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Abstract. Given an undirected graph, the Positive Influence Domina-
tion (PID) problem asks to specify a minimum cardinality subset of influ-
encers among its vertices such that at least half the number of neighbors
of each vertex are influencers. The underlying model can be used to de-
termine an economical way of promoting (and keeping) good habits in
society by interpreting vertices with individuals, their neighbors with
their social contacts, and influencers with, e.g., healthy eaters. We show
that the problem is NP-hard even when restricted to planar subcubic
graphs. The same result turns out to apply for the so-called double total
domination problem sharing a similar behavior on this graph class. We
use this insight to derive NP-hardness of PID on the class of induced
partial grids via a technique relying on orthogonal graph drawing. On
complete m×n grids, we establish asymptotically tight primal and dual
bounds, both of magnitude Θ(mn).

Keywords: Positive influence domination · NP-hardness · Partial grids.

1 Introduction

In 2009 Wang et al. [18] introduced the Positive Influence Domination (PID)
problem, which asks, given an undirected simple graph, to find a minimum car-
dinality subset of so-called influencing vertices such that for each vertex of the
graph a not necessarily strict majority of influencing vertices is present among its
neighbors. Several closely related combinatorial optimization problems on graphs
have been proposed in the form of monopoly problems [14], α-domination [6],
and signed domination [5] to mention a few examples. Considering the aspect
of temporal propagation of influence, the Target Set Selection problem [10] has
been studied, too. A comprehensive comparison of many such problems can be
found in [3,7]. Although these problems have slightly different requirements, e.g.,
concerning the influence which influencers themselves need to receive and deal
with different notions of a majority, they have in common to be interpretable as
a model for influence promotion/gain in social networks at a minimum cost.

This class of domination-type problems has been studied mainly from a the-
oretic view-point so far. For any scalar α ∈ (0, 1]—steering the “strength” of a
majority—the α-domination problem was shown to be NP-hard [6]. Its slight
generalization vector domination [8] was shown to be fixed-parameter tractable
on graphs excluding cycles of length 4 and on graphs of bounded degeneracy [16].
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The more constrained problem total vector domination [3], which carries
PID as special case, was shown to be solvable in polynomial time on graphs
of bounded branchwidth and bounded treewidth [9]—the same was shown to
hold for vector domination. Appearing under manifold names in the literature,
k-tuple total domination (see, e.g., [11]) is a particularly uniform special case of
total vector domination, for which NP-hardness on the class of undirected path
graphs (a special case of chordal graphs) was shown in [11]; NP-hardness was
also shown on bipartite and split graphs [15].

Concerning complexity theoretic results on PID itself, it is shown in [19] that
PID is APX-hard; this is also true more generally when, instead of a majority,
at least a fixed proportion of neighbors is required to consist of influencers [3].
Recently, NP-hardness for the PID problem on bipartite and split graphs has
been established [20]. NP-hardness was shown the first time in [19] by a reduction
from vertex cover (via a proof in fact affirming this for graphs with a maximum
degree of 6). The latter work shall also be our main motivation to identify more
restrictive graph classes for which the hardness still applies.

The paper is organized as follows. After providing relevant notation in Se-
cion 2, in Section 3 we show that PID and 2-tuple total domination are NP-hard
problems on the class of planar subcubic graphs. The result is lifted to NP-
hardness of PID on induced partial grids in Section 4, then leads to the study
of bounds on complete grids in Section 5. Section 6 concludes the paper.

2 Notation and preliminaries

For two numbers r and s, we use the notation [r : s] := {r, r + 1, . . . , s − 1, s}
and [s] := [1 : s]. For a, b ∈ Z, b ̸= 0, denote by mod(a, b) the binary modulo
operator (returning the unique number r ∈ [0 : b− 1] satisfying a = kb + r for
some k ∈ Z).

In our discussion, we assume graphs G = (V,E) to be simple and undirected.
For a vertex v ∈ V we denote its neighborhood of adjacent vertices by N(v) and
its degree by deg(v) := |N(v)|. A graph G = (V,E) with maxv∈V deg(v) ≤ k is
called k-subregular—or subcubic for k = 3. If further minv∈V deg(v) = k, it is
called k-regular—or cubic for k = 3. We say that G is k-connected, if G remains
connected when fewer than k vertices are removed. Denote by Gplan3 and Gplan≤3

the class of planar cubic and planar subcubic graphs, respectively.
For the following we consider as a length-r path a graph Pr = (V,E) with

V = [r] and E = {{i, i+1} : i ∈ [r−1]}. Denote by Pm□Pn the Cartesian product
of Pm and Pn, henceforth also called complete m × n grid (graph). Its vertices
are given by all pairs in [m] × [n]; two such vertices are defined as adjacent
if their first coordinates or second coordinates form an adjacent pair in their
respective path of origin Pm or Pn. Let us think of Pm□Pn as embedded in the
plane, with vertices on integer-valued coordinates and unit-length straight, axes-
parallel edges, oriented as the indices of an m× n matrix. By a partial grid we
refer to an arbitrary (not necessarily induced) subgraph of a grid, in other words,
a graph resulting from the removal of a nonnegative number of vertices and edges
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from Pm□Pn for some specific m,n ∈ N; here, a vertex-removal automatically
removes all incident edges. A unit disk graph has vertices identifiable with points
in the plane such that two vertices are adjacent iff the two compact unit disks
centered at the respective points have nonempty intersection.

