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Abstract. The Positive Influence Domination (PID) problem asks to
find a minimum cardinality subset of influencers among the vertices of
an undirected graph such that at least half the number of neighbors
of each vertex are influencers. The problem’s underlying model can be
used to determine an economical way of promoting (and keeping) good
habits in society by interpreting vertices as individuals, neighbors as
social contacts, and influencers as, for example, healthy eaters. We show
that the problem is NP-hard even when restricted to planar subcubic
graphs. The same result turns out to apply for the so-called double total
domination problem, which exhibits a similar behavior on this graph
class. We use this insight to derive NP-hardness of PID on the class
of induced partial grids via a technique relying on orthogonal graph
drawing. Finally, we derive bounds on the size of optimal solutions for
arbitrarily dimensioned grids.

Keywords: Positive influence domination · NP-hardness · Partial grids

1 Introduction

The Positive Influence Domination (PID) problem [22] asks one to find a min-
imum cardinality subset of influencers of the vertex set of a given undirected
graph such that for each vertex, the influencers in its neighborhood constitute
a (not necessarily strict) majority. The problem, introduced in 2009 by Wang
et al. [22], can be illustrated as follows: Suppose a public authority aims to es-
tablish a positive habit in society, e.g., the routine of eating healthily. Further
assume that healthy eaters risk becoming unhealthy eaters when there are more
unhealthy than healthy eaters in their circle of contacts. At this point the au-
thority might wonder what is the minimum number of unhealthy eaters in the
society who would need to be “turned” into healthy ones such that healthy eaters
remain unaffected by the aforementioned social rebound effect.

While the latter application scenario is meaningful in graphs modeling a
social network, the whole question can also be seen as a resource distribution
problem in more general graphs. Here sufficient locally available neighboring re-
sources must be provided as economically as possible. For practical applications
like broadcasting problems, related problems (some considering also propagation
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aspects) have been studied on, e.g., unit disk graphs [5] but also more regular
graph structures, e.g., hypercubes [1]. Optimal solutions on grid graphs are the
subject of study for several variants [20] of the classical dominating set prob-
lem [10]. Remarkably, for the latter problem itself, although studied extensively,
the process of finding and certifying optimal solutions was completed only in
2011 by Gonçalves et al. [10]. Motivated by these works, we point out properties
on (partial) grids for the variant of positive influence domination.

Several closely related combinatorial optimization problems on graphs have
been proposed in the form of monopoly problems [17], α-domination [8], and
signed domination [7], to mention a few examples. Considering the aspect of
temporal propagation of influence, the Target Set Selection problem [13] has
also been studied. One can find comprehensive comparisons [4,9] of many such
problems. This class of domination-type problems has been studied mainly from
a theoretical viewpoint so far. For any scalar α ∈ (0, 1]—steering the “strength”
of a majority—the α-domination problem was shown to be NP-hard [8]. Its slight
generalization vector domination [11] was shown to be fixed-parameter tractable
on graphs excluding cycles of length 4 and on graphs of bounded degeneracy [19].

The more constrained problem total vector domination [4], which includes
PID as special case, was shown to be solvable in polynomial time on graphs of
bounded branchwidth and bounded treewidth [12]—the same was shown to hold
for vector domination. Appearing under various names in the literature, k-tuple
total domination (see, e.g., [14]) is a particularly uniform special case of total
vector domination, for which NP-hardness on a special case of chordal graphs
was shown [14]; NP-hardness was also shown on bipartite and split graphs [18].

Concerning complexity theoretic results on PID itself, it is shown in [23] that
PID is APX-hard; this is also true more generally when, instead of a majority, at
least a fixed proportion of neighbors is required to consist of influencers [4]. Re-
cently, NP-hardness for the PID problem on bipartite and split graphs has been
established [24]. NP-hardness was shown for the first time in [23] by a reduction
from vertex cover (via a proof affirming this for graphs with a maximum degree
of 6). The latter work is also our main motivation to identify more restrictive
graph classes for which the hardness still applies.

The paper is organized as follows. After providing relevant notation in Sect. 2,
in Sect. 3 we show that PID and 2-tuple total domination are NP-hard problems
on planar subcubic graphs. The result is lifted to NP-hardness of PID on induced
partial grids in Sect. 4. Bounds on complete grids are given in Sect. 5, and Sect. 6
concludes the paper.

2 Notation and preliminaries

For two integers r and s, we use the notation [r : s] := {r, r + 1, . . . , s − 1, s}
and [s] := [1 : s]. For a, b ∈ Z, b ̸= 0, denote by mod(a, b) the binary modulo
operator (returning the unique number r ∈ [0 : b− 1] satisfying a = kb + r for
some k ∈ Z).
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In our discussion, we assume graphs G = (V,E) to be simple and undi-
rected. For a vertex v ∈ V we denote its (open) neighborhood of adjacent ver-
tices by N(v) and its degree by deg(v) := |N(v)|. A graph G = (V,E) with
maxv∈V deg(v) ≤ k is called k-subregular—or subcubic for k = 3. If further
minv∈V deg(v) = k, it is called k-regular—or cubic for k = 3. We say that G is
k-connected, if G remains connected when fewer than k vertices are removed.
Denote by Gplan3 the class of planar cubic graphs and by Gplan≤3 the class of planar
subcubic graphs.

