Automatic Generation of
2-AntWars Players with Genetic
Programming

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Computational Intelligence
eingereicht von

Johannes Infihr
Matrikelnummer 0625654

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung
Univ.-Prof. Dr. Ginther R. Raidl

Wien, 19.07.2010

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erkliarung zur Verfassung der Arbeit

Infithr Johannes
Kaposigasse 60, 1220 Wien

Hiermit erklédre ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit
— einschlieBlich Tabellen, Karten und Abbildungen —, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, 19.07.2010

(Infiihr Johannes)

Acknowledgements

In no particular order I would like to thank Univ.-Prof. Dr. Giinther R. Raidl for allowing me to
do research on a topic of my own choice and his continued support and encouragement during
the creation of this thesis. The advice that stuck with me the most was that voodoo is never a
satisfactory explanation of strange software errors. My girlfriend and my family have my eternal
gratitude for letting me code day in and day out, encouraging me when the work seemed never
ending and paying the electricity bill I racked up, and of course big thanks to everyone who
refrained from dousing me in insecticide whenever I was talking nonstop about swarming ants.

Abstract

In the course of this thesis, the feasibility of automatically creating players for the game
2-AntWars is studied. 2-AntWars is a generalization of AntWars which was introduced as
part of a competition accompanying the Genetic and Evolutionary Computation Conference
2007. 2-AntWars is a two player game in which each player has control of two ants on a
playing field. Food is randomly placed on the playing field and the task of the players is to
collect more food than the opponent.

To solve this problem a model of the behaviour of a 2-AntWars player is developed
and players are built according to this model by means of genetic programming, which is a
population based evolutionary algorithm for program induction. To show the feasibility of
this approach, the players are evolved in an evolutionary setting against predefined strategies
and in a coevolutionary setting where both players of 2-AntWars evolve and try to beat each
other.

Another core part of this thesis is the analysis of the evolutionary and behavioural dy-
namic emerging during the development of 2-AntWars players. This entails specific char-
acteristics of those players (e.g. which ant found how much food) and on a higher level their
behaviour during games and the adaption to the behaviour of the opponent.

The results showed that it is indeed possible to create successful 2-AntWars players that
are able to beat fixed playing strategies that oppose them. This is a solution to an important
problem of game designers as a well balanced game needs to have a feasible counter strategy
to every strategy and with the help of the proposed method such counter strategies can be
found automatically.

The attempt to create 2-AntWars players from scratch by letting the developed players
battle each other was also successful. This is a significant result as it shows how to auto-
matically create artificial intelligence for games (and in principle for any problems that can
be formulated as games) from scratch.

The developed solutions to the 2-AntWars problem were surprisingly diverse. Ants
were used as bait, were hidden or shamelessly exploited weaknesses of the opponent. The
population model that was chosen enabled the simultaneous development of players with
different playing strategies inside the same population without resorting to any special mea-
sures normally associated with that like explicitly protecting a player using one strategy
from a player using another one. Both mutation and crossover operators were shown to be
essential for the creation of high performing 2-AntWars players.

ii

Zusammenfassung

Im Rahmen dieser Arbeit wird die Moglichkeit der automatischen Generierung von
Spielern fiir das Spiel 2-AntWars untersucht. 2-AntWars ist eine Generalisierung von Ant-
Wars. AntWars wurde fiir einen Wettbewerb der Genetic and Evolutionary Computation
Converence 2007 erfunden. 2-AntWars ist ein Spiel fiir zwei Spieler, wobei jeder Spieler
die Kontrolle tiber zwei Ameisen auf einem Spielfeld hat. Auf diesem Spielfeld ist Futter
an zufilligen Orten platziert und die Aufgabe der Spieler ist es, mehr Futter zu finden als
der jeweilige Gegner.

Um das Problem zu 16sen wird ein Modell fiir das Verhalten eines 2-AntWars Spie-
lers entwickelt und Genetic Programming, eine populationsbasierte evolutiondre Methode
zur Programminduktion, wird verwendet um Spieler basierend auf diesem Modell zu er-
stellen. Die Machbarkeit dieses Ansatzes wird gezeigt, indem Spieler sowohl per Evolution
im Kampf gegen fixe Spielstrategien als auch per Koevolution im Kampf gegeneinander
entwickelt werden.

Ein weiterer Kernpunkt dieser Arbeit ist die Analyse der Dynamik die wéhrend der
Entwicklung der Spieler auftritt, sowohl von der evolutionidren Perspektive als auch von
den zur Schau gestellten Verhaltensweisen der Spieler her. Das beinhaltet spezielle Eigen-
schaften der Spieler (wie zum Beispiel welche Ameise wieviel Futter sammelt) aber auch
die Strategien der Spieler auf hoherer Ebene und wie sie sich an ihre Gegner anpassen.

Die Ergebnisse zeigen, dass es in der Tat moglich ist erfolgreiche 2-AntWars Spieler
zu erzeugen die in der Lage sind, fixe Strategien ihrer Gegner zu schlagen. Das ist ein Re-
sultat das vor allem fiir Spieldesign-Probleme wichtig ist, da es fiir eine gute Spiel-Balance
unumginglich ist, dass fiir jede Spielstrategie eine Gegenstrategie existiert. Mit Hilfe der
dargelegten Methode ist es moglich, solche Gegenstrategien automatisiert aufzufinden.