Although many of the subsequent variants of domination/independence are
typically defined via subsets of vertices, let us state them for easier usability in
a 0-1-encoded fashion: For a graph G = (V,E), a function f : V → {0, 1} is
independent if f(v) + f(w) ≤ 1 for all {v, w} ∈ E. It is said to be (i) positive
influence dominating [18] if

∑
w∈N(v) f(w) ≥ ⌈deg(v)/2⌉ for v ∈ V ; and (ii)

double total dominating if
∑

w∈N(v) f(w) ≥ 2 for v ∈ V . When f is positive
influence dominating we will often abbreviate this by saying that f is PID-
feasible or a PID-function. When k = 2, k-tuple total domination mentioned
in the introduction is precisely double total domination. For such {0, 1}-valued
functions f let us call

∑
v∈V f(v) the (cumulative) weight of f . Sometimes we

call the f -value assigned to v ∈ V the weight or label of v.
Given a graph G = (V,E) and k ∈ N, the problem of determining the ex-

istence of an independent g : V → {0, 1} with
∑

v∈V g(v) ≥ k is denoted as
IndependentSet(G, k). Similarly, the problem of determining the existence of
f : V → {0, 1} with

∑
v∈V f(v) ≤ k being (i) positive influence dominating is

denoted as PosInfluenceDom(G, k); (ii) double total dominating is denoted
as DoubleTotalDom(G, k).

For fixed G, the smallest k ∈ N, for which such a feasible function exists, is
denoted as γPID(G) for (i), and γ×2,t(G) for (ii).

3 Hardness on planar subcubic graphs

The findings of the current, respectively next section are inspired by the works [4],
respectively [21] addressing the hardness of the so-called signed dominating set
problem. In the latter problem, a minimum-weight function f : V → {−1, 1}
has to be found such that f(v) +

∑
w∈N(v) f(w) ≥ 1 for v ∈ V . Although the

values assigned to vertices do not have the “neutral” option of zero as in the
setting of positive influence domination and although the f -value of a vertex
itself contributes to fulfilling its local “influence” threshold, we obtain compara-
ble hardness results for PosInfluenceDom. In contrast to Damaschke [4] at
that time, we can now fall back on a slightly stronger result (allowing to assume
2-connectedness) forming the cornerstone of our argumentation.

Theorem 1 ([13, Theorem 4.1(a)]). The maximum independent set problem
is NP-hard when restricted to planar 2-connected cubic graphs.

It is easy to recognize that the subsequent Theorems 2–3 also hold when
the concerned graph classes are strengthened by the additional assumption of
connectedness. The assertions of the theorems ignore this insight, which also
follows from the fact that solving the addressed problems can be done separately
on each connected component.
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Fig. 1. Modifications of an edge e = {v, w} used in the proof of (a) Theorem 2; and
(b) Theorem 3. Subscripts e are omitted for the vertices x, y, z, a, b, and c.

Consider the planarity-preserving, polynomial-time operation SplApd : G3 →
G≤3 replacing each edge e = {v, w} ∈ E of G = (V,E) with new edges {v, xe},
{w, xe}, {xe, ye}, {ye, ze} on top of fresh vertices xe, ye, ze; see Fig. 1a. De-
fine SPplan

≤3 as the class of all graphs that are—up to isomorphy—contained in
{SplApd(G) : G ∈ G3}. Note that by detecting the vertices at distance at most
2 from the leaves of G′ ∈ SPplan

≤3 , we can always determine the underlying cubic
graph, even when no explicit specification of the fresh vertices is provided.

Theorem 2. When restricted to the class of planar subcubic graphs, the problem
PosInfluenceDom(G, k) is NP-complete.

Proof. More strongly we prove that the problem is NP-complete on SPplan
≤3 ,

directly implying NP-completeness on Gplan≤3 . The reduction is from maximum
independent set on planar 2-connected cubic graphs; see Theorem 1.

The problem is in NP, as a guessed function can be checked for feasibility in
linear time (in the size of G).

Let G = (V,E) be a planar 2-connected cubic graph and let G′ := SplApd(G),
denoted as G′ = (V ′, E′). We claim that G has an independent g : V →
{0, 1} with

∑
v∈V g(v) ≥ k iff G′ has a PID-feasible f : V ′ → {0, 1} with∑

v′∈V ′ f(v′) ≤ k′ for some k′ depending on G and k. In fact, if an independent
g with ∑

v∈V

g(v) ≥ k (1)

exists, then the function

f(v′) :=


1− g(v′) if v′ ∈ V,

1 if v′ ∈ {xe, ye : e ∈ E},
0 if v′ ∈ {ze : e ∈ E},

is positive influence dominating on G′: each vertex in V has three 1-labeled x-
neighbors; all vertices in {xe, ye, ze : e ∈ E} have one 1-labeled neighbor; and,
finally, the absence of an assigned 1-label by g to one of v and w (according to
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the independence of g) guarantees at least one additional 1-label assigned by f
to one of the neighbors v or w of x{v,w}.