For the following we define a length-r path as a graph Pr = (V,E) with
V = [r] and E = {{i, i + 1} : i ∈ [r − 1]}. Denote by Pm□Pn the Cartesian
product of Pm and Pn, henceforth also called complete m × n grid (graph). Its
vertices are given by all pairs in [m] × [n]; two such vertices are defined as
adjacent if their first coordinates or second coordinates form an adjacent pair in
their respective path of origin Pm or Pn. Let us think of Pm□Pn as embedded in
the plane, with vertices on integer-valued coordinates and unit-length straight,
axes-parallel edges; tacitly we assume the vertices to be oriented as the indices
of an m × n matrix. By a partial grid we refer to an arbitrary (not necessarily
induced) subgraph of a grid, in other words, a graph resulting from the removal
of a nonnegative number of vertices and edges from Pm□Pn for some specific
m,n ∈ N; here, a vertex-removal automatically removes all incident edges. A
unit disk graph has vertices identifiable with points in the plane such that two
vertices are adjacent if and only if the two compact unit disks centered at the
respective points have nonempty intersection.

Although many of the subsequent variants of domination/independence are
typically defined via subsets of vertices, let us state them for easier usability—see
later Theorem 5—in a binary-encoded form: For a graph G = (V,E), a function
f : V → {0, 1} is independent if f(v) + f(w) ≤ 1 for all {v, w} ∈ E. A function
f : V → {0, 1} is said to be

– positive influence dominating [22] if
∑

w∈N(v) f(w) ≥ ⌈deg(v)/2⌉ for v ∈ V ,

– k-tuple total dominating (for some k ∈ N) if
∑

w∈N(v) f(w) ≥ k for v ∈ V ,
– double total dominating if it is 2-tuple total dominating.

When f is positive influence dominating we will often abbreviate this by saying
that f is PID-feasible or a PID-function. For such binary functions f let us call
the value f(v) the weight or label of v ∈ V and

∑
v∈V f(v) the (cumulative)

weight of f . Given a graph G = (V,E) and k ∈ N, the problem of determining
the existence of an independent g : V → {0, 1} with

∑
v∈V g(v) ≥ k is known

as the independent set problem. The problem of determining the existence of
f : V → {0, 1} with

∑
v∈V f(v) ≤ k being (i) positive influence dominating

is denoted as PosInflDom(G, k); (ii) double total dominating is denoted as
DblTotalDom(G, k). For fixed G, the minimum k ∈ N for which such a feasible
function exists, is denoted as γPID(G) for (i), and γ×2,t(G) for (ii).
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(a) (b)

Fig. 1. Modifications of an edge e = {v, w} used in the proof of (a) Theorem 2; and
(b) Theorem 3. Subscripts e are omitted for the vertices x, y, z, a, b, and c.

3 Hardness on planar subcubic graphs

The results of the current and the next section are inspired by the works [6]
and [25] which address the hardness of the so-called signed dominating set prob-
lem. In the latter problem, a minimum-weight function f : V → {−1, 1} must
be found such that f(v) +

∑
w∈N(v) f(w) ≥ 1 for v ∈ V . Although signed dom-

ination does not allow a zero-label (i.e., “neutral”) and each vertex’ own label
contributes to meeting its threshold, we still obtain equivalent hardness results
for positive influence domination. Unlike Damaschke [6] in 2001, we can now rely
on a stronger NP-hardness result that permits assuming 2-connectedness. The
latter is stated in the subsequent and underpins our later derived reductions.

Theorem 1 ([16, Theorem 4.1(a)]). The maximum independent set problem
is NP-hard when restricted to planar 2-connected cubic graphs.

One can verify that Theorem 2 and Theorem 3 remain valid even when
restricted to connected graphs. We omitted this observation which also follows
from the fact that both concerned problems can always be solved independently
on all connected components.

Consider the planarity-preserving, polynomial-time operation

SplApd : Gplan≤3 → G
plan
≤3

replacing each edge e = {v, w} ∈ E of G = (V,E) with new edges {v, xe},
{w, xe}, {xe, ye}, {ye, ze} on top of fresh vertices xe, ye, ze; see Fig. 1a. De-
fine SPplan

≤3 as the class of all graphs that are—up to isomorphy—contained in
{SplApd(G) : G ∈ Gplan3 }. Note that by detecting the vertices at (shortest-path)
distance at most 2 from the leaves of G′ ∈ SPplan

≤3 , we can always determine the
underlying cubic graph, even when no explicit specification of the fresh vertices
is provided.

Theorem 2. When restricted to the class of planar subcubic graphs, the problem
PosInflDom(G, k) is NP-complete.
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Proof. More strongly we prove that the problem is NP-complete on SPplan
≤3 ,

directly implying NP-completeness on Gplan≤3 . The reduction is from maximum
independent set on planar 2-connected cubic graphs; see Theorem 1. Let G =
(V,E) be a planar 2-connected cubic graph and let G′ := SplApd(G), denoted
as G′ = (V ′, E′).

The problem is in NP, as a guessed function can be checked for feasibility in
linear time (in the size of G).

