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The Graph Burning Problem under
Constrained Diffusion
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Abstract Relying on a simplified model of fire spread, the Graph Burning Problem
is an NP-hard combinatorial optimization problem that yields a metric of social
contagion or vulnerability of a network. It concerns a discrete-time process on a
simple undirected graph, with, in each timestep, a diffusion phase of fire towards all
neighbors of “burned” vertices and a second phase, in which a next not-yet-burned
vertex is ignited by an external actor. The aim is to find the minimum number of
timesteps together with suitable choices of vertices for the actor such that the whole
set of vertices gets burned. The applicability of the problem becomes more relevant
when one takes into account that diffusion might realistically be suppressed by given
natural obstacles and limitations as well as implemented countermeasures. Therefore,
this paper proposes the Constrained Diffusion Graph Burning Problem, where vertex-
specific thresholds are considered that determine the maximum number of neighbors
the vertex can ignite. We consider the aspect of expiration, i.e., burned vertices are
permitted to diffuse fire only immediately after becoming burned, but not to a later
timestep. These assumptions not only appear meaningful in the context of fire spread
but also within dynamics of viral contagion and rapid information dissemination.
A time-indexed (mixed) integer linear programming approach is proposed in two
versions: The first version one-hot encodes the time, and the second one handles
the time using a Miller-Tucker-Zemlin formulation. Finally, a greedy heuristic is
proposed and compared to the previous formulations.
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1 Introduction

In 2014, Bonato et al. [3] proposed the discrete-time process of graph burning as a
model of social contagion. This process relies on a highly simplified model of fire
spread and originally was used to provide insights into the achievability of rapid
information dissemination in social networks under certain temporal assumptions
on the release of information. Due to similarities, e.g., to the Target Set Selection
Problem [14] or the Least Cost Influence Maximization Problem (LCIMP) [12],
the Graph Burning Problem (GBP) additionally provides an interesting alternative
model for viral marketing or opinion-making. For a formal description of the graph
burning process, we consider a simple and undirected input graph 𝐺 = (𝑉, 𝐸) whose
vertices 𝑣 ∈ 𝑉 carry a time-dependent binary status indicating either unburned or
burned [3]. Assuming (discrete) timesteps indexed by 𝑡 ∈ N ∪ {0}, consider the
following process.
• Initially, all vertices are unburned.
• In timestep 𝑡 = 0 the status of a single vertex is changed to burned.
• In each timestep 𝑡 ≥ 1, the neighbors of all vertices that have the status burned

in timestep 𝑡 − 1 become burned as well. Note that some of them may already be
burned.

• Within the same timestep 𝑡, an unburned vertex is picked and made burned (if
such a one exists).

The process is iterated and stops when a timestep is reached after which all
the vertices of the graph are burned. Each such process is called an admissi-
ble burning process. The burning number 𝑏(𝐺) of 𝐺 is defined as the mini-
mum number of timesteps over all admissible burning processes, i.e., 𝑏(𝐺) :=
min{𝑇 +1 : there is an admissible burning process on 𝐺 terminating with index 𝑇}.
Returning to the perspective of a social contagion model, a burned vertex could
represent—within the setting of opinion-making or viral marketing—the scenario in
which an individual has been convinced to adopt a certain opinion either by a direct
influence of some external actor or by propagation from a neighboring individual
that is already affected by that opinion. A small burning number for a social network
reveals that it is possible to influence all individuals in a short amount of time.

Several combinatorial aspects of the graph burning number have been examined,
e.g., it is known that its calculation is NP-hard even on trees of maximum degree
three [1] or on caterpillars of maximum degree three [13, 16]; several other graph
classes are mentioned in the literature in this context, see [2] for a partial overview.
The central open problem in the field is stated in [3] claiming that for any graph
𝐺 = (𝑉, 𝐸) the bound 𝑏(𝐺) ≤

⌈
|𝑉 |1/2

⌉
holds; partial progress towards this so-called

burning number conjecture has been recently obtained; in [19] it is proved that this
conjecture holds asymptotically, and in [18] it is shown that the conjecture holds
for any tree without vertices of degree two. The survey of Bonato [2] describes
several further interesting computational findings on 𝑏(𝐺), in particular, established
𝑏(𝐺)-numbers respectively approximation algorithms [4]; for general graphs, a 3-
approximation algorithm is presented together with a 2-approximation algorithm
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specifically designed for trees. A randomized 2.314-approximation algorithm for
computing the burning number of a general graph is presented in [15]. In [9], an
approximation algorithm termed “burning farthest-first” is proposed with a tighter
approximation ratio of 3 − 2/𝑏(𝐺). It relies on the idea to iteratively incorporate
locally optimal vertices into an initially empty set of candidate vertices. The chosen
vertex lies here among the vertices that maximize the distance to the set of burning
vertices. A similar approach has been designed earlier in [6] but from a purely
heuristic perspective. Several further heuristics for this problem are proposed in [20,
11] based on the eigencentrality as a measure for attractiveness of a next vertex to be
ignited. More recently in [8], based on the relationship between the GBP and the so-
called Clustered Maximum Coverage Problem, the authors propose a greedy heuristic
that effectively solves instances with up to hundreds of thousands of vertices. An
integer linear programming formulation and a constraint programming approach are
proposed in [10]. Recently, in [5] considerable progress has been achieved towards
solving large solution instances optimally by a row generation approach.