We conclude that (below obtaining estimate (2) via (1))∑
v′∈V ′

f(v′) =
∑
v∈V

f(v) +
∑

v′∈V ′\V

f(v′) = |V | −
∑
v∈V

g(v) +
∑

v′∈V ′\V

f(v′)

≤ |V |+
∑

v′∈V ′\V

f(v′)− k = |V |+ 2|E| − k =: k′. (2)

The converse proof direction requires us to show that for a PID-function f
on G′ the circumstance

∑
v′∈V ′ f(v′) ≤ k′ allows constructing an independent g

on G of cumulative weight at least k = |V |+2|E|−k′. We need the intermediate
observation that each positive influence dominating f : V ′ → {0, 1} can be
updated on V ′ \ V in a weight-preserving—or even weight-reducing—manner
such that for each e ∈ E we eventually have more canonically f(xe) = f(ye) = 1
and f(ze) = 0.

This simple claim can be justified as follows: We recognize that always
f(ye) = 1 due to deg(ze) = 1. In case now f(ze) = 1, we can overwrite f(ze)← 0
and if not already f(xe) = 1, we update f(xe) ← 1 to maintain the influence
threshold of ye—the cumulative weight does not increase by doing so. On the
other hand, if initially f(ze) = 0, necessarily we have already f(xe) = 1.

We can therefore assume that a PID-feasible f with
∑

v′∈V ′ f(v′) ≤ k′, fur-
ther satisfying the above canonicity, exists. Setting g := 1 − f(·) yields inde-
pendence for g, as f(v) + f(w) ≥ 1 implies g(v) + g(w) ≤ 1. Furthermore, we
have∑

v∈V

g(v) = |V | −
∑
v∈V

f(v) = |V | −
∑
v∈V

f(v)−
∑

v′∈V ′\V

f(v′) +
∑

v′∈V ′\V

f(v′)

= |V | −
∑

v′∈V ′

f(v′) + 2|E| ≥ |V | − k′ + 2|E|.

Corollary 1. PosInfluenceDom(G, k) is NP-complete on planar subcubic bi-
partite graphs.

Proof. The vertices of G′ ∈ SPplan
≤3 with an underlying cubic graph G = (V,E)

are bi-partitioned by V ∪ {ye : e ∈ E} and {xe, ze : e ∈ E}.

Similarly, we obtain the following result.

Theorem 3. DoubleTotalDom(G, k) is NP-complete even when restricted to
planar subcubic graphs.

Proof. We fall back on a leaves-free class of subcubic graphs resulting from the
replacement of the edges of a cubic graph by the gadgets described in Fig. (1b).
Analogously to the proof of Theorem 2, we can here carry out the argumentation
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with k′ := |V | + 6|E| − k and f(v′) := 1 − g(v′) if v′ ∈ V and otherwise, if
v′ ∈ {xe, ye, ze, ae, be, ce : e ∈ E}, f(v′) := 1. For the converse proof direction
the degree of freedom for the choice of f -values is now considerably lower than
in the last proof, as, to be feasible for DoubleTotalDom, all fresh vertices
necessarily must be 1-labeled.

4 Hardness on induced partial grids

In this section we lift the result in Theorem 2 to the class of induced partial
grids. We start with the following preparatory observation.

Lemma 1. Consider a path P = (v, x1, x2, . . . , x4ℓ−1, x4ℓ, w) for some ℓ ∈ N ∪
{0} and f : {v, w} ∪ {xj : j = 1, . . . , 4ℓ} → {0, 1} such that each vertex xj,
j = 1, . . . , 4ℓ, has at least one 1-labeled neighbor. Suppose further that f(v) =

f(w) = 1. Then,
∑4ℓ

j=1 f(xj) ≥ 2ℓ, where the lower bound 2ℓ can be attained.

Proof. Examine f on the induced subpaths (x1, x2, x3, x4), . . . , (x4ℓ−3, x4ℓ−2,
x4ℓ−1, x4ℓ). By exhaustion it turns out that each of them, independently of the
f -assignment on their neighboring paths, must have a cumulative f -weight of at
least 2. Thus,

∑4ℓ
j=1 f(xj) ≥ 2ℓ. This weight is attainable for f(xj) := 0, when

j ≡ 1 ∨ j ≡ 2 (mod 4); f(xj) := 1, otherwise.

We will consider such inter-vertex paths for any two adjacent vertices v and w.
The paths’ lengths will again be zero or multiples of 4 but can vary depending
on the edge e = {v, w}. The following lemma affirms that, after inserting a
number of splitting vertices divisible by 4 on each edge, a PID-function of the
same quality can be achieved (up to an additional constant originating from
the number of splitting vertices). The core argument of the proof is that the
labels on the splitting vertices can be chosen such that the constellations of
neighboring labels remains invariant around all original vertices. The fresh labels
can further be feasibly chosen such that the weight does not exceed the half of the
count of splitting vertices. The converse proof direction requires a more technical
canonization process in the style of the proof of Theorem 2.

