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Abstract. We focus on the α-domination problem, which is capable of
modeling influence phenomena in social networks. It formally asks for a
minimum cardinality subset of vertices of a given graph such that any
vertex is either included in this subset or at least a fraction α of its
neighbors is (0 < α ≤ 1). We address the search for solutions of high
quality within a tight margin of computation time by designing, firstly,
a Greedy Randomized Adaptive Search Procedure and, secondly, a Con-
figuration Checking metaheuristic. The latter excels in terms of solution
quality and speed and is able to outperform an integer programming for-
mulation solved by the commercial solver Gurobi on a majority of tested
instances which have thousands of vertices.
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1 Introduction

The problem of finding a minimum dominating set of vertices of an undirected
simple graph G = (V,E) is one of the best-known and most intensely studied
optimization problems on graphs. Dunbar et al. [6] introduced a generalization
of this problem called α-domination problem, in which for a fixed proportional-
ity parameter 0 < α ≤ 1 the goal is to find a minimum cardinality set S ⊆ V
such that each vertex v ∈ V is already contained in S or at least a fraction α
of its neighbors is comprised by S; in both cases we say that v is α-dominated.
The α-domination problem can be seen as an interpolation between the classical
domination problem, for sufficiently small α > 0, and the vertex covering prob-
lem, for α = 1. It is shown in [6] that for any 0 < α ≤ 1, it is NP-hard to find
an optimal solution; moreover, upper and lower bounds for optimal solutions on
general graphs but also for special graph classes are derived.

This problem is strongly related to the so-called Minimum Positive Influ-
ence Dominating Set (MPIDS) problem introduced in [13], in which the aim
is to maintain sufficient influence in a social network by utilizing the minimum
number of influencing actors (here, even actors need to receive influence from
their equals). In the age of constantly growing data on social networks and
the increasing relevance of disinformation campaigns [3] and viral marketing
[13], the α-domination problem can be a more suitable model to determine how

https://doi.org/10.1007/978-3-031-82949-9_14
https://orcid.org/0000-0001-7528-0834
https://orcid.org/0000-0003-1413-7115
https://orcid.org/0000-0002-3293-177X


2 E. Iurlano, J. Varga, and G. R. Raidl

influence—even before consolidating it—is achievable by using a few simultane-
ously deployed actors of assumed loyal behavior.

Practical computational methods for the MPIDS problem and other prob-
lems with parallels on a conceptual level are recently receiving increased atten-
tion [2,10], such as, e.g., the Target Set Selection Problem [9], which studies
the influence under a propagation aspect. Still there are only few approaches
known to us that (heuristically) address the α-domination problem. An impor-
tant caveat should be taken into account: We have encountered some works,
e.g., [11], in which the problem name MPIDS actually refers to 0.5-domination.
Thus there has to be paid careful attention not to mix this problem up with
the stronger constrained one of the original work [13] and its follow-up papers,
e.g., [2].

The following notation together with some conventions will be used. We only
consider undirected, simple graphs G = (V,E). We denote for a vertex v ∈ V by
N(v) its neighborhood, i.e., set of all adjacent vertices, and by deg(v) = |N(v)|
the cardinality of the latter. Given a binary vector c ∈ {0, 1}|V | associated to
a graph G = (V,E), let us call it an α-dominating labeling if it is the inci-
dence vector of an α-dominating subset of vertices S, i.e., c = (1S(v))v∈V with
1S(v

′) := 1 if v′ ∈ S and 1S(v
′) := 0, otherwise. Moreover, assume that α ∈ (0, 1]

is a fixed constant and let us denote by α-Domination the problem of finding
an α-dominating labeling that minimizes the sum of labels (see later also (1)).
Henceforth, given the locality of α-Domination, we assume that our graph in-
stances consist of a single connected component containing at least three vertices.

2 Solution approaches

The following is an integer linear program (ILP) formulation of α-Domination,
where ⌈·⌉ denotes the Gaussian ceiling function:

min
∑

v∈V cv
subject to

∑
w∈N(v) cw + cv · ⌈α deg(v)⌉ ≥ ⌈α deg(v)⌉, v ∈ V

cv ∈ {0, 1}, v ∈ V

(1)

Remark 1. For a slightly generalized version of α-Domination, Raghavan and
Zhang [11] proposed a strengthened formulation based on the idea of placing a
dummy vertex on each edge. Within the setting of our computational evaluation
(see Sect. 3) we found that this more recent formulation is surpassed in terms of
solution quality by (1) and we therefore do not consider this alternative here.