We claim that G has an independent g : V → {0, 1} with
∑

v∈V g(v) ≥ k
iff G′ has a PID-feasible f : V ′ → {0, 1} with

∑
v′∈V ′ f(v′) ≤ k′ for some k′

depending on G and k. In fact, if an independent g with∑
v∈V

g(v) ≥ k (1)

exists, then the function

f(v′) :=


1− g(v′) if v′ ∈ V,

1 if v′ ∈ {xe, ye : e ∈ E},
0 if v′ ∈ {ze : e ∈ E},

is positive influence dominating on G′: each vertex in V has three 1-labeled x-
neighbors; all vertices in {xe, ye, ze : e ∈ E} have one 1-labeled neighbor; and,
finally, the absence of an assigned 1-label by g to one of v and w (according to
the independence of g) guarantees at least one additional 1-label assigned by f
to one of the neighbors v or w of x{v,w}.

We conclude that (below obtaining estimate (2) via (1))∑
v′∈V ′

f(v′) =
∑
v∈V

f(v) +
∑

v′∈V ′\V

f(v′) = |V | −
∑
v∈V

g(v) +
∑

v′∈V ′\V

f(v′)

≤ |V |+
∑

v′∈V ′\V

f(v′)− k = |V |+ 2|E| − k =: k′. (2)

The converse proof direction requires us to show that for a PID-function f
on G′ the circumstance

∑
v′∈V ′ f(v′) ≤ k′ allows constructing an independent g

on G of cumulative weight at least k = |V |+2|E|−k′. We need the intermediate
observation that each positive influence dominating f : V ′ → {0, 1} can be
updated on V ′ \ V in a weight-preserving—or even weight-reducing—manner
such that for each e ∈ E we eventually have more canonically f(xe) = f(ye) = 1
and f(ze) = 0.

This simple claim can be justified as follows: We recognize that always
f(ye) = 1 due to deg(ze) = 1. In case now f(ze) = 1, we can overwrite f(ze)← 0
and if not already f(xe) = 1, we update f(xe) ← 1 to maintain the influence
threshold of ye—the cumulative weight does not increase by doing so. On the
other hand, if initially f(ze) = 0, necessarily we have already f(xe) = 1.

We can therefore assume that a PID-feasible f with
∑

v′∈V ′ f(v′) ≤ k′, fur-
ther satisfying the above canonicity, exists. Setting g := 1 − f(·) yields inde-
pendence for g, as f(v) + f(w) ≥ 1 implies g(v) + g(w) ≤ 1. Furthermore, we
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have∑
v∈V

g(v) = |V | −
∑
v∈V

f(v) = |V | −
∑
v∈V

f(v)−
∑

v′∈V ′\V

f(v′) +
∑

v′∈V ′\V

f(v′)

= |V | −
∑

v′∈V ′

f(v′) + 2|E| ≥ |V | − k′ + 2|E|.

Corollary 1. PosInflDom(G, k) is NP-complete on planar subcubic bipartite
graphs.

Proof. The vertices of G′ ∈ SPplan
≤3 with an underlying cubic graph G = (V,E)

are bi-partitioned by V ∪ {ye : e ∈ E} and {xe, ze : e ∈ E}.

Similarly, we obtain the following result.

Theorem 3. DblTotalDom(G, k) is NP-complete even when restricted to pla-
nar subcubic graphs.

Proof. We fall back on a leaves-free class of subcubic graphs resulting from the
replacement of the edges of a cubic graph by the gadgets described in Fig. (1b)
yielding six additional fresh vertices per edge. Analogously to the proof of The-
orem 2, we can here carry out the argumentation with k′ := |V |+ 6|E| − k and
f(v′) := 1 − g(v′) if v′ ∈ V and otherwise, if v′ ∈ {xe, ye, ze, ae, be, ce : e ∈ E},
f(v′) := 1. For the converse proof direction the degree of freedom for the choice
of f -values is now considerably lower than in the last proof, as, to be feasible for
DblTotalDom, all fresh vertices necessarily must be 1-labeled.

4 Hardness on induced partial grids

In this section we lift the result in Theorem 2 to the class of induced partial
grids. We start with the following preparatory observation.

Lemma 1. Consider an undirected path P = (v, x1, x2, . . . , x4ℓ−1, x4ℓ, w) for
some ℓ ∈ N ∪ {0} and f : {v, w} ∪ {xj : j = 1, . . . , 4ℓ} → {0, 1} such that
each vertex xj, j = 1, . . . , 4ℓ, has at least one 1-labeled neighbor. Suppose further
that f(v) = f(w) = 1. Then,

∑4ℓ
j=1 f(xj) ≥ 2ℓ, where the lower bound 2ℓ is

attainable.

Proof. Examine f on the induced subpaths (x1, x2, x3, x4), . . . , (x4ℓ−3, x4ℓ−2,
x4ℓ−1, x4ℓ). By exhaustion it turns out that each of them, independently of the
f -assignment on their neighboring paths, must have a cumulative f -weight of at
least 2. Thus,

∑4ℓ
j=1 f(xj) ≥ 2ℓ. This weight is attainable by setting f(xj) := 1,

when mod(j − 1, 4) ∈ {1, 2}; and f(xj) := 0, otherwise.

We anticipate an auxiliary result, suppressing its proof following from a sim-
ple canonization strategy comparable to the proof of Theorem 2.



