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Abstract Network virtualization is a main paradigm of Future Internet research. It
allows for automatic creation of virtual networks with application specific resource
management, routing, topology and naming. Since those virtual networks need to
be implemented by means of the underlying physical network, the Virtual Network
Mapping Problem (VNMP) arises. In this work, we introduce the Virtual Network
Mapping Problem with Delay, Routing and Location Constraints (VNMP-DRL), a
variant of the VNMP including some practically relevant aspects of Virtual Net-
work Mapping that have not been considered before. We describe the creation of
a benchmark set for the VNMP-DRL. The main goal was to include VNMP-DRL
instances which are as realistic as possible, a goal we met by using parts of real
network topologies to model the physical networks and by using different classes of
virtual networks to model possible use-cases, instead of relying on random graphs.
As a first approach, we solve the VNMP-DRL benchmark set by means of a multi-
commodity flow integer linear program.

Key words: Virtual Network Mapping, Network Virtualization, Integer Linear Pro-
gramming, Multicommodity Flow

1 Introduction

Network virtualization has been identified as a main paradigm of Future Internet
research [3, 4] because it helps to overcome the ossification of the internet [15].
In this context, ossification means that it is very hard or even impossible to re-
place or fundamentally change a widespread technology, such as internet protocols.
With the help of virtualization, such changes can be implemented in an incremen-
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tal and non-disruptive manner. Another viewpoint is that virtualization is not only
useful to switch technologies, but allows the coexistence of different technologies
with different tradeoffs, each targeting a different user group. Network virtualiza-
tion techniques have already been successfully used in scientific network testbeds
such as GENI [2], PlanetLab [8] or G-Lab [17]. Its area of application is the split-
ting of a shared underlying network infrastructure (substrate) into virtual networks
(slices), which are under the full control of different research groups for their exper-
iments. The properties of the slices can be controlled by the experimenters and are
not simply the result of the used substrate network. It is even possible to implement
custom resource management, routing and naming on a per slice basis. One main
idea of Future Internet research is that these mechanisms can be directly transferred
to the internet, to be able to create application specific virtual networks, specifically
tailored to each application. Network virtualization also enables application spe-
cific choice of internet service provider, depending on the network characteristics of
those providers and the application’s requirements.

In such a scenario, the question naturally arises of how to map a set of virtual net-
works, each with its specific performance requirements, onto the existing network,
which is the core of the Virtual Network Mapping Problem (VNMP). As is often the
case, the problems are hidden in the details. For the VNMP, there is no standard set
of requirements of virtual networks or properties of the substrate network, or even
a clearly specified aim. For our work, we use the common properties of bandwidth
(supplied by links of the substrate network and required by links of virtual net-
works) and CPU power (supplied by the substrate nodes and required by the virtual
network nodes to implement custom protocols). In addition, we use communication
delay on arcs (transporting data across a link in the substrate network incurs a delay
and each virtual link has a specified maximum allowed value for such delay) and
routing capacity on nodes (in most cases, routers can not route the full bandwidth
with which they are connected). One additional class of constraints we consider is
the possible placement of virtual nodes. In practice, users of a virtual network are
located at specific positions in the substrate network and cannot be relocated to posi-
tions where it would be more suitable. Our goal will be to use the cheapest subset of
substrate resources to satisfy all virtual network demand. We call this problem the
Virtual Network Mapping Problem with Delay, Routing and Location constraints
(VNMP-DRL).

