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ABSTRACT

This paper deals with the problem of finding very compact arrangements of a given set of
arbitrarily shaped two-dimensional objects. Existing techniques utilizing genetic algorithms
(GAs) are discussed. A new approach based on evolution strategies (ESs) and improved by
a local optimization technique called skillful genotype decoding (SGD), which avoids infeasible
and meaningless solutions, is introduced. In general, the evolution strategy converges to better
solutions than comparable GA based techniques known to the author.

INTRODUCTION

In material processing, it is a very hard optimization task to find the most compact arrange-
ments for arbitrarily shaped two-dimensional objects. One application is to cut various parts
from a given raw material. The arrangement searched for should be as tight as possible so
that material waste is minimized. Such problems occur for example in steel or tailor mills.
Depending on a concrete application, objects may be placed and rotated arbitrarily or various
restrictions may be given (e.g. rotation only in 90 degree steps, only for some objects, or gener-
ally not allowed). Another area where this class of optimization problems occurs is the design
of electronic circuits: Differently shaped electronic parts need to be placed on an integrated
circuit or printed board with the goal to get the chip or board area as small as possible. Be-
sides minimizing the chip or board size, a very important goal in this application is to make
connections between components as short as possible.

In literature, this class of optimization problems is often referred to as cutting, packing, facility
layout or facility arrangement problem. Many different approaches to get good solutions can



Figure 1: A solution to the cutting problem created by a traditional approach which arranges
rectangular bounding boxes of arbitrarily shaped objects

Evolutionary Algorithm:
P ← set of random solutions;
determine fitness values for all solutions (P );
while not(termination condition) do

QS ← select parent solutions (P );
QR ← recombine parents (QS);
P ← mutate offsprings (QR);
determine fitness values for all solutions (P );

end

Figure 2: Basic evolutionary algorithm

be found in literature, but unfortunately most of them only deal with rectangular objects, see
e.g. [3, 16], floorplanning : [5, 10, 11, 17]. The traditional way to apply these algorithms to
arbitrarily shaped objects is to arrange bounding boxes of all objects. But depending on the
objects’ shapes, the use of bounding boxes may introduce significant material waste, and a
pretty good solution for the bounding boxes is often far from optimal for the actual shapes, see
Fig. 1.

EVOLUTIONARY ALGORITHMS

Nearly three decades of research and applications have clearly demonstrated that the mimicked
search process of natural evolution can yield very robust, direct computer algorithms for difficult
optimization tasks, although these imitations are crude simplifications of biological reality.
These evolutionary algorithms (EAs) are based on the collective learning process within a
population of individuals, each of which represents a search point in the space of potential
solutions to a given problem, see Fig. 2. The population is initialized arbitrarily, and it evolves
towards better and better regions of the search space by means of randomized processes of
selection, mutation, and recombination. A fitness function evaluates search points, and the
selection process favours those individuals of higher fitness to reproduce more often than worse
individuals. The recombination mechanism allows the mixing of parental information while
passing it to their descendants, and mutation introduces innovation into the population. For a
general introduction into the practice and theory of EAs see [2, 7, 12].

There are some variants of EAs which mainly differ in the preferred methods of encoding so-



lutions and doing selection, recombination and mutation. One class of EAs is called genetic
algorithms, see [6, 8, 9, 12]. According to [8], solutions are typically encoded as binary strings,
called gene strings (or chromosomes). The selection is usually a random process where a solu-
tion is selected as parent with a probability proportional to its fitness value. The recombination
exchanges randomly selected parts of two parents’ gene strings, and mutation flips a random
element of this string.

GAs were already successfully applied to cutting problems in [4, 5, 10, 13, 14, 15, 16, 17]. While
[5, 10, 16, 17] concentrate only on rectangular objects introducing the problems discussed above
when applied to bounding boxes of arbitrary shapes, [4, 13, 14, 15] actually deal with arbitrarily
shaped objects. [4] uses a two-dimensional binary chromosome in which the positions and pos-
sible orientation values are encoded. Special recombination and mutation operators are defined
to improve the performance. [13] introduces another GA which uses binary encoding of object
positions (no rotations are possible) and an improved varying fitness function. Unfortunately,
both methods have problems with the large portion of infeasible and meaningless solutions
they generate during the search: Many solutions contain overlapping objects or objects that
are not located side by side but are dispersed over the whole area with only few connections. To
guide the search to feasible solutions, the two approaches mentioned add penalties according
to overlapping areas to fitness values of infeasible solutions. But note that this technique does
not guarantee feasibility of a final solution.

In most cases it is definitely more efficient to look for an encoding for the problem’s solutions
and/or appropriate operators for the GA which only produce feasible and meaningful solutions.
In our previous work [14, 15], a GA similar to [13] was enhanced by a mechanism called
skillful genotype decoding (SGD). This new mechanism improves the performance of the GA
essentially by avoiding overlapping objects and therefore infeasible solutions. Furthermore, each
arrangement is locally optimized during SGD by moving shapes together. SGD is performed
once for every new solution before fitness calculation.

Evolution strategies (ESs) are another class of EAs, see [1, 2, 9, 7]. This kind of optimization
method is especially useful for the optimization of difficult multimodal numerical functions.
The main difference to GAs is the fact that numerical parameters of a solution are not encoded
in a binary gene string but in a vector of floating point or integer values. Furthermore, the
selection is usually defined as simply choosing the best offsprings of a population and is therefore
deterministic. While recombination plays an essential role in GAs, it is not always needed and
useful in ESs. Mutation is the primary operator of ESs for driving the search.

