Full Length Article

Signed double Roman domination on cubic graphs

Enrico Iurlano ${ }^{\text {a,* }}$, Tatjana Zec ${ }^{\text {b }}$, Marko Djukanovic ${ }^{\text {b }}$, Günther R. Raidl ${ }^{\text {a }}$
${ }^{\text {a }}$ Algorithms and Complexity Group, TU Wien, Favoritenstraße 9/192-01, Vienna, 1040, Austria
${ }^{\text {b }}$ Faculty of Natural Sciences and Mathematics, University of Banja Luka, Mladena Stojanovića 2, Banja Luka, 78000, Bosnia and Herzegovina

A R T I C L E I N F O

MSC:

05 C 78
05C35
90C27

Keywords:
Signed double Roman domination
Cubic graphs
Discharging method
Generalized Petersen graphs

Abstract

The signed double Roman domination problem is a combinatorial optimization problem on a graph asking to assign a label from $\{ \pm 1,2,3\}$ to each vertex feasibly, such that the total sum of assigned labels is minimized. Here feasibility is given whenever (i) vertices labeled ± 1 have at least one neighbor with label in $\{2,3\}$; (ii) each vertex labeled -1 has one 3-labeled neighbor or at least two 2-labeled neighbors; and (iii) the sum of labels over the closed neighborhood of any vertex is positive. The cumulative weight of an optimal labeling is called signed double Roman domination number (SDRDN). In this work, we first consider the problem on general cubic graphs of order n for which we present a sharp $n / 2+\Theta(1)$ lower bound for the SDRDN by means of the discharging method. Moreover, we derive a new best upper bound. Observing that we are often able to minimize the SDRDN over the class of cubic graphs of a fixed order, we then study in this context generalized Petersen graphs for independent interest, for which we propose a constraint programming guided proof. We then use these insights to determine the SDRDNs of subcubic $2 \times m$ grid graphs, among other results.

1. Introduction

The signed double Roman domination problem (SDRDP) is a natural combination of the classical signed domination problem [7] and the so-called double Roman domination problem [5]. The latter, in turn, is a variant of the Roman domination problem (RDP) [20,6] well-known from contexts, where it is required to economically distribute resources over a network while still ensuring to have a locally available backup resource; practical application scenarios are, e.g. optimal placement of servers [15], or the reduction of energy consumption in wireless sensor networks [9]. Originally, the RDP was motivated by a strategy of the Roman emperor Constantine [20] on how to secure his empire with minimum amount of legions. In [11], it is pointed out that one can use signed domination to model winning strategies for problems where it is required to locally obtain majority votes.

From the perspective of classical domination, studying cubic graphs has a long tradition. In fact, it was already shown in 1980 by Kikuno et al. [13] that the problem is NP-complete on planar cubic graphs. Another influential work was done by Reed [17] in 1996, who derived a sharp upper bound for graphs of minimum vertex degree three; one of his conjectures about the improvability on connected cubic graphs was later falsified and updated in [14]. Apart from the famous dominating set problem, during the last decades, considerable interest has emerged in solving also such more constrained variants of domination problems, in particular

[^0]

Fig. 1. Exemplary graphs for the special graph classes considered in this work.
their restrictions on specific graph classes: Another important class studied under these aspects is the one of grid graphs for which the dominating set problem [10], the 2-domination problem [16], and the RDP [16] have been solved to optimality.

In the following, we consider undirected simple graphs. For such a graph $G=(V, E)$ and a vertex $v \in V$, we denote by $N(v):=$ $\{w \in V \mid v w \in E\}$ the open neighborhood of v and by $N[v]:=N(v) \cup\{v\}$ its closure. The order of a graph G refers to the cardinality $|V|$ of its set of vertices. Graph G is called d-regular, if $|N(v)|=d$, for any $v \in V$. A cubic graph is a 3-regular graph. Given a graph $G=(V, E)$ and a labeling function $f: V \rightarrow \mathbb{R}$, for any subset $S \subseteq V$, we define the cumulative weight of f restricted to S as $w_{f}(S):=\sum_{s \in S} f(s)$. We also write $w_{f}(\boldsymbol{G})$ for $w_{f}(V)$, and when the function f is clear from the context, we omit f in the subscript. Often we directly identify a function $f: V \rightarrow\{-1,1,2,3\}$ with its associated preimages $V_{i}:=f^{-1}(\{i\})=\{v \in V \mid f(v)=i\}$, $i \in\{ \pm 1,2,3\}$. We denote $\mathbb{N}=\{0,1,2, \ldots\}$. In some definitions, for simplicity, the vertices will be indexed by \mathbb{Z}_{m}, the residue class ring modulo m. For a set A, by $\mathbb{1}_{A}(x)$, we refer to its indicator function.

Following [1], for a given graph $G=(V, E)$, a function $f: V \rightarrow\{ \pm 1,2,3\}$ is called signed double Roman domination function (SDRDF) on G if the following conditions (1a)-(1c) are met.

For all $u \in V_{-1}$, there exists $v \in N(u) \cap V_{3}$ or there exist distinct $v_{1}, v_{2} \in N(u) \cap V_{2}$.
For all $u \in V_{1}$, there exists $v \in N(u) \cap\left(V_{2} \cup V_{3}\right)$.
For all $u \in V, w_{f}(N[u]) \geqslant 1$, i.e., the cumulative weight of $N[u]$ is positive.
We call $\gamma_{\mathrm{sdR}}(G):=\min \left\{w_{f}(V) \mid f\right.$ is a SDRDF on $\left.G\right\}$ signed double Roman domination number of G (SDRDN). Existing vertices v, v_{1} and v_{2} in (1a) and (1b) are said to defend the respective vertex u.

A generalization of the SDRDP is the signed double Roman k-domination problem (SD k RDP), originally proposed in [3] ($k \in$ $\mathbb{N} \backslash\{0\}$ fixed), requiring the fulfillment of the conditions (1a)-(1c) plus the additional restriction $w_{f}(N[u]) \geqslant k$ for all vertices $u \in V$. The minimum weight taken over all labelings satisfying the latter property determines the so-called SDkRD number $\gamma_{\mathrm{sdR}, k}(G)$.

We introduce notation for special classes of (sub)cubic graphs in what follows: On the one hand, for $m \in \mathbb{N} \backslash\{0,1,2\}$ and $k \in \mathbb{Z}_{m} \backslash\{0\}$, the generalized Petersen graph $P_{m, k}$ comprises vertex set $\left\{u_{i}, v_{i} \mid i \in \mathbb{Z}_{m}\right\}$ and has edge set $\left\{u_{i} u_{i+1}, v_{i} v_{i+k}, u_{i} v_{i} \mid i \in \mathbb{Z}_{m}\right\}$. We refer to the value $k \in \mathbb{Z}_{m}$ as shift parameter and remark that $P_{m, 1}$ is isomorphic to the m-prism graph.

On the other hand, we define the $\ell \times m$ grid graph $G_{\ell, m}$ on the set of vertices $\{0, \ldots, \ell-1\} \times\{0, \ldots, m-1\} \subseteq \mathbb{R} \times \mathbb{R}$, for which two vertices are adjacent if their Euclidean distance equals one [6]. For $\ell=2$ we introduce a briefer notation which identifies $(0, i) \in \mathbb{R}^{2}$ with the symbol u_{i} and $(1, i) \in \mathbb{R}^{2}$ with $v_{i}, i=0, \ldots, m-1$.

Finally, a flower snark $\mathrm{FS}_{m}(m \geqslant 5)$ is a graph with vertex set $V=\left\{a_{i}, b_{i}, c_{i}, d_{i} \mid i \in \mathbb{Z}_{m}\right\}$ and edge set E formed by the union of the three sets $\left\{a_{i} b_{i}, a_{i} c_{i}, a_{i} d_{i} \mid i \in \mathbb{Z}_{m}\right\},\left\{b_{i} b_{i+1} \mid i \in \mathbb{Z}_{m}\right\}$, and $\left\{c_{0} c_{1}, c_{1} c_{2}, \ldots, c_{m-2} c_{m-1}, c_{m-1} d_{0}, d_{0} d_{1}, d_{1} d_{2}, \ldots, d_{m-2} d_{m-1}, c_{0} d_{m-1}\right\}$.

These three specific graph classes are visualized in Fig. 1.
The main contributions of this work are as follows.

- A lower bound for γ_{sdR} on cubic graphs twice as high as the so far best known one is derived via the discharging method. It turns out to even be optimally sharp, settling the missing case $k=1$ of the collection of optimal lower bounds for the SD k RDP pointed out in [3].
- Tight or even optimal bounds on γ_{sdR} are established and proved for
- selected subclasses of generalized Petersen graphs,
- $2 \times m$ grid graphs,
- and flower snarks.

For some results we design an inductive proof relying on constraint programming [18].

- Additionally, best known upper bounds for γ_{sdR} and $\gamma_{\mathrm{sdR}, 2}$ on (connected) cubic graphs are improved.

In the remainder of this introduction, we give an overview of relevant recent results from the literature.
For the SDRDP, it is shown that calculating γ_{sdR} on bipartite as well as on chordal graphs is NP-hard [1]. Moreover, exact values of γ_{sdR} are established for special classes of graphs, including complete graphs, paths, cycles, and complete bipartite graphs. In [2], lower bounds for γ_{sdR} are obtained in dependence of the minimum respectively maximum vertex degree; furthermore, it is shown that in the absence of isolated vertices $\gamma_{\mathrm{sdR}}(G) \geqslant(19 n-24 m) / 9$, where n and m denote the order of G and the number of edges in G, respectively. For trees, in [1], it is shown that $\gamma_{\mathrm{sdR}} \geqslant 4 \sqrt{n / 3}-n$ and that trees attaining the bound can be characterized. Calculating γ_{sdR} on digraphs is addressed in [4].

Results concerning upper bounds for the SD k RD number $\gamma_{\mathrm{sdR}, k}$ on general graphs as well as on specific graph classes such as regular graphs and bipartite graphs are given in [3].

More specifically, we are interested in improving the following result.
Theorem 1 ([3, Theorem 3.4]). In the setting of connected cubic graphs, ${ }^{1}$ the following bounds for $\gamma_{\mathrm{sdR}, k}$ apply. Moreover, the lower bounds are optimal for $k \in\{2,3,4,5\}$.

$$
\begin{equation*}
\frac{k n}{4} \leqslant \gamma_{\mathrm{sdR}, k} \leqslant \frac{13 n}{8} \tag{2}
\end{equation*}
$$

In contrast to the trivial worst-case upper bound $\gamma_{\mathrm{sdR}} \leqslant 2 n$ on general graphs, this shows that a smaller upper bound can be achieved on cubic graphs. In fact, for $k=1$ the latter result just affirms (for connected cubic graphs)

$$
\begin{equation*}
\frac{n}{4} \leqslant \gamma_{\mathrm{sdR}} \leqslant \frac{13 n}{8} \tag{3}
\end{equation*}
$$

As an auxiliary tool, we will fall back on the following concept from [12], the so-called α-total domination number $\gamma_{\alpha, \mathrm{t}}(G)$. For $0<\alpha<1, \gamma_{\alpha, \mathrm{t}}(\boldsymbol{G})$ is defined as the minimum cardinality of an α-total dominating set of G, i.e., a total dominating set $S \subseteq V$ satisfying that any vertex $v \in V \backslash S$ fulfills $|N(v) \cap S| \geqslant \alpha|N(v)|$.

Theorem 2 ([12, Theorem 10.b]). Let G be a cubic graph of order n. For $1 / 3<\alpha \leqslant 2 / 3$, we have $n / 2 \leqslant \gamma_{\alpha, \mathrm{t}}(G)<3 n / 4$.

2. Main results

We employ α-total domination to improve the upper bound in Theorem 1 (for $k=1$ and $k=2$) by a factor of approximately 0.77 .
Proposition 1. We have $\gamma_{\mathrm{sdR}, 2}(G)<5 n / 4$ and $\gamma_{\mathrm{sdR}}(G)<5 n / 4$ for cubic graphs G of order n.
Proof. For $G=(V, E)$, we select a totally dominating subset $S \subseteq V$ such that each vertex $v \in V \backslash S$ has at least two neighbors in S, which corresponds to an α-total dominating set in G with $\alpha=2 / 3$. Pick the labeling f satisfying $V_{2}=S$ and $V_{-1}=V \backslash S$.