Formally, the VNMP-DRL is defined as follows: We are given a directed multi-
graph G = (V,A) with node set V and arc set A representing the substrate network.
Additionally given is the available CPU power of a substrate node ci ∈ N+, ∀i ∈V ,
the amount of bandwidth units that can be routed by a substrate node ri ∈ N+, ∀i ∈
V , the cost of using a substrate node as host for virtual nodes pV

i ∈ N+, ∀i ∈ V ,
the delay of a substrate arc de ∈ N+, ∀e ∈ A, the available bandwidth of a sub-
strate arc be ∈ N+, ∀e ∈ A and the cost of using a substrate arc to implement vir-
tual connections pA

e ∈ N+, ∀e ∈ A. The slices are given by (the components of)
the directed graph G′ = (V ′,A′) (the virtual network graph), with node set V ′ and
arc set A′. Associated with the slices is the required CPU power by a virtual node
ck ∈ N+, ∀k ∈ V ′, the allowed delay on the path implementing a virtual connec-
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tion d f ∈ N+, ∀ f ∈ A′ and the required bandwidth on the path implementing a
virtual connection b f ∈ N+, ∀ f ∈ A′. The set M ⊆V ′×V defines the allowed map-
pings between virtual and substrate nodes. The functions s : A∪A′ → V ∪V ′ and
t : A∪A′→V ∪V ′ associate each arc of G and G′ with their source and target nodes
respectively. The objective is to find an assignment of the virtual nodes to substrate
nodes (subject to the allowed mappings and CPU constraints) and for each virtual
arc a path in the substrate network from the location of the virtual source node to
the location of the virtual target node in the substrate network (subject to routing,
bandwidth and delay constraints), so that the total cost of used substrate nodes and
arcs is minimized.

2 Related Work

The VNMP has been solved in diverse variants [6, 10, 11, 14, 16, 19, 20, 22] and
under various names (Virtual Network Mapping, Virtual Network Assignment, Net-
work Testbed Mapping) in the literature. The solution methods that have been ap-
plied to VNMP variants include (quadratic) mixed integer programming [6, 10, 14],
approximation algorithms [10], simulated annealing [16], distributed algorithms
[11], multicommodity flow algorithms [19, 20] or algorithms especially tailored to
the considered problem variant [22].

One type of virtual network demand considered by nearly all works is the re-
quired bandwidth, but how it is taken into account varies. One method is to use
traffic bounds to describe a whole range of bandwidth requirements that all have to
be feasibly routed (e.g. [10, 14]), another is to specify the node-to-node communi-
cation demand in the form of a traffic matrix (e.g. [19]). If another requirement is
taken into account, it is usually the required CPU processing power of each virtual
node (e.g. [20]).

In most cases, the aim of optimization is a tradeoff between the cost of the map-
ping and load balancing on the substrate nodes ([6, 11]) but also other aspects are
taken into consideration, such as reliability requirements [20], configuration costs
[14] or node and link stress (the amount of virtual nodes or links mapped to a single
substrate node or link) [22].

The considered substrate sizes vary between 20 [14] and 100 [22] nodes and are
either real topologies or generated by tools such as GT-ITM [21]. The requested vir-
tual networks are mostly random graphs and consist of about ten nodes. All the cited
works use undirected or directed graphs to model the substrate and virtual networks,
to the best of our knowledge this is the first work to consider substrate multigraphs.
We chose multigraphs because there may be multiple connections between nodes
of the substrate networks with different characteristics, and one has to be able to
represent those in a natural manner.

On the tropic of network virtualization, its application and available technologies,
see [7] for a survey.
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3 The Model

In this section we present a multicommodity flow based mixed integer programming
formulation for the VNMP-DRL. It utilizes the decision variables xki ∈ {0,1}, ∀k ∈
V ′, ∀i ∈ V to indicate where the virtual nodes are located in the substrate graph
and y f

e ∈ {0,1}, ∀ f ∈ A′, ∀e ∈ A to indicate if a virtual connection is imple-
mented by using a substrate connection. Further auxiliary decision variables are
z f

i ∈ {0,1}, ∀ f ∈ A′, ∀i ∈V to indicate that a substrate node is used to route a vir-
tual connection, uV

i ∈ {0,1}, ∀i ∈ V to indicate that a substrate node hosts at least
one virtual node and uA

e ∈ {0,1}, ∀e ∈ A to indicate that a substrate arc is used for
at least one virtual connection.