Our first goal is to design a Greedy Randomized Adaptive Search Procedure
(GRASP) [7], which should undercut the runtime of a state-of-the-art solver
applied to (1) and should at the same time have a comparably good (or even
better) solution quality. As the main component of this metaheuristic, we pro-
pose the following greedy construction heuristic for α-Domination; see also
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Algorithm 1 Greedy construction
Input: Graph G = (V,E);
Output: α-dominating labeling c

1: cv ← 0 ∀v ∈ V // initialize {0, 1}-labeling
2: dv ← 0 ∀v ∈ V // current α-domination status (in {0, 1})
3: Uv ← deg(v) ∀v ∈ V // number of not α-dominated neighbors

4: while {v ∈ V : dv = 0} ≠ ∅ do
5: Let Av, v ∈ V , be the number of neighbors of v which would be newly α-

dominated if cv was set to 1.
6: Let s← argmax{(Av, Uv) : v ∈ V } (ties are broken uniformly at random)
7: cs ← 1
8: Update ds, Us; ds′ for s′ ∈ N(s), Us′ for s′ ∈ N(s).
9: end while

10: For v ∈ V , set cv ← 0 whenever cv = 1 and c allows for updating cv to 0 without
violating α-domination of any vertex. // postprocessing step

11: return c

Algorithm 1: Initially all vertices are 0-labeled. Then, iteratively, the label of a
0-labeled vertex is set to 1; the choice of the vertex is here based on the number
of newly α-dominated vertices of G which this update would yield. In the case
of ties, the vertex having the highest number of not yet α-dominated neighbors
is picked in the spirit of providing progress in as many vertices as possible. Note
that in particular for graph classes having frequent occurrences of vertices of
degree one (leaves), the following preprocessing can be employed: Without any
loss of optimality, the labels of leaves can be fixed to 0 whereas the labels of
their neighbors are set to 1.

For the GRASP, we randomize this greedy heuristic by always 1-labeling a
next vertex that is randomly chosen from the top-ρ percentile of the candidate
vertices, where 0% < ρ ≤ 100% is the randomization parameter. Our GRASP
follows the standard template from [7] by iteratively applying this randomized
greedy heuristic for obtaining diversified starting solutions, and each of them
undergoes a local search. Our local search relies on the following move operator
DLC called “Decrease label and compensate”. Given a feasible solution c for
α-Domination together with the choice of a 1-labeled vertex v, we perform the
update cv ← 0 and compensate all violations of feasibility (now disallowing a
change of cv) by greedily solving an arising set multicovering problem: The set
to be covered consists of the vertices that lost their α-domination status and the
set system consists of closed neighborhoods comprising these vertices either as
neighbors or directly as “center” of the neighborhood; the multiplicity of coverage
for v depends on the number of its 1-labeled neighbors and is addressed in more
detail in Algorithm 2, which relies on two auxiliary quantities: Given a labeling
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c, let us define

ev := {w ∈ N(v) : cw = 1}, v ∈ V, (2)

respectively

isrv :=

w ∈ N(v) : cw = 0,
∑

z∈N(w)

cz = ⌈α deg(w)⌉

 , v ∈ V, (3)

capturing the set of 1-labeled neighbors of v, respectively the set of (0-labeled)
neighbors of v that are indispensable support recipients of v, i.e., which would
lose their α-domination status if we would carry out the update cv ← 0.

Now having the DLC operator available, for a feasible solution c, we call
another feasible solutions c′ a neighbor of c, denoted c ∼ c′, if there is a vertex
v for which cv = 1 and DLC applied to c yields c′. Denote by Uk(c) the DLC-
neighborhood of order at most k of c as the set of all (sv)v∈V ∈ {0, 1}|V | which
are α-dominating and for which there are pairwise distinct labelings c(1), c(2),
. . . , c(k) satisfying c ∼ c(1) ∼ · · · ∼ c(k) = s.

For the local search within the GRASP, we fall back on UK(·) for some
larger value K: As long as a quality-improving neighboring solution cnext in
UK(·) is found, the search is repeated in the solution-neighborhood of cnext,
and the process iterates until this search for improvement fails. Due to the vast
size of this neighborhood, the idea is to find a promising neighbor in UK(·) by
employing the scoring function subsequently introduced in (4) and yielding a
solution in Uj+1(·) starting from one in Uj(·). Eventually, each solution lying
on the so-arising trajectory of solutions is in particular contained in UK(·) such
that we postulate a sufficient local exploration around our starting solution and
eventually consider the best-quality solution on this trajectory as our result of
scanning UK(·).