Complexity of Positive Influence Domination on Partial Grids 7

Lemma 2. Let k ∈ N ∪ {0}. Further, let G = (V,E) be a subcubic graph, and
Le ∈ N ∪ {0} be divisible by 4, for e ∈ E. Consider G′ = (V ′, E′) resulting
from replacing each e = {v, w} ∈ E by an undirected path (v, p1e, . . . , p

Le
e , w)

of length Le + 1, i.e., the former edge e is split by Le fresh vertices. Let U =
{(0, 1, 1, 0), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 1)}. If there exists a PID-feasible f ′ with∑

v∈V ′ f ′(v) = K, then there exists a PID-feasible f ′′ : V ′ → {0, 1} satisfying
(f ′′(v), f ′′(p1e), f

′′(pLe
e ), f ′′(w)) ̸∈ U , for e = {v, w} ∈ E, and

∑
v′∈V ′ f ′′(v′) ≤

K.

We will consider inter-vertex paths as in Lemma 1 for any two adjacent
vertices v and w. The paths’ lengths will again be zero or multiples of 4 but
can vary depending on the edge e = {v, w}. The following lemma affirms that,
after inserting a number of splitting vertices divisible by 4 on each edge, a PID-
function of the same quality can be achieved (up to an additional constant
originating from the number of splitting vertices). The core argument of the
proof is that the labels on the splitting vertices can be chosen such that the
constellations of neighboring labels remains invariant around all original vertices.
The fresh labels can further be feasibly chosen such that the weight does not
exceed the half of the count of splitting vertices.

Lemma 3. Let k ∈ N ∪ {0}. Further, let G = (V,E) be a subcubic graph, and
Le ∈ N ∪ {0} be divisible by 4, for e ∈ E. Consider G′ = (V ′, E′) resulting from
replacing each e = {v, w} ∈ E by an undirected path (v, p1e, . . . , p

Le
e , w) of length

Le + 1, i.e., the former edge e is split by Le fresh vertices. Then, the following
assertions are equivalent.

(i) A PID-feasible f on G with
∑

v∈V f(v) ≤ k exists.
(ii) A PID-feasible f ′ on G′ with

∑
v∈V ′ f ′(v) ≤ k +

∑
e∈E Le/2 exists.

Proof. On all undirected paths we will consider the values of f ′. Formally, as
each undirected path can be traversed in two directions, and as labels have to
be assigned to the vertices on the path, let us encode the labels via F ′

(v,w) ∈
{0, 1}L{v,w} determining hence the chronological ordering of the vertex labels
(excluding those of v and w) encountered when traversing the path from v to
w in G′. Implicitly we assume that F ′

(w,v) is automatically coherently specified
by the reversal of F ′

(v,w). With a slight abuse of notation, by writing F ′
{v,w} we

refer to F ′
(v,w).

(i) =⇒ (ii): Starting from a feasible f on G, defining f ′(v) := f(v), for
v ∈ V , the idea is then, for all e = {v, w} ∈ E, to choose the remaining f ′-values
on (v, p1e, . . . , p

Le
e , w) ensuring feasibility, having cumulative weight Le/2, and

satisfying
f ′(v) = f ′(pLe

e ) and f ′(p1e) = f ′(w). (3)

The latter property requires for vertices v ∈ V , seen as vertices from G′, that
the neighboring label constellation around v corresponds to the neighboring label
constellation around v according to f on G.

The choice of the following length-Le labeled paths ensures such a behav-
ior (note that together with the labeled endpoints f(v), f(w) PID-feasibility is
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guaranteed on such a path, i.e., at least one 1-labeled neighbor is present for the
path’s vertices):

F ′
(v,w) :=


(0, 1, 1, 0, . . . , 0, 1, 1, 0, . . . , 0, 1, 1, 0) if f(v) = 0 ∧ f(w) = 0,

(1, 1, 0, 0, . . . , 1, 1, 0, 0, . . . , 1, 1, 0, 0) if f(v) = 0 ∧ f(w) = 1,

(0, 0, 1, 1, . . . , 0, 0, 1, 1, . . . , 0, 0, 1, 1) if f(v) = 1 ∧ f(w) = 0,

(1, 0, 0, 1, . . . , 1, 0, 0, 1, . . . , 1, 0, 0, 1) if f(v) = 1 ∧ f(w) = 1.

The definition of f ′ on V results hence from the older values of f on V while
on the paths’ fresh vertices the labels are inferrable from the definition of F ′

e

according to the above case distinction, which also shows that a weight of only∑
e∈E Le/2 is added to the cumulative weight of f on V .

(ii) =⇒ (i): Due to Lemma 2 we can not only assume f ′ to be PID-feasible but
also without loss of generality (f ′(v), f ′(p1e), f

′(pLe
e ), f ′(w)) ̸∈ U . For all edges

e = {v, w}, up to symmetry breaking (reversed quadruples) we can therefore only
have (f ′(v), f ′(p1e), f

′(pLe
e ), f ′(w)) ∈ T

.
∪ W with T := {(1, 1, 1, 1), (0, 1, 0, 1),

(0, 0, 0, 0)} and W := {(1, 0, 1, 1), (1, 0, 0, 1), (0, 0, 0, 1)}. The ultimate goal will
be to modify f ′ towards a more useful version f ′′ being as well PID-feasibile,
having a weight not greater than f ′ on G′ and satisfying for all edges {v, w} ∈ E
the special property

f ′′(v) = f ′′(pLe
e ) and f ′′(p1e) = f ′′(w). (4)

Initially set f ′′ := f ′. Immediately we notice that all edges whose behavior is
captured by one of the scenarios in T satisfies (4); no updates will hence be
needed.