The main contribution of this paper is the introduction and solution of a general-
ization of GBP where vertices can ignite a certain maximum number of neighbors.
The generalization enlarges the search space of the original problem and requires the
representation of feasible solutions to carry additional information. We propose two
Mixed Integer Linear Programming (MILP) formulations and evaluate their com-
putational advantages and limitations by running experiments on instances from the
literature commonly used for the classical GBP. Furthermore, we propose a greedy
approach which can be executed in one mode by solving subproblems via these
formulations or, alternatively, by using a degree- and eigencentrality-based scoring
function.

Notation and preliminaries. If not stated otherwise, simple and undirected
graphs 𝐺 = (𝑉, 𝐸) are considered; the order of a graph 𝐺 refers to |𝑉 |, the
number of vertices. By 𝑁 (𝑣), for 𝑣 ∈ 𝑉 , we denote the set of vertices that are
adjacent to 𝑣, i.e., 𝑁 (𝑣) := {𝑤 ∈ 𝑉 : {𝑣, 𝑤} ∈ 𝐸}. Moreover, let us denote by
�̂� the digraph resulting from bidirecting each edge of 𝐺, i.e., �̂� := (𝑉, �̂�) with
�̂� := {(𝑢, 𝑣), (𝑣, 𝑢) ∈ 𝑉 × 𝑉 : {𝑢, 𝑣} ∈ 𝐸}. In case some graph 𝐺 = (𝑉, 𝐸) is a
directed graph (digraph), the in-degree and out-degree of 𝑣 refer to the quantities
|{𝑢 ∈ 𝑉 : (𝑢, 𝑣) ∈ 𝐸}| and |{𝑤 ∈ 𝑉 : (𝑣, 𝑤) ∈ 𝐸}| respectively. The number of edges
on a shortest path between 𝑣 and 𝑤 is denoted by dist(𝑣, 𝑤). An arborescence is a
directed acyclic graph 𝐴 = (𝑉, 𝐸) with at most one vertex of in-degree zero—called
the root—having in-degree one for all remaining vertices. Denote by leaves(𝐴) the
set of all leaves, i.e., vertices with out-degree zero, by depth(𝑣) the depth, i.e., the
number of edges on the unique directed path from the root of 𝐴 to a vertex 𝑣, and
by height(𝐴) the maximum depth over all vertices contained in 𝐴. Sequences (or
unions) of pairwise vertex-disjoint arborescences are called forests of arborescences.
Denote by ⌊·⌋ and ⌈·⌉ the floor and ceil function, respectively.

The remainder of the paper is organized as follows. In Section 2 we motivate our
generalization of graph burning. Section 3 provides two MILP formulations to solve
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the introduced problem. Section 4 proposes a heuristic approach whose performance
is in Section 5 compared to the MILP approaches. Conclusions and open questions
are given in Section 6.

2 Constraints on the diffusion process

The classical GBP despite being practically motivated, assumes for its diffusion
process that all neighbors of burned vertices get burned in the subsequent timestep.
For many scenarios this assumption may seem too unrealistic: In general, people can
successfully influence only a certain maximum number of other people from their
circle of contacts (e.g., due to different individual resources, skills, or ambition for
persuasion). Therefore, two constraints on the diffusion process shall be imposed
to make the model more realistic and more flexible. We propose to limit, by a
vertex-dependent threshold, the number of neighbors that can be ignited by a burned
vertex.

Moreover, we want to incorporate the assumption that people become active in
influencing other people immediately after they have been influenced; we motivate
this by referring to [21] which demonstrates that the spread of social contagion is
reduced by the decay of novelty. In the language of fire diffusion, the latter model
is explained as follows: Vertices represent regions and a comparable behavior of
the fire spread arises when fire can be contained to spread to a maximum number
of neighboring regions, e.g., by having a specific local resource of firefighter units.
Moreover, in this context, we assume that an already burned region cannot propagate
fire at a later time point.

For a formalization, let us consider the graph𝐺 = (𝑉, 𝐸) with imposed thresholds
𝜃𝑣 ∈ N ∪ {0}, 𝑣 ∈ 𝑉 ; these thresholds are collected in a vector of parameters 𝜃 =

(𝜃𝑣)𝑣∈𝑉 . Apart from the aforementioned time-dependent status burned or unburned
for each vertex, we implicitly track a second time-dependent, irreversible binary
status of a vertex, called the expiration status, which prevents vertices that have this
status from transmitting their burned status to their neighbors. Assume that we are
given a maximum time index 𝑇 ∈ N ∪ {0}. Initially, for 𝑡 = 0, burn a single vertex.
Afterwards, execute the following actions for 𝑡 = 1, . . . , 𝑇 :

(i) Constrained diffusion from unexpired vertices: For each vertex 𝑣 that has the
status burned in timestep 𝑡 − 1 but not in timestep 𝑡 − 2, burn at most 𝜃𝑣 of
its—according to the timestep 𝑡 − 1—unburned neighbors. (By convention, in
the (−1)-th timestep all vertices are unburned.)

(ii) Burn: Pick at most one currently unburned vertex and make it burned.

