starting
solutions is combined with the clique-based destroy and recreate local search, achieves the best results,
closely followed by IS-GRASP which uses independent set concepts only. The simplified independent
set heuristic is fastest and therefore the most iterations can in general be executed with it within the
allotted time. SIS-GRASP competes very well with CG-GRASP, although it cannot catch up with Hyb-
GRASP and IS-GRASP.

In future work it seems promising to exploit the proposed clique and independent set based solution

Singapore, August 4–8, 2013



id–10 MIC 2013: The X Metaheuristics International Conference

construction principles also in approaches for related problems like the generalized RLP, the RPP, or
more general network design problems where regenerator placement is a considered aspect.
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