We check that the cumulative weight of any closed neighborhood is at least 2: In the neighborhood of any vertex $v \in V_{2}$, at least one neighbor must be labeled 2 by total domination. Consequently $w_{f}(N[v]) \geqslant 2$. On the other hand, each $v \in V_{-1}$ has at least two neighbors in V_{2} (by the α-domination property), again verifying $w_{f}(N[v]) \geqslant 2$. Adding up all labels, according to Theorem 2 we obtain

$$
w_{f}(V)=2\left|V_{2}\right|-\left|V_{-1}\right|<2 \cdot \frac{3 n}{4}-\frac{n}{4}=\frac{5 n}{4}
$$

Since we managed to reduce the upper bound (2), as in [3], we pose ourselves the question if $\gamma_{\mathrm{sdR}} \leqslant n$ for connected cubic graphs; see Section 3 for further thoughts.

Let us add an observation stating that in the setting of cubic graphs, formulating that a labeling f is a SDRDF, is expressible in an arithmetic-free manner. It will be useful to abbreviate the verification of the SDRDF property in many situations.

Observation 1. Condition (1c) can be replaced by the following equivalent one.
For all $v \in V$, there are distinct $v_{1}, v_{2} \in N[v]$ such that $-1 \notin\left\{f\left(v_{1}\right), f\left(v_{2}\right)\right\}$.
More precisely, it is possible to replace (1a)-(1c) by the conjunction of (1a)-(1b) and (1c ${ }^{\prime}$).
Proof. We start by showing that our altered condition implies the original one (1a)-(1c). Firstly, if $v \in V_{2} \cup V_{3}$ and there is at least one further positively labeled vertex in $N(v)$, positivity of $w_{f}(N[v])$ ensues. Secondly, any $v \in V_{1}$ verifying (1b) and (1c') implies

[^1]the existence of a vertex in $\left(V_{2} \cup V_{3}\right) \cap N[v]$ allowing to conclude $w_{f}(N[v]) \geqslant 1+2+2 \cdot(-1)=1$. Thirdly, any $v \in V_{-1}$ with two distinct vertices $v_{1}, v_{2} \in N(v) \backslash V_{-1}$ satisfying (1a) must fulfill $\left\{f\left(v_{1}\right), f\left(v_{2}\right)\right\} \in\{\{2\},\{3,1\},\{3,2\},\{3\}\}$ implying (1c).

Now we address the other proof direction by proving its contrapositive: Suppose $\left|N[v] \cap V_{-1}\right| \geqslant 3$ for some $v \in V$. This automatically implies, for some $x \in\{ \pm 1,2,3\}$, that $w_{f}(N[v])=-3+x \leqslant 0$. We can therefore certify invalidity of (1c) for the labeling.

We come up with the subsequent lower bound on cubic graphs, which improves upon (3) by a factor of two. Later, in Remark 1, we show that this lower bound is sharp.

Theorem 3. For any cubic graph G of order n we have

$$
\gamma_{\mathrm{sdR}}(G) \geqslant \begin{cases}n / 2 & \text { if } n \equiv 0(\bmod 4) \tag{4}\\ n / 2+1 & \text { if } n \equiv 2(\bmod 4)\end{cases}
$$

Proof. First, note that odd values for n in (4) are irrelevant, as it is well known that vertex sets of cubic graphs have even cardinality, according to the Handshaking Lemma. The proof is divided into two steps.
Step 1. The lower bound $n / 2$ applies.
Let f be an arbitrary SDRDF on G. We define the function g as the final product of the following discharging rules (R0)-(R3), executed one by one in succession; cf. [19]. In these discharging rules, we think of the vertex v as transmitting the charge quantity $1 / 4,3 / 4$, respectively $5 / 4$ to each of its specified neighbors.
(R0) For each $v \in V$, let $g(v)=f(v)$ at the beginning of the procedure.
(R1) Update $g(v) \leftarrow g(v)-\left|N(v) \cap V_{-1}\right| / 4$, for all $v \in V_{1}$, and update $g(u) \leftarrow g(u)+1 / 4$, for all $u \in N(v) \cap V_{-1}$.
(R2) Update $g(v) \leftarrow g(v)-3\left|N(v) \cap V_{-1}\right| / 4$, for all $v \in V_{2}$, and update $g(u) \leftarrow g(u)+3 / 4$, for all $u \in N(v) \cap V_{-1}$.
(R3) Update $g(v) \leftarrow g(v)-5\left|N(v) \cap V_{-1}\right| / 4$, for all $v \in V_{3}$, and update $g(u) \leftarrow g(u)+5 / 4$, for all $u \in N(v) \cap V_{-1}$.

We note that in this procedure, after any rule application, the equality $w_{g}(V)=w_{f}(V)$ is preserved. Observe that after the termination of this procedure, we have $g(v) \geqslant 1 / 2$ for each vertex $v \in V$: By cubicity, condition (1c') ensures that each $v \notin V_{-1}$ is adjacent to at most two vertices labeled -1 and each $v \in V_{-1}$ is adjacent to at most one vertex labeled -1 . Hence, after application of all the rules (R0)-(R3) on f, we obtain the subsequent implications.

$$
\begin{align*}
v \in V_{1} & \Longrightarrow g(v) \geqslant f(v)-2 \cdot \frac{1}{4}=\frac{1}{2}, \tag{5}\\
v \in V_{2} & \Longrightarrow g(v) \geqslant f(v)-2 \cdot \frac{3}{4}=\frac{1}{2}, \tag{6}\\
v \in V_{3} & \Longrightarrow g(v) \geqslant f(v)-2 \cdot \frac{5}{4}=\frac{1}{2}, \tag{7}\\
v \in V_{-1} \wedge N(v) \cap V_{3}=\emptyset & \Longrightarrow g(v) \geqslant f(v)+2 \cdot \frac{3}{4}=\frac{1}{2}, \tag{8}\\
v \in V_{-1} \wedge N(v) \cap V_{3} \neq \emptyset & \Longrightarrow g(v) \geqslant f(v)+\frac{1}{4}+\frac{5}{4}=\frac{1}{2} . \tag{9}
\end{align*}
$$

Bound (8) applies since the implication's premise enforces that v must have at least two neighbors labeled 2 . On the other hand, bound (9) applies because, apart from one 3-labeled neighbor of v given by the premise, there must be one more neighbor from $V \backslash V_{-1}$ (the minimum value of $g(v)$ is obtained in the situation when this neighbor is labeled 1 , and the remaining third neighbor is labeled -1 , yielding $g(v)=f(v)+1 / 4+5 / 4=1 / 2)$. Consequently, at the end of this procedure, we have $g(v) \geqslant 1 / 2$, for each $v \in V$, implying $w_{f}(V)=w_{g}(V)=\sum_{v \in V} g(v) \geqslant|V| / 2$.

Step 2. The lower bound is refinable for $n \equiv 2(\bmod 4)$.
Let $g: V \rightarrow \mathbb{R}$ be the function arising from f via the discharging method in Step 1 . We make a case distinction.
Case 1. There is a vertex $s \in V_{1} \cup V_{2} \cup V_{3}$ having less than two neighbors in V_{-1}. We show that the bound $n / 2$ cannot be attained by f : In fact,

$$
\begin{aligned}
\sum_{v \in V_{1} \cup V_{2} \cup V_{3}} g(v) & =g(s)+\sum_{v \in V_{1} \cup V_{2} \cup V_{3} \backslash\{s\}} g(v) \\
& \geqslant g(s)+\frac{\left|V_{1} \cup V_{2} \cup V_{3}\right|-1}{2} \\
& \geqslant \mathbb{1}_{V_{1}}(s)\left(1-\frac{1}{4}\right)+\mathbb{1}_{V_{2}}(s)\left(2-\frac{3}{4}\right)+\mathbb{1}_{V_{3}}(s)\left(3-\frac{5}{4}\right)+\frac{\left|V_{1} \cup V_{2} \cup V_{3}\right|-1}{2}
\end{aligned}
$$

$$
>\frac{\left|V_{1} \cup V_{2} \cup V_{3}\right|}{2}
$$

and therefore $w_{f}(V)=\sum_{v \in V} g(v)>n / 2$.
Case 2. Assume all vertices in $V_{1} \cup V_{2} \cup V_{3}$ have two neighbors in V_{-1}. Let $n=4 \ell+2$ where $\ell \in \mathbb{N} \backslash\{0\}$. For $v \in V_{-1}$ having three neighbors in $V_{1} \cup V_{2} \cup V_{3}$, in (8) and (9), we face even strict majorization $g(v)>\frac{1}{2}$. Therefore, there exists $\varepsilon>0$ such that we can estimate via (5)-(9),

$$
\begin{gather*}
\sum_{v \in V} g(v)=\sum_{v \in V_{1} \cup V_{2} \cup V_{3}} g(v)+\sum_{\substack{v \in V_{-1} \\
\left|N(v) \cap\left(V_{1} \cup V_{2} \cup V_{3}\right)\right|=2}} g(v)+\sum_{\substack{v \in V_{-1} \\
\left|N(v) \cap\left(V_{1} \cup V_{2} \cup V_{3}\right)\right|=3}} g(v) \tag{10}\\
\geqslant \frac{1}{2}\left|V_{1} \cup V_{2} \cup V_{3}\right|+\frac{1}{2}\left|\left\{v \in V_{-1}:\left|N(v) \cap\left(V_{1} \cup V_{2} \cup V_{3}\right)\right|=2\right\}\right| \\
+\left(\frac{1}{2}+\varepsilon\right)\left|\left\{v \in V_{-1}:\left|N(v) \cap\left(V_{1} \cup V_{2} \cup V_{3}\right)\right|=3\right\}\right| . \tag{11}
\end{gather*}
$$

From (11) we obtain that whenever $\left|\left\{v \in V_{-1}:\left|N(v) \cap\left(V_{1} \cup V_{2} \cup V_{3}\right)\right|=3\right\}\right| \neq \emptyset$, then we have even more strongly $w_{f}(V)=w_{g}(V)=$ $\sum_{v \in V} g(v)>|V| / 2$. Indeed, in our considered case, this non-emptiness occurs: An edge-counting argument applied to the fact that the vertices in $V_{1} \cup V_{2} \cup V_{3}$ have precisely two neighbors in V_{-1} and the fact that each vertex in V_{-1} must have at least two neighbors in $V_{1} \cup V_{2} \cup V_{3}$ shows that $\left|V_{1} \cup V_{2} \cup V_{3}\right| \geqslant\left|V_{-1}\right|$. The set $V_{1} \cup V_{2} \cup V_{3}$ must be of even cardinality, as for each of its vertices-apart from the two edges connecting the vertex with V_{-1}-the third edge must be incident to a vertex in $V_{1} \cup V_{2} \cup V_{3}$. Moreover, this implies that $\left|V_{1} \cup V_{2} \cup V_{3}\right|>2 \ell+1>\left|V_{-1}\right|$. The pigeonhole principle shows that at least one vertex labeled -1 must have three neighbors in $V_{1} \cup V_{2} \cup V_{3}$.

Remark 1. As we will see, the lower bound (4) for cubic graphs is optimally sharp, as, e.g., $P_{n / 2,3}$ are (connected) cubic graphs attaining the bound.

2.1. Cubic graphs with extremal properties: generalized Petersen graphs

Let us start our considerations with the following result.
Theorem 4. We have $\gamma_{\mathrm{sdR}}\left(P_{m, k}\right)=m$ whenever $m \geqslant 4$ is even and k is odd.
Proof. Choose the labeling with $V_{-1}=\left\{u_{2 i}, v_{2 i} \mid i=0, \ldots, m / 2-1\right\}$ and $V_{2}=V \backslash V_{-1}$. Then $w(V)=m$, and the SDRDF constraints are met. In fact, this function has for each vertex $u \in\left\{u_{2 i} \mid i=0, \ldots, m / 2-1\right\}$ the two 2-labeled defenders $u_{2 i-k}, u_{2 i+k}$. By the same index shift $i \mapsto i \pm k$, we see that $v \in\left\{v_{2 i} \mid i=0, \ldots, m / 2-1\right\}$ has two defenders. Recalling ($1 \mathrm{c}^{\prime}$), the existence of these defenders also guarantees that the vertices u and v have positive cumulative weight on their closed neighborhoods. For the vertices $w \in V \backslash V_{-1}=V_{2}=\left\{u_{2 i+1}, v_{2 i+1} \mid i=0, \ldots, m / 2-1\right\}$, the positivity is guaranteed by the fact that $\left\{u_{2 i+1}, v_{2 i+1}\right\} \subseteq N[w] \cap V_{2}$.