We call an execution of the latter procedure a 𝑇-terminating 𝜃-burning process
(with constrained diffusion) and denote the set of all such processes as B𝜃,𝑇 (𝐺).
For 𝑃 ∈ B𝜃,𝑇 (𝐺), the number of vertices with the status burned after termination
of both phases in the final timestep 𝑇 is called the penetration of 𝑃, adopting the
terminology of the LCIMP [12]. If 𝑇∗ is the minimum number that ensures a process
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𝑃 ∈ B𝜃,𝑇∗ (𝐺) of penetration |𝑉 | exists, we define b𝜃 (𝐺) := 𝑇∗ + 1 and call the
latter (constrained diffusion) 𝜃-burning number of 𝐺. The problem of determining
this optimal value 𝑇∗ is henceforth called the Constraint Diffusion Graph Burning
Problem (CDGBP, or 𝜃-GBP). If we want to provide more information on the
burning process, we denote it as B𝜃,𝑇 (𝐺, (𝑠0, . . . , 𝑠𝑇 ), 𝑦) where 𝑠𝑡 is the chosen
vertex, henceforth called seed1 during the burn-phase in timestep 𝑡. Moreover, for
each directed edge (𝑢, 𝑣) ∈ �̂� we define

𝑦𝑢,𝑣 :=

{
1 if 𝑢 ignited 𝑣 in some timestep 𝑡 ∈ {1, . . . , 𝑇},
0 otherwise.

The subsequent Proposition 1, in particular, gives a preparatory viewpoint for the
MILP formulations stated later by directly lifting the considerations concerning 𝑏(·)
in the proof of [3, Theorem 5] to 𝜃-burning.

Proposition 1 Let 𝑇 ∈ N ∪ {0} and 𝑋 ⊆ 𝑉 for a given graph 𝐺 = (𝑉, 𝐸) with
thresholds 𝜃. Then, the following assertions are equivalent.

(i) There is a 𝜃-burning process B𝜃,𝑇 (𝐺, (𝑠0, . . . , 𝑠𝑇 ), 𝑦) whose set of burned
vertices after termination is 𝑋 .

(ii) In 𝐺 there is a subforest consisting of arborescences 𝑇𝑠0 , 𝑇𝑠1 , . . . , 𝑇𝑠𝑇 with
respective roots 𝑠0, . . . , 𝑠𝑇 and heights ℎ0, . . . , ℎ𝑇 such that, firstly, the set
of all vertices contained in some arborescence corresponds to 𝑋; secondly,
ℎ𝑡 ≤ 𝑇 − 𝑡 for 𝑡 = 0, . . . , 𝑇; and thirdly, each 𝑣 ∈ 𝑋 is a member of a single
arborescence 𝑇𝑠 (𝑣) where the out-degree of 𝑣 inside 𝑇𝑠 (𝑣) is at most 𝜃𝑣.

Proof. (i) =⇒ (ii): Let 𝑃 ∈ B𝜃,𝑇 (𝐺, (𝑠0, . . . , 𝑠𝑇 ), 𝑦) and 𝑋 be the set of vertices
burned after termination of 𝑃. During the process, a vertex 𝑣 might have become
burned because one vertex (or even multiple vertices) “chose” to make their neighbor
𝑣 burned. In the following, consider the digraph �̂� := (𝑉, �̂�), i.e., the bidirected
version of 𝐺. Note that if 𝑠 ∈ {𝑠0, . . . , 𝑠𝑇 } is a seed, we have 𝑦𝑢,𝑠 = 0 for each
𝑢 ∈ 𝑁 (𝑠), whereas 𝑦𝑠,𝑢 can in fact attain the value 1 for 𝑢 ∈ 𝑁 (𝑠). If �̂� |𝑦 :=
{(𝑢, 𝑣) ∈ �̂� : 𝑦𝑢,𝑣 = 1}, then �̂� |𝑦 := (𝑉, �̂� |𝑦) contains no directed cycles (not even
of length two): In fact, the existence of a vertex having an incoming and an outgoing
edge contradicts the property that only unburned vertices can be turned to burned by
a burned neighbor. Facing a directed acyclic graph, we can therefore locate a set of
sources (i.e., vertices of in-degree zero) that here must coincide with {𝑠0, . . . , 𝑠𝑇 }.

We run now the following procedure which returns an updated edge-status
𝑦′𝑢,𝑣 ∈ {0, 1} satisfying for all (𝑢, 𝑣) ∈ �̂� that 𝑦′𝑢,𝑣 ≤ 𝑦𝑢,𝑣: Initially set 𝑦′𝑢,𝑣 := 𝑦𝑢,𝑣.
Then, iteratively, for 𝑑 = 1, . . . , 𝑇 , execute the following: For each vertex 𝑣 ∈ 𝑉

being reachable from a seed 𝑠𝑡 via a directed length-𝑑 path do the following:
Pick the seed 𝑠𝑡∗ with the minimum index 𝑡∗ permitting such a directed path
(𝑠𝑡∗ , 𝑢1, 𝑢2, . . . , 𝑢𝑑−1, 𝑣). Then, overwrite 𝑦′𝑢,𝑣 := 0 for all 𝑢 ∈ 𝑁 (𝑣) \ {𝑢𝑑−1}.
After termination of this procedure, we obtain that �̂� |𝑦′ := (𝑉, �̂� |𝑦′ ) is a forest of

1 Potentially a seed reflects the empty vertex selection 𝜀 and this will manifest itself in our models
in that no activation from an external source vertex is present.
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arborescences (𝐴𝑠0 , . . . , 𝐴𝑠𝑇 ) whose roots are given by the seeds of the process. As
all finally-burned vertices in 𝑋 got burned in timestep 𝑇 the latest, the distance from
𝑠𝑡 to any vertex in 𝐴𝑠𝑡 can be at most 𝑇 − 𝑡. Moreover, 𝑦 meets the 𝜃-thresholds for
each vertex 𝑣 ∈ 𝑉 , i.e.,

∑
𝑤∈𝑁 (𝑣) 𝑦𝑣,𝑤 ≤ 𝜃𝑣, and hence 𝑦′, as a thinned-out version of

𝑦, does so as well.