Now follows the multicommoditiy flow (MCF) based integer linear programming
model we use to solve the VNMP-DRL.

(FLOW) min ∑
i∈V

pV
i uV

i + ∑
e∈A

pA
e uA

e (1)

∑
(k,i)∈M

xki = 1 ∀k ∈V ′ (2)

∑
e∈A|t(e)=i

y f
e + xs( f )i− ∑

e∈A|s(e)=i
y f

e − xt( f )i = 0 ∀i ∈V, ∀ f ∈ A′ (3)

∑
e∈A|t(e)=i

y f
e + xs( f )i ≤ z f

i ∀i ∈V, ∀ f ∈ A′ (4)

∑
(k,i)∈M

ckxki ≤ ci ∀i ∈V (5)

∑
f∈A′

b f z f
i ≤ ri ∀i ∈V (6)

∑
f∈A′

b f y f
e ≤ be ∀e ∈ A (7)

∑
e∈A

dey f
e ≤ d f ∀ f ∈ A′ (8)

xki ≤ uV
i ∀i ∈V, ∀k ∈V ′ (9)

y f
e ≤ uA

e ∀e ∈ A, ∀ f ∈ A′ (10)
xki = 0 ∀(k, i) ∈ (V ′×V )\M (11)
xki ∈ {0,1} ∀(k, i) ∈M (12)

y f
e ∈ {0,1} ∀e ∈ A, ∀ f ∈ A′ (13)

z f
i ∈ {0,1} ∀i ∈V, ∀ f ∈ A′ (14)

Equalities (2) ensure that each virtual node is mapped to exactly one substrate
node, subject to the mapping constraints. The flow conservation constraints (3) make
sure that for each virtual connection there is a connected path in the substrate net-
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Table 1: Summary of the used variables, constants and functions of the MCF for-
mulation of the VNMP-DRL (i ∈V , e ∈ A, k ∈V ′, f ∈ A′, l ∈ A∪A′)

Symbol Meaning Symbol Meaning Symbol Meaning

G(V,A) Substrate graph G′(V ′,A′) Virtual graph xki Map node k to i
ci Av. CPU ck Req. CPU y f

e Use arc e for f
de Delay d f Max. allowed delay z f

i Use node i for f
be Av. bandwidth b f Req. bandwidth uV

i Use node i
ri Av. routing capacity M Set of allowed mappings uA

e Use arc e
pV

i Node price s(l) Source node of arc l
pA

e Arc price t(l) Target node of arc l

work. Linking constraints (4) make certain that variables z f
i are equal to one when

the corresponding node is used to route the traffic of a particular virtual connection.
Inequalities (5)–(8) ensure that the solutions are valid with regard to CPU, routing
capacity, bandwidth and delay constraints. Linking constraints (9) and (10) force
variables uV

i and uA
e to be (at least) one when the corresponding substrate node or arc

is used by any virtual node or arc. Constraints (11) exclude any forbidden mappings
from the solution. Note that while the model only includes integrality constraints for
xki, y f

e and z f
i (12)–(14), constraints (9) and (10) together with the objective function

(1) also cause variables uV
i and uA

e to be integral (and binary). Table 1 gives a short
reference of the used variables, constants and functions.

4 Generating the Benchmark-Instances

This section describes how the VNMP-DRL benchmark set was created, by first
illustrating how the components of a benchmark instance were created and then how
they were combined to form a complete instance. The main goal was to create hard
VNMP-DRL instances which are as realistic as possible, to serve as a common basis
for the comparison of different VNMP-DRL solution approaches. The benchmark
set can be obtained at [13].

