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Abstract

This thesis introduces the reader to the basics of constraint programming, including the main
concepts such as search space, variables and their domains, and constraints. Furthermore, the
constraint satisfaction problem modeling process, and the general procedure required to solve it
is introduced. Constraint satisfaction problem solving concepts such as propagation and branch-
ing are explained for a general constraint satisfaction problem as well.

Interval constraint programming, a subclass of constraint programming where the domains
of variables in the problems are intervals, is then introduced. Then, basic concepts of interval
arithmetic needed for interval constraint programming are shown. Afterwards, the peculiari-
ties of interval constraint satisfaction problems, as opposed to general constraint satisfaction
problems are highlighted. Furthermore, generic consistency notions, namely, node and arc con-
sistency are introduced. They are followed with the description of hull consistency and box
consistency, which are the two consistency notions relevant to interval constraint programming.
A method for enforcing both hull and box consistency is given in detail.

The C++ constraint programming framework Gecode is then briefly presented. An extension
of Gecode supporting interval constraint programming, that was developed alongside this thesis,
is described in detail. The implementation relies on the Boost Interval library to handle intervals.
To implement the box consistency propagator, an additional library, namely, SymbolicC++ was
used, and had to be extended as well. The necessary extensions of SymbolicC++ library are
described as well.

The implemented extension was tested on various scalable benchmarks, namely Broyden
Banded, Broyden Tridiagonal and Brown, each having its unique properties testing, and high-
lighting a particular feature of the system. Experiments on Broyden Banded show that Symbol-
icC++ may have been a suboptimal choice for the extension, as it suffers from relatively high
constraint initialization time. Broyden Tridiagonal evaluates the performance of box consistency
propagation, whereas Brown evaluates hull consistency propagators.

The final test of the extension is the 3D reconstruction problem. The formal description of
the problem is given, and the results of the 3D reconstruction obtained with the extension are
shown, both statistically and graphically.
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Kurzfassung

Die vorliegende Arbeit führt den Leser zunüchst in die Grundlagen von Constraint Programming
sowie hierfür relevante Konzepte wie Suchräume, Variablen, ihre Domänen und Constraints ein.
Weiters wird beschrieben wie reale Probleme als Constraint Satisfaction Modelle dargestellt und
gelöst werden können. Grundprinzipien wie Constraint Propagation und die Baumsuche werden
skizziert.

Interval Constraint Programming ist eine Unterklasse von Constraint Programming, in der
die Domänen der Variablen Intervalle sind. Um diese näher zu betrachten werden zunächst die
Grundlagen der Intervall-Arithmetik vorgestellt. Danach wird auf Besonderheiten der Interval
Constraint Satisfaction Probleme eingegangen. Neben Konsistenzbegriffen wie Knoten- und Bo-
genkonsistenz haben nun Hüllen- und Boxkonsistenzen eine große Bedeutung. Algorithmen um
die beiden letztgenannten Konsistenzen zu erreichen werden im Detail beschrieben. Gecode
ist eine C++ Constraint Programming Entwicklungsumgebung, für die in dieser Diplomarbeit
entsprechende Erweiterungen für Inverval Constraint Programming entwickelt wurden. Für die
Intervallarithmetik wurde hierfür auf die Boost-Library sowie SymbolicC++ zurückgegriffen.

Die implementierte Erweiterung wurde auf verschiedenen skalierbaren Benchmark-Instanzen
getestet, nämlich Broyden Banded, Broyden Tridiagonal und Brown. Jede dieser Benchmark-
Instanzen hat spezielle Eigenschaften. Die Experimente mit Broyden Banded zeigen, dass Sym-
bolicC++ eine Schwachstelle der Erweiterung sein könnte, weil es zu langen Constraint - Initiali-
sierungszeiten führt. Broyden Tridiagonal wertet im Speziellen die Leistung der Boxkonsistenz,
während Brown primär die Leistung in Bezug auf die Hüllenkonsistenz aufzeigt. Weiters wurde
die Erweiterung auf einem komplexeren 3D-Rekonstruktionsproblem erfolgreich getestet.
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CHAPTER 1
Introduction

Constraint programming is a programming paradigm for solving problems defined through a set
of constraints between variables [2]. The idea is to specify a set of constraints that a solution
must satisfy, and then the constraint solver can reason about the possible properties of a solution,
while constantly minding the constraints a solution has to satisfy.

It is a form of declarative programming, as the user specifies a set of variables along with a
set of constraints between them, without specifying the sequence of steps that have to be carried
out to find the solution.

A problem specified in such a way, usually called constraint satisfaction problem, can then be
solved through various means. If the constraints have a particular form, namely, if they are linear
inequalities, the Simplex algorithm [16] may be employed, which has “almost” polynomial run
time, that is, its run time is polynomial in most practical cases, even though its worst case runtime
is exponential. For constraints having a more general form, such as the ones that the system
described in this work is able to solve, the Simplex algorithm is, is general, not applicable.
In such cases, various methods may be applied, often specific to the form of the constraint.
However, most approaches for solving constraint satisfaction problems, are solved with some
form of tree search and propagation.

Software frameworks are available for solving constraint satisfaction problems. One of such
constraint programming frameworks is Gecode, which is designed to be easily extensible [19]. It
allows the user to solve problems with integer, boolean, and set variables, but is currently unable
to reason about interval variables, which are variables whose domains represent real values
(usually represented as floating-point values). This paper describes an extension of Gecode, in
which interval variables are added, along with the other necessary additions to make problem-
solving with interval variables possible.

Furthermore, this functionality is demonstrated on a 3D reconstruction problem. The task in
this problem is to find a set of vertices, given a bounding box for each vertex, as well as geomet-
rical constraints that their vertices and faces have to satisfy (e.g. orthogonality or parallelism).
Since the constraints in the problem consist of non-linear constraints, such as trigonometric
constraints, 3D reconstruction problem cannot, in general, be solved through methods such as
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Simplex algorithm. Thus, a method such as interval constraint programming (ICP) is required
to solve this problem.

1.1 Constraint Programming Basics

A general constraint satisfaction problem consists of a definition of the variables and the con-
straints between them. Each variable is defined through its initial domain, whereas constraints
may be defined in any form which is supported in the solver used.

Variables

Every useful constraint satisfaction problem has variables V = {v1, v2, . . . vn}, where n ≥ 0.
Each variable vi has a domain, that is, a set of admissable values,Di associated to it. A constraint
satisfaction problem includes the definition of an initial domain Di for each variable vi, but the
domains may subsequently change (namely, shrink) during the solving process.

A domain of a variable vi is denoted by Di. Each domain is a set of values that are permiss-
able for the respective variable. As expected, variables used in constraint programming can have
numeric domains. One can limit the numeric domain to have only, for example, values from
the set of complex numbers, or reals, or integers, within some range. However, beside numeri-
cal values, variables can also represent anything else that can be given a domain - for example,
letters, sets, and so on.

Furthermore, mathematically, a domain is a set of all admissable values for a variable. How-
ever, in practice, a domain will usually be represented only through its bounds. Thus, due to
large domains, there will often be no practical way to assert that a value between the bounds is
not in a domain. This is, though, not a serious limitation in most cases.

A sample of integer variables is {x ∈ {1, 2}, y ∈ {1, 2, 3, 4, 624}}. An example set for the
interval variables is {x ∈ [1, 2.3], y ∈ [3, 4] ∪ [7, 15]}.

Search Space

A space defined by the domains of variables as D1 × D2 × · · · × Dn is called search space.
When no ambiguity is present, term space may be substituted for search space. A subspace Ss
of a space S = D1 × D2 × . . . Dn is defined as Ss = D′1 × D′2 × . . . D′n, where, for every i,
D′i ⊆ Di. Furthermore, a space Sp is a proper subspace of the space S if and only if Sp is a
subspace of S, and there exist j such that D′j ⊂ Dj , thus forcing subspace Ss to omit at least
one element from one domain of space S. In symbols, Ss ⊆ S means that Ss is a subspace of
S, whereas Sp ⊂ S means that Sp is a proper subspace of S.

Furthermore, S1 is a (proper) superspace of S2 if and only if S2 is a (proper) subspace of
S1. Union of two spaces contains all the points in either space, while their intersection contains
all points included in both spaces.

When a space contains no points, it is empty, denoted by ∅. Otherwise, the space is nonempty.
Intuitively, a solution to a constraint satisfaction problem is a search space that is a subset

of the initial space (given by the constraint satisfaction problem), and that satisfies all the con-
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straints. The goal of the solving process is to eliminate infeasible values from the search space
(according to the constraints), thus obtaining a solution, or to discover that no solution exists.

Constraints

A central notion of constraint programming are constraints, imposing a relation that must hold
among the variables. Every solution has to satisfy all constraints in the model, for any com-
bination of values for each of its variables from their domains. When a solution maps every
variable to exactly one value, then a solution gives a simple valuation for a set of variables - and
all constraints need to hold for that valuation.

Formally, let c denote a particular constraint in a particular constraint satisfaction problem
with a search space S. Furthermore, let Dc

i (S) denote the projection of the domain of the ith
variable Di with respect to the constraint c and the space S, where Dc

i (S) ⊆ Di. This can be
written as

Dc
i (S) = {d ∈ Di | c(d) is satisfied}. (1.1)

Then, constraint space c(S) with respect to the search space S is defined as

c(S) = Dc
1(S)×Dc

2(S)× · · · ×Dc
n(S), (1.2)

that is, a space having a dimension for every variable in the problem, and being a subspace of
the space S. Note that the space defined by the constraint is a function of the search space,
as different constraint spaces may be induced for different search spaces with the same set of
constraints.

Note that some authors use this definition of the constraint space as the definition of the
search space.

If one has a set of m constraints c1, . . . , cm, and a problem with some initial search space S,
the problem is solvable (conversely, S′ is the solution of that problem), if and only if there exists
empty space S′ such that

S′ ⊆ c1(S) ∩ c2(S) ∩ · · · ∩ cm(S). (1.3)

In other words, space S′ is a solution if it satisfies all the constraints. On the other hand, if

c1(S) ∩ c2(S) ∩ · · · ∩ cm(S) = ∅, (1.4)

the problem has no solution (for the initial space S).
A step towards solving the constraint satisfaction problem can be expressed as

Si+1 = c1(Si) ∩ c2(Si) ∩ · · · ∩ cm(Si) (1.5)

where S0 is the initial search space. This process is iterated until such j is found, for which Sj
is either a solution, or is an empty set (which means no solution exists). The process towards
finding the solution in this way is called constraint propagation, or just propagation.

A solution Sj found in this manner is a maximal solution, that is, a solution such that no
convex solution that is its superset exists. Note that this does not mean that all solutions are
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subsets of the maximal solutions, as there may be multiple disjoint maximal solutions1. Note
that this process is not guaranteed to converge - for example, it will not converge when multiple
maximal solutions exist, as the process is not able to decide on which to converge.

However, this process guarantees that, for every j, all solutions, if they exist, are contained
within Sj . Non-convergence can be detected by finding a natural number k, such that Sk =
Sk+1. Then, Sk+2, and all subsequent spaces will not be different from Sk either.

Even though it is simple to describe a solution (even maximal solution) in terms of the above
intersection, solving a constraint satisfaction problem is far from trivial. The biggest obstacle is
possible non-convergence of the procedure. Nevertheless, under some assumptions, namely the
assumption of the function implementing the constraint being inflationary2 and monotonic3, any
propagation procedure is guaranteed to converge [1].

Even in the case when the above procedure converges, the difficulty still lies not only in
the (possible) vastness of the search space, but also in the fact that one often cannot transform
arbitrary-form constraints to a space, which can then be directly intersected with the initial space,
as well as the fact one needs to iteratively repeat this process. Furthermore, finding a maximal
solution is rarely feasible, but in practice finding any solution often suffices. If a particular
quality of a solution is desired, this can be enforced through the addition of further constraints.

The need for the iterative repetition of the process comes from the dependence of the con-
straint space on the search space. Because of this, if Si+1 6= Si, it might also be the case that
C(Si+1) 6= C(Si).

Examples of constraints are simple linear inequalities between the variables, such as x < 5
or x ≤ y, but can also be more complex relationships, such as sinx =

√
y. As expected, the

first two constraints could be applied to both integer and interval case, whereas the last one is
natural only in the interval case (as the results of the functions are real numbers), so it has only
limited applicability (if any) in the integer case.

Consider a initial search space in the interval case {x ∈ [1, 2], y ∈ [1, 3]}, and a constraint
x < y. Finding the space this constraint defines (which is dependent on the search space), is
non-trivial. The space defined by the constraint would be {x ∈ [1, 2], y ∈ (1, 3]}, i.e. as the
initial search space, but with value of 1 removed as a possibility of y. Thus, for any chosen x,
there would then exist an y satisfying the constraint, and vice versa. If 1 were not removed from
y, there would be no x ∈ [1, 2], such that x < 1. Furthermore, note that space defined by the
constraint is a function of the search space. For example, suppose another constraint limited x
to the interval x ∈ [1.5, 2]. This would limit options for y further, namely, to y ∈ (1.5, 3]. This
demonstrates that solving constraint satisfaction problems is usually not possible with cheap
computational tricks, even with very simple constraints, but has to be done through elaborate
computation process.

1Consider a constraint such as x 6= 0, on x ∈ R. Here, maximal solutions are both x ∈ (−∞, 0) and
x ∈ (0,∞).

2Consider a partial order (D,v). A function f on D is called inflationary if x v f(x) for all x.
3Consider a partial order (D,v). A function f on D is called monotonic if x v y implies f(x) v f(y) for all

x, y.
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Modeling

In order to solve an abstractly stated constraint satisfaction problem, one first has to model it -
that is, translate a generic problem into constraint programming terms. That involves deciding
what the variables will be, as well as choosing their initial domains. Furthermore, modeling
involves laying out the constraints that need to hold between the variables.

An example of the distinction between the problem itself, and its model can be seen in the
3D reconstruction problem - whose model has been described in detail in Chapter 5. Here, the
problem is the idea of finding a matching coordinates of a 3D object, given certain geometric
constraints. The model, on the other hand, consists of the concrete variables holding the coor-
dinates of the points (and some other variables, described in detail in Chapter 5), as well as the
concrete mathematical equations and inequalities that take place of the more abstract ideas such
as parallelism or equal angles.

In this paper, when not ambiguous4, terms constraint satisfaction problem and its model are
used interchangeably.

An Example Model of Sudoku

Sudoku is a combinatorial number placement puzzle. The objective of the puzzle is to fill the
blank slots in the 9× 9 grid. The 9× 9 grid consists of 3× 3 regions of 3× 3 slots each. Every
slot may contain a single number from 1 to 9, and every 3x3 region has to contain every of those
9 numbers exactly once. Furthermore, every row and every column of the whole grid has to
contain every of those 9 numbers exactly once.

There exist other variations of Sudoku, with various grid sizes, but these dimensions and
constraints are by far the most common.

When solving the puzzle, user is given a partially filled grid, and is expected to fill rest of
those slots with the allowed numbers 1, 2, . . . , 9, while satisfying said constraints. Being in
essence a constraint satisfaction problem, Sudoku is naturally suited to be solved by constraint
programming.