Finally, as the weight of the constructed SDRDF coincides with the lower bound of the previous Theorem 3, the SDRDF is optimal.

Theorem 5. For the generalized Petersen graph $P_{m, 3}, m \geqslant 8$, we have

$$
\gamma_{\mathrm{sdR}}\left(P_{m, 3}\right)= \begin{cases}m & \text { if } m \equiv 0(\bmod 2) \tag{12}\\ m+1 & \text { otherwise }\end{cases}
$$

Proof. For even m, optimal constructions proving (12) have already been found, cf. Theorem 4 for $k=3$. To show that the right-hand side of (12) is an upper bound for $\gamma_{\mathrm{sdR}}\left(P_{m, 3}\right)$ for odd m, we distinguish two cases, both constructing a particular SDRDF on $P_{m, 3}$; in Fig. 2 supportive visualizations of the underlying scheme for both are given.

Case 1. $m \equiv 1(\bmod 4)$.
Let f be the labeling with $V_{2}=\left\{u_{4 i}, u_{4 i+1}, v_{4 i+2}, v_{4 i+3} \mid i=0, \ldots, \frac{m-9}{4}\right\} \cup\left\{u_{m-5}, u_{m-4}, u_{m-2}, v_{m-2}\right\}, V_{1}=\left\{v_{m-3}, v_{m-1}\right\}$, and $V_{-1}=$ $V \backslash\left(V_{2} \cup V_{1}\right)=\left\{u_{4 i+2}, u_{4 i+3}, v_{4 i}, v_{4 i+1} \mid i=0, \ldots, \frac{m-9}{4}\right\} \cup\left\{u_{m-3}, u_{m-1}, v_{m-5}, v_{m-4}\right\}$. The satisfaction of all SDRDF constraints by f is argued in Table A. 1 in the appendix. This implies $\gamma_{\mathrm{sdR}}\left(P_{m, 3}\right) \leqslant w_{f}\left(P_{m, 3}\right)=2\left|V_{2}\right|+\left|V_{1}\right|-\left|V_{-1}\right|=2(m-1)+2-(m-1)=m+1$.

Case 2. $m \equiv 3(\bmod 4)$. We construct a labeling f satisfying $V_{3}=\left\{v_{m-3}\right\}, V_{2}=\left\{u_{4 i+2}, u_{4 i+3}, v_{4 i}, v_{4 i+1} \mid i=0, \ldots, \frac{m-15}{4}\right\} \cup$ $\left\{u_{m-9}, u_{m-7}, u_{m-5}, u_{m-1}, v_{m-11}, v_{m-10}, v_{m-5}, v_{m-4}\right\}, V_{1}=\left\{u_{m-2}, v_{m-9}, v_{m-7}\right\}$, and $V_{-1}=V \backslash\left(V_{2} \cup V_{1}\right)=\left\{u_{4 i}, u_{4 i+1}, v_{4 i+2}, v_{4 i+3} \mid i=\right.$ $\left.0, \ldots, \frac{m-15}{4}\right\} \cup\left\{u_{m-11}, u_{m-10}, u_{m-8}, u_{m-6}, u_{m-4}, u_{m-3}, v_{m-8}, v_{m-6}, v_{m-2}, v_{m-1}\right\}$. We check that f is a SDRDF in Table A. 2 in the appendix. Therefore, we conclude $\gamma_{\mathrm{sdR}}\left(P_{m, 3}\right) \leqslant w_{f}\left(P_{m, 3}\right)=3\left|V_{3}\right|+2\left|V_{2}\right|+\left|V_{1}\right|-\left|V_{-1}\right|=3+2(m-3)+3-(m-1)=m+1$.

Finally, it remains to show that the right-hand side of (12) is also a lower bound for $\gamma_{\mathrm{sdR}}\left(P_{m, 3}\right)$ when m is odd. However, this follows directly from Theorem 3 and concludes our proof.

In the following, we point out that the graph $P_{m, 1}$-with the exception of $m \equiv 1(\bmod 4)$-attains the lower bound in (4), too. For tackling the aforementioned exceptional case, we state in the following two technical results as Lemma 1 and Lemma 2. These

Fig. 2. Optimal SDRDFs for $P_{m, 3}$ when $m=4 \ell+1$ respectively $m=4 \ell+3$. In both cases, a label pattern of width 4 is periodically repeated $\ell-1$ respectively $\ell-2$ times to finally be flanked by a termination pattern of width 5 respectively 11 . The labeling is exemplarily illustrated for $m=13$ respectively $m=19$.

(a) Adjacency of the graph G.

(b) Adjacency of the graph G^{\prime}.

Fig. 3. The graph G^{\prime} in (3b) is the result of deleting four of the vertical edges from G in (3a) and successively performing eight edge contractions.
results incorporate an approach to determine γ_{sdR} for a sufficiently structured rotationally symmetric graph. The method relies on a computer-aided exhaustive search for optima on fixed small subgraphs. It seems applicable to other domination-like problems, too.

Lemma 1. We consider vertex sets $L:=\left\{\ell_{b}, \ell_{b, i}, \ell_{t}, \ell_{t, i}\right\}, R:=\left\{r_{b}, r_{b, i}, r_{t}, r_{t, i}\right\}, C:=\left\{u_{i}, v_{i} \mid i=0, \ldots, 7\right\}$, and $C^{\prime}:=\left\{u_{i}, v_{i} \mid i=\right.$ $0, \ldots, 3\}$. Let G and G^{\prime} be the grid graphs having vertex sets $V:=L \cup C \cup R$ and $V^{\prime}:=L \cup C^{\prime} \cup R$, respectively, and edges as depicted in Figs. 3a and 3b. Let $f: V \rightarrow\{ \pm 1,2,3\}$, respectively $f^{\prime}: V^{\prime} \rightarrow\{ \pm 1,2,3\}$ satisfy the SDRDP constraints (1a)-(1c) in all vertices except possibly for those in $\left\{\ell_{t}, \ell_{b}, r_{t}, r_{b}\right\}$. Moreover, let us assume that f attains minimal cumulative weight on C and f^{\prime} attains minimal cumulative weight on $C^{\prime} .{ }^{2}$ Then, the following properties hold.
(i) For $k \leqslant 5, w_{f}(C) \neq k$.
(ii) For $k \in\{6,7,9\}$, whenever $w_{f}(C)=k$, then $w_{f^{\prime}}\left(C^{\prime}\right)=k-4$.

Proof. Exhaustively, per given parameter choice $d=\left(\ell_{\mathrm{b}}, \ell_{\mathrm{b}, \mathrm{i}}, \ell_{\mathrm{t}}, \ell_{\mathrm{t}, \mathrm{i}}, r_{\mathrm{b}}, r_{\mathrm{b}, \mathrm{i}}, r_{\mathrm{t}}, r_{\mathrm{t}, \mathrm{i}}\right) \in\{ \pm 1,2,3\}^{8}$, i.e., by fixing the labels on the delimiting vertices in $L \cup R$, we can determine a SDRDF being minimal with respect to the cumulative weight restricted to C (respectively to C^{\prime}).

Algorithm 1 in the appendix explains how we carried this out computationally. After symmetry breaking (see Remark 2), the algorithm exhaustively examines several cases, ultimately showing that the smallest attainable optimal weight is 6 , which proves claim (i). Furthermore, (ii) is valid, as we observe that all hereby obtained minima over C attaining the value $k \in\{6,7,9\}$ are accompanied by a respective minimum of $k-4$ on the smaller center C^{\prime} in G^{\prime} with the same delimiting constellation d.

Remark 2 (Symmetry breaking). We employ vertical and horizontal flipping and point reflection through the center, i.e., a labeling for $\left[\begin{array}{llll}\ell_{\mathrm{t}} & \ell_{\mathrm{t}, \mathrm{i}} & r_{\mathrm{t}, \mathrm{i}} & r_{\mathrm{t}} \\ \ell_{\mathrm{b}} & \ell_{\mathrm{b}, \mathrm{i}} & r_{\mathrm{b}, \mathrm{i}} & r_{\mathrm{b}}\end{array}\right]$ is oftentimes represented by a respective labeling for $\left[\begin{array}{llll}\ell_{\mathrm{b}} & \ell_{\mathrm{b}, \mathrm{i}} & r_{\mathrm{b}, \mathrm{i}} & r_{\mathrm{b}} \\ \ell_{\mathrm{t}} & \ell_{\mathrm{t}, \mathrm{i}} & r_{\mathrm{t}, \mathrm{i}} & r_{\mathrm{t}}\end{array}\right],\left[\begin{array}{lll}r_{\mathrm{t}, \mathrm{i}} & r_{\mathrm{t}} & \ell_{\mathrm{t}} \\ r_{\mathrm{b}, \mathrm{i}} & \ell_{\mathrm{b}} & \ell_{\mathrm{t}, \mathrm{i}} \\ \ell_{\mathrm{b}, \mathrm{i}}\end{array}\right]$, or $\left[\begin{array}{cccc}r_{\mathrm{b}} & r_{\mathrm{b}, \mathrm{i}} & \ell_{\mathrm{b}, \mathrm{i}} & \ell_{\mathrm{b}} \\ r_{\mathrm{t}} & r_{\mathrm{t}, \mathrm{i}} & \ell_{\mathrm{t}, \mathrm{i}} & \ell_{\mathrm{t}}\end{array}\right]$. Instead of the $4^{8}=65536$ constellations, it is herewith sufficient to fall back to only a fraction of them, which, after removal of the constellations placing more than two (-1)-labels inside $\left\langle\ell_{\mathrm{t}}, \ell_{\mathrm{t}, \mathrm{i}}, \ell_{\mathrm{b}}, \ell_{\mathrm{b}, \mathrm{i}}\right\rangle$ or inside $\left\langle r_{\mathrm{t}, \mathrm{i}}, r_{\mathrm{t}}, r_{\mathrm{b}, \mathrm{i}}, r_{\mathrm{b}}\right\rangle$ (hence violating (1c)), contains 14940 cases. To keep the argument conceptually simple, we did not eliminate further parameter constellations, which a priori might indicate non-optimality.

Given a fixed $P_{m, 1}, m \geqslant 13$ with an optimal SDRDF function f defined on it, we say that a 2×12 subblock of $P_{m, 1}$, i.e., a subset of vertices $\left\{v_{i+j}, u_{i+j} \mid j=0, \ldots, 11\right\}$ for some $i \in \mathbb{Z}_{m}$, has the quality-transferring property w.r.t. f, if the vertices $\left\{\ell_{\mathrm{b}}, \ell_{\mathrm{b}, \mathrm{i}}, \ell_{\mathrm{t}}, \ell_{\mathrm{t}, \mathrm{i}}, r_{\mathrm{b}}, r_{\mathrm{b}, \mathrm{i}}\right.$, $\left.r_{\mathrm{t}}, r_{\mathrm{t}, \mathrm{i}}\right\} \cup\left\{v_{0}, u_{0}, \ldots, v_{3}, u_{3}\right\}$ of the graph G^{\prime} in Fig. 3b can be labeled by a function \tilde{f} in such a way that ${ }^{3}$

[^2]\[

$$
\begin{align*}
& {\left[\begin{array}{cccc}
\tilde{f}\left(\ell_{\mathrm{t}}\right) & \tilde{f}\left(\ell_{\mathrm{t}, \mathrm{i}}\right) & \tilde{f}\left(r_{\mathrm{t}, \mathrm{i}}\right) & \tilde{f}\left(r_{\mathrm{t}}\right) \\
\tilde{f}\left(\ell_{\mathrm{b}}\right) & \tilde{f}\left(\ell_{\mathrm{b}, \mathrm{i}}\right) & \tilde{f}\left(r_{\mathrm{b}, \mathrm{i}}\right) & \tilde{f}\left(r_{\mathrm{b}}\right)
\end{array}\right]=\left[\begin{array}{llll}
f\left(v_{i}\right) & f\left(v_{i+1}\right) & f\left(v_{i+10}\right) & f\left(v_{i+11}\right) \\
f\left(u_{i}\right) & f\left(u_{i+1}\right) & f\left(u_{i+10}\right) & f\left(u_{i+11}\right)
\end{array}\right],} \tag{13}\\
& w_{\tilde{f}}\left(\left\{u_{0}, \ldots, u_{3}\right\} \cup\left\{v_{0}, \ldots, v_{3}\right\}\right) \leqslant w_{f}\left(\left\{u_{i+2}, \ldots, u_{i+9}\right\} \cup\left\{v_{i+2}, \ldots, v_{i+9}\right\}\right)-4, \tag{14}\\
& \quad \text { and } \tilde{f} \text { satisfies (1a)-(1c) on all vertices not contained in }\left\{\ell_{\mathrm{t}}, \ell_{\mathrm{b}}, r_{\mathrm{t}}, r_{\mathrm{b}}\right\} . \tag{15}
\end{align*}
$$
\]

We say that f on $P_{m, 1}$ is quality-transferring if there exists at least one 2×12 subblock having the quality-transferring property w.r.t. f.