Lemma 2. Let k ∈ N ∪ {0}. Further, let G = (V,E) be a subcubic graph, and
Le ∈ N ∪ {0} be divisible by 4, for e ∈ E. Consider G′ = (V ′, E′) resulting from
replacing each e = {v, w} ∈ E by an undirected path (v, p1e, . . . , p

Le
e , w) of length

Le + 1, i.e., the former edge e is split by Le fresh vertices. Then, the following
assertions are equivalent.

(i) A PID-feasible f on G with
∑

v∈V f(v) ≤ k exists.
(ii) A PID-feasible f ′ on G′ with

∑
v∈V ′ f ′(v) ≤ k +

∑
e∈E Le/2 exists.

Proof. See Appendix, proof 2.

Next, let us show how the previous result is related to partial grids. In advance
we provide the notion of an R-curve referring to a rectilinear polygonal chain
made up of integral-length line segments forming a simple curve (meaning that



Complexity of Positive Influence Domination on Partial Grids 7

it is injectively parameterizable, or in other words not self-intersecting). The
argumentation relies on the following auxiliary Lemma due to Valiant [17].

Lemma 3 (adapted from [17, Theorem 2]). A planar graph G with degree at
most 4 can be embedded in polynomial time in the plane using O(|V |2) area such
that the following properties hold: (i) Embedded vertices possess integer-valued
coordinates; (ii) each embedded edge is an R-curve; and (iii) no edge-crossings
occur, i.e., any two embedded edges do not intersect except possibly on jointly
incident embedded vertices.

Theorem 4. PosInfluenceDom(G, k) is NP-complete on the class containing
all induced partial grids.

Proof. From the proof of Theorem 1 we know that PosInfluenceDom(G, k)

is NP-complete on SPplan
≤3 . We will rely on a reduction from the latter.

Starting from G′ = (V ′, E′) ∈ SPplan
≤3 consider also its underlying cubic graph

G = (V,E), i.e., SplApd(G) = G′. The first goal will be to find a particular
embedding for G′ by adapting an embedding for G. This is accompanied by an
illustration in Fig. 2 and works as follows:

Using Lemma 3, planarly draw in R2 the embedding of G such that em-
bedded vertices have integer-valued coordinates and all its embedded edges are
R-curves; to prevent an information-theoretic blow-up of the data, make sure
the coordinates of the embedded edges are bounded as in Lemma 3. Afterwards,
subject the drawing in R2 to the geometric scaling (x, y) 7→ (8x, 8y). For each
edge {v, w} of G, prolong by two units the associated (now scaled) R-curve
ρ{v,w} by the following procedure consisting of two steps:

Step 1. Fix an arbitrary endpoint p = p{v,w} ∈ {v, w} of the edge and consider
the length-4 line subsegment s(p, {v, w}; 2, 6) of ρ{v,w} starting at Manhattan
distance 2 from p and ending at Manhattan distance 6 from p. Let us translate
s(p, {v, w}; 2, 6) by one unit in direction orthogonal to the extension direction
of s(p, {v, w}; 2, 6) itself. The now modified ρ{v,w} consists of three disconnected
components, which we join by two unit-length line segments, yielding our definite
form of ρ{v,w}. The length of the original R-curve ρ{v,w} was hence artificially
increased by two units by performing a local detour geometrically reminding of a
rectangular U-turn. This guarantees that all present R-curves are now of length
congruent 2 modulo 8. The absence of crossing edges is clearly maintained.

Step 2. Determine on ρ{v,w} the point at geodesic distance 5 from p (according
to the geometry of the curve ρ{v,w} itself). Let us regard it as the embedded
“splitting” vertex x{v,w} of G′. Then, append to the x{v,w}-embedding a fresh
length-2 straight path, meant to host the embeddings of y{v,w} and z{v,w}, in a
way ensuring that one coordinate-entry of y{v,w} is divisible by 8. Eventually,
we have found an embedding with R-curves for all edges of G′.

Note that for each edge e = {v, w} of G, the number of lattice points of Z×Z
which are covered by the R-curve of G′ connecting x{v,w} and v is divisible by
4 when this number renounces counting the embedded endpoints x{v,w} and v.
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Fig. 2. Up to the detours (visible as lengthy U-turns) and the paths between the
quadratic vertices, the drawing corresponds to an initial R-curve embedding scaled by
a factor of 8. The Euclidean distance between u and v, e.g., is assumed to have mutated
from initially 2 to eventually 16. The splitting vertices xe, e ∈ E, lie at geodesic distance
5 from an endpoint according to the respective R-curve.

The same is true for the R-curve connecting x{v,w} and w. On these x{v,w}-
incident R-curves let us consider these intermediate Z× Z points as embedded
fresh subdivisors of the combinatorial edges of G; call this new graph G̃. In
particular, as they lie at Manhattan distance 1, no combinatorial subdivision of
the edges {xe, ye}, {ye, ze} occurs. G̃ is a (subcubic planar) induced partial grid
and has the form of the transformed graphs from Lemma 2 with

4 ≤ L{v,xe} = L{w,xe} ≡ 0 (mod 4),

0 = L{xe,ye} = L{ye,ze} ≡ 0 (mod 4),

for all e = {v, w} ∈ E. Thus, by Lemma 2, the existence of a feasible f for PosIn
fluenceDom(G, k) is equivalent to the existence of a feasible f ′ on the induced
partial grid G̃ of weight at most k +

∑
e={v,w}∈E L{v,xe}/2 + L{w,xe}/2.