(ii) =⇒ (i): An admissible 𝜃-burning process can be reconstructed by simply
choosing the sequence of seeds (𝑠0, . . . , 𝑠𝑇 ) and in timestep 𝑡, for each burned
vertex 𝑣, choosing as next vertices to be burned those being the children of 𝑣 when
𝑣 is seen as a member of its associated arborescence. Here the threshold-respecting
out-degrees of the vertices in the arborescence will automatically imply compatibility
with the thresholds for an admissible 𝜃-burning process. The number of timesteps
needed for this burning process is bounded from above by 𝑇 , the height-restriction
on the arborescence rooted in 𝑠0. By construction, all 𝑣 ∈ 𝑋 are therefore burned at
most after termination of timestep 𝑇 . ⊓⊔

Although equipped with further details, Fig. 1 in the later Sect. 3 is useful for
visualizing the last characterization.

Observation 1. For 𝐺 = (𝑉, 𝐸) and 𝜃𝑣 := deg(𝑣), 𝑣 ∈ 𝑉 , we have b𝜃 (𝐺) = 𝑏(𝐺).

Given 𝐺 = (𝑉, 𝐸), 𝜃, and 𝑇 , finding the maximum penetration over all 𝑃 ∈
B𝜃,𝑇 (𝐺) may clearly be seen as a special case of the problem asking, for a pre-
specified arbitrary parameter vector of heights 𝐻 := (ℎ1, . . . , ℎ𝑄), 𝑄 ≤ |𝑉 |, to find
a sequence of𝑄 arborescences maintaining these heights, respecting the thresholds 𝜃
and yielding maximum penetration. For the 1-tuple 𝐻 = (ℎ) we call it the problem of
finding a Maximum Coverage Arborescence with 𝜃-bounded Degree and ℎ-bounded
Height, abbreviated MCADH(𝐺, 𝜃, ℎ).

3 Mixed integer linear programming formulations

In the following, given the maximum time-index 𝑇 , we address the problem of
finding a sequence of seeds (𝑠0, . . . , 𝑠𝑇 ) for a 𝜃-burning process leading to maximum
penetration in a given graph 𝐺 = (𝑉, 𝐸) with threshold parameter 𝜃. The idea is
to make use of Proposition 1 and to find a collection of pairwise vertex-disjoint
arborescences 𝐴0, . . . , 𝐴𝑇 of the graph meeting all height and threshold constraints
and maximizing the number of vertices covered by the collection.

An Integer Linear Program (ILP) purely relying on binary variables can be derived
in the fashion of a time-indexed approach as done, e.g., in [7, 9] for related problems.
We present it using an equivalent arborescence-based perspective: First, an external
source vertex 𝑝 with out-going directed edges pointing to all vertices in 𝑉 is added
to the graph. Introduce for all 𝑡 ∈ {0, . . . , 𝑇} and 𝑣 ∈ 𝑉 a depth-tracker 𝑧𝑡𝑣 ∈ {0, 1}
indicating whether the arborescence covering vertex 𝑣, say its index is 𝑠 ∈ {0, . . . , 𝑇},
fulfills 𝑠 + depth(𝑣) = 𝑡. Similarly, for each (𝑣, 𝑤) ∈ �̂� ∪ ({𝑝} × 𝑉) the variable
𝑐𝑡𝑣,𝑤 ∈ {0, 1} indicates that 𝑠+depth(𝑣) = 𝑡−1 and, simultaneously, 𝑠+depth(𝑤) = 𝑡
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(using the convention depth(𝑝) = −1). Here, the shifted depth-index 𝑡 = 𝑠+depth(𝑣)
agrees precisely with the timestep in which vertex 𝑣 acquires the burned status (via
diffusion or via a new ignition). Shifted depth-counters ensure that arborescences
with a higher index are forced to attain lower heights. Based on these variables we
derive the following formulation which we call “One-Hot encoded Depth” (OHD):

max
∑︁

𝑡∈{0,...,𝑇 }

∑︁
𝑣∈𝑉

𝑧𝑡𝑣 (1)

s.t. 𝑧0
𝑣 = 𝑐0

𝑝,𝑣 ∀𝑣 ∈ 𝑉 (2)∑︁
𝑣∈𝑉

𝑐𝑡𝑝,𝑣 ≤ 1 ∀𝑡 ∈ {0, . . . , 𝑇} (3)∑︁
𝑡∈{0,...,𝑇 }

𝑧𝑡𝑣 ≤ 1 ∀𝑣 ∈ 𝑉 (4)∑︁
𝑣∈𝑁 (𝑤)

𝑐𝑡𝑣,𝑤 ≤ 1 ∀𝑡 ∈ {0, . . . , 𝑇},∀𝑤 ∈ 𝑉 (5)∑︁
𝑡∈{0,...,𝑇 }

𝑐𝑡𝑣,𝑤 ≤ 1 ∀(𝑣, 𝑤) ∈ �̂� (6)∑︁
𝑡∈{0,...,𝑇 }

∑︁
𝑣∈𝑉∪{𝑝}

𝑐𝑡𝑣,𝑤 ≤ 1 ∀𝑤 ∈ 𝑉 (7)

𝑧𝑡𝑤 ≤
∑︁

𝑣∈𝑁 (𝑤)∪{𝑝}
𝑐𝑡𝑣,𝑤 ∀𝑡 ∈ {1, . . . , 𝑇},∀𝑤 ∈ 𝑉 (8)∑︁

𝑤∈𝑁 (𝑣)
𝑐𝑡𝑣,𝑤 ≤ 𝜃𝑣𝑧

𝑡−1
𝑣 ∀𝑡 ∈ {1, . . . , 𝑇},∀𝑣 ∈ 𝑉 (9)