On the other hand, an update leaving the values of f ′′ unchanged on v and
w suffices for the scenarios covered by W :

F ′′
e ←


(1, 0, 0, 1, . . . , 1, 0, 0, 1) if (f ′(v), f ′(p1e), f

′(pLe
e ), f ′(w)) = (1, 0, 1, 1),

(1, 0, 0, 1, . . . , 1, 0, 0, 1) if (f ′(v), f ′(p1e), f
′(pLe

e ), f ′(w)) = (1, 0, 0, 1),

(1, 1, 0, 0, . . . , 1, 1, 0, 0) if (f ′(v), f ′(p1e), f
′(pLe

e ), f ′(w)) = (0, 0, 0, 1).

(5)
Note that the updated values on p1e, . . . , p

Le
e meet the bound Le/2 (see Lemma 1)

and yield an on-par or better weight than the initial values of f ′. After carrying
out the updates on all edges, we end up with a labeling f ′′ fulfilling (4). There-
fore, if we contract the inter-vertex paths to the original edges of G, the con-
stellation of neighboring f ′′-labels will remain unchanged for all vertices v ∈ V .
Consequently, the restriction f := f ′′|V is the claimed existing labeling. As the
weight of f does not include an additional weight Le/2 per edge e, we finally
conclude∑

v∈V

f(v) ≤
∑

v′∈V ′

f ′′(v)−
∑
e∈E

Le/2 ≤
∑

v′∈V ′

f ′(v)−
∑
e∈E

Le/2 ≤ k.
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Next, let us show how the previous result is related to partial grids. Recall
that a simple rectilinear polyline (SRP) is an injectively parameterizable polyg-
onal chain made up of axes-parallel line segments. However, for all what follows,
we assume a strengthened definition of SRP requiring each of its atomic line seg-
ments to be of integer-valued length. The argumentation relies on the following
auxiliary Lemma due to Valiant [21].

Lemma 4 (adapted from [21, Theorem 2]). There is a polynomial-time
algorithm taking as input a planar 4-subregular graph G and returning a planar
embedding of G into the plane using O(|V |2) area such that embedded vertices
possess integer-valued coordinates, and embedded edges are SRPs.

Theorem 4. The problem PosInflDom(G, k) is NP-complete on the class of
induced partial grids.

Proof. From the proof of Theorem 1 we know that PosInflDom(G, k) is NP-
complete on SPplan

≤3 . We will rely on a reduction from the latter.
Starting from G′ = (V ′, E′) ∈ SPplan

≤3 consider also its underlying cubic graph
G = (V,E), i.e., SplApd(G) = G′. The first goal will be to find a particular
embedding for G′ by adapting an embedding for G. This is accompanied by an
illustration in Fig. 2 and works as follows:

Using Lemma 4, planarly draw in R2 the embedding of G such that embedded
vertices have integer-valued coordinates and all embedded edges are SRPs; to
keep the result polynomially-sized, make sure the embedded vertices and edges
are bounded as in Lemma 4. Afterwards, subject the drawing in R2 to the geo-
metric scaling (x, y) 7→ (8x, 8y). For each edge {v, w} of G, prolong by two units
the associated (now scaled) SRP ρ{v,w} via the following procedure consisting
of two steps:

Step 1. Fix an arbitrary endpoint p = p{v,w} ∈ {v, w} of the edge and con-
sider the length-4 line subsegment s(p, {v, w}; 2, 6) of ρ{v,w} starting at geodesic
distance 2 from p and ending at geodesic distance 6 from p. Let us translate
s(p, {v, w}; 2, 6) by one unit in direction orthogonal to the extension direction
of s(p, {v, w}; 2, 6) itself. The now modified ρ{v,w} consists of three disconnected
components, which we join by two unit-length line segments, yielding our defini-
tive form of ρ{v,w}. The length of the original SRP ρ{v,w} was hence artificially
increased by two units by performing a local detour geometrically reminding of
a rectangular U-turn. This guarantees that all present SRPs are now of length
congruent 2 modulo 8. The absence of crossing edges is clearly maintained.

Step 2. Determine on ρ{v,w} the point at geodesic distance 5 from p (according
to the geometry of the curve ρ{v,w} itself). Let us regard it as the embedded
“splitting” vertex x{v,w} of G′. Then, append to the x{v,w}-embedding a fresh
length-2 straight path, meant to host the embeddings of y{v,w} and z{v,w}, in a
way ensuring that one coordinate-entry of y{v,w} is divisible by 8. Eventually,
we have found an embedding with SRPs for all edges of G′.