To model Sudoku as a constraint satisfaction problem, one must transform the rules of the
puzzle into variables, and formal constraints. Since a single number may be fitted in each slot, it
makes sense to have one variable per slot, representing the number in the slot. The grid, and the
associated variables with each slot are shown in Figure 1.1. The only constraint imposed by the
rules of Sudoku is that all numbers in some set (either row, column, or region) be all different.
Thus, one can introduce alldifferent(V) constraint, over a set of variables V = v1, . . . vn. This
constraint holds if all the variables in the set V have different values. Formally, alldifferent(V)
can be defined as

alldifferent(V)⇔ ∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , n} (i 6= j ⇒ vi 6= vj) (1.6)

where vi 6= vj denotes the fact that vi and vj contain different values.

4This is unambiguous when considering problems that can be translated directly to models, such as, for example,
x ∈ [1, 3], y ∈ [1, 3], x < y
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Figure 1.1: Sudoku grid with associated variables

x1 x2 x3 x4 x5 x6 x7 x8 x9
x10 x11 x12 x13 x14 x15 x16 x17 x18
x19 x20 x21 x22 x23 x24 x25 x26 x27

x28 x29 x30 x31 x32 x33 x34 x35 x36
x37 x38 x39 x40 x41 x42 x43 x44 x45
x46 x47 x48 x49 x50 x51 x52 x53 x54

x55 x56 x57 x58 x59 x60 x61 x62 x63
x64 x65 x66 x67 x68 x69 x70 x71 x72
x73 x74 x75 x76 x77 x78 x79 x80 x81

Then, variables for Sudoku may be expressed as

xi ∈ {1, 2, . . . , 9}. (1.7)

Equation 1.8 expresses the idea, for every row, that it has to hold all different values. The
same idea is expressed for every column through the Equation 1.9, and for every region through
the Equation 1.10.

alldifferent(x1+k, x2+k, x3+k, x4+k, x5+k, x6+k, x7+k, x8+k, x9+k),

∀k ∈ {0, 9, 18, 27, 36, 45, 54, 63, 72} (1.8)

alldifferent(x1+k, x10+k, x19+k, x28+k, x37+k, x46+k, x55+k, x64+k, x73+k),

∀k ∈ {0, 1, 2, . . . , 8} (1.9)

alldifferent(xk, xk+1, xk+2, xk+9, xk+10, xk+11, xk+18, xk+19, xk+20),

∀k ∈ {1, 4, 7, 28, 31, 34, 55, 58, 61} (1.10)

Furthermore, as already stated, one’s objective usually is to complete partially filled Sudoku
puzzle. In order for this constraint program to be able to deliver a solution to a partially filled
Sudoku, further constraints in the form

xi = vi (1.11)

have to be introduced, for each of the values already present in the puzzle. Here, vi represents
the value in the already filled, ith slot. Constraints given by Equation 1.11 merely restrict the
variables associated to pre-filled slots to that values.

1.2 Constraint Programming Solving Basics

Propagation

Usually, a constraint programming solver works by beginning with an initial search space, and
then iteratively attempts to reduce the search space, by eliminating values that may never be
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part of the solution. Such values are said to be inconsistent in the constraint programming
terminology. If some variable were to take an inconsistent value, then there exist values in
domains of other variables for which at least one constraint would be violated. Removal of
inconsistent values is called constraint propagation, or just propagation, which is equivalent to
the definition from the definition from the Section 1.1.

In order for constraint propagation to be possible, constraints have to be built with operators
(functions) which have to fulfill certain requirements. However, having enough knowledge about
the constraint to be able to remove inconsistent values through reasoning about its properties is
not necessary to use constraint programming. It is, though, necessary to be able to determine
whether a constraint is satisfied in a space or not, at least for spaces that consist of only one point
(spaces that have exactly one value in the domain of each variable). Intuitively, if such a test did
not exist, constraint’s validity could never be checked, and solutions could not be distinguished
from non-solutions.

Nevertheless, one often attempts to use constraints for which more advanced reasoning is
possible, namely, the removal of inconsistent values rather than simply deciding satisfiability.
The reason for this is that constraint propagation is crucial for performance of the solver.

As already stated, when solving a constraint satisfaction problem, one is often satisfied with
one, or at most, finitely many point solutions. In some applications, though, one may distinguish
between solutions of higher and lower quality. This is the case in problems such as, for example,
travelling salesman problem. There, a solution must represent a route that visits each city exactly
once, but shorter routes are better (assuming minimization) than longer ones. However, the
following presentation will assume that no minimization or maximization is desired, that is, that
any solution is (equally) satisfactory.

Generic procedure for constraint propagation is a relaxation of the method described in Sec-
tion 1.1. Again, let S0 be the initial search space. Furthermore, let cj(S) denote the space
defined by the jth constraint in the model of the problem for the space S, and let Tj(S) be an
arbitrary superspace of cj(S), i.e. Tj(S) ⊇ cj(S). Then, the next space Si+1 can be chosen,
starting from the space Si by satisfying the conditions

Si+1 ⊆ Si (1.12)

and

Si+1 ⊇ T1(Si) ∩ T2(Si) ∩ · · · ∩ Tm(Si). (1.13)

This form uses, for jth constraint, superspace Tj of the space induced by the constraint cj ,
instead of cj directly. Such relaxation is necessary as it is often impossible, or infeasible, to
calculate a particular cj(S) correctly. As

c1(Si) ∩ c2(Si) ∩ · · · ∩ cm(Si) ⊆ T1(Si) ∩ T2(Si) ∩ · · · ∩ Tm(Si) (1.14)

no solution included in the method described in Section 1.1 will be left out by this method, so it
is indeed a relaxation. Furthermore, it might be impossible or infeasible to represent exactly the
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space T1(Si)∩T2(Si)∩· · ·∩Tm(Si)
5, so any of its superspaces is admissable here, as long as it

is a subspace of the space Si. The latter condition is necessary, as it ensures that every step has
at most as many inconsistent values as the previous. In practice, solvers will take the smallest
representable space for Si+1.

Since this procedure is a relaxation of the stricter one, convergence is not guaranteed either -
even, there might exist cases in which the original method converges, where the relaxed variant
does not. Thus, solvers must be able to detect non-convergence. This is done analogously to
the detection method from Section 1.1, namely, if there exists some k so that Sk = Sk+1, any
further Si will be equal to Sk6. In this case, to ensure convergence, this procedure has to be
complemented by another, for example branching as described in Section 1.2. Complementary
procedure will then yield S′k ⊂ Sk (in any particular branch, no ambiguity is introduced as
branches are disjoint), from which the procedure can continue on.

This process is repeated, until either a solution is found, or it is proven none exists.
It should be noted that solvers are free to choose each of Tj(Si), as long as it is a superspace

(not necessarily proper) of Cj(Si). This means that solvers are permitted to use different meth-
ods of calculating them in different iterations. Also, they are allowed not to propagate on some,
jth constraint7.

Thus, propagation using even only one constraint is possible. Often, it is in fact desirable
not to do all the possible propagation at once for performance reasons, as different constraints
might have different computational complexity associated to their propagation. Thus, it is often
beneficial to attempt to reduce the space with the cheapest operators as much as possible first,
and only then proceed to the more computationally expensive ones. In fact, many constraint
satisfaction problem solvers propagate only on one constraint at a time, an example of which is
in fact Gecode [19].

For example, consider a problem with two variables x and y, with initial domains x ∈
[0, 100], y ∈ [1, 20], and two constraints, x ≤ 10 and x ≥ y. From the first constraint x ≤ 10,
one can infer that the domain of x can be at most [0, 10], thus yielding a new search space
x ∈ [0, 10], y ∈ [1, 20]. From the second constraint, one can infer that x must be greater than
or equal to 1, since it is greater than or equal to y, and 1 is the minimum value y might take.
Furthermore, one can infer that y must be less than or equal to 10, as 10 is maximal value for x.
Thus, the solution is then x ∈ [1, 10], y ∈ [1, 10]. This means that, upon choosing any value for

5In big, or even infinite domains, it is infeasible to track, for every value, whether it is in a domain. In practice,
one would often represent the domain through the lower and upper bound. For example, if the intersection T1(Si) ∩
T2(Si)∩· · ·∩Tm(Si) gives [1, 2]∪ [3, 4], solver might decide to represent that as a hull of the two intervals, namely,
[1, 4], and use that value for Si+1, to avoid representing the values through possibly very big stack of intervals
representing unions. This is, in fact, the approach taken in the extension described in this work. Nevertheless, more
exact representations can still be used, and the solver is welcome to use the smallest space it can to represent the
result of the intersection.

6This is the case with the assumption that the solver will, from a particular right-hand side T1(Si) ∩ T2(Si) ∩
· · · ∩ Tm(Si), and Si, always calculate the same Si+1. Given this assumption, and that Si = Si+1, one can infer
Si+1 = Si+2, and so on.

7To fit this within an algorithm, one would simply put Tj(Si) = S0 ∪ Cj(Si), where S0 is the initial search
space. Then, Tj(Si) ⊇ Cj(Si), and, Tj(Si) ⊇ S0. As, for any i, Si ⊆ S0, Tj(Si) has no effect on the intersection
defining Si+1 - it need not even be considered in calculation.
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x from its domain, there exists at least one value for y that would satisfy all the constraints, and
vice versa.

However, suppose a constraint x 6= 5 were added to the system. Then, the strict domain for
x would clearly be x ∈ [1, 5)∪ (5, 10]. But, if the solver used were unable to represent the union
of intervals, it would be unable to find a solution with propagation alone. Inability of a solver to
represent the intervals as unions is, though, not a severe restriction in practice, and it might be
crucial to performance.

Branching

Often, the program will not be able to compute a solution just with constraint propagation (it
will not converge to a solution). Moreover, it might be the case that some inconsistent values
are present in the current space, yet, it is impossible to remove them through propagation due to
infeasibility to represent the domain without those values.

Because of this, an constraint solver will often branch - that is, attempt to find solution
by cases. This means it will split the search space which it currently examines in multiple
subspaces, such that their union yields the initial search space. It is necessary that the union be
the original space, so no solution can be skipped. Normally, one would also attempt to split the
space in such a way to minimize the intersection of the subspaces, to minimize the amount of
duplicate work. The solver will then examine each subspace - that is, try to carry out constraint
propagation and check whether it has obtained a solution. If not, it will recursively repeat this
procedure until it has found a solution, determined there is none, or met some other stopping
criterion. Such a procedure is inspired [18] by the Davis-Putnam procedure for SAT [7].

This process of splitting spaces into subspaces, called branching, is an important part of most
constraint solvers. Usually, the solver decides on how to split into subspaces, and examines the
first subspace attempting to find a solution there. If none exists, or the user has requested more
solutions than were found in the first branch, the solver would explore the second branch, and
so on. Thus, branchings form a search tree.

Formally, branching can be carried out by introducing complementary constraints to the
model, such as x ≤ a on one branch, and x > a on the other branch, where a is some value
in the domain of variable x, usually its midpoint. Then, constraint propagation is carried out in
every branch, with the old constraints and the newly introduced ones.

It is usually most beneficial to branch in two branches, as branchings increase the overall
number of spaces that have to be considered. It is, thus, usually better to carry out as much prop-
agation as possible, and only when propagation becomes stuck for a particular branch, branch in
the minimal number of branches, namely two. Moreover, it can be proven that binary and k-ary
branching are equivalent.

For example, consider a problem x ∈ [0, 10], x 6= 3, and a solver which is unable to prop-
agate this constraint to be x ∈ [0, 3) ∪ (3, 10]. Since the initial space is not a solution, and no
propagation is possible, the solver could branch the space in the midpoint of the domain of x,
namely, to create two spaces Sl = [0, 5] and Sr = [5, 10]8. If the solver carried out a breadth-first

8Careful reader will note that the intervals Sl and Sr are not disjoint. Normally, one would strive to make
the domains disjoint, to minimize the amount of duplicate work that needs to be done in both branches. However,
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search, it would immediately notice that Sl is not a solution, and that it needs further branching,
whereas Sr is a solution. On the other hand, if it carried out (left-first) depth-first search, it
would not get to considering Sr, before exhausting Sl.

When considering Sl, a solver would branch it to Sll = [0, 2.5] and Slr = [2.5, 5]. It would
then notice that Sll is a solution, whereas Slr still needs exploring. The branch covering number
3 may, in theory, be expanded ad infinitum, however, solvers might dismiss a sufficiently small
interval around the number 3.

A further example of branching alongside propagation is shown in Figure 1.2. There, blue
arrows denote propagation, whereas red arrows denote branching. Every node denotes a search
space throughout the solving process. The image assumes all the solutions are desired. White
nodes denote undecided nodes, while subsumed spaces (solutions) are shown in green, and failed
spaces are shown in red. The final, quadratic constraint (x−2.4)(x−5) > 0 is a parabola having
zeroes at points 2.4 and 5. Thus, it disallows values for x from the interval [2.5, 5]. The image
assumes that it is impossible to propagate using this constraint, but that it is possible whether
the constraint certainly holds, or is certainly violated on some given interval. Note that, in
this example, binary branching is carried out in such a way that no values are repeated in both
branches.

1.3 Interval Constraint Programming

If constraint programming is to be used for variables whose domains are subsets of a set of real
numbers, then their domains are usually represented as intervals within which their permissable
values lie. Because of this, constraint programming with real-numeric variables is called interval
constraint programming [4]. Interval bounds are usually internally represented as floating point
values. In this representation, only finitely many values may be represented in any given interval.

Constraints usually take the form of arithmetic statements involving variables, but may also
describe more complex relationships.

An example of a constraint satisfaction problem solvable with interval constraint program-
ming would be

x ∈ [0, 2.4] (1.15)

y ∈ [0, 15.1] (1.16)

z ∈ [0, 10] (1.17)

x < y (1.18)

x2 + y2 = z (1.19)

ex +
√
y + z3 = 1. (1.20)

sharing one value between the two branches will usually not significantly affect performance, but may make the
implementation easier to understand and more straightforward.
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Figure 1.2: Propagation and Branching Tree for the Constraints {x ≤ 10, x ≤ 2 ∨ x ≥ 6, (x −
2.4)(x− 5) > 0}, where initially x ∈ [0, 200]

x ∈ [0, 200]

x ∈ [0, 10]

x ∈ [0, 5) x ∈ [5, 10]

x ∈ [6, 10]x ∈ [0, 2.5) x ∈ [2.5, 5]

x ∈ [0, 2]
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1.4 Constraint Programming Systems

There are many software frameworks for constraint programming. Many are designed to facili-
tate constraint programming to the user, by relieving the user of implementing the details that are
general to all or most of the constraint programming problems, and allowing the user to focus on
specifying the problem at hand. Some of the commonly used constraint programming systems
and libraries are Comet [17], Gecode [19], Prolog [14], ECLiPSe [8], IBM ILOG CPLEX CP
Optimizer [13].

From those systems, Comet and Gecode focus on the constraint programming with con-
straints in arbitrary form (as long as the implementation for a particular constraint form exists)
- Comet is a programming language, while Gecode is a framework for C++. Prolog is a logic
programming language, focusing on logical inference, and ECLiPSe is its superset. IBM ILOG
CPLEX is a mathematical programming framework, allowing only constraints in a particular
form (namely, linear and quadratic inequalities). It is able to exploit the specific facts about
those forms to use very efficient algorithms (such as Simplex) to solve the problems.