𝑐𝑡𝑣,𝑤 ≤ 𝑧𝑡−1
𝑣 ∀𝑡 ∈ {1, . . . , 𝑇},∀(𝑣, 𝑤) ∈ �̂� (10)

𝑐𝑡𝑣,𝑤 ∈ {0, 1} ∀𝑡 ∈ {0, . . . , 𝑇},∀(𝑣, 𝑤) ∈ �̂� ∪ ({𝑝} ×𝑉) (11)
𝑧𝑡𝑣 ∈ {0, 1} ∀𝑡 ∈ {0, . . . , 𝑇},∀𝑣 ∈ 𝑉 (12)

Formulation (1)–(12) works as follows. The objective function (1) counts all vertices
that are assigned a depth 𝑡 and which thus must be part of one of the arborescences.
Constraint (2), eliminable by preprocessing, associates depth 0 to a vertex 𝑣 iff the
0-indexed activation from the source 𝑝 to a vertex 𝑣 is present. Constraint (3) en-
sures that for any activation index 𝑡, at most one vertex is activated by the source 𝑝.
Constraint (4) forbids the assignment of more than one depth to each vertex. Con-
straint (5) guarantees that no matter which time index 𝑡 is considered, the respective
incoming activations to a vertex 𝑤 ∈ 𝑉 from neighbors 𝑣 ∈ 𝑁 (𝑤) are at most one—
uniqueness of predecessors in the arborescences is achieved in this way. The fact
that an edge is active in at most one time step is represented by (6). Inequalities (7)
enforce that no activations from potentially differing time indices point to a given
vertex, as this is not forbidden solely by (5). The fact that for an index 𝑡 ≥ 1 and
any vertex 𝑤 no incoming 𝑡-indexed activation from any neighbor 𝑣 (or the source
𝑝) is present implies that depth 𝑡 is not assignable to 𝑤. To make sure that a vertex



8 E. Iurlano, G. R. Raidl, and M. Djukanović

𝑣 does not activate more than 𝜃𝑣 neighbors, constraint (9) is added. Constraint (10)
is a strengthening inequality affirming that activation at timestep 𝑡 via an outgoing
edge of 𝑣 requires that 𝑣 has been assigned a shifted depth of 𝑡 − 1.

Let us add a formulation by adapting the well-known Miller-Tucker-Zemlin (MTZ)
approach [17]. The goal is here to employ only a single binary activation variable per
directed edge instead of𝑇 +1 associated binary variables. We introduce𝑇 +1 external
source vertices 𝑝0, . . . , 𝑝𝑇 all having out-going edges pointing to each vertex of the
graph. For each 𝑣 ∈ 𝑉 and 𝑡 ∈ {0, . . . , 𝑇} we let ℓ𝑡𝑣 ∈ {0, 1} indicate if 𝑣 lies on 𝐴𝑡

(ℓ𝑡𝑣 = 1 in the affirmative case, otherwise ℓ𝑡𝑣 = 0). Moreover, let the fractional variable
𝑧𝑣 ∈ [0, 𝑇] track the shifted depth of 𝑣 with respect to its covering arborescence,
and let 𝑦𝑣,𝑤 ∈ {0, 1} indicate if vertex 𝑤 is a successor of vertex 𝑣 in their covering
arborescence. We declare the following formulation as MTZ:

max
∑︁

𝑡∈{0,...,𝑇 }

∑︁
𝑣∈𝑉

ℓ𝑡𝑣 (13)

s.t.
∑︁

𝑡∈{0,...,𝑇 }
ℓ𝑡𝑣 ≤ 1 ∀𝑣 ∈ 𝑉 (14)∑︁

𝑣∈𝑉
𝑦𝑝𝑡 ,𝑣 ≤ 1 ∀𝑡 ∈ {0, . . . , 𝑇} (15)

𝑦𝑝𝑡 ,𝑣 ≤ ℓ𝑡𝑣 ∀𝑡 ∈ {0, . . . , 𝑇},∀𝑣 ∈ 𝑉 (16)

𝑦𝑣,𝑤 ≤
∑︁

𝑡∈{0,...,𝑇 }
ℓ𝑡𝑣 ∀(𝑣, 𝑤) ∈ �̂� (17)

𝑦𝑣,𝑤 ≤
∑︁

𝑡∈{0,...,𝑇 }
ℓ𝑡𝑤 ∀(𝑣, 𝑤) ∈ �̂� (18)

ℓ𝑡𝑤 ≤ 𝑦𝑝𝑡 ,𝑤 +
∑︁

𝑣∈𝑁 (𝑤)
𝑦𝑣,𝑤 ∀𝑡 ∈ {0, . . . , 𝑇},∀𝑤 ∈ 𝑉 (19)

ℓ𝑡𝑣 − 1 + 𝑦𝑣,𝑤 ≤ ℓ𝑡𝑤 ∀𝑡 ∈ {0, . . . , 𝑇},∀(𝑣, 𝑤) ∈ �̂� (20)
𝑧𝑣 ≥ 𝑡ℓ𝑡𝑣 ∀𝑡 ∈ {0, . . . , 𝑇},∀𝑣 ∈ 𝑉 (21)
𝑧𝑣 + 1 ≤ 𝑧𝑤 + (1 − 𝑦𝑣,𝑤) (𝑇 + 1) ∀(𝑣, 𝑤) ∈ �̂� (22)
0 ≤ 𝑧𝑣 ≤ 𝑇 ∀𝑣 ∈ 𝑉 (23)∑︁
𝑤∈𝑁 (𝑣)