Lemma 2. Let $m>1$ and $m \equiv 1(\bmod 4)$. Then $\gamma_{\mathrm{sdR}}\left(P_{m, 1}\right)=m+2$.
Proof. First, note that the labeling given in Fig. 4a has cumulative weight $m+2$, further implying for each $m>1$ with $m \equiv 1(\bmod 4)$ that

$$
\begin{equation*}
\gamma_{\mathrm{sdR}}\left(P_{m, 1}\right) \leqslant m+2 \tag{16}
\end{equation*}
$$

For $m \leqslant 13$, i.e., for $m \in\{5,9,13\}, \gamma_{\mathrm{sdR}}\left(P_{m, 1}\right)=m+2$ follows by exhaustion. By complete induction, we settle the case for $m>12 \wedge m \equiv 1(\bmod 4)$. The base case $m=13$ has already been verified. Assume now as induction hypothesis that for each $\tilde{m} \in$ $\{13,17, \ldots, m\}, m \equiv 1(\bmod 4)$, the claim holds. In the inductive step, we prove that the claim is valid also for $m+4$.

Let $f: V=\left\{u_{i}, v_{i}: i=0, \ldots, m+4-1\right\} \rightarrow\{ \pm 1,2,3\}$ be a minimum weight SDRDF for $P_{m+4,1}$. We know from (16) that its weight does not exceed $m+4+2$. Seeking a contradiction, assume

$$
\begin{equation*}
w_{f}\left(P_{m+4,1}\right)=w_{f}\left(\left\{u_{i}, v_{i} \mid i=0, \ldots, m+4-1\right\}\right)<m+4+2 \tag{17}
\end{equation*}
$$

This assumption enforces that no 2×12 subblock can have the quality-transferring property: If a subblock, say w.l.o.g. $\left\{u_{-2}, v_{-2}, \ldots, u_{9}, v_{9}\right\}$, has this property, we can argue as follows: Let $\widetilde{P_{m, 1}}$ be the graph resulting from $P_{m+4,1}$ after deleting vertices $\left\{u_{4}, v_{4}, \ldots, u_{7}, v_{7}\right\}$ and adding the two edges $u_{3} u_{8}, v_{3} v_{8}$. Clearly, this graph is isomorphic to $P_{m, 1}$. By the quality-transferring property (13), there exists a function \tilde{f} through which we can define a SDRDF g on $\widetilde{P_{m, 1}}$ via

$$
g(z):= \begin{cases}\tilde{f}(z) & \text { if } z \in\left\{v_{0}, u_{0}, \ldots, v_{3}, u_{3}\right\} \tag{18}\\ f(z) & \text { otherwise }\end{cases}
$$

We conclude that

$$
\begin{align*}
\gamma_{\mathrm{sdR}}\left(P_{m, 1}\right) \leqslant w_{g}\left(\widetilde{P_{m, 1}}\right) & =w_{f}\left(P_{m+4,1}\right)-w_{f}\left(\left\{u_{0}, v_{0}, \ldots, u_{7}, v_{7}\right\}\right)+w_{\tilde{f}}\left(\left\{u_{0}, v_{0}, \ldots, u_{3}, v_{3}\right\}\right) \tag{19}\\
& \leqslant w_{f}\left(P_{m+4,1}\right)-4 \tag{20}\\
& <m+2 \tag{21}
\end{align*}
$$

where we apply (14) in step (20) and (17) in step (21). Thus, we obtain a contradiction to our assumption $\gamma_{\mathrm{sdR}}\left(P_{m, 1}\right)=m+2$ from the inductive step, so that necessarily
$f \in\left\{h \mid h: V \rightarrow\{ \pm 1,2,3\}\right.$ and h on $P_{m+4,1}$ is not quality-transferring $\}$.
By Lemma 1, we would face for each choice of $i \in \mathbb{Z}_{m+4}$, for each label constellation for $\left\{u_{i+j}, v_{i+j} \mid j \in\{-2,-1,8,9\}\right\}$ and any labeling of the 2×8 subblock $M_{i}:=\left\{u_{i+j}, v_{i+j} \mid j=0, \ldots, 7\right\}$ of cumulative weight $k \in\{6,7,9\}$, the quality-transferring property. It is therefore impossible, that any 2×8 subblock of P_{m+4} attains the cumulative weight 6,7 , or 9 . In particular, we have shown that necessarily

$$
\begin{equation*}
w_{f}\left(M_{i}\right) \geqslant 8, \text { for all } i \in \mathbb{Z}_{m+4} . \tag{23}
\end{equation*}
$$

By Theorem 3 we know $\gamma_{\mathrm{sdR}}\left(P_{m+4,1}\right) \geqslant m+4+1$. Hence, there must exist an index i^{\prime} such that $w_{f}\left(M_{i^{\prime}}\right) \geqslant 9 —$ otherwise, we would have $w_{f}\left(M_{i}\right)=8$ for all i, implying $w_{f}(V)=\sum_{i \in \mathbb{Z}_{m+4}} w_{f}\left(M_{i}\right) / 8=8(m+4) / 8=m+4$ and contradicting Theorem 3. However, for i^{\prime} we even must have $w_{f}\left(M_{i^{\prime}}\right) \geqslant 10$ according to our previously observed impossibility to attain weight 9 .

To conclude that $w_{f}\left(P_{m+4,1}\right)<m+4+2$ always leads to a contradiction, we distinguish two cases.
Case 1. Suppose $m+4=8 \ell+5, \ell \in \mathbb{N}$.
Observation 3 (i) tells us that either f on $P_{m+4,1}$ has the quality-transferring property (immediate contradiction to (22)) or there exists a suitable index $i(5) \in \mathbb{Z}_{m+4}$ for which $A:=\left\{u_{i(5)}, v_{i(5)}, \ldots, u_{i(5)+12}, v_{i(5)+12}\right\}$ induces a 2×13 subblock of cumulative weight not smaller than 15 leading to a lower bound exceeding the upper bound in (17), as can be seen via the following argument: Partition the vertices of $V \backslash A$ into $\ell-1$ subblocks of dimensions 2×8, and apply (23) on them. Then, $w_{f}(V)=w_{f}(V \backslash A)+w_{f}(A)$ which can be bounded from below by $8(\ell-1)+15=8 \ell+5+2=m+4+2$ and contradicts (17).

Case 2. Suppose $m+4=8 \ell+1, \ell \in \mathbb{N}$.
Observation 3 (ii) guarantees that either f on $P_{m+4,1}$ has the quality-transferring property (immediate contradiction to (22)) or there exists a suitable index $i(1) \in \mathbb{Z}_{m+4}$ for which $\left\{u_{i(1)}, v_{i(1)}, \ldots, u_{i(1)+8}, v_{i(1)+8}\right\}$ induces a 2×9 subblock of cumulative weight not

(a) Scheme for $P_{m, 1}$ when $m=4 \ell+1$. The graph is depicted for $(m, \ell)=(9,2)$, and its SDRDF weight is $m+2=11$. For general m the labeling satisfies $V_{-1}=$ $\left\{u_{i}, v_{i} \mid i=1,3,5 \ldots, m-4\right\} \cup\left\{u_{m-1}, v_{m-2}\right\}, V_{1}=$ $\left\{v_{m-1}\right\}, V_{2}=\{0,2,4, \ldots, m-5\} \cup\left\{u_{m-3}, v_{m-3}, u_{m-2}\right\}$, and $V_{3}=\emptyset$.

(b) Scheme for $P_{m, 1}$ when $m=4 \ell+3$. The graph is illustrated for $(m, \ell)=(11,2)$, and its SDRDF weight is $m+1=12$. For general m the labeling satisfies $V_{-1}=\left\{u_{4 t}, u_{4 t+1}, v_{4 t+2}, v_{4 t+3} \mid\right.$ $t=0, \ldots, \ell-1\} \cup\left\{u_{m-3}, v_{m-1}\right\}, V_{1}=\left\{u_{m-2}, v_{m-2}\right\}, V_{2}=$ $\left\{u_{4 t+2}, u_{4 t+3}, v_{4 t}, v_{4 t+1} \mid t=0, \ldots, \ell-1\right\} \cup\left\{u_{m-3}, v_{m-1}\right\} \cup$ $\left\{u_{m-1}, v_{m-3}\right\}$, and $V_{3}=\emptyset$.

Fig. 4. Schemes for optimal labelings given in Theorem 6 for the graph $P_{m, 1}$.

(a) Extending $G_{2, m}$ to a cubic graph with six additional labeled vertices. When $m \equiv 0(\bmod 2)$, then the extended graph possesses $2 m+6 \equiv 2$ $(\bmod 4)$ vertices.

(b) Transforming $G_{2, m}$ into $P_{m+p, 1}$ by adding suitably connected fresh vertices $x_{i}, w_{i}, i=0, \ldots, p-1$.

Fig. 5. Extending $G_{2, m}$ to a cubic graph via different constructions.
smaller than 11 leading to a lower bound exceeding the upper bound in (17), as can be seen via the following argument: Similarly as before we can estimate $w_{f}\left(P_{m+4,1}\right) \geqslant 8(\ell-1)+11=8 \ell+1+2=m+4+2$, yielding again a contradiction to (17).

Theorem 6. For the generalized Petersen graph $P_{m, 1}, m \geqslant 3$, we have

$$
\gamma_{\mathrm{sdR}}\left(P_{m, 1}\right)= \begin{cases}m & \text { if } m \equiv 0(\bmod 2) \tag{24}\\ m+1 & \text { if } m \equiv 3(\bmod 4) \\ m+2 & \text { if } m \equiv 1(\bmod 4)\end{cases}
$$

Proof. For even $m, \gamma_{\mathrm{sdR}}\left(P_{m, 1}\right)=m$ follows directly from Theorem 4 for $k=1$. For $m=4 \ell+1$ the claim has been shown in Lemma 2. The upper bound for the case $m=4 \ell+3$ is given in Fig. 4b.

For the lower bound for $\gamma_{\mathrm{sdR}}\left(P_{4 \ell+3,1}\right)$, we apply Theorem 3 to $n=8 \ell+6$ (the count of vertices in $\left.P_{m, 1}\right)$ and conclude $\gamma_{\mathrm{sdR}}\left(P_{4 \ell+3,1}\right) \geqslant n / 2+1=4 \ell+4=m+1$.

2.2. Consequences for the grid graph $G_{2, m}$

As a byproduct of the results on cubic graphs, particularly on $P_{m, 1}$, we obtain the following result about optimal SDRDFs on $2 \times m$ grid graphs.

Theorem 7. For $m \geqslant 5$, we have

$$
\gamma_{\mathrm{sdR}}\left(G_{2, m}\right)= \begin{cases}m+1 & \text { if } m \equiv 1(\bmod 4) \tag{25}\\ m & \text { otherwise }\end{cases}
$$

Proof. For values $m=1, \ldots, 13$, the sequence of respective $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right)$-values can be calculated by exhaustion and corresponds to $\langle 2,4,2,5,6,6,7,8,10,10,11,12,14\rangle$. This confirms (25) for $5 \leqslant m \leqslant 13$. For higher values of m, the fact that the right-hand side of (25) majorizes $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right)$ can be read off the labeling schemata given in Fig. C. 8 in the appendix. In all four cases, it is easy to recognize that the respective labelings give valid SDRDFs; thus, the respective upper bounds apply.

To show the optimality of the derived upper bounds, we use the subsequent principle, which extends the graph $G_{2, m}$ to a cubic graph. For even m, the argumentation is less subtle and is better suited to understand the principle.