Gecode

Gecode (Generic Constraint Devolopment Environment) is a toolkit for developing constraint-
based systems and applications. It is written as a library in C++, to be used also in C++. How-
ever, interfaces to other languages, such as Python, also exist. It is open for extensions, portable
to different operating systems, and efficient (it won various awards for performance [5]). Its
extension to interval constraint programming is the focus of this paper.

1.5 3D Reconstruction Problem

Interval constraint programming is suitable for solving the 3D reconstruction problem, which is
used as a demonstration for the described extension.

Three-dimensional reconstruction (in the sense used in this paper) is the search for the coor-
dinates for some points in space, whose locations are constrained by some constraints. For each
vertex (point), approximate location is known (within a certain bounding box). Furthermore, it is
known, for every triple of vertices, whether it forms a face. Additionally, geometric constraints
to the faces and vertices are known - an example of such constraint may be that two faces are
parallel, or that two pairs of faces enclose equal angles.

This problem is interesting because it is possible to extract such constraint information from
a series of two-dimensional images of some object, taken from different angles [9]. Then, com-
bined with interval constraint programming, a three dimensional reconstruction of an object can
be derived.

Moreover, this problem has proven itself to be excellent test case for the developed exten-
sion, as one can easily verify the correctness of the results, both visually and computationally.
Furthermore, instances, in particular synthetic ones, are an excellent benchmark of the system
as well.
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CHAPTER 2
Interval Constraint Programming

This chapter explores the unique features of the Interval Constraint Programming. Mathematical
fundamentals of interval constraint programming are the mathematical concept of interval, and
interval arithmetic which enables one to do calculations with intervals. Those concepts are
explained in Section 2.1.

Furthermore, unique features of an interval constraint program are explored in Section 2.2.
Then, constraint propagation methods for interval constraint programming are explored in Sec-
tion 2.3, and a method to solve interval constraint satisfaction problems is shown in 2.4.

Finally, Section 2.5 introduces the consistency notions. Here, more general node consistency
and arc consistency are introduced, which are applicable to a general constraint satisfaction
problem. Then, it is shown how the notion of arc consistency is relaxed to define hull consistency
and box consistency, the two consistency notions normally associated with interval constraint
programming. Moreover, a formal method for enforcing both of those consistency notions is
given.

2.1 Interval Arithmetic

A closed interval is a set of real numbers, defined by its lower and upper bounds. Exactly the set
of real numbers that are greater than or equal to the lower bound, and less than or equal to the
upper bound are part of the set. An open interval is the set defined like its closed counterpart,
but not containing its bounds. Furthermore, it is possible that one bound be open, whereas the
other is closed. When not specified otherwise, interval will denote a closed interval.

Interval arithmetic is a method of calculation such that the result of some expression, is an
interval, representing a range of possibilities. Such a calculation is interesting in cases where
one does not know the exact value, but within some margin of error - or, to keep track of the
possible floating-point error that can be accumulated in the series of floating-point calculations.

Then, for some mathematical expression, or a function, if its arguments are given as inter-
vals, it is possible to define the value of the expression as the interval including all the values
expression could take for any combination of the values from the domains of its arguments.
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Suppose that there are two intervals X ∈ I and Y ∈ I, where I denotes the set of all real
intervals. Then, for any binary operation between real numbers ◦ : R2 → R,

X ◦ Y = {z | ∃x ∈ X, ∃y ∈ Ysuch that z = x ◦ y}. (2.1)

This defines the smallest possible set that defines all the possible results of the operation ◦
between any combination of arguments from X and Y. Note, however, that the above set is not
necessarily an interval (this will be the case if the function ◦ is not continuous). This means
that this set may, in general, consist of arbitrarily many discontinuous values - which might not
be representable. Thus, instead of using this set directly in implementation, its hull, that is, the
smallest interval containing all the values in the above set are used, as it can be defined using
only two values. This relaxes the notion somewhat, however, this trade-off is necessary in order
to be able to efficiently handle the arithmetic operations.

From this point on, when not otherwise stated, method using the hull rather than the nar-
rowest possibility set will be meant. Nevertheless, since most of the common operators are
continuous, the narrowest set and its hull often coincide (notable common exception to this be-
ing the division operation, when the interval of the divisor contains 0). Hull operation is usually
denoted by �.

As mentioned above, the most common use of interval arithmetic is to track floating point
errors, and to handle uncertainty with measurements. When measuring some physical quantity,
instead of assuming that some measured value (measured with some instrument introducing
some error) is exactly as read from the instrument, one could take the value to be in some
interval containing the measured value, where other values in the taken interval account for the
possible errors introduced by the instrument. If one were to use interval arithmetic in further
calculations with this interval, one would, in the end, obtain an interval containing all possible
values of the expression being calculated, without ignoring the introduced error.

Other common use is in tracking floating point errors. While computing with floating point
values, numeric errors are often introduced - but their maximum magnitude can always be
tracked. Thus, an expression with floating point values can be evaluated using interval rea-
soning to yield all possible values occuring due to floating point errors, rather than an exact
number.

In constraint programming, it is interesting to know whether a constraint is satisfied. Since
the domains of variables are represented as intervals, interval arithmetic has to be used to calcu-
late their values and to check this.

Singleton

An interval represents an underlying set of real numbers. However, it may also be the case that
the interval represents only one value. Such an interval is called a singleton.

Due to floating-point errors, an interval with bounds very close together (tolerance being
determined by a particular implementation) is usually treated as a singleton.
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2.2 Interval Constraint Satisfaction Problem

An interval constraint satisfaction problem is a set of variables whose domains are intervals,
along with a set of constraints on them.

The constraints have to be defined using such variables and real constants, and there has to
exist a procedure that can decide whether the constraint is satisfied in a space that is reduced to
a single point. When a space has more than a single point, decision procedure of the constraint
is free to report unknown.

Restriction on the decision procedure is, though, not a severe one - it simply means that a
constraint has a meaning. There would be little use of using a constraint on some variables,
without being able to check whether it is satisfied for some concrete numbers.

2.3 Interval Constraint Propagation

As stated above, every constraint must at least have a procedure to decide whether it is surely
satisfied in a space containing only a single point. However, if it is able to do more, then the
procedure may be able to eliminate large number of points from a space as infeasible. This is
beneficial from the performance point of view.

If a procedure can report that a constraint is (certainly) satisfied in spaces that have more than
one point, then it would have eliminated the branching that would be required to generate spaces
with just one point, which are subspaces of the current space. An example of this would be a
constraint x < 3, with x ∈ [0, 2]. There can exist a decision procedure that would recognize this
constraint as satisfied for any of the many (mathematically infinitely many, but finitely many in
machine representation) values in the domain of x (namely, in this case, checking whether upper
bound of x is less than 3). In this case, the tree would be pruned by accepting a space, on which
branching could be performed without that observation.

Furthermore, if a procedure can detect that some case is unsatisfiable in some space, explor-
ing further subspaces is unnecessary, and the tree can be pruned by discarding all subspaces of
the current space. An example of this case would be a constraint x < 3, with the domain of x
being [5, 19].

A step further is that such procedure (called propagator in following text) associated to
the constraint is able to eliminate subspaces from the current space, consisting of points that
surely violate the constraint. This would prune a search tree by eliminating every space between
the currently explored space and the one generated through variable domain subset elimination
(propagation in following text).

Consider, for example, the constraint x < y, x ∈ [1, 3], y ∈ [1, 2]. Values larger than 2 for x
will result in the violation of this constraint regardless of the value of y (taken from its domain),
so this subrange may safely be removed from the solution space, as no solution can assign a
value to x from that range and still satisfy all constraints.

By shrinking the search space as much as possible, one speeds up the search - thus, this is
a very important duty of any constraint programming system. The reason for the speed-up is
that pruning shrinks the search space, and in turn, the branching tree, thus limiting the number
of nodes that will have to be visited in a tree. Intuitively, it is beneficial to remove values that
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cannot be in the solution as soon as possible - if they are removed later, work will be duplicated
in each of the subspaces. However, from the correctness point of view, duty of a propagator
is merely to decide satisfiability when the considered space consists only of a single point (all
variables are assigned) - and, if any pruning is carried out, no value may be pruned for which
there exist values of other variables such that the constraint would be satisfied for them. In all
other cases, it is free to report unknown. It is not necessary for a propagator, if it prunes, to
prune all values that can correctly be pruned. Its duty is (in order to remain correct), though,
to merely refrain from pruning the values that may satisfy the constraint along with any other
combination of values for other variables. For example, consider a simple constraint satisfaction
problem defined as follows

x ∈ [0, 5] (2.2)

x ≤ 2. (2.3)

Here, a propagator can easily infer that x ∈ [0, 2]. However, a propagator is allowed to make a
weaker inference1 - for example, it can infer that x ∈ [0, 2.5], without compromising correctness.
It is, though, not allowed to infer x ∈ [0, 1.5] since such an inference would leave out admissable
values from the interval (1.5, 2].

2.4 Solving Interval Constraint Satisfaction Problems

A constraint satisfaction problem is, in general, solved with the tree search and propagation
procedure. This is, in essence, a divide-and-conquer procedure. Generally, one starts with a
search space, and attempts to prune the values from the space that cannot be part of the solution,
thus getting a subspace of the original search space. This is the propagation part. Then, when no
further propagation is possible, one would branch the propagated space into multiple subspaces.
Then, the propagation, and again branching would be recursively applied to the branches, until
a solution is found, or some other stopping criterion is satisfied.

2.5 Consistency Notions for Interval Constraint Programming

Introduction

A consistent system is one that does not contain a contradiction. Generalized to constraint
programming, local consistency is a property of a constraint satisfaction problem that can be
enforced through transformations that change the search space without changing the solution
space. Such transformations are the transformations pruning such values from the search space
that are certain to violate at least one constraint.

There exist various different consistency notions, the most well known in constraint pro-
gramming in general being node and arc consistency. However, those consistency notions are
not generally applicable to interval constraint programming.

1The reason for making a weaker inference would, normally, be the computation cost, or the infeasibility of
making the strongest possible inference, usually because of the complexity of the underlying operation. In this
example, strongest inference can, of course, be made just as easily as any weaker inference.
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Node Consistency

Node consistency is a property that may hold between a constraint and a variable. It requires that
every unary constraint on a variable is satisfied by all values in its domain. Enforcing it involves
removing the values from the domain of a variable which do not satisfy the constraint. Usually,
node consistency can be enforced in polynomial time. Formally, variable x, with domain Dx is
node consistent to the unary constraint c(x) if and only if

∀x ∈ Dx c(x) (2.4)

where c(x) is an unary predicate.
For example, consider a variable x ∈ {1, 2, 3, 4}, and a constraint C := x < 3. Variable x

is not node consistent with the constraint C, but it can be made node consistent by removing the
values 3 and 4 from the domain of x.

Arc Consistency

Arc consistency is a property that may hold between a constraint and a pair of variables in the
constraint. It requires that, for every value in the domain of one varible, there exist a value in
the domain of the other variable so that the constraint is satisfied between those two values.
Formally, two variables x, y, with domains Dx and Dy respectively, are arc consistent with
respect to constraint c(x, y) if and only if

∀x ∈ Dx ∃y ∈ Dy s.t. c(x, y) ∧ ∀y ∈ Dy ∃x ∈ Dx s.t.c(x, y) (2.5)

where c(x, y) is a binary predicate.
For example, consider a constraint x < y, over variables x ∈ {1, 2, 3}, y ∈ {1, 2, 3}. This

setup is not arc consistent, since, if x = 1, there is no smaller value for y. But, by removing
value 1 from the domain of x, this setup will become arc consistent.

It is possible to generalize arc consistency to k-ary relations. This generalization is usually
called hyper-arc consistency, or simply generalized arc consistency.

Hull Consistency

In interval constraint programming, domains of the variables are, in principle, infinite (since
every interval contains infinitely many real numbers). In practice, the domains are not infinite,
as there are only finitely many representable real numbers within some interval. Furthermore,
it is impractical to track, for every possible number, whether it is in the domain. Therefore, an
interval floating point representation is normally used for variables representing real numbers
(interval variables). As a consequence, the representing intervals may be slightly wider than the
actual interval to be represented, as well as that discontinuous intervals are disallowed (arrays
of subintervals that are interpreted as an union and would allow for discontinuous intervals are
normally not used in interval constraint programming).

Because of this, and the fact that not all numbers can be represented with a floating point
machine representation, it is normally infeasible to enforce arc consistency when working with
intervals.

17



Hull consistency is introduced as a relaxation of arc consistency with which it is easier to
work (than with arc consistency) in case of interval variables. It is the direct approximation of arc
consistency for floating point values. Arc consistency is not computable in general as the actual
arc consistent bound might not be present in the set of numbers used for machine representation.
However, if the arc consistent domain is approximated with the smallest enclosing machine-
representable hull, hull consistency is obtained. Two variables are hull consistent with respect
to a constraint if their domains are the hulls of the arc consistent domains with respect to the
same constraint. Formally, two variables x, y, with domains Dx and Dy respectively, are hull
consistent with respect to constraint c(x, y) if and only if

∀x ∈ �(Dx) ∃y ∈ �(Dy) s.t. c(x, y) ∧ ∀y ∈ �(Dy) ∃x ∈ �(Dx) s.t.c(x, y) (2.6)

where c(x, y) is a binary predicate, and � is the hull operation.
Due to very large number of possible machine-representable numbers in the domains, it is

normally not feasible to compute hull consistent intervals by directly applying the definition,
that is, by iterating the values. Rather, reasoning about the functional building blocks in the
constraint is usually used to calculate hull consistent intervals efficiently.

For example, consider a constant x+y = z, with x ∈ [0, 1], z ∈ [0, 100]. One could discover
that z is not hull consistent - through interval arithmetic, one can discover that the expression
on the left hand side (x+ y), for current domains, is [0, 2] because of the properties of addition.
Furthermore, due to properties of equality operator, right hand side has to also be from [0, 2].
Therefore, hull consistent interval for z would be [0, 2] (a subset of its previous interval).

Enforcing Hull Consistency

Suppose an expression of the form x1 ◦ x2 ◦ ... ◦ xn = z, where ◦ is a computable operator, and
x1, ..., xn and z are variables, with known domains.

The usual algorithms for enforcing hull consistency are HC3 and HC4. HC3 [18] is an algo-
rithm similar to AC-3 [15] (an algorithm for enforcing arc consistency), which tackles the more
complex user constraints by decomposition to simpler constraints. HC4 [3] is an extension of
HC3, which is able to handle user constraints directly, rather than decomposing them to simpler
constraints - but is otherwise similar to HC3. Pseudocode of the canonical HC4 algorithm is
given in the Algorithm 1.

A procedure for enforcing hull consistency that is applicable for interval constraint program-
ming and implementation in Gecode on a constraint denoting this expression is slightly different
than the procedure described in Algorithm 1. The main part of the canonical HC4 algorithm is a
loop that executes the HC4revise function, but in Gecode, Gecode kernel takes care of propaga-
tor scheduling. Therefore, there is no possibility to control the loop by the programmer. Thus,
to adapt HC4 algorithm to Gecode, one only needs to implement the appropriate HC4revise
routine for the constraint being implemented, and the kernel will take care of calling it appro-
priately. Nevertheless, such HC4revise routine should follow the outline given in Algorithm 2,
as this will yield the strongest inferences possible. Thus, the following text focuses only on the
revision process, or equivalently, the enforcement of hull consistency for a particular constraint.