𝑦𝑣,𝑤 ≤ 𝜃𝑣 ∀𝑣 ∈ 𝑉 (24)

𝑦𝑣,𝑤 ∈ {0, 1} ∀(𝑣, 𝑤) ∈ �̂� ∪ ({𝑝0, . . . , 𝑝𝑇 } ×𝑉) (25)
ℓ𝑡𝑣 ∈ {0, 1} ∀𝑡 ∈ {0, . . . , 𝑇},∀𝑣 ∈ 𝑉 (26)
𝑧𝑣 ∈ Q ∀𝑣 ∈ 𝑉 (27)

This formulation relies on a fractional counter variable that follows the rule of
incrementation, see (22), up to a maximum height (23). If vertices are covered by the
𝑡-indexed arborescence, then their depths will be enumerated starting from 𝑡—this
is imposed by (21). Constraint (24) implements the local bounds 𝜃𝑣. The significant
difference to the formulation OHD appears in (15)–(20), where the arborescence-
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Fig. 1 An illustration of the MTZ formulation for 𝑉 = {1, . . . , 10}, 𝜃𝑣 := ⌊deg(𝑣)/2⌋, and 𝑇 = 2.
Depth-trackers are displayed as attached rectangular labels. Association to the same arborescence
is indicated by the same vertex color, activating edges by arrows.

indicating label resulting from ℓ must be inherited by activated neighbors; in fact, 𝑦 is
a variable shared by all arborescences, therefore propagating the right arborescence-
labels is crucial. An illustration for MTZ is given in Fig. 1. The MTZ formulation
can be strengthened by distance-based constraints: Vertices separated by a distance
greater than the arborescence’s height cannot both belong to the arborescence; a
precalculation of the distances between all pairs of vertices is therefore required
and can be achieved by Johnson’s algorithm. Such an approach has been previously
pursued in the setting of [10]. More precisely, we can impose

𝑦𝑝𝑡 ,𝑣 + ℓ𝑡𝑤 ≤ 1 ∀𝑡, ∀{𝑣, 𝑤} ∈ {{𝑣′, 𝑤′} ⊆ 𝑉 : dist(𝑣′, 𝑤′) > 𝑇 − 𝑡}. (28)

Remark 1 The proposed formulations rely on a fixed maximum time-index 𝑇 . If we
are interested in calculating 𝑏𝜃 , or more precisely in finding a shortest sequence of
arborescences yielding full penetration, in principle, we can start with 𝑇 = 0 and
determine by a MILP solver if full penetration is already achievable. If this is not the
case we iteratively repeat the procedure with incremented value of 𝑇 , until a desired
sequence of arborescences is found. Technically, we only need to solve a feasibility
MILP where the original objective function is replaced with the constraint enforcing
that all |𝑉 | vertices must be burned. To reduce the number of MILP solver calls, it
is conceivable to perform a binary search on the minimum value for 𝑇 as in [10,
Algorithm 1].
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4 A heuristic approach

As we will see in the computational results, even the most adequate MILP approach
reached its time limit on 𝜃-GBP instances with thousands of vertices due to the high
number of activation and depth-encoding variables. Thus, we propose an alternative
heuristic approach relying on a simplified assumption. It will be able to produce so-
lutions of solutions of satisfactory quality for large-scale instances requiring shorter
runtimes. A typical greedy approach in the setting of the 𝜃-GBP would be to itera-
tively find arborescences of decreasing heights and let them cover the input graph.
After the placement of an arborescence, all used vertices are eliminated from the
working copy of the input graph before the next arborescence is derived with the
bound on its height decremented by one. The procedure terminates when the height
bound reaches zero. Note that it may happen that all vertices are already covered
earlier, in which case we assume here that all remaining arborescences are empty.
The core task in this heuristic framework concerns the solution of the intermediate
one-arborescence problem MCADH(𝐺, 𝜃, ℎ), as introduced in Section 2.

The first approach relies on a straightforward adaptation of the ILP (1)–(12) ad-
dressing the search of a single arborescence; here, we can eliminate many activation
variables per edge. We refer to this approach as Greedy One Arborescence at a Time
via Integer Linear Programming (GOAT-ILP).

Recalling that many heuristic approaches in the literature, e.g., [20, 11] rely
on the eigencentrality, we sketch a respective approach in our setting. The idea
is to concurrently achieve the placement of a single arborescence via the iterative
extension of an initial arborescence 𝐴 (initially consisting of solely a root vertex)
by finding the most promising current leaf 𝑤 of 𝐴 and strategically appending to
it as many further vertices as the threshold of 𝑤 allows. This growing process is
guided by a scoring function quantifying how useful it is to append to a leaf 𝑤 of 𝐴
a neighbor 𝑧 ∈ 𝑁 (𝑤) (according to the adjacency of the original graph 𝐺) which is
not yet present in the arborescence. We use the scoring function

LN(𝐴, 𝑤; 𝑧) := 𝑑 (𝑤) · 𝜃′ (𝑧)
max𝑦∈𝑉 𝜃′ (𝑦) + (𝑇 − 1 − 𝑑 (𝑤)) · ec𝐺−(𝐴∪{𝑤,𝑧}) (𝑧),

where 𝑑 (𝑤) denotes the depth of 𝑤 inside 𝐴. The value 𝜃′ (𝑧) refers to the remaining
effective threshold of vertex 𝑧 taking into account that some neighbors of 𝑧 may
already be incorporated into the arborescence; thus this threshold for the count
of neighbors that might be ignited via diffusion can already be smaller. Lastly,
ec𝐺−(𝐴∪{𝑤,𝑧}) (𝑧) denotes the eigencentrality of 𝑧 after excluding the edge {𝑤, 𝑧}
and the vertices of the so-far built arborescence 𝐴 from 𝐺.