Note that incremental updates of the quantities ev and isrv introduced above
will not only be important for an efficiency gain in the context of several imple-
mentations but also allow the computation of the scoring function

Score(v) :=

{
−∞ if cv = 0,

|ev| − ⌈α deg(v)⌉ − τ |isrv| if cv = 1,
(4)

which expresses the attractiveness of decreasing the label of a vertex: For already
0-labeled vertices −∞ is returned, and for all other vertices, their “saturation”
|ev|−α⌈deg(v)⌉ provides a certain reward that is relativized by a penalty arising
from a potentially large cardinality |isrv|; τ > 0 is a parameter to be tuned.

Next, we propose an alternative approach based on Configuration Checking
(CC) introduced in [4]; see Algorithm 3. Given a local search procedure relying
on a move operator, the main idea here is to each time save for the part of the
solution being subjected to the move operator the current so-called configuration
(a snapshot of attributes of its neighboring solution parts). The move operator
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Algorithm 2 Decrease-Label-and-Compensate
Input: G = (V,E); labeling c; e and isr already meeting (2)–(3);

vertex i ∈ V with ci = 1
Output: None, overwrites all input arguments except for G and i.

// Decrease label and store not anymore α-dominated vertices:
1: U ← isr i // these vertices will cause (local) infeasibility
2: ci ← 0 and update e, isr where affected by this assignment

// Compensate all arisen constraint violations:
3: Build family of restricted sets S := {ew ∩ U : w ∈

⋃
v∈isri

(N(v) \ {i})}
4: Greedily, find a set covering of U given by ev1 ∩ U, . . . , evk ∩ U
5: for ℓ = 1, . . . , k do
6: cvℓ ← 1 and update e, isr where affected by this assignment
7: end for
8: while |ei| < ⌈α deg(i)⌉ do
9: Pick a random 0-labeled vertex j ∈ N(i) \ ei

10: cj ← 1 and update e, isr where affected by this assignment
11: end while

// Eliminate potential redundancies:
12: while ∅ ≠ I := {v : cv = 1 ∧ isrv = ∅ ∧ |ev| ≥ ⌈α deg(v)⌉} do
13: Randomly draw v from I; cv ← 0; update e, isr ; re-evaluate I
14: end while
15: return;

can afterwards be re-applied on that part only if its now re-encountered circum-
stance of attributes differs from what is stored in the current snapshot. In the
following, we rely on a “practical” [4] version of this metaheuristic requiring just
the occurrence of a (potentially ultimately reverted) change of configurations in
the history of configuration changes since the last move application. With the
intention to avoid excessive cycling in the solution landscape, the technique is
successfully applied to the vertex covering problem and to Boolean satisfiability
solving [4].

In our setting, we fall back on the operator DLC and interpret each 1-labeled
vertex v as a solution part around which we consider its current configuration,
namely the tuple capturing the restriction c

∣∣
N(v)

.

Remark 2. In preliminary experimentation, we found, by analyzing convergence
plots for the CC approach, that in exceptional situations a repeating cycle
traversing a small set of solutions of equal quality occurred, lasting until the
termination of the procedure. Therefore, we add an additional simple prevention
strategy which is implemented in Line 11 of Algorithm 3.
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Algorithm 3 Configuration Checking
Input: Graph G = (V,E); b ∈ N, τ > 0

Output: α-dominating labeling of G

1: c← greedy solution via Algorithm 1
2: configCh[v]← 1 ∀v ∈ V // tracker for changes of configuration
3: while no stopping criterion satisfied do
4: Pick v∗ uniformly at random among the vertices which lie within the best

b candidates of {Score(v) : v ∈ V with cv = 1 and configCh[v] = 1}.
5: DLC(c, e, isr , v∗)
6: configCh[v∗]← 0
7: configCh[w]← 1 ∀w ∈ N(v∗).

8: if
∑

v∈V cv <
∑

v∈V cbest
v then

9: cbest ← c
10: end if
11: if objective function value unchanged since at least 32 iterations then
12: In next iteration, in Line 4, pick v∗ among the b best elements of {Score(v) :

v ∈ V with cv = 1 and configCh[v] = 0} // see Remark 2.
13: end if
14: end while
15: return cbest

3 Computational results

We fix α = 0.5 for α-Domination, mainly motivated by the strong relationship
to MPIDS and also the so-called majority thresholds [1] for the Target Set Selec-
tion Problem. All algorithms of Sect. 2 have been implemented in Julia 1.10,
which also served with the JuMP package as an interface to Gurobi 10.0.3 [8] for
solving the integer linear program (1).

Table 1 contains on the left side information on the graph instances we use
for our experimental analysis; the first ten instances are adopted from [5], while
the remaining three are taken from [12]. We emphasize that the latter instances
constitute graphs from real-world social networks. The table reports the number
of vertices, the average degree (“deg avg”), and the standard deviation of the
degrees of the vertices (“deg std”). In preliminary tuning experiments suitable
values were determined for the parameters of our procedures: The penalty coef-
ficient is chosen as τ := 2 for the DLC operator; the randomization parameter
ρ of the greedy construction heuristic as ρ = 5%; the choice of b := 4 turned out
to be meaningful for both the GRASP and the CC.