Enforcement of hull consistency (HC4 revision) can be divided in two steps, forward evalua-
tion and backward propagation. Forward evaluation is the reasoning about the necessary domain
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Algorithm 1 HC4 algorithm

Input: List of real constraints c1, c2, . . . , cn , search space S = I1 × I2 × · · · × Im
Output: Pruned space Sp
Sp ⇐ S
C ⇐ {c1, c2, . . . , cn}
while Sp 6= ∅ ∧ C 6= ∅ do

c⇐ choose one ci ∈ C
S′p ⇐ HC4revise(c, Sp)
if S′p 6= Sp then

C ⇐ C ∪ {cj |∃xk ∈ V ar(cj) ∧ I ′k 6= Ik}
Sp ⇐ S′p

else
C ⇐ C \ c

end if
end while

Algorithm 2 HC4revise

Input: real constraint c = r(x1, x2, . . . , xn), search space S = I1 × I2 × · · · × Im , n ≤ m
Output: Pruned space Sp
Sp ⇐ S
for all x ∈ x1, x2, . . . , xn do

ForwardEvaluation(x, Sp)
end for
BackwardPropagation(x, Sp)
Sp ⇐ �Sp

of the right-hand side, given the knowledge about the domains of the variables on the left hand
side. Backward propagation is the reasoning about the domains of variables on the left-hand
side, given the knowledge about the domain of the right hand side.

Operator ◦ and Interval Arithmetic

As already stated, when reasoning about the operator ◦ (which is a placeholder for a concrete
operator), given intervals A and B, the result of A ◦ B should be such that, for any choice of
values a from A and b from B, their result a ◦ b will be in the interval A ◦ B. However, this
interval may contain other values. It is, though, beneficial for the interval to contain as little
other values as possible, as other values weaken the inferences that can be made (but do not
compromise correctness).

Forward Evaluation

Forward evaluation step is carried out by calculating L := x1 ◦ x2 ◦ ... ◦ xn. Note that, here, L
is by definition equal to the original expression, with L taking the place of z. However, L is an
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Figure 2.1: Annotated tree for the forward evaluation of the constraint 2x = z − y2 (taken
from [3])

some primitive CNOs at each node of a finite tree, and that a composition
of CNOs is also a CNO.

Let HC4revise⋆ be Algorithm HC4revise where, given a node t, the at-
tribute t.bwd is not eventually intersected with t.fwd .
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Figure 1: Annotated tree for the forward evaluation in the constraint 2x = z − y2
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Figure 2: Annotated tree for the backward propagation in the constraint 2x = z − y2

As stated by the following proposition, invoking Algorithm HC4 on a
set of constraints C and a box B is equivalent to the invocation of Algo-
rithm HC3 on B and the set of constraints generated by the decomposition
of the constraints in C into primitives:

Proposition 2. Given C a set of real constraints and B a box, the output

box of HC4(C,B) is equal to the one of HC3(Cdec,B), where Cdec =
⋃

c∈C
cdec.

Proof. The proof is done by noticing that HC4 and HC3 use the same nar-
rowing operators, and that the node attributes in HC4revise mimic the new
variables in HC3. The proof then follows since the application order of the
same constraint narrowing operators does not influence the fixed-point (con-
fluency property of propagation algorithms [11]).

interval, which is dependent exclusively on the domains of the variables x1, ..., xn, whereas z
is a variable, potentially having its own domain (before propagation) different than L. Then, z
is set to the intersection z ∩ L. The rationale behind this step is that z may not take values that
were not in its original domain, but through the constraint, z is also constrained to take values
only from L, so intersection is necessary. An example annotated tree for the forward evaluation
of the constraint 2x = z − y2 is given in figure 2.1.

Backward Propagation

If the domain of z were set just to L, backward propagation in this sense would be redundant, as
the domains of the variables on the left-hand side would be used to infer L, which would then
be used to infer the new domains on the left-hand side. However, since other constraints (or
initial domain) might have narrowed z to be narrower than L, often, this new knowledge of the
domain of z may be used to remove inconsistent values from the domains of the variables on the
left-hand side.

In order for backward propagation to be possible in this sense, the operator ◦ should have an
inverse of its every operand. These requirements imply an operator ◦−1, such that if, for intervals
A, B and C, if A◦B = C, then A ∈ B◦−1C and B ∈ A◦−1C. Note that stronger inverses, ◦−1s ,
for which A ◦ B = C would imply A = B ◦−1s C and B = A ◦−1s C are usually not possible in
interval arithmetic. Weaker version can still add strength to inferences, with stronger inferences
being possible with the inverse returning smaller intervals (of course, while not violating the
necessary conditions).

Note that if the operator ◦ is not commutative, there may exist two inverses ◦−1l and ◦−1r .
For the expression a ◦ b = c, the equivalent statements with the corresponding inverses are
a = b ◦−1l c and b = a ◦−1r c. If the operator ◦ is not commutative, when using backward
propagation, respective inverse has to be used for every operand, instead of the common one.
If only one of those inverses exists, backward propagation might still be possible, albeit only
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Figure 2.2: Annotated tree for the backward propagation of the constraint 2x = z − y2 (taken
from [3])

some primitive CNOs at each node of a finite tree, and that a composition
of CNOs is also a CNO.

Let HC4revise⋆ be Algorithm HC4revise where, given a node t, the at-
tribute t.bwd is not eventually intersected with t.fwd .
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Figure 1: Annotated tree for the forward evaluation in the constraint 2x = z − y2
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Figure 2: Annotated tree for the backward propagation in the constraint 2x = z − y2

As stated by the following proposition, invoking Algorithm HC4 on a
set of constraints C and a box B is equivalent to the invocation of Algo-
rithm HC3 on B and the set of constraints generated by the decomposition
of the constraints in C into primitives:

Proposition 2. Given C a set of real constraints and B a box, the output

box of HC4(C,B) is equal to the one of HC3(Cdec,B), where Cdec =
⋃

c∈C
cdec.

Proof. The proof is done by noticing that HC4 and HC3 use the same nar-
rowing operators, and that the node attributes in HC4revise mimic the new
variables in HC3. The proof then follows since the application order of the
same constraint narrowing operators does not influence the fixed-point (con-
fluency property of propagation algorithms [11]).

for some operands (namely, the leftmost, or the rightmost, depending on whether ◦−1l or ◦−1r is
available).

Backward propagation then consists of a step for every variable on the left-hand side. Con-
sider the step for variable xi. First, let Ti := x1 ◦ x2 ◦ ... ◦ xi−1 ◦ xi+1 ◦ xi+2 ◦ ... ◦ xn, that
is, be equal to the operator ◦ being folded over every variable on the left-hand side except for
xi. Then, given commutativity of ◦, one obtains xi ◦ Ti = z. Given the necessary properties
of the inverse operator ◦−1, one can infer xi ∈ z ◦−1 Ti. Thus, the domain of xi can be set to
xi := xi ∩ Ti.

When the number of variables in a constraint is large, it may seem tempting to optimize
the above operation by saving L from forward propagation, and calculating every Ti from it as
Ti = L ◦−1s xi. While this would be correct, given the existence of the strong inverse operator
◦−1s , it need not produce non-redundant inferences if weak inverse is used in its place (and strong
inverse often does not exist). Naturally, other optimizations are possible (for example, saving
the intermediate values between backward propagation for different variables).

An example annotated tree for the backward propagation of the constraint 2x = z − y2 is
given in figure 2.2.

Other constraint forms

For some operators, especially non-commutative ones such as subtraction or division, arbitrarily
many operands are not useful - such constraints would have the form x ◦ y = z, which is a
subcase of the aforementioned general case.

If the operator ◦ is not commutative, the commutative backward propagation procedure given
above is not applicable, but in such cases constraints are usually given with only two operands
on the left hand side (for example, a/b = c). In those cases, backward inference can easily be
made that the domain of a is equal to the domain of b ◦−1 c. For the example a/b = c, one
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can easily obtain that the backward propagation procedure might use the equivalent statement
a = bc to shrink the domain of a.

Furthermore, it is interesting to consider relations through hull consistency (example being
a < b). Those could, with some care, be rewritten in the general form, however, they can also
be handled directly.

Consider the constraint x ≤ y. Then one can simply remove all values from x that are
greater than the upper bound of y, and all values from y that are less than the lower bound of
x. Having this operator available, one can write x < y as x ≤ y + δ, where δ is a infinitesimal
value (or next floating-point value in case of machine representation). x ≥ y can be defined as
y ≤ x, and analogously for greater than. Equality (x = y) can also be optimized by noting that
domains of both variables must be the intersection of the domains.

It may be possible to allow some further, more complex constraints with hull consistency.
However, their usefulness would be doubtful. Adding the possibility of more operators on the
left-hand side would make backward propagation weaker, while adding more possibilities on the
right-hand side would weaken the forward evaluation. Such propagation might not be able to
prune some inconsistent values that simpler variant could prune.

However, disallowing more complex constraints is not saying that hull consistency cannot
tackle them. When a more complex constraint is posted, it can be decomposed to simpler con-
straints, that can be directly handled by hull consistency. Such a decomposition is, in fact, the
main idea for the algorithm HC3 [18].

For example, for a constraint x2 + y = z, one would create new constraint, xsq = x2, and
then post xsq + y = z, which is equivalent to the initial constraint. Such a decomposition can
be carried out for every complex constraint, however, when some variable occurs many times
within a constraint, there might exist a more efficient approach than hull consistency, namely,
box consistency.

Note that HC4 algorithm is, in itself, capable of directly handling more complex constraints.
Yet, for any constraint form that one wishes to support, one must usually write a specialized
propagation procedure. That, combined with possibly only weaker inferences being possible,
makes more complex constraints less compelling to implement.

Box Consistency

Box consistency is a relaxation of hull consistency, in which reasoning about the functional
building blocks is replaced by a refutation test over the bounds of an interval [18]. This means
that, in order to find the box consistent bounds for some interval, one should first verify that the
current bounds are not box consistent. If this is not the case, one would consider infinitesimally
smaller interval, and check whether new interval is box consistent on both bounds. Then, one
would keep repeating this until an interval is found which is box consistent from both sides. It
is important, in the general case, that the step is infinitesimal, as otherwise some values may be
left out.

However, considering an infinitesimally smaller interval is both impossible in floating point
representation, and would yield in an infinite number of steps. It would, though, be possible (and
sufficient, since one is limited to machine-representable values) to interpret infinitesimal step as
a step to the next number in the direction of the other bound to obtain box consistent bounds.
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But this would be very inefficient, so other methods have to be employed. Naive methods,
such as binary search for the interval bounds are not correct in general, as they might miss
some values, if the underlying function for a constraint is not monotonic. However, there exists
a general method, namely, the Newton method, that iteratively converges around the desired
interval, without missing any solutions.

It normally requires more computation to compute box consistent bounds in comparison to
hull consistent bounds. This is because the refutation test in box consistency requires compa-
rable computational effort to the whole forward evaluation phase in hull consistency, and many
refutation tests are usually necessary to find box consistent bounds. However, it is not possible
to apply hull consistency directly to more complicated constraints, namely, to those in which a
single variable appears more than once. To get around this, one could decompose such constraint
into simpler ones for which hull consistency can be enforced, but it is sometimes nevertheless
more efficient to use box consistency.

Interval Newton Method

Newton method (also known as Newton-Raphson method) is a numerical method used for find-
ing succesively better approximations of the zeroes of a real-valued function. This has as a
consequence the restriction that constraints, for which box consistency needs to be computed,
be in the form c(~x) = 0, where ~x is the variable vector. This is, however, not a significant
restriction, as most functions can usually be rewritten to be in this form through basic arithmetic
transformations. Inequalities can be rewritten as equalities by introducing slack variables.

The method in one variable for real numbers is derived the mean value theorem, which can
be expressed as

∃c ∈ [a, b] s.t. f ′(c) =
f(b)− f(a)

b− a (2.7)

where f(x) is a continuous function on the interval [a, b], where a < b, and differentiable
in the open interval (a, b). Since one seeks zeroes of the function f(x), one can assume that
f(a) = 0 (if this is not the case, Newton method will not converge). Then, through algebraic
manipulations, one obtains

f ′(c) =
f(b)

b− a (2.8)

f ′(c)(b− a) = f(b) (2.9)

b− a =
f(b)

f ′(c)
(2.10)

b− a =
f(b)

f ′(c)
(2.11)

a = b− f(b)

f ′(c)
(2.12)

where a is the sought zero, and b is a known point. By transforming that into a series, i.e. by
replacing a with xn+1, b with xn, and c with xn as well, one obtains the defining formula for
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the series of the Newton method. It is a series giving successively better approximations of the
function f(x), defined as follows:

xn+1 = xn −
f(xn)

f ′(xn)
(2.13)

where x0 is an initial guess for a zero of the function f(x) whose zero is sought, and f ′(x) is its
derivative. The process is repeated, until a sufficiently accurate approximation is reached.

However, when working with intervals, Newton method is defined slightly differently. Inter-
val variation of the Newton method is known as the Interval Newton method. For an univariate
function f(x) with derivative f ′(x), with I0 signifying the initial guess (an interval), series of
successively better approximations is given as

Ij+1 ← Ij ∩
(
γ(Ij)−

f(γ(Ij))
f ′(Ij)

)
(2.14)

where γ(I) is a function returning arbitrary value from the interval I. Initial interval I0 needs to
be large enough to surely contain a solution, as every next step can only narrow the interval as it
returns an intersection with an interval from a previous step.

Problems when 0 ∈ f ′(Ij)
In a Newton step, Equation (2.14), f ′(Ij) is a denominator, and it evaluates to an interval since
its argument is an interval Ij . Thus, it may not contain 0, as the division with 0 is undefined.
This requirement is equivalent to the statement that f is monotonic on the interval Ij . If this
requirement is violated, further Newton steps in as given by Equation (2.14) cannot be taken. In
those cases, instead of a Newton step, a different approach has to be followed.

This is often a significant problem, as Newton step is normally significantly faster than
workaround approaches. Furthermore, many constraints used in practice violate the requirement
that 0 6∈ f ′(Ij).

An approach to tackle this problem is suggested in [12]. However, the implementation
developed along with this thesis uses a somewhat different approach, which is described in
Section 3.2.

Enforcing Box Consistency by Shaving

A state of the art algorithm for enforcing box consistency is the Box Consistency by Shaving
algorithm [10]. Here, constraints in the form c(x) = 0 are assumed, where x is an interval
variable.

Often, though, a constraint is a function of more than one variable. However, a single it-
eration of bound revision by shaving (or other algorithms, such as BC3) affects only a single
variable (one chooses arbitrarily at the beginning of the iteration), Therefore, in this section, it
is assumed that c(x) is an univariate function. This is because all other variables are treated
as constants in a single iteration (their values are intervals, representing all the values for each
variable).

24



Its pseudocode is given in the Algorithm 3. The following process describes narrowing of
the bounds for a single constraint.

Firstly, one should check if the constraint is already surely violated, which is the case if and
only if 0 6∈ c(x). If so, then the current space is dismissed.