Let $m \equiv 0(\bmod 2)$. Starting from an optimal SDRDF labeled graph $G_{2, m}$, counting $2 m \equiv 0(\bmod 4)$ vertices, we construct a SDRDF labeled cubic graph $\tilde{G}=(\tilde{V}, \tilde{E})$ with six additional fresh vertices having collective weight 4 (see Fig. 5a). In total, eleven fresh
edges are added during this construction. As only new vertices labeled 1 , both already defended by new vertices labeled 2 , are neighbored to the initial graph $G_{2, m}$, the SDRDF requirements are satisfied. By cubicity and using the bound (4), this implies that $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right)+4=w(V)+4=w(\tilde{V}) \geqslant|\tilde{V}| / 2+1=(2 m+6) / 2+1$, and consequently $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right) \geqslant m$.

The rest of the proof is now dedicated to the case $m \not \equiv 0(\bmod 2)$. Let $R:=\left\{u_{m-2}, u_{m-1}, v_{m-2}, v_{m-1}\right\}$. In the following, we consider the sequence of vertices $s_{p}:=\left\langle w_{0}, \ldots, w_{p-1} ; x_{0}, \ldots, x_{p-1}\right\rangle, p=4,6$, to which we want to associate a respective sequence of labels. These vertices will be part of a $2 \times p$ grid graph H_{p}, which will be connected to our studied grid graph $G_{2, m}$, see Fig. 5b. The argumentation for the lower bound m respectively $m+1$ of $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right)$ is split into several cases, depending on the distribution of the vertices labeled -1 inside R, in which we extend $G_{2, m}$ to a suitably labeled version of $P_{m+p, 1}$ when needed. In each of the following cases, the claimed bound holds. Note that it is enough, by condition (1c), to consider at most two vertices in $V_{-1} \cap R$.

Case 1. $\left|V_{-1} \cap R\right|=1$.
Subcase 1.1. $V_{-1} \cap R \in\left\{\left\{u_{m-1}\right\},\left\{v_{m-1}\right\}\right\}$. W.l.o.g. $V_{-1} \cap R=\left\{v_{m-1}\right\}$.

- If v_{m-1} is defended by its lower 3-labeled neighbor u_{m-1}, then in the extended graph in Fig. $5 \mathbf{b}$, for $p=4$, we choose for s_{4} the sequence of labels $\langle-1,-1,2,1 ; 1,2,-1,2\rangle$, yielding additional weight 5 . By this we get a SDRDF on $P_{m+4,1}$ with weight of $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right)+5$, which implies the inequality $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right)+5 \geqslant \gamma_{\mathrm{sdR}}\left(P_{m+4,1}\right)$. Since, for $m \equiv 1(\bmod 4)$ by Theorem 6 we have $\gamma_{\mathrm{sdR}}\left(P_{m+4,1}\right)=(m+4)+2=m+6$, we obtain $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right)+5 \geqslant m+6$, i.e., $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right) \geqslant m+1$.

On the other hand, for $m \equiv 3(\bmod 4)$ also by Theorem 6 we have $\gamma_{\mathrm{sdR}}\left(P_{m+4,1}\right)=(m+4)+1=m+5$, which yields $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right)+$ $5 \geqslant m+5$, i.e., $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right) \geqslant m$.

- If v_{m-1} is defended by its left 3-labeled neighbor v_{m-2}, the labeling of $G_{2, m}$ even cannot be optimal: either u_{m-1} is an unnecessary defender, or u_{m-1} is labeled 1 which implies that u_{m-2} has a label from $\{2,3\}$ in turn implying that $\left\langle u_{m-2}, u_{m-1}\right\rangle$ should have received labels $\langle 3,-1\rangle$ to reduce weight.
- Also the scenario of purely 2 -labeled neighbors of v_{m-1} has to be considered: Recall that the label of u_{m-2} is positive by assumption. Hence, we can relabel R such that $\left\{u_{m-2}, v_{m-2}\right\} \subseteq V_{3}$ and $\left\{u_{m-1}, v_{m-1}\right\} \subseteq V_{-1}$. By Observation 4 in the appendix, we know that the latter boundary constraints imply that $w_{f}\left(G_{2, m}\right)$ cannot under-run the bound $m+1$ respectively m when $m \equiv 1(\bmod 4)$ respectively $m \equiv 3(\bmod 4)$. Therefore, we do not need to come up with another construction here.

Subcase 1.2. $V_{-1} \cap R \in\left\{\left\{u_{m-2}\right\}\right.$, $\left.\left\{v_{m-2}\right\}\right\}$. W.l.o.g. let $V_{-1} \cap R=\left\{v_{m-2}\right\}$. We can just add the connecting edges $u_{m-1} u_{0}$ and $v_{m-1} v_{0}$. By positivity of the righter-most labels in R, this fulfills all SDRDF constraints at no additional weight cost.

Case 2. $\left|V_{-1} \cap R\right|=0$. Replicate the construction of Subcase 1.2.
Case 3. $\left|V_{-1} \cap R\right|=2$.
Subcase 3.1. Horizontal occurrences, i.e., $V_{-1} \cap R \in\left\{\left\{u_{m-2}, u_{m-1}\right\}\right.$, $\left.\left\{v_{m-2}, v_{m-1}\right\}\right\}$. W.l.o.g. assume $V_{-1} \cap R=\left\{v_{m-2}, v_{m-1}\right\}$. In this subcase, we proceed as in the first paragraph of Subcase 1.1 (in the extended graph in Fig. 5b the sequence s_{4} shall have associated labels $\langle-1,-1,2,1 ; 1,2,-1,2\rangle$). Note that $\left\langle u_{m-2}, u_{m-1}\right\rangle$ must necessarily have the labels $\langle x, 3\rangle$ where $x \geqslant 1$. Clearly, despite w_{3}, x_{3} in H_{4} are joined potentially both with vertices labeled -1 , they will not violate condition (1c) as abundantly defended. Therefore, the entire labeling is a SDRDF having an additional weight cost of 5 due to the vertices in H_{4}.

Subcase 3.2. Vertical occurrences (interior), i.e., $V_{-1} \cap R=\left\{u_{m-2}, v_{m-2}\right\}$. We note that at least one label of the necessarily positively labeled vertices u_{m-1}, v_{m-1} must further have assigned label 2 or $3-$ w.l.o.g. assume $v_{m-1} \in V_{2} \cup V_{3}$ and $u_{m-1} \in V_{1} \cup V_{2} \cup V_{3}$.

We now consider the extended graph in Fig. 5b, where for the sequence of vertices s_{4}, we pick the sequence of labels $\langle-1,3,-1$, $1 ;-1,2,-1,2\rangle$, costing additional weight 4 . We now prove this subcase using Theorem 6 as in Subcase 1.1.

Subcase 3.3. Vertical occurrences (righter-most), i.e., $V_{-1} \cap R=\left\{u_{m-1}, v_{m-1}\right\}$. Necessarily, we have that $u_{m-2}, v_{m-2} \in V_{3}$. This situation is observed in the third paragraph of Subcase 1.1 and concluded by Observation 4.

Subcase 3.4. Diagonal occurrences, i.e., $V_{-1} \cap R \in\left\{\left\{u_{m-2}, v_{m-1}\right\},\left\{v_{m-2}, u_{m-1}\right\}\right\}$. W.1.o.g. assume $V_{-1} \cap R=\left\{u_{m-2}, v_{m-1}\right\}$. Note that $\left\langle v_{m-2}, u_{m-1}\right\rangle$ must necessarily have associated label sequence $\langle x, 3\rangle$ where $x \geqslant 1$. For $x \geqslant 2$, in the extended graph in Fig. 5b, for $p=4$, pick for s_{4} the sequence of labels $\langle 1,-1,-1,3 ;-1,3,1,1\rangle$, costing additional weight 6 . Finally, we update the label value of u_{m-1} to 2 (not violating the SDRDF constraints). Hence, finally, we obtain a graph $P_{m+4,1}$ costing additional weight 5 and conclude this subcase again as in the first part of Subcase 1.1.

For the case $x=1$ we observe how vertices $v_{0}, v_{1}, u_{0}, u_{1}$ are labeled.

- If neither $\left\{v_{1}, u_{0}\right\} \subseteq V_{-1}$ nor $\left\{v_{0}, u_{1}\right\} \subseteq V_{-1}$, i.e., we do not have a diagonal of vertices in V_{-1} on the left side of $G_{2, m}$, then for the horizontally flipped labeling ${ }^{4}$ the claim follows directly from one of the previously settled (sub)cases $1,2,3.1,3.2$, or 3.3 of this proof.
- If $\left\{u_{0}, v_{1}\right\} \subseteq V_{-1}$, then necessarily $v_{0} \in V_{3}$ and $u_{1} \notin V_{-1}$. Hence, making use of the construction given in Fig. 5b ($p=6$) to extend the graph $G_{2, m}$ to $P_{m+6,1}$, where we associate the sequence of labels $\langle 1,-1,-1,3,3,-1 ;-1,3,1,-1,-1,1\rangle$ to s_{6}, we obtain a SDRDF on $P_{m+6,1}$ of total weight $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right)+6$. For $m \equiv 1(\bmod 4)$ by Theorem 6 we have $\gamma_{\mathrm{sdR}}\left(P_{m+6,1}\right)=(m+6)+1=m+7$, which implies $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right)+6 \geqslant m+7$, i.e. $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right) \geqslant m+1$. On the other hand, for $m \equiv 3(\bmod 4)$ also by Theorem 6 we have $\gamma_{\mathrm{sdR}}\left(P_{m+6,1}\right)=(m+6)+2=m+8$, which yields $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right)+6 \geqslant m+8$, i.e., $\gamma_{\mathrm{sdR}}\left(G_{2, m}\right) \geqslant m+2>m$.