A new approach to solving cutting problems using a specialized evolution strategy which is
again supported by SGD will be outlined in the following section.

AN EVOLUTION STRATEGY FOR THE CUTTING PROBLEM

To apply an ES to the cutting problem, solutions must be encoded by vectors of floating point
or integer values. For each object i (i = 1 . . . n) two coordinate values xi and yi denote the
so-called original position. An additional orientation transformation value oi is used for each
object which may be rotated or mirrored. In our experiments, rotation in 90 degree steps and



1.

3.

2.

4.

1.

2.

3.

4.

(x1,y1)

(x2,y2)

(x4,y4)
(x3,y3)

(0,0)

(0,0)

(0,0)

(0,0)

x2
y2
o2

x1
y1
o1 orientation

orig. position

a solution’s
parameter vector: according to

distances to (0,0):

xn
yn
on

a) order objects
at (0,0):

(0,0)

c) add 2nd object and d) add 3rd object and
move it towards first: move it towards others:

b) place 1st object

e) add last object

towards others:
and move it

Figure 3: Encoding solutions and skillful genotype decoding (SGD)

mirroring were allowed individually for each object. oi therefore denotes one of eight possible
Manhattan orientations.

Placing all objects at their original positions will in general result in infeasible solutions due to
overlapping objects. In [14, 15], skillful genotype decoding has been proposed to modify object
positions in such a way that solutions are locally optimized and overlap-freeness and therefore
feasibility can be guaranteed. SGD can also be applied to the ES, see Fig. 3: All objects are
first ordered according to their distances to the origin (0,0). The first object is then simply
placed at the origin. Each other object is placed as follows: First it is added outside of the
bounding box of all previously placed objects maintaining the original direction towards (0,0).
Then the object starts moving (“floating”) towards other objects in a very specific way, always
avoiding collisions. Therefore, floating shifts objects close together leading to more meaningful
solutions. See [14, 15] for a detailed description of the floating mechanism.

Fig. 4 shows the pseudo code of the ES adapted to the cutting problem. As in [14, 15], the



(µ, λ)–Evolution Strategy:

P (0) ← set of µ random solutions;
apply SGD and determine fitness values (P (0));
t ← 0;
while not(termination condition) do

t ← t + 1;
Q(t) ← λ copies of randomly chosen solutions from Pt−1;
S(t) ← mutate (Q(t));
apply SGD and determine fitness values (S(t));
P (t) ← select µ best offsprings from S(t);

end

Figure 4: Evolution strategy for the cutting problem

following fitness function is used to evaluate a solution s after SGD:

F (s) ← MW ·
n∑

i=1

√
x2

i + y2
i · Ai (to be minimized) (1)

The objects’ final distances to (0,0) are weighted with the object areas Ai, added up, and
multiplied by the material waste MW (which is the area of the bounding box of all objects
minus the sum of all object areas). This fitness measure has the advantage of being dependent
on all objects and not just the outermost, as it would be the case if only MW were chosen. For
more details, see [14, 15].

Note that no recombination operator is used in the proposed ES. Our tests have shown that
the ES converges faster by only regarding mutation. The mutation operator, which modifies an
existing solution randomly, is implemented as usual in ESs (see [1, 2, 9]): A normally distributed
random offset is added to each component xi and yi of a solution’s parameter vector. Smaller
changes are therefore more likely than larger ones. Standard deviations of normal distributions
are selected using an extended version of Rechenberg’s 1/5–rule, see [2]. Orientation values oi

are set to new random values with a probability which also adapts according to an algorithm
similar to Rechenberg’s 1/5–rule.

RESULTS

Fig. 5 shows examples for final shape arrangements created by a (15,100)-ES with and without
SGD. The CPU times of both runs were limited to 180min. All simulations were run on a
133MHz Pentium PC using Linux and GNU-C++. Note that infeasible solutions created by
the ES without SGD were penalized by adding a term to the fitness function that depends on
the total overlapping area.

Various test cases were used to examine the efficiency of the ES-approach compared to the
GA in [14, 15]. Results show that in general the proposed ES converges slightly faster towards
good solutions than the GA. Final solutions of the ES are usually more compact and therefore
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Figure 5: Typical final solutions to a cutting problem with 30 objects determined by a (15,100)-
ES without SGD (a) and with SGD (b) after 180min CPU time

Used EA Bounding box area Material waste Total overlapping area
GA without SGD 47982 17155 (= 35.75%) 270
ES without SGD 45032 14205 (= 31.54%) 234
GA with SGD 37217 6390 (= 17.17%) –
ES with SGD 36799 5927 (= 16.22%) –

Table 1: Average values for final solutions calculated out of 15 runs per EA, 180min CPU time
per run

better than comparable GA-solutions. One reason for the observed better performance of the
ES seems to be the direct use of floating point/integer values. Furthermore, it seems that the
mutation operator of the ES is not as disruptive and therefore better suited than the GA’s
combination of crossover and mutation. See Table 1 for an average performance comparison
between a (15,100)-ES and the GA with and without SGD. In these experiments, the same set
of 30 shapes as in Fig. 5 was used.

CONCLUSIONS

Evolutionary algorithms have shown their suitability to find compact arrangements for sets of
arbitrarily shaped objects. A GA has been significantly improved by introducing SGD as a
local optimization technique to avoid infeasible and meaningless solutions. Latest experiments
have shown that even better results are possible using an ES supported by SGD and only
normally distributed random mutation instead of a GA with its binary parameter encoding
and recombination as its primary operator. Again, SGD proved to be very substantial to
always getting feasible final solutions of high quality.
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