Then, one checks if the left bound is consistent. This is done by taking a very small interval
(possibly infinitesimal, although some optimizations suggest slightly larger intervals) L, and
evaluating the constraint for it. If 0 6∈ c(L), then, left bound is inconsistent, and the interval
can be narrowed from the left. Left half of the original interval is then taken, and checked for
satisfiability. If it is satisfiable (constraint evaluated for the left part contains 0), a Newton step
is carried out, and the result is stored as a result for the left-hand side. Otherwise, an empty
interval is given as a result for the left-hand side.

One then repeats the analogous process for the right bound. Resulting interval is then the
hull of the result for both sides. Note that the result is not necessarily box-consistent, but can be
made box-consistent by repeating the process as long as the process modifies anything.
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Algorithm 3 Enforcing Box Consistency by Shaving

Input:
g : I→ I # A function implements a constraint which is

# satisfied for some value x, if 0 ∈ g([x, x]).
I ∈ I # An interval on which the largest box consistent interval w.r.t g is sought

Output:
Ibc ∈ I, s.t. Ibc ⊆ I and Ibc is box consistent w.r.t. g

(left_consistent, right_consistent)⇐ (false, false)
Ibc ⇐ I
while Ibc 6= ∅ ∧ (¬left_consistent ∨ ¬right_consistent) do

(Il, Ir)⇐ split(I) # normally a binary split
if ¬left_consistent then

# Check if left bound is box consistent w.r.t. g. This is the case if 0 ∈ g(Il).
# However, to prevent not detecting box consistent bound, small (epsilon)
# environment is used ([Il, I+l ] instead of just Il)
if 0 6∈ g([Il, I+l ]) then

Il ⇐ [I+l , Il] # Bound not box consistent, discard it from consistent interval
if 0 6∈ g(Il) then

Il ⇐ ∅ # Try to dismiss whole left half, if inconsistent
else

# Choose a point for the numerator in the Newton step,
# normally the bound in Enforcing Box Consistency by Shaving
P ⇐ Il

Il ⇐ Il ∩ Il−g([P,P ])

g′(Il)
# One Newton step

end if
end if

else
left_consistent ⇐ true

end if

continued ...
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Algorithm 3 Enforcing Box Consistency by Shaving (continued)
# This is the right subinterval part, analogous of the left case above.
if ¬right_consistent then

# Check if right bound is box consistent w.r.t. g
# This is the case if 0 ∈ g(Ir)
# However, to prevent not detecting box consistent bound, small (epsilon)
# environment is used ([I−r , Ir] instead of just Ir)
if 0 6∈ g([I−r , Ir]) then

Ir ⇐ [Ir, I
−
r ] # Bound not box consistent, discard it from consistent interval

if 0 6∈ g(Ir) then
Ir ⇐ ∅ # Try to dismiss whole right half, if inconsistent

else
P ⇐ Ir

Ir ⇐ Ir ∩ Ir−g([P,P ])

g′(Ir)
# One Newton step

end if
end if

else
right_consistent ⇐ true

end if
Ibc ⇐ �(Il ∪ Ir) # Box consistent interval found is the hull of left and right parts

end while
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CHAPTER 3
Implementation

Alongside this thesis, a working extension of Gecode for interval constraint programming was
developed. This chapter gives the most important technical information about the developed
implementation.

Section 3.1 gives an outline of the Gecode architecture, the abstract principle that describes
how Gecode functions, and the main Gecode concepts that have to be extended in order to extend
the implementation. The next Section, 3.2, explains how the system was extended to implement
the concepts given in Chapter 2.

3.1 Gecode Architecture

Gecode is structured into its kernel that must always be included and used when working with
it, and other add-ons which are not essential. These include support for some variable types,
namely, integer and integer sets, and other extensions such as graphical library Gist used to dis-
play the search data, FlatZinc, a parser for a low level modeling language, and a command-line
driver. Even though none of the add-ons are essential to compiling a program using Gecode,
little can be modeled without including at least one variable type. Figure 3.1 schematically
shows the (original) Gecode architecture. This work introduces a new variable type, namely,
floating point, or interval variables (sometimes used interchangeably, because intervals are in-
ternally used to represent ranges of floating point values). Along with this, it introduces all the
necessary propagators and branchers (which will be explained in the next paragraph). Figure 3.2
schematically shows the Gecode architecture with the interval extension.

Gecode enables the user to model and solve constraint satisfaction problems through the
use of variables, propagators, branchers and search engines. All of these can also be easily
programmed to extend Gecode itself, as it was done for the extension described in this paper.

General Gecode concepts will be briefly outlined. A detailed instruction for Gecode can be
found in the document Modeling and Programming with Gecode [19].
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Figure 3.1: Original Gecode Architecture (from [19])

Figure 3.2: Gecode Architecture extended with ICP

30



Space

Space is a concept in Gecode that denotes the set of constraints, along with domains for all
variables. There is a minor difference between the meaning of the term space previously in this
thesis, and in Gecode terminology. In the thesis, space includes the space defined by the set of
variables through their domains. However, in Gecode, class Space and its subclasses actually
keep track of the propagators along with the variable domains. However, this distinction is
mostly technical, as it makes no difference in the discussion how the propagators are represented
internally. Thus, it will be clear from the context to which meaning the term space refers.

Variables

A variable is the unknown value in the constraint system. It has a domain - a set of values
from which it can take its values. User’s objective will typically be to find the set of values
for some, or all, the variables in a given system, such that all of those values satisfy all the
constraints. Examples of variable types are integer variables, interval variables and integer set
variables (variables whose value is a set of integers).

Each variable has a class that represents its implementation, whose name usually has the
suffix VarImp (for example, integer variable implementation class is called IntVarImp). This
class handles all the technical details of the variable.

On top of this, Gecode offers variable class, which is effectively an interface to the variable
implementation, and is used to pass variables to functions. It is designed to be lightweight, so
that it can be passed by value to functions efficiently - and it contains virtually only the pointer
to the underlying variable implementation, as well as some accessor methods.

When writing propagators, domains of variables often have to be modified. Usually, an user
will not work directly with VarImp classes, and Var interfaces do not offer modification facilities.
Because of this, there is also view class for every variable type, normally suffixed with View (e.g.
IntView). View interface should never be used for modeling - it should be reserved to be used in
implementations of propagators.

Propagators

Propagators are the implementations of the constraints in Gecode. Their task is to infer whether
the constraint is satisfied by all of the values in the domain, for each constraint, given a domain
of each variable. Furthermore, they should prune all the values from the domain that are certain
to violate the implemented constraint.

If, during the pruning, whole domain of the variable is pruned, then, obviously, no value
satisfying the constraint exists, so that solution can be dismissed. On the other hand, if all of the
values in all of the variables can satisfy a constraint, then the propagator is said to be subsumed,
and it can be disposed (for performance reasons), as it will never propagate again.

The propagators interface to variables through the View classes.
From the propagation method of the propagator (called propagate), a propagator may return

that the constraint is certainly satisfied (subsumed in following text), or failed (not satisfiable).
Furthermore, as previously stated, propagator does not need to give a conclusive answer (unless
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all variables are assigned). In such cases, it may return that it has either reached a fixpoint,
or not. Then, a propagator lets the kernel know that it cannot be conclusively determined that
the current state certainly satisfies, or fails the constraint. If subsequent propagation with this
propagator could further affect the search space, the propagator is not at fixpoint, and it is at
fixpoint otherwise. If a propagator returns that it is not at fixpoint, it will be scheduled to be
executed again.

Propagators that reach a fixpoint after every execution are called idempotent. Every prop-
agator could be made idempotent by simply running its propagation code over and over again
and tracking whether it has changed any of its variables, until no change can be made any more.
However, in some cases (especially when a propagation step is computationally expensive), it
is beneficial for a propagator to only do a fraction of the work it can do. Then, opportunity can
be given to other, computationally cheaper, propagators, while delaying the more expensive one
until all the cheaper ones have been executed.

When created, the propagators in Gecode subscribe to at least one of their views (which
refer to a variable). Through subscribing, Gecode kernel is notified that a propagator needs to
be scheduled for execution whenever at least one of the variables to which it is subscribed is
changed. A subscription may have different propagation conditions, scheduling a propagator for
execution on any change, or only, for example, on lower bound change. Possible subscription
types depend on the particular variable implementation.

The Gecode kernel, upon a change of a variable, will schedule the relevant propagators for
execution.

However, the order of their execution is dependent on the Gecode kernel. Gecode offers the
user the possibility to implement a cost function in the implementation of a propagator, whose
idea is to approximate the computational complexity of that particular propagator.

If the propagator implements a cost function, the kernel may attempt to execute less compu-
tationally expensive propagators first. However, one should not rely on any particular execution
order - but the kernel guarantees that all propagators that have been scheduled will have been
executed before the next branching step.

Such approach to propagation makes some traditional consistency-enforcing algorithms un-
suitable to be directly implemented within the propagation method of a propagator. More specif-
ically, algorithms are often given as a loop, which attempts to find an inconsistent value within
a domain of some variable, and revise the domains. In such algorithms, this process is repeated
until nothing more can be revised.

In Gecode, however, when the propagation method is executed is dependent on the variable
subscriptions, and a single propagator does not have access to all the variables within the space.
Thus, traditional consistency-enforcing algorithm has to be adapted slightly. The adaptation
usually involves making the propagate method only responsible for the revision step, while the
propagator scheduling by Gecode kernel takes the place of the outer loop. Algorithm 4 gives the
outline of what Gecode kernel does.

Branchers

Branchers are the parts of the system responsible for dividing the domains of the variables.
Usually, the initial domains for all the variables will not satisfy at least some of the constraints
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Algorithm 4 Abstract Propagator Scheduling and Pruning Routine

Input: List of propagators c1, c2, . . . , cn , search space S
Output: Report a required number of solutions, or assert this many do not exist
Sp ⇐ S
# Propagator may be in four states, namely, subsumed, failed, at_fixpoint, and
# not_at_fixpoint. Subsumed means that the propagator is surely satisfied, while
# failed means sure failure. Propagator is at fixpoint if it is unable to decide
# whether it is satisfied, but cannot make any further inferences in this space,
# whereas a propagator not at fixpoint might still be able to prune some values
# from a space.
while ∃i state(ci) = not_at_fixpoint do

c⇐ choose ci ∈ C, such that state(ci) = not_at_fixpoint
S′p ⇐ propagate(ci, Sp)
for all cj ∈ c1, c2, . . . , cn, state(cj) = at_fixpoint
∧ cj subscribed to at least one variable with values in Sp \ S′p do

state(cj)⇐ not_at_fixpoint
end for
Sp ⇐ S′p

end while
# Now no propagator can propagate again.
# All propagators are now either subsumed, failed, or at fixpoint.
if Sp = ∅ then

report no solution
stop

else
if ∀j state(cj) = subsumed then

report Sp is a solution
else

S1, S2, . . . , Sm ⇐ branch (Sp)
# Different search engines will choose Sj in different orders

for Sj ∈ S1, S2, . . . , Sm do
Abstract Propagator Scheduling and Pruning Routine((c1, c2, . . . , cn), Sj)
if stopping conditions satisfied then

stop
end if

end for
end if

end if
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(otherwise, the problem would have already been solved). This is likely to be true even after
the initial propagation. Thus, a procedure is needed that will nevertheless look for the solu-
tion. While exhaustively trying all the possible values for all variables may be possible in some
cases (those with finite many possibilities), it is not a particularly appealing approach from an
efficiency point of view.

Therefore, Gecode relies on the fact that sometimes whole groups of values can be dismissed.
For example, in x ≤ 2, all values in the interval (2,∞) for x are not feasible.

A brancher is an algorithm that, given a space, gives possible options how the space could
be split in multiple subspaces, so that the union of all the subspaces would be the original space.
It determines the shape of the search tree.

Choice of a brancher is a very important one, primarily because of performance reasons.
Internally, for any space, Gecode requires that a brancher be able to calculate its possible

choices of subspaces. It is furthermore required that those choices can be serialized in such a
way so the choices can be repeated without the space for which they are computed necessarily
being the same. This is important because of possible need for backtracking, and Gecode’s
recomputation methods.

Search Engines

Search engines apply branchers and propagators to spaces in order to find subspaces that would
hopefully satisfy all the constraints. They determine order in which the search tree is explored,
and may make inferences (such as bounds pruning) to not explore all the possible options. The
goal of the search engine is to find a feasible solution, or multiple feasible solution, or to report
that no feasible solution exists after the search space is exhausted.

3.2 Extending the System

To implement interval reasoning, the first step was implementing the classes needed for interval
variables themselves. However, since nothing can be modelled only with variables and without
constraints, propagators needed to be implemented for them too. Furthermore, branching used
for other types of variables could not be used either, so a brancher was implemented as well.
Existing search engines were functional for this problem, so a new search engine was not needed.
When floating-point values is mentioned, double-precision floating-point representation is meant
if not specified otherwise.

Interval Arithmetic

In order to implement the system, the Boost Interval library [11] was used. This library handles
virtually all interval arithmetic. It overloads most of the common arithmetic operators used in the
language of implementation (C++), and makes the correct reasoning about the possible intervals
in any expression as effortless as in expressions with ordinary numbers.

Boost Interval library is a library designed specifically to facilitate interval arithmetic. The
main class in the library is the interval class (boost::numeric::interval). This class defines lower
and upper interval bounds, but type of the bounds is templated, so the user can use own type

34



to represent the bounds (for example, arbitrary precision numbers). However, for performance
reasons, in this implementation, C++ double data type was used for the bounds.

Furthermore, the class is templated with additional policies parameter. The policies consist
of two classes, namely, rounding and checking. Rounding policies handle rounding matters,
while checking policies deal with empty intervals, detecting infinite numbers or invalid values
and similar matters. Thus, the library is highly configurable, as the user can specify exactly how
the system should behave in handling those delicate issues. However, the library already gives
some pre-defined policies, so that most users must not implement their own.

Additionally, library offers possible and certain equality and inequality tests. Possible (in)equality
test functions return true if there exist values within the compared intervals for which the test
could be true, while certain tests return true only if the test is true for any pair of values taken
from each interval, respectively. It offers explicit functions for this functionality, but also offers
overloaded operators. User may choose whether overloaded operators are certain or possible by
a proper namespace declaration.

Interval data type

The Interval data type is the fundamental building block of the extension. It is a type defined as
a particular case of Boost interval class. Its definition follows.

typedef boost::numeric::interval
<

double,
boost::numeric::interval_lib::policies
<

boost::numeric::interval_lib::save_state
<

boost::numeric::interval_lib::rounded_transc_opp<double>
>,
boost::numeric::interval_lib::checking_base<double>

>
>
Interval;

Policy choices, however, have only a marginal influence on the extension, as the check for
whether an interval is assigned has to be performed manually, within a given tolerance. Further-
more, policies offer choices on how to handle NaN values, but the extension does not rely on
those values. The reason not to use simpler, default, policies, was because with them explonen-
tiation functions incorrectly (gives a compile time error).

Comparing floating-point values

Due to accumulation of floating-point errors, comparing floating-point values through equality
may cause incorrectness of the program. Therefore, a comparison routine fp_eq was used to
determine if two floating-point numbers are equal. It would return true if the numbers were

35



different by at most some tolerance1, and false otherwise. The check verifies whether their
absolute difference is lower than the threshold. Relative comparison is often considered superior,
due to floating exponent in floating-point values, however, in this case, it was inapplicable as it
did not recognize imporatant cases within a Newton step.