[^3]```
\Delta label -1 a label 1 label 2
```

$$
\begin{aligned}
& \left\{b_{0}, \ldots, b_{m-1}\right\} \rightarrow \\
& \left\{a_{0}, \ldots, a_{m-1}\right\} \rightarrow \\
& \left\{c_{0}, \ldots, c_{m-1}\right\} \rightarrow \\
& \left\{d_{0}, \ldots, d_{m-1}\right\} \rightarrow
\end{aligned}
$$



Fig. 6. SDRDFs for $\mathrm{FS}_{m}$ when $m=9$ (left) respectively $m=11$ (right). Thinking of the vertices as placed on a grid, a labeling pattern of dimensions $4 \times 3$, periodically repeated and finally flanked by an individual termination pattern of dimensions $4 \times 3$ (left), respectively $4 \times 2$ (right), can be read off. These labeling patterns generalize to higher values of $m$ of congruency $m \equiv 0(\bmod 3)$ and $m \equiv 2(\bmod 3)$, respectively.


Fig. 7. A SDRDF for the graph $\mathrm{FS}_{13}$ (information displayed as in Fig. 6). Again the labeling scheme, consisting of a periodically repeating $4 \times 3$ pattern of labels, which is flanked by a terminating $4 \times 4$ pattern of labels, naturally generalizes to higher values of $m \equiv 1(\bmod 3)$.

- If $\left\{u_{1}, v_{0}\right\} \subseteq V_{-1}$, then necessarily $u_{0}, v_{1} \notin V_{-1}$. Hence we can add the edges $u_{m-1} u_{0}, v_{m-1} v_{0}$ to $G_{2, m}$ obtaining a SDRDF on $P_{m, 1}$.

Proposition 2. For $\mathrm{FS}_{m}, m \geqslant 5$, we have $2 m \leqslant \gamma_{\mathrm{sdR}}\left(\mathrm{FS}_{m}\right) \leqslant 2 m+1$.

Proof. Let us first show the validity of the upper bound, i.e. $\gamma_{\mathrm{sdR}}\left(\mathrm{FS}_{m}\right) \leqslant 2 m+1, m \geqslant 5$.
Case $1 . m \equiv 0(\bmod 3)$.
We choose the labeling with $V_{1}=\left\{a_{m-1}, c_{m-1}\right\}, V_{2}=\left\{b_{3 i}, b_{3 i+1}, c_{3 i+1}, d_{3 i}, d_{3 i+2} \mid i=0,1, \ldots, \frac{m-3}{3}\right\} \cup\left\{c_{3 i+2} \mid i=0,1, \ldots, \frac{m-6}{3}\right\}$, and $V_{-1}=V \backslash\left(V_{1} \cup V_{2}\right)=\left\{b_{3 i+2}, c_{3 i}, d_{3 i+1} \mid i=0,1, \ldots, \frac{m-3}{3}\right\} \cup\left\{a_{i} \mid i=0,1, \ldots m-2\right\}$; for $m=9$, this is illustrated in Fig. 6. One can easily check that the SDRDF properties are satisfied. Consequently, we have $\gamma_{\mathrm{sdR}}\left(\mathrm{FS}_{m}\right) \leqslant w_{f}\left(\mathrm{FS}_{m}\right)=2\left|V_{2}\right|+\left|V_{1}\right|-\left|V_{-1}\right|=2(2 m-1)+2-$ $(2 m-1)=2 m+1$.

Case $2 . m \equiv 1(\bmod 3)$.
We pick the labeling with $V_{1}=\left\{a_{m-1}, b_{m-1}\right\}, V_{2}=\left\{b_{3 i}, b_{3 i+2}, c_{3 i}, c_{3 i+1}, d_{3 i+1}, d_{3 i+2} \mid i=0,1, \ldots, \frac{m-4}{3}\right\} \cup\left\{c_{m-1}\right\}$, and $V_{-1}=V \backslash\left(V_{1} \cup\right.$ $\left.V_{2}\right)=\left\{a_{i} \mid i=0,1, \ldots, m-2\right\} \cup\left\{b_{3 i+1}, c_{3 i+2}, d_{3 i} \mid i=0,1, \ldots \frac{m-4}{3}\right\} \cup\left\{d_{m-1}\right\}$; for $m=13$, this is illustrated in Fig. 7. Again one can quickly check that $f$ is indeed a SDRDF. Therefore, $w_{f}\left(\mathrm{FS}_{m}\right)=2\left|V_{2}\right|+\left|V_{1}\right|-\left|V_{-1}\right|=2(2 m-1)+2-(2 m-1)=2 m+1$ is an upper bound for $\gamma_{\mathrm{sdR}}\left(\mathrm{FS}_{m}\right)$.

Case 3. $m \equiv 2(\bmod 3)$.
Choose the labeling with $V_{1}=\left\{a_{m-2}, d_{m-2}\right\}, V_{2}=\left\{b_{3 i}, b_{3 i+1}, c_{3 i+1}, c_{3 i+2}, d_{3 i}, d_{3 i+2} \mid i=0,1, \ldots, \frac{m-5}{3}\right\} \cup\left\{b_{m-2}, c_{m-1}, d_{m-1}\right\}$, and $V_{-1}=V \backslash\left(V_{1} \cup V_{2}\right)=\left\{a_{i} \mid i=0,1, \ldots, m-3, m-1\right\} \cup\left\{b_{3 i+2}, c_{3 i}, d_{3 i+1} \mid i=0,1, \ldots \frac{m-5}{3}\right\} \cup\left\{a_{m-1}, b_{m-1}, c_{m-2}\right\}$; for $m=11$, this is illustrated in Fig. 6. One can easily see that $f$ is indeed a SDRDF, implying $\gamma_{\mathrm{sdR}}\left(\mathrm{FS}_{m}\right) \leqslant w_{f}\left(\mathrm{FS}_{m}\right)=2\left|V_{2}\right|+\left|V_{1}\right|-\left|V_{-1}\right|=$ $2(2 m-1)+2-(2 m-1)=2 m+1$.

Concerning the lower bound, we obtain $\gamma_{\mathrm{sdR}}\left(\mathrm{FS}_{m}\right) \geqslant 2 m$ from Theorem 3, which concludes the proof.

## 3. Conclusions and future work

In this work, we studied the signed Roman domination problem on cubic graphs in detail. The discharging method turned out to be a powerful tool allowing us to come up with a sharp lower bound. In this context, we were able to take advantage of some findings on $\alpha$-total domination and thus improve the upper bound. Moreover, we emphasized the importance of generalized Petersen graphs as paramount examples of cubic graphs attaining this best possible lower bound. We have presented a constraint programming driven approach that seems adaptable to several other classes of rotationally symmetric graphs, and furthermore can easily be applied to other forms of domination.

The achieved results form the foundation for several interesting future research questions. In addition to the obtained sharp lower bound for $\gamma_{\mathrm{sdR}}$ on cubic graphs, it would be interesting to find a sharp upper bound. Proving a sharp asymptotic upper bound might be interesting, too. We here mean to study, given a class of graphs $\mathcal{G}$ of unbounded order, the quantity

$$
\begin{equation*}
c_{\mathrm{sdR}}(\mathcal{G}):=\limsup _{\substack{G \in \mathcal{G}, \boldsymbol{G}=\boldsymbol{V}, \boldsymbol{V}, E) \\|V| \rightarrow \infty}}|V|^{-1} \gamma_{\mathrm{sdR}}(\boldsymbol{G}) . \tag{26}
\end{equation*}
$$

Slightly differing from a related quantity studied by Egunjobi and Haynes [8, p. 72], the latter captures the behavior of the maximum per-vertex average weight when graph sizes are supposed to grow, therefore neglecting all small graphs of high average weight.

By Proposition 1, we already know that $c_{\mathrm{sdR}}(\mathcal{C}) \leqslant 5 / 4$ for the class $\mathcal{C}$ of cubic graphs; this bound is, however, unlikely to be sharp. Identifying subclasses $C^{\prime}$ of cubic graphs having maximum $c_{\mathrm{sdR}}\left(C^{\prime}\right)$-value seems challenging. In this regard, we make the following observation.

Observation 2. There are subclasses $\mathcal{C}^{\prime}$ of cubic graphs, for which $c_{\mathrm{sdR}}\left(\mathcal{C}^{\prime}\right) \geqslant 7 / 10$. In particular, $c_{\mathrm{sdR}}(\mathcal{C}) \geqslant 7 / 10$.
Proof. Let $C^{\prime}$ contain all graphs $G_{k}, k \in \mathbb{N} \backslash\{0\}$, where $G_{k}$ is made up by $k$ connected components all being isomorphic to $P_{5,1}$ (cubic). Each graph $G_{k}$ consists of $n=10 k$ vertices and has SDRDF weight $7 k$. Consequently, $c_{\mathrm{sdR}}\left(\mathcal{C}^{\prime}\right)=7 / 10$.

If we set our attention on the class $\mathcal{C}_{\text {conn }}$ of connected cubic graphs, the dynamic might change, and we pose ourselves the following question.

## Problem 1.

(i) How large can $\rho>1 / 2$ be chosen such that $c_{\text {sdR }}\left(C_{\text {conn }}\right) \geqslant \rho$ ?
(ii) Is it possible that $c_{\text {sdR }}\left(c_{\text {conn }}\right) \geqslant 9 / 16$ ?
(iii) Do the graphs $P_{m, 2}$ attain the bound in (ii) (such an average weight is attained for $m=8,16$ )?

In preliminary work, we constructed optimal SDRDFs for $2 \times m$ grid graphs, and for paths of length $m$ such graphs have been determined in [1]. This naturally raises the following challenge concerning general $\ell \times m$ grid graphs.

Problem 2. Determine $\gamma_{\mathrm{sdR}}$ on $\ell \times m$ grid graphs for further (small) values $\ell \in \mathbb{N}$ and general $m \in \mathbb{N}$.
For solving Problem 2 it might be a reasonable strategy to obtain sharp bounds for $\gamma_{\mathrm{sdR}}$ on 4-regular graphs. Moreover, the fact that the signed domination problem is NP-hard on grids [21] leads to the following question when $\ell$ is kept general.

Problem 3. Is it NP-hard to determine the existence of a SDRDF on an $\ell \times m$ grid graph with a weight not exceeding a given limit?

From our experience in the setting of the SDRDP, the requirement of a particular "balance" of defenders and defendants, as well as the higher flexibility on how to defend, make it challenging in comparison to the domination-type problems mentioned earlier.

## Data availability

Data will be made available on request.

## Acknowledgements

Enrico Iurlano and Günther Raidl are supported by Austria's Agency for Education and Internationalization under grant BA05/2023. Tatjana Zec and Marko Djukanović are supported by the bilateral project between Austria and Bosnia and Herzegovina funded by the Ministry of Civil Affairs of Bosnia and Herzegovina under grant no. 1259074. Moreover, this project is partially funded by the Doctoral Program "Vienna Graduate School on Computational Optimization", Austrian Science Fund (FWF), grant W1260-N35.

Table A. 1
Fulfillment of (1a)-(1b) respectively (1c') for $f$ defined in Theorem 5, Case 1. Here the validity of condition ( $1 \mathrm{c}^{\prime}$ ) is often given implicitly: Note that since ( 1 b ) holds, the property ( $1 \mathrm{c}^{\prime}$ ) automatically applies for vertices in $V_{1}$. Since the condition (1a) holds and $V_{3}=\emptyset$, we have that the property ( $1 \mathrm{c}^{\prime}$ ) holds for all vertices in $V_{-1}$. Therefore, for all vertices in $V_{2}$ it remains to check validity of ( $1 \mathrm{c}^{\prime}$ ), which can be read off the right table.

| $v \in V_{-1}$ | Defenders of $v$ |
| :--- | :--- |
| $u_{4 i+2}, i \in\left\{0,1, \ldots, \frac{m-9}{4}\right\}$ | $u_{4 i+1}, v_{4 i+2}$ |
| $u_{4 i+3}, i \in\left\{0,1, \ldots, \frac{m-9}{4}\right\}$ | $u_{4 i+4}, v_{4 i+3}$ |
| $u_{m-3}$ | $u_{m-4}, u_{m-2}$ |
| $u_{m-1}$ | $u_{0}, u_{m-2}$ |
| $v_{4 i}, i \in\left\{0,1, \ldots, \frac{m-9}{4}\right\}$ | $u_{4 i}, v_{4 i+3}$ |
| $v_{4 i}, i \in\left\{0,1, \ldots, \frac{m-5}{4}\right\}$ | $u_{4 i}, v_{4 i+3}$ |
| $v_{4 i+1}, i \in\left\{0,1, \ldots, \frac{m-5}{4}\right\}$ | $u_{4 i+1}, v_{4 i-2}$ |
|  |  |
| $v \in V_{1}$ | Defenders of $v$ |
| $v_{m-3}$ | $v_{m-6}$ |
| $v_{m-1}$ | $v_{2}$ |


| $v \in V_{2}$ | Two vertices in |
| :--- | :--- |
|  | $N[v] \cap\left(V \backslash V_{-1}\right)$ |
| $u_{4 i}, i \in\left\{0,1, \ldots, \frac{m-5}{4}\right\}$ | $u_{4 i}, u_{4 i+1}$ |
| $u_{4 i+1}, i \in\left\{0,1, \ldots, \frac{m-5}{4}\right\}$ | $u_{4 i}, u_{4 i+1}$ |
| $u_{m-2}, i \in\left\{0,1, \ldots, \frac{m-5}{4}\right\}$ | $v_{m-2}$ |
| $v_{4 i+2}, i \in\left\{0,1, \ldots, \frac{m-9}{4}\right\}$ | $v_{4 i-1}, v_{4 i+2}$ |
| $v_{4 i+3}, i \in\left\{0,1, \ldots, \frac{m-9}{4}\right\}$ | $v_{4 i+3}, v_{4 i+6}$ |
| $v_{m-2}, i \in\left\{0,1, \ldots, \frac{m-5}{4}\right\}$ | $u_{m-2}$ |

Table A. 2
Fulfillment of (1a)-(1b) respectively (1c') for $f$ defined in Theorem 5, Case 2. Note that, as in Case 1, the vertices in $V_{1}$ satisfy $\left(1 \mathrm{c}^{\prime}\right)$. The vertices in $V_{-1}$ which are defended by $v_{m-3}$ are $u_{m-3}$ and $v_{m-6}$, and they are also adjacent to $u_{m-2} \in V_{1}$ respectively $v_{m-9} \in V_{1}$. The remaining vertices in $V_{-1}$ are defended by two vertices in $V_{2}$. Hence, all vertices in $V_{-1}$ fulfill ( $1 \mathrm{c}^{\prime}$ ). The tables on the right testify that ( $1 \mathrm{c}^{\prime}$ ) is valid for the vertices in $V_{2} \cup V_{3}$.

| $v \in V_{-1}$ | Defenders of $v$ |
| :--- | :--- |
| $u_{4 i}, i \in\left\{0,1, \ldots, \frac{m-11}{4}\right\}$ | $u_{4 i-1}, v_{4 i}$ |
| $u_{4 i+1}, i \in\left\{0,1, \ldots, \frac{m-11}{4}\right\}$ | $u_{4 i+2}, v_{4 i+1}$ |
| $u_{m-8}$ | $u_{m-9}, u_{m-7}$ |
| $u_{m-6}$ | $u_{m-7}, u_{m-5}$ |
| $u_{m-4}$ | $u_{m-5}, v_{m-4}$ |
| $u_{m-3}$ | $v_{m-3}$ |
| $v_{4 i+2}, i \in\left\{0,1, \ldots, \frac{m-15}{4}\right\}$ | $u_{4 i+2}, v_{4 i+5}$ |
| $v_{4 i+3}, i \in\left\{0,1, \ldots, \frac{m-15}{4}\right\}$ | $u_{4 i+3}, v_{4 i}$ |
| $v_{m-8}$ | $v_{m-11}, v_{m-5}$ |
| $v_{m-6}$ | $v_{m-3}$ |
| $v_{m-2}$ | $v_{1}, v_{m-5}$ |
| $v_{m-1}$ | $u_{m-1}, v_{m-4}$ |
|  |  |
| $v \in V_{1}$ | Defenders of $v$ |
| $u_{m-2}$ | $u_{m-1}$ |
| $v_{m-9}$ | $u_{m-9}$ |
| $v_{m-7}$ | $u_{m-7}\left(v_{m-10}, v_{m-4}\right)$ |


| $v \in V_{2}$ | Two vertices in <br> $N[v] \cap\left(V \backslash V_{-1}\right)$ |
| :--- | :--- |
| $u_{4 i+2}, i \in\left\{0,1, \ldots, \frac{m-15}{4}\right\}$ | $u_{4 i+2}, u_{4 i+3}$ |
| $u_{4 i+3}, i \in\left\{0,1, \ldots, \frac{m-15}{4}\right\}$ | $u_{4 i+2}, u_{4 i+3}$ |
| $u_{m-9}$ | $u_{m-9}, v_{m-9}$ |
| $u_{m-7}$ | $u_{m-7}, v_{m-7}$ |
| $u_{m-5}$ | $u_{m-5}, v_{m-5}$ |
| $u_{m-1}$ | $u_{m-2}, u_{m-1}$ |
| $v_{4 i}, i \in\left\{0,1, \ldots, \frac{m-11}{4}\right\}$ | $v_{4 i-3}, v_{4 i}$ |
| $v_{4 i+1}, i \in\left\{0,1, \ldots, \frac{m-11}{4}\right\}$ | $v_{4 i+1}, v_{4 i+4}$ |
| $v_{m-5}$ | $u_{m-5}, v_{m-5}$ |
| $v_{m-4}$ | $v_{m-7}, v_{m-4}$ |
|  |  |
|  |  |
|  | $v \in V_{3}$ |
|  | Two vertices in |
|  | $N[v] \cap\left(V \backslash V_{-1}\right)$ |

## Appendix A. Lookup tables: satisfaction of SDRDP constraints for $\boldsymbol{P}_{\boldsymbol{m}, 3}$

In Table A. 1 respectively Table A.2, the fact that the function $f$ defined in Theorem 5, Case 1 respectively Case 2 is a SDRDF can be read off.

## Appendix B. Results by constraint programming

Algorithm 1 shows how the results in Lemma 1 were obtained. We generated the models for the constraint programming framework MiniZinc ${ }^{5}$ in version 2.7.4, which in turn was configured to use the solver Chuffed ${ }^{6}$ in version 0.12 .0 to determine the minima for the encountered optimization problems. Jointly with several observations on it used in the present paper, the database returned by Algorithm 1 is available online. ${ }^{7}$

[^4]```
Algorithm 1 Exhaustively comparing optima.
    Input: Constraint programming solver \(S\); empty database \(D B\)
    Output: Populated database \(D B\)
    \(C \leftarrow\left\{u_{i}, v_{i} \mid i=0, \ldots, 7\right\}, C^{\prime} \leftarrow C \backslash\left\{u_{i}, v_{i} \mid i=4, \ldots, 7\right\}\)
    \(L \leftarrow\left\{\ell_{\mathrm{t}}, \ell_{\mathrm{t}, \mathrm{i}}, \ell_{\mathrm{b}}, \ell_{\mathrm{b}, \mathrm{i}}\right\}, R \leftarrow\left\{r_{\mathrm{t}, \mathrm{i}}, r_{\mathrm{t}}, r_{\mathrm{b}, \mathrm{i}}, r_{\mathrm{b}}\right\}\)
    Let \(G\) be the graph of Fig. 3a with set of vertices \(L \cup C \cup R\)
    Let \(G^{\prime}\) be the graph of Fig. 3b with set of vertices \(L \cup C^{\prime} \cup R\)
    \(Q \leftarrow[] ~ / / a l r e a d y ~ h a n d l e d ~ c o n s t e l l a t i o n s ~ m o d u l o ~ s y m m e t r y ~ b r e a k i n g ~\)
    for each \(d=\left(d_{0}, \ldots, d_{7}\right)\) in \(\{ \pm 1,2,3\}^{8}\) do
        if \(d\) contained in \(Q\) modulo symmetry breaking then continue end if
        if \(d\) places more than two labels -1 on \(L\) or on \(R\) then continue /*infeasible*/ end if
        \(Q . \operatorname{add}(d)\)
        Clear all label constraints \(\ell_{\mathrm{t}}, \ell_{\mathrm{t}, \mathrm{i}}, \ell_{\mathrm{b}}, \ell_{\mathrm{b}, \mathrm{i}}, r_{\mathrm{t}, \mathrm{i}}, r_{\mathrm{t}}, r_{\mathrm{b}, \mathrm{i}}, r_{\mathrm{b}}\) for \(S\)
        S.add_constraint \(\left(\left\langle\ell_{\mathrm{t}}, \ell_{\mathrm{t}, \mathrm{i}}, \ell_{\mathrm{b}}, \ell_{\mathrm{b}, \mathrm{i}}, r_{\mathrm{t}, \mathrm{i}}, r_{\mathrm{t}}, r_{\mathrm{b}, \mathrm{i}}, r_{\mathrm{b}}\right\rangle=\left\langle d_{0}, \ldots, d_{7}\right\rangle\right)\)
        for each \(u\) in \(L \cup C \cup R\) do
            S.add_constraint(label of \(u\) is \(\{ \pm 1,2,3\}\)-valued)
            if \(u\) not in \(\left\{\ell_{\mathrm{t}}, \ell_{\mathrm{b}}, r_{\mathrm{t}}, r_{\mathrm{b}}\right\}\) then //ignores corners
                S.add_constraint ( \(u\) satisfies (1a)-(1c) w.r.t. adjacency of \(G\) )
            end if
        end for
        minweight_C \(\leftarrow\) S.minimize()
        Clear all label constraints of \(\ell_{\mathrm{t}}, \ell_{\mathrm{t}, \mathrm{i}}, \ell_{\mathrm{b}}, \ell_{\mathrm{b}, \mathrm{i}}, r_{\mathrm{t}, \mathrm{i}}, r_{\mathrm{t}}, r_{\mathrm{b}, \mathrm{i}}, r_{\mathrm{b}}\) for \(S\)
        S.add_constraint \(\left(\left\langle\ell_{\mathrm{t}}, \ell_{\mathrm{t}, \mathrm{i}}, \ell_{\mathrm{b}}, \ell_{\mathrm{b}, \mathrm{i}}, r_{\mathrm{t}, \mathrm{i}}, r_{\mathrm{t}}, r_{\mathrm{b}, \mathrm{i}}, r_{\mathrm{b}}\right\rangle=\left\langle d_{0}, \ldots, d_{7}\right\rangle\right)\)
        for each \(u\) in \(L \cup C^{\prime} \cup R\) do
            S.add_constraint(label of \(u\) is \(\{ \pm 1,2,3\}\)-valued)
            if \(u\) not in \(\left\{\ell_{\mathrm{t}}, \ell_{\mathrm{b}}, r_{\mathrm{t}}, r_{\mathrm{b}}\right\}\) then
            S.add_constraint ( \(u\) satisfies (1a)-(1c) w.r.t. adjacency of \(G^{\prime}\) )
            end if
        end for
        minweight_Cprime \(\leftarrow\) S.minimize()
        delta \(\leftarrow\) minweight_C - minweight_Cprime
        \(D B\). insert \(\left(\left\langle d_{0}, \ldots, d_{7}\right\rangle\right.\), minweight_C, minweight_Cprime, delta)
        if delta \(\geqslant 4\) then print("Quality-transferring constellation found:", \(d\) ) end if
    end for
```