The latter result has implications for another class on which domination-type
problems are often considered.

Corollary 2. PosInfluenceDom(G, k) is NP-complete on the class of unit
disk graphs.
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Fig. 3. The top-left area of an m×n grid subject to the discharging process. Coefficients
attached to the arrows indicate the proportion of transferred “charge”. Vertices in the
set A or B from the proof of Theorem 6 are marked by α or β, respectively. Assuming
exemplarily that v is the upper β-marked vertex, the situation f(v) = 1 implies that
the two neighbors of v on the grid’s upper boundary receive additional charge of 3/8
whereas the interior neighbor just 1/4; if f(v) = 0, a zero-charge transfer to neighbors
applies.

5 Bounds on complete grids

We focus now on giving tight bounds for γPID and γ×2,t on complete grids
Pm□Pn. For this graph class the specifications of γ×2,t are strictly more con-
strained than those of γPID. In fact, tighter lower bounds for γ×2,t will be found.

Theorem 5. For m,n ≥ 6 we have

mn

2
+

m+ n

4
− 3

2
≤ γPID(Pm□Pn) ≤

mn

2
+

m+ n

2
+

3− |mod(n, 4)− 1|
2

. (3)

Proof. As any double total dominating function on grids is automatically positive
influence dominating, the upper bound of [12] for γ×2,t is valid for γPID, too; the
latter is stated as the right-hand side of (3). For γ×2,t it constitutes the currently
tightest upper bound up to exceptional congruencies of m, n modulo 4, where
it worsens by 1 the older bound in [2].

Let us prove the lower bound by using the so-called discharging method, ar-
guably best known due to the proof of Appel and Haken [1] of the Four Color
Theorem. We transform a double total dominating f : [m] × [n] → {0, 1} to a
function g : [m]× [n]→ Q in a weight-preserving manner, i.e.,

∑
v∈[m]×[n] f(v) =
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v∈[m]×[n] g(v) and prove the bound for g: To obtain g, we simultaneously sub-

tract from each f -value of a vertex this f -value and entirely redistribute this
quantity (“charge”), according to a specific convex combination, among all its
neighbors.

Let A be the set of vertices having precisely two degree-4 neighbors (lying
at Manhattan distance 2 from a corner of the grid) and B be the set of vertices
having only one degree-4 neighbor and being at distance 2 from a corner (for
both see Fig. 3).

In the following, we directly state the function g resulting from a specific
discharging process sketched in Fig. 3. Apart from fetching it from Fig. 3, more
formally, the proportionality-scalar of the charge-transfer from w to v can be read
off the respective case for v in (4) from the coefficient of the unique summand
associated to the index w. Denote by Dt the preimage {v ∈ [m]×[n] : deg(v) = t}.
For the parameter τ ∈ {0, 1} consider

gτ (v) :=



∑
w∈N(v)∩D3

f(w)
4 +

∑
w∈N(v)∩D4

(1−τ)f(w)
4 if v ∈ A,∑

w∈N(v)∩D3

3f(w)
8 +

∑
w∈N(v)∩D4

(1+τ)f(w)
4 if v ∈ B,∑

w∈N(v)\D4

3f(w)
8 +

∑
w∈N(v)∩D4

f(w)
4 if v ∈ (D2 ∪D3) \B,∑

w∈N(v)∩D4

f(w)
4 if v ∈ D4 \A.

(4)
The parameter τ is introduced just to be able to prove Theorem 6 as well via (4).
In this proof, we are interested only in the discharging process associated to
g := g0. As f is a PID-function, we have∑

v∈[m]×[n]

g(v) =
∑
v∈D4

g(v) +
∑
v∈D3

g(v) +
∑
v∈D2

g(v)

≥ 1

2
|D4|+

5

8
|D3|+

3

8
|D2|

=
(m− 2)(n− 2)

2
+

5

8
(2m− 4 + 2n− 4) +

3

8
· 4

=
mn

2
+

m+ n

4
− 3

2
.

Here, the three sums have been estimated from below one by one with the
following justification: By feasibility of f , every v ∈ D4 has at least two neighbors
with an f -value of 1; this simply allows to conclude that g(v) ≥ 1/4 + 1/4, for
v ∈ D4. The estimate for each vertex in D3 holds due to the fact, that again two
neighbors with an f -value of 1 must exist leading in the lowest possible case to
an inflow of charge 1/4 + 3/8 = 5/8. The charge inflow for a corner must be at
least 3/8.

Almost verbatim following the strategy of the proof of Theorem 5, using
g := g1 from (4), we obtain the following result.
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Theorem 6. For m,n ≥ 6 we have

mn

2
+

m+ n

4
+ 1 ≤ γ×2,t(Pm□Pn) ≤

mn

2
+

m+ n

2
+

3− |mod(n, 4)− 1|
2

. (5)

Proof. For the sake of completeness the Appendix contains a full proof 6.