4.1 Substrate Network

The substrate networks were based on real internet topology maps. The base data
came from the Rocketfuel project [18] and the scan-lucent map (the union of the
topologies measured by the SCAN [9] and Lucent [5] internet mapping projects). To
create networks of the required size, nem-0.9.6 was used to extract subgraphs which
retain the main characteristics of the source graph. In the cases where that was not
possible (when the required network size exceeded 30 percent of the source network
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size), nodes with in- and out-degree of at most one were randomly deleted until the
target size was reached. In absence of such nodes, random nodes were deleted. No
measures to ensure connectivity were taken because the source networks were not
always connected themselves.

Since the Rocketfuel graphs (rf) have assigned latencies to their arcs, those were
used as delay values de. For the graphs generated from the scan-lucent (sl) map
delay values were chosen uniformly at random between 1 and 10. Arcs which were
the only connection of a node were assigned a bandwidth be of 25. The other arcs
were assigned a bandwidth value of 25 times the minimum of the in-degree of their
source node and the out-degree of their target node, but at least 25. The routing
capacity ri of a node was calculated as the minimum of the sum of the incoming
and outgoing bandwidth. The available CPU capacity of a node ci was set to be the
same as the routing capacity. The costs of nodes and edges are chosen uniformly at
random between 1 and 20.

Figure 1 shows a generated substrate graph based upon the rf1221 topology of
size 20.
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Fig. 1: Example substrate graph of size 20, generated from the rf1221 topology map.
The node labels are the routing capacity ri and the available CPU ci, the arc labels
are the bandwidth be and the delay values de.

4.2 Slices

In this work, we used four different slice-types to represent possible use-cases in the
virtual network setting with different sets of requirements regarding needed band-
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width, needed processing power per node and maximum delay. Those types were
web slices to represent general http-traffic, stream slices to represent video stream-
ing, P2P slices to represent P2P networks and VoIP slices to represent voice chat.

Web slice The general characteristics of web slices were chosen to be low band-
width requirements, short delays (for fast responses) and no special CPU require-
ments. Web slices were modeled by a star graph, where the central node represented
a web server and the leafs were the users. All edges were assigned a bandwidth re-
quirement of 1 and a maximum allowed delay of 25. All nodes were assigned a CPU
requirement of 1, except the root node which was assigned the sum of the outgo-
ing bandwidth as CPU requirement. The allowed mapping calculated for web slices
placed the leaf nodes of the star at a random location at the edge of the substrate
network (which was defined as the set of nodes with minimal degree), while the
central node was placed at a random location at the core of the network (which was
defined as not being the edge). Figure 2a shows a generated web slice of size 5.

Stream slice The general characteristics of stream slices were chosen to be medium
to high bandwidth requirements, no relevant delay bounds and 3 units of CPU pro-
cessing power per routed bandwidth. The idea of the stream slices was to use a
random tree graph, where the root node is the source of the video stream, the leafs
are the customers receiving specific channels of the video stream and the interme-
diate nodes split the video stream and forward only the channels which are watched
by the customers. The stream splitting is the reason for the high CPU requirements
in relation to bandwidth units. This is an example of a customized routing proto-
col which delivers more features than currently possible. The delay bound of the
arcs of the stream slices was set to 1000, which effectively means that they are not
relevant. The number of channels in the video stream was chosen uniformly at ran-
dom between 10 and 20, while the total bandwidth requirement of the stream was
chosen from a discrete N(5,1) distribution, but at least 3 and at most 7. Each child
node in the stream network only received a random fraction of the channels the
parent received (between 0.3 and 1), but it was made sure that all channels that a
node received were forwarded. The bandwidth requirements of each arc were set
to d(bandwidthPerChannel∗ forwardedChannelse and the CPU requirement of each
node to three times the received bandwidth. The calculated allowed mapping for
stream slices placed the root node at a random location at the core of the substrate
network and the leaf nodes at a random location at the edge of the substrate network.
The leaf nodes were placed in a way so that the distance between siblings was less
or equal to four hops in the substrate network. The placement of the intermediate
node was not constrained, i.e. they were allowed to be mapped anywhere. Figure 2b
shows a generated stream slice of size 5.