Table 1 further shows in Column “ILP” results from the integer linear pro-
gram: listed are incumbent solution values (“incmb.”) and optimality gaps (“gap”)
(z∗−zDB )/z∗, where z∗ denotes the best solution found and zDB the dual bound.
The next column “greedy avg” shows the average solution values over ten runs
of the greedy Algorithm 1—experiments for the greedy algorithm have been ran
multiple times due to the randomization present in the tie-breaker (see Line 6 of
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the algorithm). Similarly, columns “GRASP” and “CC” report these quantities
for the respective two metaheuristic approaches again averaged over ten runs; in
addition objective values of a best run is additionally reported here. As in the
experimental evaluation of [2], the time budget for each run of both metaheuris-
tics was set to |V |/100 CPU seconds and is therefore magnitudes smaller than
the 3600 seconds runtime reserved for Gurobi. All experiments were carried out
using a single thread on a cluster endowed with an Intel(R) Xeon(R) E5-2640
v4 CPU with 2.40GHz and 160GB RAM running Ubuntu 18.04.6 LTS.

Table 1. Results of all proposed approaches. Time budget ILP: 3600 seconds; time
budget GRASP and CC: |V |/100 seconds.

Instance |V | deg deg ILP greedy GRASP CC
avg std incmb. gap avg best avg best avg

Bipartite-350-350-80 700 280 8 350 19% 357.0 347 347.7 346 346.7
Bipartite-350-350-90 700 316 6 350 18% 354.6 348 348.4 348 348.0
Net-20-20 400 7 1 161 6% 185.3 169 170.0 170 174.2
Net-30-20 600 8 1 242 8% 279.2 256 258.5 251 263.9
Planar-650 650 86 15 310 24% 329.5 312 314.6 306 308.5
Planar-700 700 88 15 334 24% 356.2 338 340.3 332 333.0
Random-950-10 950 95 9 463 26% 479.1 465 465.9 453 456.4
Random-950-20 950 191 12 473 26% 480.4 471 473.2 460 462.0
Random-1000-10 1k 100 9 488 26% 503.5 489 491.1 477 480.3
Random-1000-20 1k 200 13 494 25% 507.0 497 499.0 485 486.4
socfb-Amherst41 2k 81 63 740 15% 807.0 801 804.4 769 775.5
socfb-Dartmouth6 8k 79 75 2513 20% 2588.9 2731 2782.8 2529 2548.7
socfb-Harvard1 15k 109 112 7588 92% 5263.3 5733 5793.5 5116 5158.8

Inspecting the results of Table 1, we notice generally quite large optimality
gaps for the integer programming approach, in particular, for instances with
higher average degrees. With one exception, the greedy construction heuristic
always yielded solutions of poorer quality than the ILP approach and these
greedy solutions are considerably inferior to the ones resulting from the two
metaheuristics. However, the greedy heuristic also is very fast, with a maximum
runtime of 0.32 seconds for all instances except for socfb-Dartmouth6 respec-
tively socfb-Harvard1 which took 3.05 seconds respectively 20.49 seconds. Due
to the evident advantage of CC over GRASP, we conclude that even multiple
restarts with randomized greedy solutions do seem to not direct the local search
trajectory towards regions of solutions having the quality of those found by the
CC approach. The latter, in fact, is able to achieve the best results on several
instances. The only instances where this is not the case are the sparser graphs
Net-20-20 and Net-30-20 as well as the social networks socfb-Amherst41 and
socfb-Dartmouth6; note the standard deviation of their degrees in contrast to
the other instances. The last instance indicates that (social) networks with more
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than 10.000 vertices are apparently better addressed heuristically, since here the
(meta)heuristics considerably outperform the ILP approach.

4 Conclusion

We proposed two metaheuristics that are able to rapidly generate solutions of
high quality for α-Domination. Among these, CC turned out to be the more
favorable one, which in general surpasses the ILP approach already on medium-
sized instances while using just a fraction of the computation time. As exper-
imental results indicate, our proposed move operator seems to be an effective
tool to find—in combination with the introduced scoring function—promising
parts of the solution landscape. In future work we plan to increase performance
specifically on social networks by trying to integrate into our greedy construction
strategy, but possibly also in the selection of local moves, additional information
such as, e.g., the deviation of the degree of a vertex from the average degree
and by identifying alternative metrics that could help to address the desire for
earlier—or even a priori—inclusion of suitable vertices into the α-dominating set.
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