Despite the simplicity of the discharging approach, the bound (9) on γ×2,t

slightly strengthens—the difference is precisely 1—the lower bound given in [12].
However, the more striking insight lies here in the possibility to give a consider-
ably shorter proof for the lower bound than in the latter work.

6 Conclusion

We showed that already the class of planar subcubic graphs is expressive enough
such that PosInfluenceDom(G, k) and DoubleTotalDom(G, k) become NP-
complete problems when restricted to them. The employed reductions in Sect. 3
suffer a loss of characteristics, which raises two open questions: Is it possible
to determine a small k (perhaps even k = 3) such that the hardness result of
Theorem 2 still applies for k-subregular graphs in the setting of 2-connected pla-
narity? Can we adapt the reductions to work for 3-regular instead of 3-subregular
graphs?

Using a geometry-accented argument, we observed that NP-completeness for
the former problem is inherited by the class of induced partial grids. Concerning
the complete m× n grids we showed how to derive a lower bound for γPID by a
short argument, which applied to the setting of γ×2,t slightly tightens the known
lower bound.
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A Appendix

v w

L{v,w} ≡ 0 (mod 4)

Fig. 4. Splitting each edge of the initial graph by a number of vertices divisible by 4.

Lemma 4. Let k ∈ N ∪ {0}. Further, let G = (V,E) be a subcubic graph, and
Le ∈ N ∪ {0} be divisible by 4, for e ∈ E. Consider G′ = (V ′, E′) resulting
from replacing each e = {v, w} ∈ E by an undirected path (v, p1e, . . . , p

Le
e , w)

of length Le + 1, i.e., the former edge e is split by Le fresh vertices. Let U =
{(0, 1, 1, 0), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 1)}. If there exists a PID-feasible f ′ with∑

v∈V ′ f ′(v) = K, then there exists a PID-feasible f ′′ : V ′ → {0, 1} satisfying
(f ′′(v), f ′′(p1e), f

′′(pLe
e ), f ′′(w)) ̸∈ U , for e = {v, w} ∈ E, and

∑
v′∈V ′ f ′′(v′) ≤

K.

Proof. An existing labeling f ′′ with the required properties is given by the output
of Algorithm 1. In the subsequent let us prove its soundness.

PID-feasibility. The periodicity-4 pattern are designed to meet PID-feasibility
certainly on the non-endpoint vertices of the inter-vertex path. On the two end-
points of the length-Le pattern, PID-feasibility is given due to the increased
label of v (and w).

Correctness and termination. The fact that constellations from U are success-
fully entirely removed and that the algorithm terminates is explained as follows:
Initially |Mf ′′

(0,1,1,0)| is a finite number. Each iteration of the loop removes a sin-
gle occurrence of a type-(0, 1, 1, 0) constellation and does not cause a novel one
of this type somewhere else in the graph to be handled in a later iteration—in
fact, the overwriting process only increases labels for vertices in V . Similarly, the
second while loop terminates: By the increased labels in the overwriting process
in the iterations, no novel type-(0, 0, 1, 1) constellations of are caused. Further-
more, no novel occurrences of constellations eliminated in Step 1 are caused. The
same can be observed for the third while loop, where no novel type-(0, 0, 1, 1)
constellations are caused. Additionally, none of the constellations eliminated in
the prior two loops are caused. Finally, termination of the last loop is justified
analogously. We observe that no constellation eliminated in prior loops is caused
by the overwriting processes of the last loop, too.

No excess of weight. We show that in every loop, each iteration does not
increase the weight.

Loop 1: Note that before overwriting, (p3e, . . . , p
Le−2
e ) is a path of length

divisible by 4, hence, according to Lemma 1 its weight will be at least (Le −
4)/2 regardless of its assigned values by f ′. Necessarily f ′(p2e) = f ′(pLe−1

e ) = 1
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1 procedure Canonize(V,E; (Le)e∈E ; f
′)

2 f ′′ ← f ′ // create a working copy of f ′

3 Mf ′′

(q1,q2,q3,q4)
:= {{v, w} ∈ E : (f ′′(v), f ′′(p1e), f

′′(pLe
e ), f ′′(w)) = (q1, q2,

q3, q4)}

4 while Mf ′′

(0,1,1,0) ̸= ∅ do
5 Pick (v, w) from Mf ′′

(0,1,1,0).
6 Overwrite F ′′

(v,w) ← (1, 0, 0, 1, . . . , 1, 0, 0, 1).
7 Overwrite f ′′(v)← 1, f ′′(w)← 1.
8 while Mf ′′

(0,0,1,0) ̸= ∅ do
9 Pick (v, w) from Mf ′′

(0,0,1,0).
10 Overwrite F ′′

(v,w) ← (0, 0, 1, 1, . . . , 0, 0, 1, 1).
11 Overwrite f ′′(v)← 1.
12 while Mf ′′