P2P slice The general characteristics of P2P slices were chosen to be medium
bandwidth requirements, no relevant delay bounds and medium CPU requirements.
The network structure of a P2P slice was generated by the small world iterator of
the boost graph library [1], after which every arc was duplicated and reversed. The
bandwidth requirement of each arc was chosen uniformly at random between 1 and
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3, the delay bound was set to 1000 and the CPU requirement of the nodes was
chosen uniformly at random between 1 and 5. The CPU requirement was chosen
independent of the routed bandwidth to model that some traffic may be encrypted
or compressed and therefore has a higher computational demand. All nodes of the
P2P slice were only allowed to be mapped to one random node at the edge of the
substrate network. Figure 2c shows a generated P2P slice of size 5.

VoIP slice The general characteristics of VoIP slices were chosen to be medium
bandwidth requirements, medium delays and high CPU requirements. The networks
structure of VoIP slices was generated in the same way as P2P slices. The bandwidth
requirement of each arc was chosen uniformly at random between 1 and 3 and the
delay bound was set to 50. The CPU requirement was set to the minimum of incom-
ing and outgoing bandwidth, so that “super-nodes” (which route a lot of VoIP traffic)
have high CPU requirements. Figure 2d shows a generated VoIP slice of size 5.
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Fig. 2: Examples of generated slices of size 5
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4.3 VNMP-DRL Instance

To generate a complete VNMP-DRL instance, first a specific topology map is used
to create a substrate graph (in conjunction with its associated costs) of the required
size. Then the virtual graph is build by adding slices (of random type and size be-
tween 10 and 20 percent of the substrate graph size) to the virtual graph, until the
problem becomes “too hard” (see next paragraph). If that happens, the last added
slice is removed and a new one is generated and added. If this process fails to find
an addable slice 40 times in a row, the generation process is finished. From this gen-
erated instance, five variants are constructed by only using 50 to 90 percent of the
added slices (in ten percent increments, each variant includes all the slices used by
a smaller variant), so the complete generation process creates six problem instances
of incremental difficulty.

We tried different criteria to define “too hard”, for instance only solving the LP-
relaxation of FLOW and rejecting virtual graphs which cause the relaxation to be
unsolvable or only calculating the root node of the branch-and-bound tree and reject-
ing virtual graphs which are by then proven to be unsolvable. However, preliminary
runs showed that the instances that were generated in this way were either extremely
easy to solve to optimality (without branching) or provably unsolvable. Especially
for larger instance sizes the fraction of generated unsolvable instances became un-
manageable. The hardness definition we used in the end was that if CPLEX 12.2 [12]
is not able to find an integer solution after 300 seconds once in five tries, the virtual
graph is rejected as “too hard”. In each of the five trials, the sequence in which the
slices are added to the virtual graph is permuted, because preliminary runs showed
that in some cases a bad sequence can double the time needed to solve the LP relax-
ation and that time is missed afterwards when trying to find an integer solution.

The used substrate sizes for instance creation were 20, 30, 40, 50, 70 and 100.
For each of the seven topology maps (six rf and one sl) the problem generation
procedure described previously was used ten times, so in total 420 instances per size
were created, with the exception of substrate size 100, for which only 300 instances
were created because two of the rocketfuel topology maps contain less than 100
nodes.

5 Computational Results

All results presented in this section have been achieved by using CPLEX 12.2 to
solve the (FLOW) problem. Each computational experiment has been performed
on one core of an Intel Xeon E5540 multi-core system with 2.53 GHz and 3 GB
RAM per core. A time limit of 10000 seconds was used. The reported gaps are the
optimality gaps calculated by CPLEX.
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5.1 Created Benchmark-Set