This relation is used throughout the extension for the bounds of the interval, to see whether
it is assigned (a singleton). An interval is considered a singleton if its bounds are floating-point
equal to one another, in the manner defined above. When not otherwise stated, comparison in
this manner is meant whenever two floating-point values are compared in the remainder of the
work.

SymbolicC++ Library and respective modifications

To make the system more accessible to the user, it should be possible to construct more complex
arithmetic expressions directly. Furthermore, a Newton step (see Equation (2.14)) requires the
derivative of an arbitrary function (namely, the function used to represent a constraint).

To accomplish both of these requirements, some kind of computer algebra system has to
be used. Such a system should make use of operator overloading, so that the user can specify
expressions such as, for example, 2xy+ z∧2 directly in code. Then, compiler could, because of
overloaded operators, be able to construct the expression tree from the expression automatically,
making it much less tedious for the user. Furthermore, the system should be able to symbolically
differentiate an arbitrary expression, as required for the Newton step.

In this implementation, SymbolicC++ library [22] was chosen, which satisfies the above
requirements. It is a lightweight computer algebra system that comes only as header files, and is
as such easily portable, and practical to modify. All of these facts made it the preferred choice
for this implementation. Its most basic building block is a symbol, which may be a constant, a
variable or a function. The symbol class was extended, making it possible to attach a Gecode
interval variable (as described in the next section, 3.2) to a symbol.

Furthermore, expressions are represented as a more general, Symbolic class, used to denote
an arbitrary expression. Interval evaluation and interval variable retrieval methods were added
to the Symbolic class. The system uses a class for every operator type it supports, where this
class is a subclass of the Symbolic class. Thus, a specialization of the interval evaluation and
variable retrieval methods had to be written in many different cases.

When using this extension, every variable in a constraint expression should have an asso-
ciated interval variable. Even though it is technically possible to construct an expression not
satisfying this, it would normally not be useful with this extension. In further text, it will thus
be assumed that all SymbolicC++ variables have associated Gecode interval variables.

Interval evaluation method will return an interval for each expression, corresponding to the
hull of possible values the expression may take. The system is able to infer this, since every
variable has a known domain, obtainable through the associated interval variable. Overloaded
variant of this method involves similar logic, but with the exception that it takes a variable and a
value as a parameter. It then evaluates the expression in the analogous manner, but replaces the

1This tolerance is, by default set to 10−8. However, user is free to modify this value to obtain different resolu-
tions.
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variable given as a parameter (if present) with the value given as a parameter - i.e. evaluates the
expression, given a single substitution.

Variable enumeration methods list all the variables in the expression. This is immediately
not obvious from the expression, as it may be intertwined with various operators, so the methods
were written recursively, with cases for every supported expression type. A method returning all
the variables, and a method returning only all unique variables are offered.

Symbolic expressions are used to post box consistency constraints as described in the Section
3.2.

Variables

A new variable implementation had to be made in order to implement the interval reasoning. To
implement new variable type, one has to compile Gecode from its source code. A configuration
must be set, and most of the code required is automatically generated by Gecode build script.
However, some additional logic had to nevertheless be implemented.

Naming convention used for other Gecode variables, especially IntVar was followed, so the
new variable type was named FloatVar. This is due to the fact that, even though it uses interval
reasoning, the variable actually represents floating point values, much in the same way as IntVar
represents an integer, even though it holds information about multiple possible integers. Thus,
new variable implementation was named FloatVarImp, while new variable and view interface
were named FloatVar and FloatView, respectively. Those classes offer the expected functional-
ity. Furthermore, some derived views were implemented.

FloatVarImp

FloatVarImp represents the implementation of the variable. It keeps a variable of type Interval,
representing the current domain of the variable. It offers a constructor through the Interval
type, or through specifying the interval bounds through two floating-point values, which then
constructs the interval.

Variable implementation offers the operations to modify the current domain. Among that
are the functions retaining only the values greater than (gq) and smaller than (lq) some value,
which work as in the integer variant. Furthermore, an intersect function is present, which inter-
sects the current domain with the interval parameter (or an overload with two bounds). Domain
replacement functions are not present, as the propagator is not allowed to expand a domain of a
variable.

Finally, accessor functions to get the lower bound (min()), upper bound (max()), interval
width (width()) and whether interval is assigned (assigned()) are provided. A copy of the interval
itself can be obtained with the interval() function.

FloatVar

FloatVar class offers an interface, and functionality similar to the one offered by the IntVar
class, only with bounds being double-precision floating point values, instead of integers. As
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with IntVar, this class offers accessor functions to getter functions from the FloatVarImp class,
and it merely forwards them to the underlying interpretation.

FloatView

As with FloatVar, FloatView is an interface to the underlying variable implementation, but view
classes can modify variable implementations as well. It does this by merely forwarding the
function calls to the variable implementation class.

Derived Views

MinusView, ConstSingletonView, and OffsetView are offered. MinusView and OffsetView work
exactly like their integer counterparts, but offsets can be floating-point values. ConstSingleton-
View is an analogy of ConstView from the integer variant - it is in essence a constant interval
view consisting just of a singleton.

Subscription Propagation Conditions

Propagation conditions are defined analogously as for IntVars. Every variable modification op-
eration is able to distinguish between cases when it has changed only lower, or upper bound,
when both have been changed, or when the domain has been reduced to a singleton. Further-
more, variable modification operations are able to detect if nothing has been modified through
the operation.

Propagators

Various propagators were implemented for the system. They can be divided into hull and box
consistency propagators. One propagator needed to be implemented for every supported op-
eration for hull consistency, whereas there is only one propagator for box consistency. The
following description describes the propagation step for each propagator. Whenever at least one
of variables changes (to which the propagator is subscribed), it is scheduled for execution. Then,
the propagation procedure will be surely execute before the next branching (possibly after other
propagators).

Other methods of a propagator are straightforward - the constructor creates the subscriptions,
for all variables given as arguments. Post function calls the constructor, possibly after it has
determined that the constraint is already not surely violated by a simple test.

Disposal method cancels the subscriptions, and calls the dispose method of the Propagator
base class - as prescribed in the Gecode documentation [19].

Cost functions return the combination of the number of variables (binary, ternary or linear)
according to the number of variables in every propagator. Furthermore, additional information
may be given whether the propagation cost is low or high. Hull consistency propagators return
low here, whereas box consistency propagator returns high as it usually has more work per
propagation iteration.
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Hull Consistency Propagators

Three different forms of hull consistency propagators have been implemented. The propagators
implemented are relational propagators in form x ∼ y, where ∼ is a binary relation, general-
form arithmetic operations in the form x1 ◦ ...xn = z, namely, addition and multiplication, and
other arithmetic operations with form x ◦ y = z.

Addition and Multiplication In case of the most complex form, x1 ◦ ...xn = z, propagator
is implemented exactly as described in the Section 2.5. First, the domain of the right-hand side
is shrinked to the intersection of its previous domain, and the domain of the operation on the
left-hand side (addition, or multiplication, respectively). Then, domain for each xi is shrinked
to the intersection of its previous domain and the domain of the right-hand side, from which one
subtracts, or divides, respectively, the sum, or the product, of the left-hand side without xi.

For example, given three FloatVar variables, x, y and z, one can post a constraint equivalent
to x+ y = z with the command

sum(home, x, y, z);

where home refers to the current Home space (a familiar Gecode concept).

Relational Operators Relational operators are the operators in the form x ∼ y, where∼ is an
arbitrary binary relation. As specified in the Section 2.5, equality is implemented by specifying
that the domain of both x and y is equal to the intersection of the both on every step. Less than
or equal relation is defined as in the Section 2.5, and other operators are accordingly defined.

Binary Operations Subtraction, multiplication, exponentiation, and inverse exponentiation
have been implemented in a binary form, x ◦ y = z. This is a special case of the x1 ◦ ...xn = z,
as described in the Section 2.5. For example, given two FloatVar variables, x and y, one can
post a constraint equivalent to x ≤ y with the command

leeq(home, x, y);

where home refers to the current Home space.

Symbolic Expressions for Hull Consistency Constucting hull consistency constraints from
symbolic expressions (see 3.2) is not possible. The reason for this is that virtually any constraint
that has a more complex form than those postable directly by the available functions would,
because of the Gecode structure, require decomposition into multiple constraints. Thus, it might
be the case that the user inadvertently posts many constraints, thinking only one will be posted,
possibly compromising performance. Because of this, the decision was made to split the post
functions for the two consistency options, so that the user will always be aware which is used.

Box Consistency Propagator

There is only one box consistency propagator, able to propagate an arbitrary box consistency
constraint.
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Specifying Constraints As stated in the Section 2.5, box-consistency constraints can only be
given in the form c(x) = 0. Thus, the propagator class internally stores only the left-hand side
of the expression, and equality to zero is implied.

To construct an expression for the box consistency propagator, the extended SymbolicC++
library (as presented in Section 3.2) is used.

To post a constraint, an user is given various variants of the post function, the simplest one
being only giving the left-hand side expression (where an expression is an instance of Symbolic
class from SymbolicC++ library). In this case, the posted constraint is that the given expression
is equal to 0.

However, an user may also specify both left and right-hand side expressions, along with
a relation (equality, less than, less than or equal, greater than, greater than or equal). In this
case, a new expression is constructed internally for the actual propagator, namely, by subtracting
the right-hand side from the left-hand side. Furthermore, slack variables are introduced where
applicable (inequalities).

This frees the user from having to know the required form for box consistency constraints,
but nevertheless, forces the user to post constraints in the form A ∼ B giving A, B and the
operator ∼ as three parameters to the post function, where the operator ∼ is specified through
an enumeration in the propagator class (options being equal, not equal, less than, less than or
equal, greater than and greater than or equal).

Considerations when Posting Constraints through Symbolic Expressions The sym-
bol ∧ represents the XOR operation in C++, which is a low precedence operation. However,
in SymbolicC++, ∧ represents the exponentiation operator, which, mathematically, has greater
precendence than other common operators such as +. As a consequence, user should mind that,
when creating expressions, even though ∧ signifies the exponentiation operator, its precedence
is equal to that of the standard C++ XOR operation. Thus, to create the constraint x2 + y, user
should write (x∧2) + y, as writing just x∧2 + y would create the expression x2+y.

Furthermore, SymbolicC++ has == equality symbol, which is still allowed in the con-
straints. However, this operator in fact creates an expression A == B, which will evaluate
to 1 if A is (certainly) equal to B, to 0 if A is certainly different than B, and to an interval [0, 1]
(hull of [0, 0] and [1, 1]) if nothing can be inferred. This means that posting A == B would
actually post the disequality constraint between A and B (namely, (A == B) = 0), while
(A == B)− 1 would post the equality constraint between them (note that the right-hand side is
implicitly equal to 0). Disequality can also be posted by putting A == B on the left-hand side,
and stating equality as a relation with 1 (namely, (A == B) = 1) on the right-hand side, which
then works as expected.

Certain and Possible Constraint Satisfaction A constraint c(x) = 0 is certainly satisfied
if all of its variables are singletons, and 0 ∈ c(x). Furthermore, even if the variables are not
all assigned, but c(x) ⊂ [−ε, ε], the constraint is also certainly satisfied, where ε is some small
threshold value.
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A constraint is satisfiable (possibly satisfied) if 0 ∈ c(x) and not all variables have been as-
signed (if all variables are assigned, we can determine whether the constraint is actually satisfied
or not).

A constraint is unsatisfiable if it is not satisfiable.

Propagator Creation To post a constraint, the user uses the post function which transforms
the constraint in the form c(x) = 0 (as described in the Section 3.2). Then, post function
of the propagator checks satisfiability, and trivially fails the space if the constraint is already
unsatisfiable. Then, it checks if it is certainly satisfied (if so, propagator has nothing to do), and
if this is not the case, it posts the propagator.

In the constructor, a subscription to all variables in the expression is created - the same
subscriptions are cancelled in the destructor.

Propagation Initially, the propagation method first checks unsatisfiability, and fails the space
if the constraint is unsatisfiable. Then, if a constraint is certainly satisfied, the propagator is
dismissed as subsumed. If neither is the case, box consistency by shaving algorithm is carried
out.

The function considers unique unassigned variables in the expression. For every such vari-
able, it proceeds with a step of the box consistency by shaving enforcement algorithm step.

If the step has modified the variable, the propagation method terminates, returning that it has
not reached a fixpoint. This notifies the kernel that it may still have some work to do, but leaves
the possibility that other, less computationally expensive propagators may first propagate.

If the step has not modified the variable, the procedure proceeds to the next unassigned
variable. If no such variable exists, propagator returns subsumption - as all variables have been
assigned, and unsatisfiability has not been caught.

Handling the Case When 0 ∈ f ′(Ij) As stated in Section 2.5, Newton step cannot be taken
if 0 ∈ f ′(Ij). In that case, this implementation attempts to eliminate inconsistent part of an
interval, either from the left side, or the right side. This implementation first attempts to narrow
from the left, and, afterwards, from the right. The process to eliminate inconsistent values
from the right side is symmetrical, but otherwise analoguous to the process from the left, so
the following presentation shall assume one attempts to narrow from the left. Note that here
the function f is the function implementing the constraint, value of which is 0 if a constraint is
satisfied, and is nonzero otherwise. Its derivative can no longer be used, since a Newton step
cannot be applied.

The narrowing process is, basically, a binary search for an interval that is inconsistent from
the left of the interval (assuming left narrow). It is not a search for the largest inconsistent inter-
val. The implementation bisects the interval Ij into left and right halves, Ilj and Irj , respectively.
Then, the implementation checks if 0 ∈ f(Ilj). If this is the case, one cannot dismiss the interval
Ilj as inconsistent, as it is sure to contain at least one consistent value. In this case, the procedure
is recursively carried out on the left half of the interval, Ilj . If, however, 0 6∈ f(Ilj), one can
immediately note that Ilj is inconsistent, and the left bound of Irj is a result of the left binary
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narrowing. Note that the result of this procedure is a number that might (does not necessarily
have to) be a left consistent value. However, the result will be less than or equal to the smallest
left consistent value (it will not dismiss consistent values), but different to the left bound of the
original interval Ij . The (left) binary narrowing procedure is given in Algorithm 5.

Note that this procedure possibly terminates before it has done all the narrowing that it is
capable of doing. This is intentional, as the binary narrowing procedure is normally much more
computationally heavy than a Newton step. Thus, it is important that some, minimal narrowing
be done so that the implementation does not become stuck. However, it is not vital that the
full extent of the narrowing be done immediately, as this gives a chance to propagation of other
constraints, or the same constraint on a different variable. Furthermore, it is also possible that
the pruned values will cause that f ′ evaluated on a narrowed interval no longer contains 0, thus
opening the possibility of further Newton steps.

Then, the final result is the hull of results that are obtained by left and right binary narrowing.