Note that for each edge e = {v, w} of G, the number of lattice points of
Z × Z which are covered by the SRP of G′ connecting x{v,w} and v is divisible
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Fig. 2. Up to the detours (visible as lengthy U-turns) and the paths between the
quadratic vertices, the drawing shows an initial SRP embedding already scaled by a
factor of 8. The Euclidean distance between u and v, e.g., is assumed to have increased
eightfold from initially 2 to eventually 16. The splitting vertices xe, e ∈ E, lie—with
respect to the associated SRP—at geodesic distance 5 from an endpoint.

by 4 when this number renounces counting the embedded endpoints x{v,w} and
v. The same is true for the SRP connecting x{v,w} and w. On these x{v,w}-
incident SRPs let us consider these intermediate Z×Z points as embedded fresh
subdivisors of the combinatorial edges of G; call this new graph G̃. In particular,
as they lie at Manhattan distance 1, no combinatorial subdivision of the edges
{xe, ye}, {ye, ze} occurs. G̃ is a (subcubic planar) induced partial grid and has
the form of the transformed graphs from Lemma 3 with

4 ≤ min{L{v,xe}, L{w,xe}} ≡ max{L{v,xe}, L{w,xe}} ≡ 0 (mod 4),

0 = L{xe,ye} = L{ye,ze} ≡ 0 (mod 4),

for all e = {v, w} ∈ E. Thus, by Lemma 3, the existence of a feasible f for
PosInflDom(G, k) is equivalent to the existence of a feasible f ′ on the induced
partial grid G̃ of weight at most k +

∑
e={v,w}∈E L{v,xe}/2 + L{w,xe}/2.

The latter result has implications for the class of unit disk graphs on which
domination-type problems are often considered [5].

Corollary 2. The problem PosInflDom(G, k) remains NP-complete on unit
disk graphs.

5 Bounds on complete grids

This section derives lower and upper bounds on complete grids for γPID and γ×2,t.
For this graph class the requirements of γ×2,t are strictly more constrained than
those of γPID. In fact, tighter lower bounds for γ×2,t will be found.
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Fig. 3. The top-left area of an m×n grid subject to the discharging process. Coefficients
attached to the arrows indicate the proportion of transferred charge. Vertices in the set
A or B from the proof of Theorem 6 are marked by α or β, respectively. Exemplarily
assuming that v is the upper β-marked vertex, the situation f(v) = 1 implies that
the two neighbors of v on the grid’s upper boundary receive additional charge of 3/8
whereas the interior neighbor just 1/4; if f(v) = 0, a zero-charge transfer to neighbors
applies.

Theorem 5. For m,n ≥ 6 we have

mn

2
+

m+ n

4
− 3

2
≤ γPID(Pm□Pn) ≤

mn

2
+

m+ n

2
+

3− |mod(n, 4)− 1|
2

. (6)

Proof. As any double total dominating function on grids is automatically positive
influence dominating, the upper bound of [15] for γ×2,t is valid for γPID, too;
the latter is stated as the right-hand side of (6). For γ×2,t it constitutes the
currently tightest upper bound with exception of the constellations (mod(m, 4),
mod(n, 4)) ∈ {(0, 0), (1, 1)}, where it worsens the older bound [3] by 1.

Let us prove the lower bound by using the so-called discharging method,
arguably best known due to the proof of Appel and Haken [2] of the Four
Color Theorem. We transform a PID-feasible f : [m] × [n] → {0, 1} to a func-
tion g : [m] × [n] → Q in a weight-preserving manner, i.e.,

∑
v∈[m]×[n] f(v) =∑

v∈[m]×[n] g(v) and then prove the bound for g: To obtain g—simultaneously
for all vertices—we entirely redistribute the f -value of each vertex, according
to a specific convex combination, among its neighbors. Adopting, conversely, a
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passive perspective, this means that the initial “charge” f(v) of a vertex v is
entirely replaced by the sum of the incoming charges from its neighborhood.

Let A be the set of vertices having precisely two degree-4 neighbors (lying
at Manhattan distance 2 from a corner of the grid) and B be the set of vertices
having only one degree-4 neighbor and being at distance 2 from a corner; for
both see Fig. 3. In the following, we directly state the function g resulting from
a tailored discharging process sketched in Fig. 3. Apart from fetching it from
Fig. 3, more formally, the proportionality-scalar of the charge-transfer from a
neighbor w to v can be read off the respective case for v in (7) from the coefficient
of the unique summand associated to the index w. Denote by Dt := {v ∈ [m]×
[n] : deg(v) = t} specific preimages of the function deg(·). For the parameter
τ ∈ {0, 1} consider

gτ (v) :=



∑
w∈N(v)∩D3

f(w)
4 +

∑
w∈N(v)∩D4

(1−τ)f(w)
4 if v ∈ A,∑

w∈N(v)∩D3

3f(w)
8 +

∑
w∈N(v)∩D4

(1+τ)f(w)
4 if v ∈ B,∑

w∈N(v)∩D2

f(w)
2 +

∑
w∈N(v)∩D3

3f(w)
8 +∑

w∈N(v)∩D4

f(w)
4 if v ∈ (D2 ∪D3) \B,∑

w∈N(v)∩D4

f(w)
4 if v ∈ D4 \A.

(7)
In the current proof, we are interested in the discharging process associated to
g := g0, i.e., τ = 0 (the choice τ = 1 concerns the proof of the later stated
Theorem 6). As f is a PID-function, we have∑
v∈[m]×[n]

g(v) =
∑
v∈D4

g(v) +
∑
v∈D3

g(v) +
∑
v∈D2

g(v) ≥ 1

2
|D4|+

5

8
|D3|+

3

8
|D2|

=
mn

2
+

m+ n

4
− 3

2
.