Observation 3. For $m+4=8 \ell+r$ with $m+4 \geqslant 17$ and $r \in\{1,5\}$, consider $P_{m+4,1}$ with an optimal SDRDF f defined on it. Let $W_{\text {bdry }}:=w_{f}\left(\left\{u_{-1}, u_{-2}, v_{-1}, v_{-2}\right\} \cup\left\{u_{8}, v_{8}, u_{9}, v_{9}\right\}\right)$ and assume $W_{\text {cntr }}:=w_{f}\left(\left\{u_{j}, v_{j} \mid j=0, \ldots, 7\right\}\right) \geqslant 10$. Set $W_{t}:=W_{\text {cntr }}+W_{\text {bdry }}+$ $w_{f}\left(\left\{u_{-3}, v_{-3}\right\}\right)$. Suppose that for any $i \in \mathbb{Z}_{m+4}$, we have $w_{f}\left(\left\{u_{i+j}, v_{i+j} \mid j=0, \ldots, 7\right\}\right) \geqslant 8$. Then, the following assertions hold.
(i) For $r=5$, either f on $P_{m+4,1}$ has the quality-transferring property or there exists a 2×13 subblock in the vicinity of $\left\{v_{-1}, u_{-1}\right\}$ whose cumulative weight is at least 15 .
(ii) For $r=1$, either f on $P_{m+4,1}$ has the quality-transferring property or there exists a 2×9 subblock in the vicinity of $\left\{v_{-1}, u_{-1}\right\}$ whose cumulative weight is at least 11 .

Proof. (i) Case 1. $W_{\text {cntr }}+W_{\text {bdry }} \geqslant 17$. Then, as $f\left(u_{-3}\right)+f\left(v_{-3}\right) \geqslant-2$, we have that $\left\{u_{-3}, v_{-3}, u_{-2}, v_{-2} \ldots, u_{9}, v_{9}\right\}$ is a 2×13 subblock of weight at least 15 .

Case 2. $W_{\text {cntr }}+W_{\text {bdry }}=16$.
Subcase $2.1\left\{u_{-1}, u_{-2}, v_{-1}, v_{-2}\right\} \subseteq V_{-1} \cup V_{1}$ or $\left\{u_{8}, u_{9}, v_{8}, v_{9}\right\} \subseteq V_{-1} \cup V_{1}$ applies.
We can just extend the $\left\{u_{-2}, v_{-2}, \ldots, u_{9}, v_{9}\right\}$-induced subblock to a 2×13 subblock by taking into consideration the additional vertices u_{-3}, v_{-3} when $\left\{u_{-1}, u_{-2}, v_{-1}, v_{-2}\right\} \subseteq V_{-1} \cup V_{1}$, otherwise choosing the vertices u_{10}, v_{10}. Note that this principle of extension ensures that the cumulative weight of the additionally considered vertices is necessarily at least 4 (both vertices in $V_{-1} \cup V_{1}$ need to be defended by at least a 2-labeled neighbor). Consequently, the weight of our considered 2×13 subblock is at least 20 .

Subcase 2.2 Negation of Subcase 2.1, i.e., $\left\{u_{-1}, u_{-2}, v_{-1}, v_{-2}\right\} \cap\left\{u_{8}, u_{9}, v_{8}, v_{9}\right\} \cap\left(V_{2} \cup V_{3}\right) \neq \emptyset$.

Table B. 3
Lower bounds (LBs) are summed up to obtain a total lower bound for W_{t} (last column).

Upon symmetry breaking, just five label constellations meet this particular subcase: They all have in common that $\left\{u_{-1}, v_{-1}\right\} \subseteq V_{-1}$ and $f\left(u_{9}\right)+f\left(v_{9}\right) \geqslant 3$.

We focus on the 2×12 subblock $B:=\left\{u_{-1}, v_{-1}, \ldots, u_{10}, v_{10}\right\}$, which results from a right-shift ${ }^{8}$ of the 2×12 subblock $\left\{u_{-2}, v_{-2}, \ldots, u_{9}, v_{9}\right\}$. By construction, the lefter-most column of B consists of vertices in V_{-1}, while the column preceding the last column has a cumulative weight of at least 3 . It turns out by considering exhaustively all cases that—regardless of the labels assigned to the remaining vertices in $\left\{u_{0}, v_{0}, u_{10}, v_{10}\right\}$-the subblock B has the quality-transferring property.