The (renormalized) value of 𝜃′ (𝑧) and the eigencentrality of 𝑧—both attaining
values in the interval [0, 1]—are linearly combined by weights assuring that leaves
whose current height is far from the maximum height𝑇 are increasingly rewarded by
a high eigencentrality value, and gradually, as the depths of the leaves increase, their
(renormalized) 𝜃′-value receives more importance. In the situation just before the
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depth reaches the bound on the arborescence’s height, by design, the eigencentrality
does not even contribute to LN.

Eventually we want to find a leaf 𝑤 of 𝐴 for which

LeafScore(𝐴, 𝑤) := max
𝑃⊆𝑁 (𝑤)\𝐴
|𝑃 | ≤ 𝜃 ′ (𝑤)

∑︁
𝑧∈𝑃

LN(𝐴, 𝑤; 𝑧) (29)

is maximal among the leaves of 𝐴. When this maximizer 𝑤 is found, the arbores-
cence 𝐴 is extended towards all vertices in the set 𝑃 that was itself responsible for
maximizing (29).

We start the whole construction by initializing 𝐴 with a vertex having highest
eigencentrality, apply aforementioned procedure as long as an extension is possible,
and return this maximal arborescence as result for the MCADH instance. We refer
later to this score-based approach carried out iteratively for 𝑡 = 𝑇,𝑇 − 1, . . . , 1, 0,
simply as Greedy One Arborescence at a Time (GOAT).

5 Computational results

The MILP and GOAT approaches proposed in Section 3 have been implemented in
Julia 1.11.1. The MILP solver Gurobi2 in version 10.0.3 is used to solve the
MILPs. A cluster with an Intel(R) Xeon(R) E5-2640 v4 CPU with 2.40GHz and
160GB RAM running Ubuntu 18.04.6 LTS was used to run all experiments on a
single thread.

We rely on the benchmark instances from [10, Table 3]. Here, we show results
only for every fourth instance from this benchmark set due to space limitations. The
results for all instances can be found online3. As thresholds we use 𝜃𝑣 := ⌊𝑣/2⌋,
𝑣 ∈ 𝑉 , comparable to the so-called majority thresholds for the Target Set Selection
Problem [14]. The following approaches are considered in the comparisons: OHD;
MTZ; MTZ-s, i.e., MTZ strengthened by the distance-based constraints (28); GOAT-
ILP with a time limit of 1000 seconds per placement; and GOAT which will be let
run until termination without a set timelimit. A time limit of 1000 seconds is given
to Gurobi to solve OHD, MTZ, MTZ-s. No time limit is set for the original GOAT
approach. For each approach after termination an independently written feasibility-
checker is run.

Table 1 is structured as follows: each column corresponds to a selected instance,
labeled with its respective name. The first three rows provide key characteristics
of each instance, including the number of vertices, the number of edges, and the
standard deviation of vertex degrees. The subsequent rows present the results for
OHD, MTZ, MTZ-s, GOAT-ILP, and GOAT, evaluated for 𝑇 ∈ {2, 3}. For the OHD
and the GOAT approach, the runtimes in seconds are additionally documented;

2 https://www.gurobi.com

3 https://www.ac.tuwien.ac.at/research/problem-instances/#Graph_Burning_
Problem

https://www.gurobi.com
https://www.ac.tuwien.ac.at/research/problem-instances/#Graph_Burning_Problem
https://www.ac.tuwien.ac.at/research/problem-instances/#Graph_Burning_Problem
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Table 1 Comparison of approaches for 𝑇 ∈ {2, 3}. Rows OHD report optimal values except for
𝑇 = 3 with encountered gaps of 426% and 12% for c-fat500-1 and TVshow, respectively.
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|𝑉 | 34 105 143 258 500 643 841 1000 1089 1266 3892
|𝐸 | 78 441 623 768 4459 2280 1902 2700 2112 6451 17262
sd(deg) 3.88 5.47 6.08 0.30 1.31 11.46 1.47 0.69 0.34 13.24 12.6

𝑇 = 2
OHD 34 76 122 18 47 369 30 18 11 778 753
MTZ 34 68 90 18 41 293 19 12 11 163 84
MTZ-s 34 69 118 18 46 190 9 12 10 5 0
GOAT-ILP 31 76 122 18 47 369 30 18 11 761 753
GOAT 25 62 109 18 47 283 26 18 11 697 204
OHD time[s] 0.06 4.41 1.20 0.66 127.2 20.41 1.17 2.37 1.66 41.17 231.0
GOAT time[s] 0.01 0.01 0.02 0.01 0.03 0.24 0.02 0.01 0.02 21.73 7.52

𝑇 = 3
OHD 34 105 143 52 95 612 68 58 26 1237 1861
MTZ 34 105 143 46 82 513 36 33 26 629 100
MTZ-s 34 105 143 48 86 587 23 43 16 1108 0
GOAT-ILP 34 105 139 52 96 583 67 58 26 1235 1807
GOAT 21 99 138 47 89 402 55 56 26 1062 626
OHD time[s] 0.01 0.15 0.29 8.19 1000 21.68 20.13 0.24 11.98 67.13 1000
GOAT time[s] 0.01 0.03 0.06 0.02 0.08 0.67 0.08 0.07 0.07 42.88 30.73

see rows OHD-time[s] and GOAT-time[s], respectively. Gaps in percent shown in
Table 1 indicate the difference between the dual bound and the primal bound, further
renormalized by the primal bound. The gaps for MTZ and MTZ-s, are omitted here,
as they often arise just from the trivial dual bound, i.e., the number of vertices. The
following observations can be made from the reported results in Table 1.