Here, the three sums have been estimated from below one by one with the
following justification: By feasibility of f , every v ∈ D4 has at least two neighbors
with an f -value of 1; this simply allows to conclude that g(v) ≥ 1/4 + 1/4, for
v ∈ D4. The estimate for each vertex in D3 holds due to the fact, that again two
neighbors with an f -value of 1 must exist leading in the lowest possible case to
an inflow of charge 1/4 + 3/8 = 5/8. The charge inflow for a corner must be at
least 3/8.

Repeating the proof of Theorem 5—this time using g := g1 defined as in (7)—
we almost verbatim obtain the following result.

Theorem 6. For m,n ≥ 6 we have

mn

2
+

m+ n

4
+ 1 ≤ γ×2,t(Pm□Pn) ≤

mn

2
+

m+ n

2
+

3− |mod(n, 4)− 1|
2

. (8)
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Despite the simplicity of the discharging approach, the bound (8) on γ×2,t

slightly strengthens—the difference is precisely 1—the lower bound given in [15].
However, the more striking insight lies here in the possibility to give a consider-
ably shorter proof for the lower bound than in the latter work.

6 Conclusion

We have shown that PosInflDom(G, k) and DblTotalDom(G, k) remain NP-
complete problems even when restricted to planar subcubic graphs. The em-
ployed reductions in Sect. 3 lose certain structural properties raising two open
questions: Is it possible to determine a small k—perhaps even k = 3—for which
the hardness result of Theorem 2 still applies for k-subregular graphs in the set-
ting of 2-connected planarity? Can we adapt the reductions to work for 3-regular
instead of 3-subregular graphs?

Using a geometry-accented argument, we observed that NP-completeness for
PID is inherited by the class of induced partial grids. Concerning the complete
m×n grids we showed how to derive a lower bound for γPID by a short argument,
which applied to the setting of γ×2,t slightly tightens the known lower bound.
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A Appendix (supplementary proofs)

v w

L{v,w} ≡ 0 (mod 4)

Fig. 4. Supplementary illustration of the edge subdivision in Lemma 3.

We restate Lemma 2 and provide its proof.

Lemma 2. Let k ∈ N ∪ {0}. Further, let G = (V,E) be a subcubic graph, and
Le ∈ N ∪ {0} be divisible by 4, for e ∈ E. Consider G′ = (V ′, E′) resulting
from replacing each e = {v, w} ∈ E by an undirected path (v, p1e, . . . , p

Le
e , w)

of length Le + 1, i.e., the former edge e is split by Le fresh vertices. Let U =
{(0, 1, 1, 0), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 1)}. If there exists a PID-feasible f ′ with∑

v∈V ′ f ′(v) = K, then there exists a PID-feasible f ′′ : V ′ → {0, 1} satisfying
(f ′′(v), f ′′(p1e), f

′′(pLe
e ), f ′′(w)) ̸∈ U , for e = {v, w} ∈ E, and

∑
v′∈V ′ f ′′(v′) ≤

K.

Proof. An existing labeling f ′′ with the required properties is given by the output
of Algorithm 1. In the subsequent let us prove its soundness.

PID-feasibility. The periodicity-4 patterns are designed to meet PID-feasibility
certainly on the non-endpoint vertices of the inter-vertex path. On the two end-
points of the length-Le pattern, PID-feasibility is ensured due to the increased
label of v (and w).

Correctness and termination. The fact that constellations from U are suc-
cessfully entirely removed and that the algorithm terminates is explained as
follows: Initially |Mf ′′

(0,1,1,0)| is a finite number. Each iteration of the loop re-
moves a single occurrence of a type-(0, 1, 1, 0) constellation and does not cause
a novel one of this type somewhere else in the graph to be handled in a later
iteration—in fact, the overwriting process only increases labels for vertices in
V . Similarly, the second while loop terminates: By the increased labels in the
overwriting process in the iterations, no novel type-(0, 0, 1, 1) constellations are
caused. Furthermore, no novel occurrences of constellations eliminated in Step
1 are caused. The same can be observed for the third while loop, where no novel
type-(0, 0, 1, 1) constellations are caused. Additionally, none of the constellations
eliminated in the prior two loops are caused. Finally, termination of the last loop
is justified analogously. We observe that no constellation eliminated in previous
loops is caused by the overwriting processes of the last loop.

No excess of weight. We show that in every loop, each iteration does not
increase the weight.