(0,0,1,1) ̸= ∅ do
13 Pick (v, w) from Mf ′′

(0,0,1,1).
14 Overwrite F ′′

(v,w) ← (1, 0, 0, 1, . . . , 1, 0, 0, 1).
15 Overwrite f ′′(v)← 1.
16 while Mf ′′

(0,1,1,1) ̸= ∅ do
17 Pick (v, w) from Mf ′′

(0,1,1,1).
18 Overwrite F ′′

(v,w) ← (1, 0, 0, 1, . . . , 1, 0, 0, 1).
19 Overwrite f ′′(v)← 1.
20 return f ′′

Algorithm 1: Constellations forbidden by the set U are eliminated from f ′.

implying that the weight of f ′ on the entire length-Le path is at least Le/2 + 2,
consequently, f ′(v) + f ′(w) +

∑Le

i=1 f
′(pie) ≥ Le/2 + 2. On the other hand, by

construction f ′′(v) + f ′′(w) +
∑Le

i=1 f
′′(pie) = Le/2 + 2, i.e., the same or even a

better weight is obtained while maintaining PID-feasibility.
Loop 2: Note that before overwriting, (p4e, . . . , p

Le−1
e ) is a path of length

divisible by 4, hence, according to Lemma 1 its weight will be at least (Le−4)/2
regardless of the values of f ′. Necessarily f ′(p2e) = f ′(p3e) = 1 implying that
the weight of f ′ on the entire length-Le path is at least Le/2 + 1, consequently,
f ′(v)+f ′(w)+

∑Le

i=1 f
′(pie) ≥ Le/2+1. The loop produces hence an equal-quality

or even better update in terms of weight.
For the last two loops let us state the same argumentation compactly.
Loop 3: Recognize that the f ′-weight of (p4e, . . . , pLe−1

e ) will be at least (Le−
4)/2. Necessarily f ′(p2e) = f ′(p3e) = 1 implying that the weight of f ′ on the entire
length-Le path is at least Le/2+ 1, consequently, f ′(v)+ f ′(w)+

∑Le

i=1 f
′(pie) ≥

Le/2 + 1 and the in-loop updates yield no worse alternative f ′′.
Loop 4: Recognize that the f ′-weight of (p3e, . . . , pLe−2

e ) will be at least (Le−
4)/2. Necessarily f ′(p2e) = 1 implying that the weight of f ′ on the entire length-
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Le path is at least Le/2+1, consequently, f ′(v)+f ′(w)+
∑Le

i=1 f
′(pie) ≥ Le/2+1

and the in-loop updates yield no worse alternative f ′′.

We restate Lemma 2 and provide its proof.

Lemma 2. Let k ∈ N ∪ {0}. Further, let G = (V,E) be a subcubic graph, and
Le ∈ N ∪ {0} be divisible by 4, for e ∈ E. Consider G′ = (V ′, E′) resulting from
replacing each e = {v, w} ∈ E by an undirected path (v, p1e, . . . , p

Le
e , w) of length

Le + 1, i.e., the former edge e is split by Le fresh vertices. Then, the following
assertions are equivalent.

(i) A PID-feasible f on G with
∑

v∈V f(v) ≤ k exists.
(ii) A PID-feasible f ′ on G′ with

∑
v∈V ′ f ′(v) ≤ k +

∑
e∈E Le/2 exists.

Proof. In particular values of f ′ on the undirected paths will be considered (such
inter-edge paths are visualized in Fig. 4). Formally, as each undirected path can
be traversed in two directions, and as labels have to be assigned to the vertices
on the path, let us encode the labels via F ′

(v,w) ∈ {0, 1}
L{v,w} determining hence

the chronological ordering of the vertex labels (excluding those of v and w)
encountered when traversing the path from v to w in G′. Implicitly we assume
that F ′

(w,v) is automatically coherently specified by the reversal of F ′
(v,w). With

a slight abuse of notation, by writing F ′
{v,w} we refer to F ′

(v,w).
(i) =⇒ (ii): Starting from a feasible f on G, defining f ′(v) := f(v), for

v ∈ V , the idea is then, for all e = {v, w} ∈ E, to choose the remaining f ′-values
on (v, p1e, . . . , p

Le
e , w) ensuring feasibility, having cumulative weight Le/2, and

satisfying
f ′(v) = f ′(pLe

e ) ∧ f ′(p1e) = f ′(w). (6)

The latter property emulates for vertices v ∈ V , seen as vertices from G′, the
neighboring label constellation around each vertex according to f on G.

The choice of the following length-Le labeled paths ensures such a behav-
ior (note that together with the labeled endpoints f(v), f(w) PID-feasibility is
guaranteed on such a path, i.e., at least one 1-labeled neighbor is present for the
path’s vertices):

F ′
(v,w) :=


(0, 1, 1, 0, . . . , 0, 1, 1, 0, . . . , 0, 1, 1, 0) if f(v) = 0 ∧ f(w) = 0,

(1, 1, 0, 0, . . . , 1, 1, 0, 0, . . . , 1, 1, 0, 0) if f(v) = 0 ∧ f(w) = 1,

(0, 0, 1, 1, . . . , 0, 0, 1, 1, . . . , 0, 0, 1, 1) if f(v) = 1 ∧ f(w) = 0,

(1, 0, 0, 1, . . . , 1, 0, 0, 1, . . . , 1, 0, 0, 1) if f(v) = 1 ∧ f(w) = 1.