For 𝑇 = 2 the OHD approach is able to solve all instances to optimality where
the used time is shorter than the time limit of 1000 seconds—often under a fraction
of a second. We notice that none of the other exact approaches, i.e., MTZ and
MTZ-s, is able to return results of comparable quality; they just can solve the two
sparsest instances sphere3 and lattice2D (almost) optimally. When examining
the slightly denser instances, already for polbookswith only 105 vertices both MTZ
approaches do not find a primal bound of at least 90% of the optimal one computed
by OHD despite a 200 times longer runtime. This trend is even more evident on
larger, dense instances where the incumbent solution of the MTZ approach can be
smaller by (almost) an order of magnitude (see ia-fb-messages and TVshow).
On the instances with up to 500 vertices, the additional distance-based constraints
in MTZ-s seem indeed to help finding better solutions than those obtained via the
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MTZ formulation. On the other hand, for larger graphs the numerous strengthening
inequalities negatively impact, apparently, on the solution quality yielding solutions
smaller by even two orders of magnitude for the two largest graphs. The results for
the GOAT-ILP indicate that the successive arborescence placement seems to be a
promising heuristic. Despite the considerably simplifying nature of the approach,
primal bounds on par with (or just slightly inferior to) the optimal primal bounds from
OHD can be obtained. On smaller graphs the GOAT heuristic is slightly inferior to
the exact approaches. However, on graphs with more than 800 vertices it outperforms
the MTZ approaches. While the quality determined by the OHD approach cannot be
obtained by GOAT, the computation time of the latter is in general shorter.

When 𝑇 = 3 we notice that runtimes for OHD are mostly longer than for 𝑇 =

2, which is explainable by the increased number of variables in the respective
formulation. On the three smallest instances the runtime is, however, shorter than
for 𝑇 = 2, which is most likely due to the fact that a solution burning the entire
graph is now quickly encounterable, making the computation of tight dual bounds
unnecessary. Apparently, for the instance c-fat500-1 with 𝑇 = 3, the calculation
of tight dual bounds is particularly difficult in the modality of OHD; we notice that
GOAT-ILP is in this case the preferable approach returning a solution better by one
unit. On the remaining instances GOAT-ILP has again a quality on par or slightly
inferior to OHD.

For𝑇 ∈ {2, 3} the GOAT approach does not appear to fully exploit the quality that
can be obtained according to GOAT-ILP in the greedy setting, but it is superior to the
MTZ approaches on the largest instance; the MTZ approaches seem to be unsuitable
for processing such large graph sizes in a meaningful way. In contrast to the exact
ILP-driven routine in GOAT-ILP, the score function driven placement in GOAT
risks leading the arborescence towards dead ends or locally unpromising vertices.
However, in particular if the need is to quickly generate a solution, this seems a viable
approach given the faster—and apparently better estimable—computation times.

It is an important insight that, when dealing with a large number of binary
variables in OHD, the solver performs better than in the setting of MTZ where many
of these variables are replaced by fewer fractional variables.

6 Conclusion

We introduced a generalized version of the well-studied graph burning problem
that more realistically enables control of the diffusion process via local threshold
parameters. During diffusion it limits the number of neighboring vertices to be
possibly affected by a burned vertex in the subsequent iteration. This problem is
linked to the task of finding a shortest sequence of vertex-disjoint arborescences
with upper-bounded heights and local upper bounds on their out-degrees.

Following this observation, we proposed two MILP models, one of which was
clearly ahead on the instances tested. Empirically shown, the addition of a greedy
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assumption has proven its worth with only minimal loss of quality counterbalanced
by a clear simplification of the problem. The availability of a suitable local search
would possibly add the finishing touches to near-optimal solutions, in particular for
GOAT-ILP.

Our greedy approaches still neglect the aspect of “communication” between
the different arborescences. In future work, one may address their simultaneous
construction. We plan to let a score function also consider the connectivity, in
particular the number and topology of the arising connected components, to enhance
the approach.

Furthermore, several open problems arise in the context of the introduced 𝜃-
burning process: From the perspective of fire spread, the 𝜃-burning number expresses
a worst-case that we are interested in precalculating. However, it might be also
relevant to consider the setting where a number of at most 𝜃𝑣 unburned neighbors
picked uniformly at random are chosen to receive the status burned—at the same
time, we might want to assume a random choice of the seeds. This yields a different
measure of vulnerability and coming up with estimates for the expected penetration
over all processes obeying these assumptions seems an interesting challenge.

The following bilevel optimization problem may be a relevant extension: Given
a budget 𝐵 ∈ N, find a vector of “threshold-reducers” (𝑟𝑣)𝑣∈𝑉 with 0 ≤ 𝑟𝑣 ≤ 𝜃𝑣 and∑

𝑣∈𝑉 𝑟𝑣 ≤ 𝐵 such that for 𝜃′ := (𝜃𝑣−𝑟𝑣)𝑣∈𝑉 the respective value of 𝑏𝜃 ′ is minimum,
i.e., find a budget-maintaining way to contain the worst-case of fire diffusion as much
as possible.
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