Case 3. $W_{\text {cntr }}+W_{\text {bdry }} \leqslant 15$.
Subcase 3.1. $\left\{u_{-1}, u_{-2}, v_{-1}, v_{-2}\right\} \subseteq V_{-1} \cup V_{1}$ or $\left\{u_{8}, u_{9}, v_{8}, v_{9}\right\} \subseteq V_{-1} \cup V_{1}$ applies.
Note that for all label-constellations for vertices in $\left\{u_{-1}, u_{-2}, v_{-1}, v_{-2}\right\} \cup\left\{u_{8}, u_{9}, v_{8}, v_{9}\right\}$ of this subcase, we have $W_{\text {cntr }}+W_{\text {bdry }} \geqslant 12$. Then, apparently (as in Subcase 2.1), either u_{-2}, v_{-2} or u_{9}, v_{9} need to be defended by u_{-3}, v_{-3} respectively by u_{10}, v_{10}, i.e., these new defending vertices must have cumulative weight at least 4 such that we face a 2×13 subblock of weight at least 16 .

Subcase 3.2. Negation of Subcase 3.1, i.e., $\left\{u_{-1}, u_{-2}, v_{-1}, v_{-2}\right\} \cap\left\{u_{8}, u_{9}, v_{8}, v_{9}\right\} \cap\left(V_{2} \cup V_{3}\right) \neq \emptyset$.
Exhaustively one can see that this subcase occurs only when, after symmetry breaking, one of the six constellations of labels from Table B. 3 applies. For each of these, the $\left\{u_{-3}, v_{-3}, \ldots, u_{9}, v_{9}\right\}$-induced subblock of dimensions 2×13 has a guaranteed lower bound of 15 ; again, see Table B.3.
(ii) Case 1. There exists $t \in\{-1,8\}$ such that $w_{f}\left(\left\{u_{t}, v_{t}\right\}\right)+w_{f}\left(\left\{u_{0}, v_{0}, \ldots, u_{7}, v_{7}\right\}\right) \geqslant 11$.

The 2×9 subblock induced by the vertex subset $\left\{u_{t}, v_{t}\right\} \cup\left\{u_{0}, v_{0}, \ldots, u_{7}, v_{7}\right\}$ has cumulative weight at least 11 .
Case 2. For all $t \in\{-1,8\}$ we have that $w_{f}\left(\left\{u_{t}, v_{t}\right\}\right)+w_{f}\left(\left\{u_{0}, v_{0}, \ldots, u_{7}, v_{7}\right\}\right)<11$.
For f on $P_{m+4,1}$ not having the quality-transferring property, this situation is only possible when f modulo symmetry breaking satisfies

$$
\left[\begin{array}{llll}
f\left(v_{-2}\right) & f\left(v_{-1}\right) & f\left(v_{8}\right) & f\left(v_{9}\right) \tag{B.1}\\
f\left(u_{-2}\right) & f\left(u_{-1}\right) & f\left(u_{8}\right) & f\left(u_{9}\right)
\end{array}\right]=\left[\begin{array}{llll}
1 & -1 & -1 & 1 \\
3 & -1 & -1 & 3
\end{array}\right]
$$

We now show that the present scenario implies that we can spot a 2×12 subblock testifying the quality-transferring property: Indeed, the neighboring 2×12 subblock resulting from a right-shift has this property: It is induced by $\left\{u_{-1}, v_{-1}, \ldots, u_{10}, v_{10}\right\}$ and we know for it that $\left\{u_{-1}, v_{-1}\right\} \subseteq V_{-1}$ and $\left\{f\left(u_{9}\right), f\left(v_{9}\right)\right\}=\{1,3\}$. Finally, we note that all such 2×12 subblocks have the quality-transferring property (exhaustively, we see that the behavior is invariant from the fact how the vertices $\left\{u_{0}, v_{0}, u_{10}, v_{10}\right\}$) are labeled).

Observation 4. Let $L, R, C, C^{\prime}, f, f^{\prime}$ be defined as in Lemma 1.
(i) If f furthermore satisfies the constraints $f\left(r_{\mathrm{t}, \mathrm{i}}\right)=f\left(r_{\mathrm{b}, \mathrm{i}}\right)=3$ and $f\left(r_{\mathrm{t}}\right)=f\left(r_{\mathrm{b}}\right)=-1$, then f automatically guarantees that $w_{f}(C)-4=w_{f^{\prime}}\left(C^{\prime}\right)$
(ii) Let $m \geqslant 9$ be odd. If f is an optimal SDRDF for the grid graph $G_{2, m}$ with the additional property that $f\left(u_{m-2}\right)=f\left(v_{m-2}\right)=3$ and $f\left(u_{m-1}\right)=f\left(v_{m-1}\right)=-1$, then $w_{f}\left(G_{2, m}\right) \geqslant m+1$, when $m \equiv 1(\bmod 4)$, otherwise, when $m \equiv 3(\bmod 4), w_{f}\left(G_{2, m}\right) \geqslant m$.

Proof. (i) After symmetry breaking there are 129 cases fitting these constraints. These all satisfy $w_{f}(C)-4=w_{f^{\prime}}\left(C^{\prime}\right)$.
(ii) We show the assertions by complete induction: The base cases $\gamma_{\mathrm{sdR}}\left(G_{2,9}\right)=10$ for $m \equiv 1(\bmod 4)$ and $\gamma_{\mathrm{sdR}}\left(G_{2,11}\right)=11$ for $m \equiv 3(\bmod 4)$ are shown exhaustively. Our induction hypothesis is the claim stated in the assertion (ii). For the induction step

[^5]we show that $\gamma_{\mathrm{sdR}}\left(G_{2, m+4}\right) \geqslant \gamma_{\mathrm{sdR}}\left(G_{2, m}\right)+4$: Let f be the function testifying $\gamma_{\mathrm{sdR}}\left(G_{2, m+4}\right)=w_{f}\left(G_{2, m+4}\right)$. On f, the argument from Lemma 2 (suitable removal of vertices and addition of two edges) can be applied on the righter-most 2×12 subblock $\left\{u_{i}, v_{i} \mid i=\right.$ $m-12, m-11, \ldots, m-1\}$: It shows that whenever $w_{f}\left(G_{2, m+4}\right)$ is strictly better than $m+4+1$ for $m \equiv 0(\bmod 4)$ or better than $m+4$ for $m \equiv 3(\bmod 4)$ in the assertion, it would imply the possibility to attain a strictly better bound than the proven optimum on $G_{2, m}$ (cf. (i))-yielding a contradiction: This means, for $m \equiv 1(\bmod 4)$, we must necessarily have $\gamma_{\mathrm{sdR}}\left(G_{2, m+4}\right) \geqslant m+4+1$, and, for $m \equiv 3$ $(\bmod 4)$, we have $w_{f}\left(\boldsymbol{G}_{2, m+4}\right) \geqslant m+4$. This concludes our inductive step.

Appendix C. Optimal labeling schemes for $\boldsymbol{G}_{\mathbf{2 , m}}$

Fig. C.8. Optimal labeling scheme for grid graphs depending on the congruence class of modulo 4. All schemes have in common that a periodically repeating pattern of labeled 2×4 grid graphs is flanked from left and/or right by differently labeled grid graphs.

References

[1] H. Abdollahzadeh Ahangar, M. Chellali, S.M. Sheikholeslami, Signed double Roman domination in graphs, Discrete Appl. Math. 257 (2019) 1-11.
[2] H. Abdollahzadeh Ahangar, M. Chellali, S.M. Sheikholeslami, Signed double Roman domination of graphs, Filomat 33 (1) (2019) 121-134.
[3] J. Amjadi, H. Yang, S. Nazari-Moghaddam, S.M. Sheikholeslami, Z. Shao, Signed double Roman k-domination in graphs, Australas. J. Comb. 72 (2018) 82-105.
[4] J. Amjadi, F. Pourhosseini, Signed double Roman domination numbers in digraphs, An. Univ. Craiova, Math. Comput. Sci. Ser. 48 (2) (2021) 194-205.
[5] R.A. Beeler, T.W. Haynes, S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23-29.
[6] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (1-3) (2004) 11-22.
[7] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, P.J. Slater, Signed domination in graphs, in: Graph Theory, Combinatorics and Applications, vol. 1, 1995, pp. 311-322.
[8] A.T. Egunjobi, T.W. Haynes, Perfect double Roman domination of trees, Discrete Appl. Math. 284 (2020) 71-85.
[9] F. Ghaffari, B. Bahrak, S.P. Shariatpanahi, A novel approach to partial coverage in wireless sensor networks via the Roman dominating set, IET Netw. 11 (2) (2022) 58-69.
[10] D. Gonçalves, A. Pinlou, M. Rao, S. Thomassé, The domination number of grids, SIAM J. Discrete Math. 25 (3) (2011) 1443-1453.
[11] J.H. Hattingh, M.A. Henning, P.J. Slater, The algorithmic complexity of signed domination in graphs, Australas. J. Comb. 12 (1995) $101-112$.
[12] M.A. Henning, N.J. Rad, On α-total domination in graphs, Discrete Appl. Math. 160 (7-8) (2012) 1143-1151.
[13] T. Kikuno, N. Yoshida, Y. Kakuda, The NP-completeness of the dominating set problem in cubic planar graphs, Trans. Inst. Electron. Commun. Eng. Jpn. E 63 (6) (1980) 443-444.
[14] A.V. Kostochka, B.Y. Stodolsky, On domination in connected cubic graphs, Discrete Math. 304 (1-3) (2005) 45-50.
[15] A. Pagourtzis, P. Penna, K. Schlude, K. Steinhöfel, D.S. Taylor, P. Widmayer, Server placements, Roman domination and other dominating set variants, in: Foundations of Information Technology in the Era of Network and Mobile Computing: IFIP 17th World Computer Congress-TC1 Stream/2nd IFIP International Conference on Theoretical Computer Science (TCS 2002), 2002, Montréal, Québec, Canada, Springer, 2002, pp. 280-291.
[16] M. Rao, A. Talon, The 2-domination and Roman domination numbers of grid graphs, Discrete Math. Theor. Comput. Sci. 21 (2019).
[17] B. Reed, Paths, stars and the number three, Comb. Probab. Comput. 5 (3) (1996) 277-295.
[18] F. Rossi, P. Van Beek, T. Walsh, Handbook of Constraint Programming, Elsevier, 2006.
[19] Z. Shao, P. Wu, H. Jiang, Z. Li, J. Žerovnik, X. Zhang, Discharging approach for double Roman domination in graphs, IEEE Access 6 (2018) 63345-63351.
[20] I. Stewart, Defend the Roman empire!, Sci. Am. 281 (6) (1999) 136-138.
[21] Y. Zheng, J. Wang, Q. Feng, Kernelization and lower bounds of the signed domination problem, in: Frontiers in Algorithmics and Algorithmic Aspects in Information and Management: Third Joint International Conference, FAW-AAIM 2013, Dalian, China, 2013. Proceedings, Springer, 2013, pp. 261-271.

[^0]: * Corresponding author.

 E-mail addresses: eiurlano@ac.tuwien.ac.at (E. Iurlano), tatjana.zec@pmf.unibl.org (T. Zec), marko.djukanovic@pmf.unibl.org (M. Djukanovic), raidl@ac.tuwien.ac.at (G.R. Raidl).
 https://doi.org/10.1016/j.amc.2024.128612
 Received 2 August 2023; Received in revised form 6 February 2024; Accepted 15 February 2024
 0096-3003/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

[^1]: ${ }^{1}$ The lower bound also applies for non-connected cubic graphs [3, Proposition 2].

[^2]: ${ }^{2}$ I.e., f and f^{\prime} can both not be improved by updating their values just on C and C^{\prime}, respectively.
 ${ }^{3}$ Entry-wise equality of 2×4 arrays is meant in (13).

[^3]: ${ }^{4}$ Formally we substitute each label of u_{i} and v_{i} by the label of u_{m-1-i} and v_{m-1-i}, respectively, $i=0, \ldots, m-1$. Bounds proven for this labeling clearly also apply for the non-flipped variant of the labeling.

[^4]: ${ }^{5}$ https://www.minizinc.org/.
 ${ }^{6}$ https://github.com/chuffed/chuffed.
 7 https://www.ac.tuwien.ac.at/files/resources/instances/sdrdp/queries_sdrdp.zip.

[^5]: ${ }^{8}$ Modulo symmetry breaking we can here assume a right shift.