The definition of f ′ on V results hence from the older values of f on V while
on the paths’ fresh vertices the labels are inferrable from the definition of F ′

e

according to the above case distinction, which also shows that a weight of only∑
e∈E Le/2 is added to the cumulative weight of f on V .

(ii) =⇒ (i): Due to Lemma 4 we can not only assume f ′ to be PID-feasible but
also without loss of generality (f ′(v), f ′(p1e), f

′(pLe
e ), f ′(w)) ̸∈ U . For all edges
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e = {v, w}, up to symmetry breaking (reversed quadruples) we can therefore
only have (f ′(v), f ′(p1e), f

′(pLe
e ), f ′(w)) ∈ T

.
∪W with

T := {(1, 1, 1, 1), (0, 1, 0, 1), (0, 0, 0, 0)},
W := {(1, 0, 1, 1), (1, 0, 0, 1), (0, 0, 0, 1)}.

The ultimate goal will be to modify f ′ towards a more useful version f ′′ being
as well PID-feasibile, having a weight not greater than f ′ on G′ and satisfying
for all edges {v, w} ∈ E the special property

f ′′(v) = f ′′(pLe
e ) ∧ f ′′(p1e) = f ′′(w). (7)

Initially set f ′′ := f ′. Immediately we notice that all edges whose behavior is
captured by one of the scenarios in T satisfies (7); no updates will hence be
needed.

On the other hand, an update leaving the values of f ′′ unchanged on v and
w suffices for the scenarios covered by W :

F ′′
e ←


(1, 0, 0, 1, . . . , 1, 0, 0, 1) if (f ′(v), f ′(p1e), f

′(pLe
e ), f ′(w)) = (1, 0, 1, 1),

(1, 0, 0, 1, . . . , 1, 0, 0, 1) if (f ′(v), f ′(p1e), f
′(pLe

e ), f ′(w)) = (1, 0, 0, 1),

(1, 1, 0, 0, . . . , 1, 1, 0, 0) if (f ′(v), f ′(p1e), f
′(pLe

e ), f ′(w)) = (0, 0, 0, 1).

(8)
Note that the updated values on p1e, . . . , p

Le
e meet the bound Le/2 (see Lemma 1)

and yield an on-par or better weight than the initial values of f ′.
After carrying out the updates on all edges, we end up with a labeling f ′′

fulfilling (7). Therefore, if we contract the inter-vertex paths to the original edges
of G, then the constellation of neighboring f ′′-labels will be unchanged for all
vertices v ∈ V . Consequently, the restriction f := f ′′|V is the claimed existing
labeling. As the weight of f does not include an additional weight Le/2 per edge
e, we finally conclude∑

v∈V

f(v) ≤
∑

v′∈V ′

f ′′(v)−
∑
e∈E

Le/2 ≤
∑

v′∈V ′

f ′(v)−
∑
e∈E

Le/2 ≤ k.

We restate Theorem 6 and provide its proof.

Theorem 6. For m,n ≥ 6 we have

mn

2
+

m+ n

4
+ 1 ≤ γ×2,t(Pm□Pn) ≤

mn

2
+

m+ n

2
+

3− |mod(n, 4)− 1|
2

. (9)

Proof. Again, as in Theorem 5 the right-hand side of (9) stems from [12].
For the lower bound, use the definitions of the proof of Theorem 5 and repeat

its argumentation via the discharging method—this time using the premise g :=
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g1 with gτ defined as in (4): As f is a valid double total dominating function we
have ∑

v∈[m]×[n]

g(v) =
∑
v∈D4

g(v) +
∑

v∈D3\B

g(v) +
∑
v∈B

g(v) +
∑
v∈D2

g(v)

≥ 1

2
|D4|+

5

8
|D3 \B|+

6

8
|B|+ 6

8
|D2|

=
1

2
(m− 2)(n− 2) +

5

8
(2m− 8 + 2n− 8) +

6

8
· 8 + 6

8
· 4

=
mn

2
+

m+ n

4
+ 1.

Here, the four sums have been estimated from below one by one with the fol-
lowing justification: By feasibility of f , every v ∈ D4 has at least two neighbors
with an f -value of 1; while for v ∈ D4 \ A this simply allows to conclude that
g(v) ≥ 1/4 + 1/4, for v ∈ A ⊆ D4 we have to recognize that an inflowing charge
of 1/4 + 1/4 originates solely from the two degree-3 neighbors of v (due to the
fact that both neighbors of a corner these are forced to attain an f -value of 1).
The estimate for each degree-3 vertex not contained in B holds due to the fact,
that again two neighbors with an f -value of 1 must exist leading in the lowest
possible case to an inflow of charge 1/4+3/8 = 5/8; concerning the estimate for
the vertices in B this lowest case is slightly higher, namely 3/8 + 3/8 = 6/8. By
the aforementioned particularity of a corner, its charge inflow must be precisely
3/8 + 3/8 = 6/8.
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