The basic properties of the generated benchmark instances are shown in Table 2. It
can be seen that while the substrate grows, the number of slices contained in the
virtual network graph does not grow and for the sizes 70 and 100 is even less than
the number of slices of instances of size 20. The total size of the virtual network
however does not shrink. From this we can conclude that because larger instances
include larger slices (keep in mind that slices are created with a size between 10 and
20% of the substrate size), fewer slices can be mapped onto the substrate network,
even though it is bigger and should be able to carry more slices. Also noteworthy is
the slice composition development. From the description of the instance generation
procedure, one would expect an equal number of slice types in every virtual network
graph. It seems to be the case that it is harder to find P2P and VoIP slices that
can be mapped, than it is for the other slice types. For VoIP slices, this effect gets
worse as the substrate size grows. Also finding mappable Web slices gets harder
with increasing substrate size. The reason for this behaviour could be, that Stream
slices are not delay bound, while Web and VoIP slices are, so when the substrate
grows, so does the average delay between two points at the edge of the substrate
network and so paths within the delay bounds become more scarce.

The influence of the choice of topology source for the substrate network on the
generated benchmark instances can be seen in Table 3. Note that the average sub-
strate size for the rf1775 and rf3967 instances is smaller than those of the other
instances because those topologies were too small to create instances of size 100.
It can be seen that the sl instances are the source of the sparsest substrate graphs
in the benchmark set. This leads to the highest number of slices in the virtual net-
work graph, but web and stream slices are highly overrepresented. Also note that it
seems to be very hard to find mappable web slices when using rf3967 and rf6461 as
substrate topology source, even though it is not problematic for all other topology
sources.

Table 2: Overview of the properties of the created benchmark instances: Aver-
age size of substrate graph G = (V,A), average size of virtual network graph
G′ = (V ′,A′), average number of slices contained in G′ (#S) and average fraction
of slice types contained in the virtual network graph (Web, Stream, P2P, VoIP)

Size |V | |A| |V ′| |A′| #S Web Stream P2P VoIP
20 20 53.3 72.4 81.9 14.5 0.36 0.36 0.13 0.15
30 30 87.3 101.1 117.9 20.2 0.31 0.37 0.19 0.14
40 40 126.9 104.8 145.7 18.7 0.28 0.42 0.18 0.12
50 50 172.9 111.8 174.2 16.7 0.27 0.44 0.19 0.11
70 70 253.1 100.8 140.9 10.5 0.25 0.54 0.14 0.07

100 100 386.4 119.0 156.9 8.7 0.19 0.59 0.16 0.06
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Table 3: Influence of the chosen topology source on the created benchmark in-
stances: Average size of substrate graph G = (V,A), average size of virtual network
graph G′ = (V ′,A′), average number of slices contained in G′ (#S) and average frac-
tion of slice types contained in the virtual network graph (Web, Stream, P2P, VoIP)

Top. source |V | |A| |V ′| |A′| #S Web Stream P2P VoIP
rf1221 51.7 164.7 120.5 163.3 17.4 0.34 0.43 0.12 0.11
rf1239 51.7 202.0 75.8 95.3 11.1 0.35 0.44 0.10 0.12
rf1755 42.0 141.2 108.6 147.0 18.4 0.31 0.42 0.14 0.13
rf3257 51.7 197.4 76.5 112.9 11.3 0.29 0.38 0.19 0.14
rf3967 42.0 140.4 93.7 141.6 16.1 0.07 0.56 0.26 0.12
rf6461 51.7 207.3 73.3 113.1 11.0 0.10 0.54 0.29 0.07

sl 51.7 125.0 157.2 176.4 21.7 0.47 0.37 0.09 0.07

5.2 Solving the VNMP-DRL

The results of solving the benchmark instances with the FLOW formulation are
summarized in Table 4. It can be seen that in general, the generated instances are not
very hard to solve, with at least 74.3% instances solved to optimality per substrate
size. Interestingly, the hardest instances turned out to be those of size 50 (or 70 when
regarding the average gap). In total, the results show that up to substrate sizes of 100
nodes it is possible to solve the VNMP-DRL to proven optimality within one hour
on average.