Algorithm 5 Binary Narrowing Procedure from the Left - binary_narrow

Input: Function f implementing a constraint, Interval I, Original bound O
where the original bound O should be set to to I, for use in recursive
calls to determine whether any progress has been made

Output: Number l s.t. l > I and l ≤ L
where I and I are the left and right bound of an interval I, respectively,
and L is the smallest left consistent value in I w.r.t f

(Il, Ir)← bisect(I)
# Left side of the interval is unsatisfiable
# Just return the left bound of the right half (a half of an interval was dismissed)
if 0 6∈ f(Il) then

return Ir
else

# Left side of the interval is satisfiable - this need not provide any useful info
# Therefore, either split further, or leave it as is, in which case nothing new might
# have been obtained. Split further only if no change was done thus far
# (dismissing any number of inconsistent values from the left is satisfactory)
if O = I then

return binary_narrow(f , Il, O)
else

return Il
end if

end if

Branchers

A branching step on interval variables is, as expected, bisecting the domain of a single variable,
and exploring two subspaces with the variable domain being equal to the respective half in each,

42



with all other domains remaining unchanged.
The user may specify a branching as usual in Gecode, by calling the branch function, which

was overloaded for the FloatVar variables. User may use the FloatVarArgs array to chain multi-
ple branchings, or simply chain the calls.

A brancher in Gecode has three important functions to be implemented, namely, a choice
function that chooses how to branch, a commit function that specifies how to implement a chosen
branching, and a status function that checks whether a brancher has anything left to do.

Choice

The choice function loops through all the variables in the specified branching, and attempts to
find the most suitable one by comparing their domains. Multiple criteria can be used to determine
the most suitable variable, and the criterion used is specified by the user as the branching post
parameter. An example of a criterion is to take the variable with the largest domain first. Then,
the function creates a choice, which consists of an index of a variable which was chosen, along
with two intervals corresponding to the two halves.

Commit

The commit function takes a choice as created above as a parameter, as well as whether to choose
the left or the right option. Depending on the option, it extracts, respectively, the left or the right
interval from the choice, as well as the variable. Then, the function simply reduces the domain
of the variable to be the intersection of its previous domain with the extracted interval.

Status

Status function determines whether there is anything left to do. If there exist active propaga-
tors, and unassigned variables, the function will return that something is left to do (true), and
otherwise false.

Other Functions

A brancher needs to implement an archiving method, which archives a choice. The implemented
method simply takes the variable index, and the four bounds of the two intervals in a choice, and
stores them in sequence. A complementary method for extracting choice reads them in sequence
and reconstructs. Other methods, such as constructors and disposal method, were implemented
exactly as specified in Gecode documentation [19].
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CHAPTER 4
Benchmarks

To test the correctness, and the speed of the system, known problems (from [6]) were modeled,
and solved within the framework. Problems with multiple instances were chosen, in which one
is able to choose a number of constraints defining the instance. Here, more relations (usually)
means a more difficult instance. Solving increasingly difficult instances is a good benchmark for
a framework, as it shows how a particular framework scales with the increasing difficulty of the
instance.

All results given in this chapter, and in Chapter 5, were obtained on a computer with a
Intel(R) Core(TM)2 Duo CPU T9300 @ 2.50 GHz, 4 GB of RAM, running a 64-bit Windows
7.

4.1 Broyden Banded

Problem Description

The first problem used to test the implemented extension is a classical problem for interval con-
straint programming, the Broyden Banded [6]. The problem is defined by the set of n equations,
as follows:

xi(2 + 5x2i ) + 1−
∑

j∈Ji
xj(1 + xj) = 0 (4.1)

where

Ji = {j, j 6= i,max(1, i−ml) ≤ j ≤ min(n, i+mu)} (4.2)

ml = 5 (4.3)

mu = 1 (4.4)

xi ∈ [−100, 100], ∀i. (4.5)

The above problem is solvable with box consistency alone, without branching [20]. Therefore,
the problem was modeled only with box consistency constraints, with one constraint directly
included in the model for each of the defining equations.
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Figure 4.1: Broyden Banded - n vs Time (s)
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Table 4.1 shows the times (in seconds) the computer needed to solve a particular instance of the
problem (in relation to a particular instance size n, that is, the number of defining equations).
Epsilon value used for this experiment set is 10−9. Initialization time is the time the system
needed to set up all the constraints, that is, the work prior to actual propagation. This consists
mainly of the overhead from the SymbolicC++ library, since the construction of the constraint
set itself is not computationally heavy. Propagation time is the time it takes to find the first (and
only [6]) solution, after the initialization is complete. Initialization and propagation time are
the only parts of the solving process, so, together, they amount to total solving time. The last
column shows which proportion of the total time was spent in the actual propagation, as opposed
to initialization overhead.

The data about initialization, propagation and total times are shown in Figure 4.1 (on a
logarithmic scale), while the data about the proportion of time spent in propagation in relation
to total time is graphed in Figure 4.1. Furthermore, Figures 4.3, 4.4 and 4.5 show the total time,
initialization time, and propagation time, respectively, on a logarithmic scale. On those figures,
linear interpolations of the result for the respective segment for n = 100 and n = 100000 are
plotted as well, for comparison 1

1Linear interpolation for the respective segment are the functions f100(n) = c100
100

n and f100000(n) = c100000
100000

n,
where c100 and c100000 are the actual values (of initialization, propagation, and total time, respectively) for n = 100
and n = 100000, respectively. In other words, f100 and f100000 represents how the function would behave if it were
linear, and passing through the data point for n = 100 and n = 100000, respectively. Since the axis is logarithmic,
linear function is no longer a straight line through the given points, so these serve to better put computation time in
reference.
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Table 4.1: Broyden Banded - Time to Solve with Box Consistency

n Initialization Propagation Total Propagation Time / Total Time
1 0,004 0,016 0,02 0,8
2 0,007 0,272 0,279 0,974910394
3 0,016 0,806 0,822 0,98053528
5 0,048 2,895 2,943 0,983690112

10 0,173 13,898 14,071 0,987705209
15 0,284 24,49 24,774 0,988536369
20 0,408 50,516 50,924 0,991988061
25 1,255 47,74 48,995 0,974385141
50 1,076 131,733 132,809 0,991898139
75 1,586 255,388 256,974 0,993828169
100 2,128 340,27 342,398 0,99378501
150 3,216 423,238 426,454 0,992458741
160 3,432 427,557 430,989 0,99203692
200 4,945 385,814 390,759 0,987345141
300 6,755 508,068 514,823 0,986878986
500 10,914 550,881 561,795 0,980572985
1000 22,247 801,81 824,057 0,973003081
2000 46,595 1055,125 1101,72 0,95770704
10000 244,965 3653,935 3898,9 0,93717074
50000 1264,53 16218,47 17483 0,92767088

100000 2342,37 31963,13 34305,5 0,931720278

Figure 4.2: Broyden Banded - n vs Proportion of Time Spent in Propagation
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Figure 4.3: Broyden Banded - n vs Total Time (s)
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Figure 4.4: Broyden Banded - n vs Initialization Time (s)
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Figure 4.5: Broyden Banded - n vs Propagation Time (s)

0,001

0,01

0,1

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000

Propagation Time

Linear Interpolation, n = 100

Linear Interpolation, n = 100000

Analysis of the Results

The implemented system was able to tackle even very large instances of the Broyden Banded
problem within reasonable time. This is no doubt due to the fact Broyden Banded can be solved
with propagation alone, without branching [20].

However, one can note that initialization time is significant compared to the propagation
time. Furthermore, the initialization time was compared to the initialization time of a different
interval constraint programming implementaton using a different library, and the initialization
time in the other implementation was two orders of magnitude better.

This points out the fact that SymbolicC++ may be suboptimal library for this application.
Replacing SymbolicC++ with some other library or design pattern such as expression templates
may offer better constraint initialization time. However, SymbolicC++ performs relatively well
when evaluating expressions, and all other necessary functions with them - except for the ini-
tialization. As most real-life problems are not solvable by propagation alone, slow initialization
need not necessarily be problematic.

Nevertheless, one can conclude that even bigger instances (e.g. for n = 100000) are still
feasibly solvable with this method.

4.2 Broyden Tridiagonal

The next problem used for testing the system is the Broyden Tridiagonal, taken from [6]. The
problem is defined by n equations, given by

(3− 2xi)xi − xi−1 − 2xi+1 + 1 = 0 (4.6)
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where

x0 = xn+1 = 0 (4.7)

xi ∈ [−100, 100], 1 ≤ i ≤ n. (4.8)

The problem was modeled directly with box consistency constraints, with one constraint in-
cluded for every constraint from the problem. n + 2 variables were used, with x0 and xn+1

having only the number 0 in their domains. When branching, the variable with the widest do-
main was selected. For this problem, choosing the variable by degree is not a viable option,
since all variables are present in all constraints (through their sum).

Results

Smaller instances of this problem have two solutions. For all considered instances, it was fea-
sible to find the first solution, but the second was not found due to search requiring insufficient
memory. In such instances, missing data is marked with a question mark.

Three different sets of experiments were carried out, varying the equality tolerance, and the
modification significance level (MSL). Equality tolerance, or ε, is the minimum difference be-
tween two numbers that has to be present for the numbers to be treated as different, as described
in Section 3.2. Larger ε values mean less resolution, as there are less possible numbers that can
be considered, however, because of the same reason, search often proceeds faster.

Moreover, especially when the derivative of a constraint contains 0, box consistency prop-
agation is not able to make rapid changes to the variable domains. Thus, propagation is often
repeatedly carried out, each time shrinking the domain quite insignificantly, perhaps even only
by ε. Even though propagation is normally favored over branching, a new setting was introduced
that, if a propagator was not able to shrink the domain of at least one variable to at least a frac-
tion of its size (determined by modification significance level), it would notify the kernel that
it is at fixpoint. This means that, if no other propagator is scheduled, the kernel would proceed
with branching, rather than with more propagation, assuming that there are not many solutions,
and that perhaps a whole branch may be dismissed in the next propagation round. Note that
branching is still more computationally intensive (as well as memory intensive), so it should not
be expected from a propagator to shrink the domain by too much. However, preventing very
small shrinks and branching instead is beneficial for some instances.

Furthermore, due to reasoning with relatively high resolution, the difference between two
possible values for a variable was quite small, so it often happened that a few adjacent values for
a particular variable would satisfy all the constraints due to the tolerance. This yielded dozens
of solutions that, in fact, all represented only a single solution within some small tolerance 2

However, such solutions are the representations of the same actual solution, within floating
point errors. Thus, a criterion was introduced that the solutions are only considered different
solutions when the difference between any two solutions is at least 10ε for each variable.

2Not necessarily the ε tolerance, since any particular constraint is considered satisfied (for box consistency) if
its left-hand side evaluates to 0 within the ε-environment. This means that the two solutios could differ by more. For
example consider the constraint 1

100
x− 1 = 0. Here, two values for x could vary by as much as 100ε.
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Figure 4.6: Broyden Tridiagonal - n vs Time to First Solution
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Tables 4.2 - 4.4 show the results of the various instances solved with different ε and modi-
fication significance level (MSL) parameters. Times required to solve the instances are shown,
as well as some statistics given by Gecode kernel. Initialization represents the time needed to
initialize the constraints, without any propagation or branching work. Other columns (except for
n and initialization time) have, in parentheses, whether the data therein corresponds to the first
or the second solution.

The column Time gives the time required to solve the instance. Note that the solving time
for the second instance includes the solving time for the first instance (and initialization), as
solutions are found through a depth-first tree search, and second solution could not have been
found without considering all the previous nodes. The column Depth gives the maximum depth
of the search tree reached, while the column Nodes gives the number of nodes visited, and the
column Propagate gives the number of times the propagate routine was called.

Times to first, and second solution are shown graphically in Figures 4.6 and 4.7.

Analysis of the Results

In all three cases, it can be noted that the time required to find the first solution rises with n.
It is, in fact, almost linear to n. This is also the case with the depth (consequently, the number
of nodes as well) and the number of propagations. This cannot be said for the second solution,
which is sometimes much harder to find for smaller instances than for bigger ones (consider,
for example instances with n = 5 and n = 10). In general, regularity does not follow from
the experimental data for the second solution. Depth, number of visited nodes and number of
propagations rise with n for the second solution as well, but required time does not follow the
trend.

In the presented instances, lower resolution (higher ε) clearly outperforms the other two
sets. This is expected, as lower resolution leaves a much smaller search space to be explored.
Furthermore, it is interesting to note that, in both instances with MSL = 0.9, depth at which the
solution is found is virtually identical, even though resolution differs significantly. Also, in both
those cases, number of explored nodes when searching for the first solution is exactly greater
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Figure 4.7: Broyden Tridiagonal - n vs Time to Second Solution
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by 1 than the depth. This effectively means that the search was correctly directed towards the
solution, without a single wrong turn on the way. This is, though, not the case with the higher
MSL.

Comparing the two higher resolution sets with different MSL, one can observe that neither
setting is consistenly outperforming the other. Lower MSL is better for some problem sizes,
while greater MSL value is better for other sizes. It is also interesting that one value may be
beneficial in finding the first solution, while other might be better for finding the second one.

Nevertheless, all three sets seem to have similar relative difficulty. If one instance takes more
time to solve than some other on a particular setting, it will most likely also take more time to
solve than the other one on some other setting. However, this is not the case for all instances.

4.3 Brown

Another benchmark, focusing on testing hull consistency, is Brown, again taken from the CO-
PRIN examples [6]. The problem is defined by n equations as follows:

xk +
n∑

i=1

xi = n+ 1, 1 ≤ k ≤ n− 1 (4.9)

i=n∏

i=1

xi = 1 (4.10)

xi ∈ [−108, 108], 1 ≤ k ≤ n. (4.11)

55



This problem, even though it has multiple occurences of a variable in every constraint (except

for
i=n∏

i=1

xi = 1), yields itself naturally to modeling through hull consistency.

To model
i=n∏

i=1

xi = 1, one introduces a variable p representing the product of all variables,

whose domain is just the number 1, and a hull consistency constraint p =
i=n∏

i=1

xi.

Furthermore, to model the remaining set of constraints, one first introduces a variable σ ∈

[−108n, 108n] that will hold the sum of all variables. Then, a constraint σ =

n∑

i=1

is introduced.

Now, for every remaining constraint, a variable yk ∈ [n − 1, n − 1] is introduced, and the

constraint xk +
n∑

i=1

xi = yk posted.

Through this approach, very little excessive variables are introduced, and propagation through
hull consistency can proceed.

Results

The table 4.5 shows the experimental results for a few instances of Brown. Considered instances
have either two or three different solutions, depending on the instance. Measures desribed in
Section 4.2 had to be taken to ensure only different solutions are given. Meaning of the columns
is as in Section 4.2, with the parenthesized number representing whether the data is for the first,
second or the third solution. Time is again cumulative, as, in order to find any solution, all of
the previous ones (if they exist) have to be found first. Cells for the third solution are marked
as N/A where no third solution exists. Note that in such cases it was proven no third solution
exists (search space was exhausted), rather than the search being terminated due to exhaustion
of resources. As hull consistency is used for all constraints, there is no (significant) constraint
initialization time, as that represents the constraint initialization overhead introduced by Sym-
bolicC++. Figure 4.8 shows the instance size against the time to find the first two solutions
graphically. Third solution was omitted here as it does not exist for all instances.