Loop 1: Note that before overwriting, (p3e, . . . , p
Le−2
e ) is a path of length

divisible by 4, hence, according to Lemma 1 its weight will be at least (Le −
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1 procedure Canonize(V,E; (Le)e∈E ; f
′)

2 f ′′ ← f ′ // create a working copy of f ′

3 Mf ′′

(q1,q2,q3,q4)
:= {{v, w} ∈ E : (f ′′(v), f ′′(p1e), f

′′(pLe
e ), f ′′(w)) = (q1, q2,

q3, q4)}

4 while Mf ′′

(0,1,1,0) ̸= ∅ do
5 Pick (v, w) from Mf ′′

(0,1,1,0).
6 Overwrite F ′′

(v,w) ← (1, 0, 0, 1, . . . , 1, 0, 0, 1).
7 Overwrite f ′′(v)← 1, f ′′(w)← 1.
8 while Mf ′′

(0,0,1,0) ̸= ∅ do
9 Pick (v, w) from Mf ′′

(0,0,1,0).
10 Overwrite F ′′

(v,w) ← (0, 0, 1, 1, . . . , 0, 0, 1, 1).
11 Overwrite f ′′(v)← 1.
12 while Mf ′′

(0,0,1,1) ̸= ∅ do
13 Pick (v, w) from Mf ′′

(0,0,1,1).
14 Overwrite F ′′

(v,w) ← (1, 0, 0, 1, . . . , 1, 0, 0, 1).
15 Overwrite f ′′(v)← 1.
16 while Mf ′′

(0,1,1,1) ̸= ∅ do
17 Pick (v, w) from Mf ′′

(0,1,1,1).
18 Overwrite F ′′

(v,w) ← (1, 0, 0, 1, . . . , 1, 0, 0, 1).
19 Overwrite f ′′(v)← 1.
20 return f ′′

Algorithm 1: Constellations forbidden by the set U are eliminated from f ′.

4)/2 regardless of its assigned values by f ′. Necessarily f ′(p2e) = f ′(pLe−1
e ) = 1

implying that the weight of f ′ on the entire length-Le path is at least Le/2 + 2,
consequently, f ′(v) + f ′(w) +

∑Le

i=1 f
′(pie) ≥ Le/2 + 2. On the other hand, by

construction f ′′(v) + f ′′(w) +
∑Le

i=1 f
′′(pie) = Le/2 + 2, i.e., the same or even a

better weight is obtained while maintaining PID-feasibility.
Loop 2: Note that before overwriting, (p4e, . . . , p

Le−1
e ) is a path of length

divisible by 4, hence, according to Lemma 1 its weight will be at least (Le−4)/2
regardless of the values of f ′. Necessarily f ′(p2e) = f ′(p3e) = 1 implying that
the weight of f ′ on the entire length-Le path is at least Le/2 + 1, consequently,
f ′(v)+f ′(w)+

∑Le

i=1 f
′(pie) ≥ Le/2+1. Thus, the loop produces an equal-quality

or even better update in terms of weight.
For the last two loops let us state the same argumentation compactly.
Loop 3: Recognize that the f ′-weight of (p4e, . . . , pLe−1

e ) will be at least (Le−
4)/2. Necessarily f ′(p2e) = f ′(p3e) = 1 implying that the weight of f ′ on the entire
length-Le path is at least Le/2+ 1, consequently, f ′(v)+ f ′(w)+

∑Le

i=1 f
′(pie) ≥

Le/2 + 1 and the in-loop updates yield no worse alternative f ′′.
Loop 4: Recognize that the f ′-weight of (p3e, . . . , pLe−2

e ) will be at least (Le−
4)/2. Necessarily f ′(p2e) = 1 implying that the weight of f ′ on the entire length-
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Le path is at least Le/2+1, consequently, f ′(v)+f ′(w)+
∑Le

i=1 f
′(pie) ≥ Le/2+1

and the in-loop updates yield no worse alternative f ′′.

We restate Theorem 6 and provide its proof.

Theorem 6. For m,n ≥ 6 we have

mn

2
+

m+ n

4
+ 1 ≤ γ×2,t(Pm□Pn) ≤

mn

2
+

m+ n

2
+

3− |mod(n, 4)− 1|
2

. (9)

Proof. Again, as in Theorem 5 the right-hand side of (9) stems from [15].
For the lower bound, use the definitions of the proof of Theorem 5 and repeat

its argumentation via the discharging method—this time using the premise g :=
g1 with gτ defined as in (7): As f is a valid double total dominating function we
have ∑

v∈[m]×[n]

g(v) =
∑
v∈D4

g(v) +
∑

v∈D3\B

g(v) +
∑
v∈B

g(v) +
∑
v∈D2

g(v)

≥ 1

2
|D4|+

5

8
|D3 \B|+

6

8
|B|+ 6

8
|D2|

=
1

2
(m− 2)(n− 2) +

5

8
(2m− 8 + 2n− 8) +

6

8
· 8 + 6

8
· 4

=
mn

2
+

m+ n

4
+ 1.

Here, the four sums have been estimated from below one by one with the fol-
lowing justification: By feasibility of f , every v ∈ D4 has at least two neighbors
with an f -value of 1; while for v ∈ D4 \ A this simply allows to conclude that
g(v) ≥ 1/4 + 1/4, for v ∈ A ⊆ D4 we have to recognize that an inflowing charge
of 1/4 + 1/4 originates solely from the two degree-3 neighbors of v (due to the
fact that both neighbors of a corner these are forced to attain an f -value of 1).
The estimate for each degree-3 vertex not contained in B holds due to the fact,
that again two neighbors with an f -value of 1 must exist leading in the lowest
possible case to an inflow of charge 1/4+3/8 = 5/8; concerning the estimate for
the vertices in B this lowest case is slightly higher, namely 3/8 + 3/8 = 6/8. By
the aforementioned particularity of a corner, its charge inflow must be precisely
3/8 + 3/8 = 6/8.
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