Table 5 shows the influence of the chosen source topology on the solution charac-
teristics of the instances. Unsurprisingly, instances based on the sl topology map are
the easiest to solve, as the substrate graphs are very sparse, which reduces the rout-
ing and mapping possibilities. But also the rf instances vary a lot, which indicates
that the hardness of the VNMP-DRL is very sensitive to the choice of the substrate
topology.

The influence of the fraction of the set of slices (denoted as pS), created during
instance creation, on the hardness of the created instances is presented in Table 6.
It can be seen that the complexity of the instances can be selected very well by an
appropriate choice of pS. From another point of view this means that the more slices

Table 4: Results of solving the VNMP-DRL with the FLOW formulation: Number
of instances (# Inst.), fraction of instances solved to optimality (# Opt [%]), average
gap, average number of branch-and-bound nodes and average required CPU time

Size # Inst. # Opt [%] gap [%] BB-Nodes t [s]
20 420 100.0 0.00 53.5 8
30 420 93.8 0.12 1352.3 758
40 420 85.7 0.36 1955.3 1842
50 420 74.3 0.52 1176.8 3320
70 420 82.9 0.60 420.0 2465

100 300 90.7 0.20 218.1 1859
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Table 5: Influence of the substrate topology source: Number of instances (# Inst.),
fraction of instances solved to optimality (# Opt [%]), average gap, average number
of branch-and-bound nodes and average required CPU time

Top. source # Inst. #Opt [%] gap [%] BB-Nodes t [s]
rf1221 360 87.8 0.19 961.2 1781
rf1239 360 94.2 0.14 193.0 902
rf1755 300 80.7 0.70 2336.7 2736
rf3257 360 85.3 0.29 400.9 2087
rf3967 300 73.7 0.79 2153.1 3145
rf6461 360 89.2 0.17 644.8 1650

sl 360 100.0 0.00 24.7 20

Table 6: Influence of pS: Number of instances (# Inst.), fraction of instances solved
to optimality (# Opt [%]), average gap, average number of branch-and-bound nodes
and average required CPU time

pS # Inst. #Opt [%] gap [%] BB-Nodes t [s]
0.5 400 97.2 0.05 547.1 555
0.6 400 95.5 0.07 766.8 862
0.7 400 91.2 0.17 912.7 1449
0.8 400 85.8 0.33 941.3 1935
0.9 400 81.8 0.44 1026.1 2397

1 400 75.0 0.77 1175.4 3010

are added, the harder the instance gets. This seems like an obvious statement, but
there were some instances in the benchmark set for which the pS=0.8 or pS=0.9
variants were harder to solve than the pS=1 variant, probably because the pS=1
variants were so densely packed with slices that the number of routing possibilities
was greatly reduced.

6 Conclusion and Future Work

In this work, we introduced the Virtual Network Mapping Problem with Delay,
Routing and Location constraints (VNMP-DRL). We presented a method for cre-
ating realistic benchmark instances for this problem and solved those instances by
means of a multicommodity flow based integer linear program. Even this simple ap-
proach was able to solve more than 74% of problem instances to proven optimality
in less than one hour on average. The biggest influence on instance hardness was
shown to be the topology map used to create the instance. Larger problem instances
were not harder to solve than smaller instances on average, instances of size 100
were about as easily solved as instances of size 40. We were able to show that the
fraction of slices used of the complete set of slices found during instance creation
can be used to control instance hardness.
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Future work will include improvements of the instance creation method, so that
larger instances are actually harder than smaller instances and scaling the substrate
network size up to 1000 nodes. Another venue is the application of more advanced
ILP solution methods like branch-and-price to improve solution time and quality and
eventually of heuristic methods to solve large problem instances. One simplifying
assumption of VNMP-DRL was that the set of slices is known in advance, so future
research could target the online aspect of this problem. Another interesting research
direction could be analyzing the effect of rising delays with rising link utilization,
which is currently not modelled.
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