Analysis of the Results

It is interesting to note that the search proceeds to comparable depth in every of the considered
instances except for n = 2, namely to depths between 100 and 109. Here, for all instances, find-
ing the solutions for bigger instance requires more time than finding them for smaller instances
(this is valid for both, or all three solutions). Increasing difficulty is also apparent through in-
creasing number (with increasing n) of nodes and propagation calls, for all solutions. Second
solution usually requires more time to be found after the first is found than what first one re-
quires to be found in the first place. However, this is not always the case for the third solution,
compared to the second.
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Figure 4.8: Brown - n vs Time to First and Second Solutions
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CHAPTER 5
3D Reconstruction

One is often interested in a 3D reconstruction of some object. It is possible to obtain some infor-
mation about the layout of points in space from a series of 2D images [9]. With this method, one
can obtain a bounding box in which every of the points in the object lies, as well as some addi-
tional geometrical constraints. This gives a number of possible locations for different points, but
only a few satisfy the geometrical constraints. Since the coordinates are real numbers, interval
constraint programming is well-suited to solve this problem, and find a possible point locations
satisfying the constraints.

5.1 Formal Statement of the Problem

For every point Pi = (xi, yi, zi), a bounding box Bi = ([xi, xi], [yi, yi], [zi, zi]) is given. Note
that here Pi is unknown - the values of its components have to be found so that for every point
i, Pi ∈ Bi.

Furthermore, set of faces given as a set of triples representing point indices is given. This set
represents faces, where a face is a triangle. Three points form a face if and only if their indices
are in the face set. Let a face Fi = (v1, v2, v3), where v1, v2, v3 are point indices, dependent on
i.

Moreover, some geometric constraints are given. These are divided into coplanarity con-
straints, orthogonality constraints, parallelism constraints and equal angle constraints.

A coplanarity constraint is given by four point indices, and represents the fact that those four
points lie on a same plane. Each coplanarity constraint can be denoted asCcopl

i = (v1, v2, v3, v4).
Orthogonality is a relation between faces, and each orthogonality constraint gives two face

indices, and means that the faces given by those indices are orthogonal. It can be denoted as
Corth
i = (f1, f2).

Parallelism constraints are given analogously as orthogonality, but represent parallel faces.
It can be represented as Cpar

i = (f1, f2).
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constraints are given as a quarduple - a pair of pairs of face indices. The meaning is that the
faces pointed to by the first two indices enclose equal angle as the faces pointed to by the second
two indices. It can be represented as Cea

i = ((f1, f2), (f3, f4)).

5.2 Variable and Constraint Definition

Variables

For every point Pi, three variables corresponding to its coordinates are defined. Their initial
domains correspond to the bounding boxes. This creates three arrays of variables in form xi, yi
and zi. Since the domains are initially limited by the bounding boxes, bounding boxes are not
used afterwards.

For every face Fi, a normal must be calculated. Thus, four variable arrays are introduced,
namely, nxi, nyi, nzi and ili, where the first three represent the normal vector coordinates, and
the last one represents its inverse length. Since no conclusion can be made about the possi-
ble values of normals in advance, their domains should be set to some large range, possibly
even (−∞,∞), so that no normal values would be dismissed because of too restrictive domain.
Inverse length cannot take negative values, so its domain can take that into account.

Normal Definition - Length

Constraints defining the normals need to be laid out. For every face Fi, its length needs to be
exactly 1. Through the Pythagorean theorem, this can be stated as

il2i (nx
2
i + ny2i + nz2i ) = 1. (5.1)

This, in effect, sets up the relation between the normal components and its inverse length - which
will be necessary to reason about angles afterwards.

Normal Definition - Components

A normal (with an arbitrary length, not necessarily equal to 1), to a face Fi = (~v1, ~v2, ~v3) =
((x1, y1, z1), (x2, y2, z2), (x3, y3, z3)) is given as

~ni = (~v2 − ~v1)× (~v3, ~v1).

The constraints for nxi, nyi and nzi are laid out by decomposing the above cross product
component-wise.

Coplanarity Constraints

A plane through three points, given as (~v1, ~v2, ~v3) = ((x1, y1, z1), (x2, y2, z2), (x3, y3, z3)) is
defined through the determinant

∣∣∣∣∣∣

x− x1 y − y1 z − z1
x− x2 y − y2 z − z2
x− x3 y − y3 z − z3

∣∣∣∣∣∣
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with free variables x, y and z. For a coplanarity constraint

Ccopl
i = (~v1, ~v2, ~v3, ~v4) = ((x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4)), (5.2)

by plugging the corresponding variables in the above determinant, and plugging (x4, y4, z4)
in place of the variables x, y and z, a arithmetic expression representing the corresponding
coplanarity constraint is obtained. The final constraint can then be expressed as

∣∣∣∣∣∣

x4 − x1 y4 − y1 z4 − z1
x4 − x2 y4 − y2 z4 − z2
x4 − x3 y4 − y3 z4 − z3

∣∣∣∣∣∣
.

Orthogonality Constraints

Two planes (or faces) are orthogonal if their normals are orthogonal. This will be the case if the
dot product of the normals is 0. Given a orthogonality constraint Corth

i = (fj , fk), we have that

~nj · ~nk = 0 (5.3)

where ~nj and ~nk are the normal vectors corresponding to the faces fj and fk. This can be
expanded to

nxjnxk + nyjnyk + nzjnzk = 0 (5.4)

where variables correspond exactly to the variables in the system.

Parallelism Constraints

Two planes (or faces) are parallel if their normals are parallel. This will be the case if the dot
product of the unit normals is 1. Given a orthogonality constraint Cpar

i = (fj , fk), we have that

~nj · ~nk
| ~nj || ~nk|

= 1 (5.5)

where ~nj and ~nk are the normal vectors corresponding to the faces fj and fk. This can be
expanded to

(ilj ilk)(nxjnxk + nyjnyk + nzjnzk) = 1 (5.6)

where variables correspond exactly to the variables in the system, and the inverse length factor
(ilj ilk) transforms the normals into unit normals.

Equal Angle Constraints

Two pairs of planes (or faces) enclose equal angles if the dot products of the pairs are equal.
Given a equal angle constraint Cea

i = ((fj , fk), (fl, fm)), we have that

~nj · ~nk
| ~nj || ~nk|

=
~nl · ~nm
|~nl|| ~nm|

(5.7)
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where ~nj , ~nk, ~nl and ~nm are the normal vectors corresponding to the faces fj , fk, fl and fm.
This can be expanded to

(ilj ilk)(nxjnxk + nyjnyk + nzjnzk) = (ill ilm)(nxlnxm + nylnym + nzlnzm) (5.8)

where variables correspond exactly to the variables in the system, and the inverse length factors
(ilj ilk) and (ill ilm) transform the normals into unit normals.

5.3 Experiments

Instances

The experiments with 3D reconstruction were carried out on five different regular instances, rep-
resenting various objects. Furthermore, two different synthetic instances were constructed from
the two different regular polyhedra with triagonal faces, namely, tetrahedron and octahedron.
The synthetic instances were based on the polyhedron data as given by Wolfram Mathematica
8 [21]. Bounding boxes were constructed in such a way that the midpoint of each bounding box
corresponds to the coordinates given by Mathematica for the corresponding vertex. The sizes of
the bounding boxes were made comparable to the regular instances. All objects were described
through the bounding boxes of their vertices, and their faces, as well as constraints as described
in Section 5.1. This data was loaded from a plaintext file for each of the instances.

Model

For all experiments, every normal length constraint was decomposed into simpler constraints, so
that hull consistency enforcement could be applied to the new constraints. Reason for this is that,
if box consistency were applied instead, in the Newton step a derivative containing 0 would be
calculated, which would result in much slower convergence, as the implementation would have
to resort to the binary narrowing procedure, as described in Section 3.2. Thus, every constraint
of the form

il2i (nx
2
i + ny2i + nz2i ) = 1 (5.9)

was replaced with constraints in the form

ilsqi = il2i (5.10)

nxsqi = nx2i (5.11)

nysqi = ny2i (5.12)

nzsqi = nz2i (5.13)

lensqi = nxsqi + nysqi + nzsqi (5.14)

lensqi ilsqi = 1 (5.15)

with the appropriate variables introduced.
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Table 5.1: Computation Time for Various 3D Reconstruction Instances

Instance Number of Vertices Number of Faces Initialization Time Solve Time Total Time
tetrahedron 4 4 0.671 s 0.057 s 0.728 s
octahedron 6 8 2.368 s 0.124 s 2.492 s

casetta 9 14 7.237 s 0.244 s 7.481 s
boxwhole 16 32 19.423 s 0.677 s 20.1 s

lego 26 42 32.491 s 1.11 s 33.601 s
test 32 60 33.778 s 2.032 s 35.81 s

pozzo 49 92 51.463 s 2.712 s 54.175 s

All other constraints were declared in the model exactly as specified, and were posted with
box consistency. Since all are polynomials, with the degree of all variables being at most 1,
partial derivative on any variable is normally constant everywhere. This has as a consequence
very fast convergence in a Newton step.

Results

Table 5.1 shows the initialization and solve time for each instance, as well as the size of the
instance (through both the number of vertices and edges). Here, initialization time represents
the time it takes to load the instance, initialize variables and construct the Symbolic objects
used to represent constraint. The last factor is by far the most significant (at least by an order
of magnitude). Solve time is, on the other hand, the time the implementation needs after the
initialization to obtain the first solution, which is the solution shown in the result. Total time is
the sum of the initialization and solve times.

Figures 5.1 and 5.2 show the reconstructions of the two synthetic instances, namely, tetrahe-
dron, and octahedron. Furthermore, Figures 5.3 - 5.7 show the 3D reconstructions from various
angles of the five different test instances. These representations are only one of many possible
solutions, since, in those instances, every vertex has its bounding box. Thus, intuitively, one
may be virtually free to choose the position for the first vertex.

All of the 3D reconstruction images were constructed by Wolfram Mathematica 8 [21], from
the result coordinates produced by the implemented Gecode extension.

Analysis of the Results

The shown instances were solved by this implementation, in a reasonable amount of time, as all
of the shown instances were solved in under a minute. However, as well as the results shown
in Section 4.1, results in this section emphasize disproportionally long initialization time, which
is more than an order of magnitude greater than the time it takes to find the actual solution.
In a comparable implementation using another computer algebra system, initialization times
were two orders of magnitude faster. This further serves to highlight that SymbolicC++ may
not be the most appropriate library for interval constraint programming, especially when many
constraints are necessary. However, it is interesting to note that, compared to creating Symbolic
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Figure 5.1: 3D reconstruction of the synthetic instance tetrahedron

Figure 5.2: 3D reconstruction of the synthetic instance octahedron
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Figure 5.3: 3D reconstruction of the instance boxwhole

Figure 5.4: 3D reconstruction of the instance casetta

objects, working with them is not as slow, which is shown by the fact that the time to solve
every of those instances is much less than the time it takes just to create the Symbolic objects
corresponding to the constraints.
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Figure 5.5: 3D reconstruction of the instance lego

66



Figure 5.6: 3D reconstruction of the instance test
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Figure 5.7: 3D reconstruction of the instance pozzo
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CHAPTER 6
Conclusions and Future Work

The underlying concepts for Interval Constraint Programming were presented, and an extension
of Gecode capable of such interval reasoning was implemented, and tested on various scalable
benchmarks, as well as the 3D reconstruction problem. The implemented extension supports
two consistency notions, namely, hull and box consistency.

In the implemented system, hull consistency propagators were implemented for the most
common arithmetic operations. Hull consistency is the direct approximation of the arc consis-
tency in the interval domain. The algorithm used for propagation of hull consistency constraints
was HC4. Despite using the HC4 algorithm instead of the simpler HC3, hull consistency con-
straints are limited to a particular, relatively simple form, having only a single operation per
constraint. Reason for this limitation is that, even though it may be possible to use HC4 to prop-
agate more complex constraints, a particular procedure would have to be written for forward
evaluation and backward propagation for each of the more complex forms that need to be sup-
ported. Nevertheless, user is able to add custom propagators to handle such cases, should such
functionality be required.

The advantage of using hull consistency is that it is more efficient than box consistency, as
long as every variable appears only once in every constraint. When this is not the case, hull
consistency can still be applied, but box consistency may have performance advantages. The
disadvantage of using hull consistency is, as was already stated, possibly lower performance
when variables occur multiple times in a constraint. Furthermore, since only particular form
of constraints can be specified in the implemented system through hull consistency, some con-
straint decomposition (although not to the extent algorithm HC3 requires) is necessary to use
hull consistency if the user is unwilling to program own hull consistency propagators.

Aside from hull consistency propagators, a single box consistency propagator was imple-
mented. Box consistency constraints have a function implementing a constraint that is 0 exactly
for the values for which the constraint holds, and is nonzero otherwise. Box consistency is a
relaxation of hull consistency, in which, instead of reasoning about the necessary domains of
variables in an expression, one aims to eliminate the outermost values in an interval by showing
that they are inconsistent, that is, that the function implementing the constraint is not 0 for such
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values. To eliminate inconsistent values for a particular variable, the interval Newton method
is used, if the derivative of the function implementing the constraint is nonzero when evaluated
for the domain of that variable. If the derivative contains zero, workaround method have to be
used. The binary narrowing procedure, described in Section 3.2, was used for this purpose in
the implementation.

To implement box consistency, a method to represent symbolic expressions, and to differen-
tiate them was required. The library SymbolicC++ was chosen, and extended for this purpose.
With the help of the library, the system was able to effectively propagate box consistency con-
straints. However, it presented its weaknesses in constructing the Symbolic objects, which repre-
sent the constraints internally. Such initialization time is unusually long, and this is particularly
emphasized on problems like 3D reconstruction with a large number of constraints (see Section
5.3), or on problems like Broyden Banded that require extensive box consistency propagation
(see Section 4.1). After a Symbolic object is created, the library performs its tasks comparatively
more efficiently, but a different library or design pattern such as expression templates may still
be a better choice. This all leads to a conclusion that this library may have been a suboptimal
choice for this project.

Both of those consistency types were used to solve various scalable problems taken from
the COPRIN example database [6], as well as the 3D reconstruction problems. This shows that
the 3D reconstruction is feasible to solve with this method, and one can assume that even larger
instances can be solved through this method too, as the time it takes to solve considered one is
relatively small (excluding initialization time).

In conclusion, a working implementation of interval constraint programming for Gecode was
implemented. Its weakness is the usage of the SymbolicC++ library, which performs somewhat
badly when initializing constraints. When working with the expressions, its performance is not
as unsatisfactory, but other libraries or design patterns can offer better performance.

Furthermore, methods of handling the case when derivative contains zero, and a Newton
step cannot be made could be improved. Instead of attempting to propagate through the binary
narrowing procedure, an implementation could perhaps branch, thus creating more spaces to
explore, but hoping it will be able to propagate with a Newton step in the newly created spaces.
Here, Gecode is somewhat rigid by specifying that all propagation has to be done before a
branching, because branching is usually more computationally heavy than propagation because
it doubles the number of spaces that have to be explored. However, in some cases, such as in
interval constraint programming, when a derivative contains zero, a more carefully controlled
blend between propagation and branching may improve the performance of the implementation.
Alternatively, an implementation could try to skip box consistency propagation on a certain
variable when it is unable to make a Newton step, under some carefully devised conditions.
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