Der Versuch 2-AntWars Spieler von Grund auf durch Spiele gegeneinander zu entwi-
ckeln war ebenfalls von Erfolg gekront. Das zeigt, dass es moglich ist, kiinstliche Intelligenz
fiir Spiele (und im Prinzip fiir alle Probleme die als Spiele formuliert werden konnen) zu
erzeugen, ohne Spielstrategien von Hand entwerfen zu miissen.

Die Verhaltensweisen die die entwickelten 2-AntWars Spieler an den Tag legten waren
iiberraschend vielfiltig. Ameisen wurden als Kdder verwendet, versteckt und wurden ge-
nerell verwendet um Schwichen im Spiel des Gegners schamlos auszunutzen. Das gewihl-
te Populationsmodell machte die simultane Entwicklung von Spielern mit verschiedenen
Spielstrategien in derselben Population moglich, ohne dies explizit zu fordern, beispiels-
weise indem Spieler einer Strategie vor Spielern einer anderen Strategie geschiitzt werden.
Es zeigte sich, dass sowohl Mutations- als auch Crossover-Operationen fiir die Entwicklung
von leistungsfahigen 2-AntWars Spielern notwendig sind.

iii

[Abstractl

|[Zusammenfassung|

Contents

[Introduction|

(I Introduction|

|2 Genetic Programming and Coevolution|

. trategies|

(I Genetic Programming System|

4 Genetic Programming System|

4.1 The GP-Algorithm|

odelling the 2-AntWars Playe

5.1 Data'lypes|

Contents

ii

iii

55 MovementFunctions]o 34
5.6 Decision Function|. 35
CHINGS| e e 36

[T Results| 39
|6 No Adversary| 41
|6.1 Fitness development| o Lo 41
62 Beliefl 46

[63 Prediction] 47
6.4 General Performance Observations| 48
65 BestIndividuals 51
6.6 Conclusionl L 52

{7 Strategies Version 1| 53
....................................... 53
(72 ScorchedEarthl oL 60
T3 HUDE . - o o oo oo e 67

|8 Strategies Version 2| 73
3 greedy|. e e e e e e e e 73

2 rched Earthl 79

B HUEH . - - o o v oo oo e e e 84

9 Coevolutionary Runs| 91
[9.1 Run with Standard Settings| 91
9.2 Run with Asymmetric Evaluation|. 97

9 gRun| 101

9.4 Long Run with Asymmetric Evaluation| 104

{10 Special Analysis| 105
[10.1 Mixed Opponent Strategies| o 105
[10.2 Stability of Results| L 107
[10.3 Playing against Unknown Opponents|. 109

[T _Conclusionl 115
] App 119
|A Strategy Evaluation| 121
Bibliography 125

vi

Part I

Introduction

CHAPTER

Introduction

The main aim of this thesis is to generalize AntWars [1] to 2-AntWars and to show how to
automatically create artificial intelligence capable of playing this new game. 2-AntWars is a
two-player game. Each player controls two ants on a rectangular playing field and tries to collect
more randomly distributed food than the opponent. Chapter [3|on page[T1]describes the rules of
2-AntWars and how they were derived from AntWars in detail.

Being able to automatically generate competent artificial intelligence has a lot of advantages.
Since this thesis uses it to play a game, the first group of advantages directly concerns game
development. The most obvious one is to use the developed artificial intelligence as opponent for
humans in single-player games and skip the complex task of handcrafting an artificial opponent.
However, there are equally important uses for automated gameplay during the development of
a game. For instance, one of the first steps of creating a game is to define its rules. The rules
determine under which conditions certain actions are available to the player. The authors of [2]
describe two pitfalls when defining the rules of a game. The first one is that the rules are chosen
in a way that a dominant strategy, which is a sequence of actions that always leads to victory,
exists. In this situation, the player of the game simply has to execute this strategy to win, no skill
or adaption to the current game situation is required. Dominant strategies make a game boring
and as a consequence unsuccessful. The second pitfall is the availability of actions that are
never advantageous. After the player learns of them he will of course avoid them, making their
definition and implementation a waste of time and effort. The only way to avoid those pitfalls
(especially for games with complex rules) is to play the game and try to find dominant strategies
and useless actions. This is a costly and time intensive process if humans are involved. With a
method to automatically create players for a game, the search for dominant strategies and useless
actions can be sped up immensely. If a player cannot be beaten by any other player, a dominant
strategy has been discovered. If an action is never used by any of the players, a useless action
has been uncovered. With an automated method to create players it becomes easier to try a lot
of different rules and evaluate their effect on the set of successful strategies. Improved testing
of the game implementation is an additional benefit. Salge et al. [2] describe the development
of strategies that crashed the game because that meant that they did not lose it. Automatically

3

CHAPTER 1. INTRODUCTION

created strategies will try everything that might give them an advantage, without being as biased
as human players. As a result, game situations that were not anticipated by the game designer
and subsequently are not handled correctly by the game logic may arise. This of course does
not mean that testing by humans becomes unnecessary, there are whole classes of problems that
automatic strategy generation cannot uncover. For example, the method presented in this thesis
uses the set of actions that the game rules specify to build strategies. It does not know what the
actions are supposed to do, it simply chooses actions that are beneficial. If an action that should
be beneficial is actually detrimental because of an implementation error, the developed strategies
will try to work around that and the error remains unnoticed.

Automatic generation of artificial intelligence is not only applicable in various stages of
game development. It can also be used to solve real world problems, especially if they can be
formulated as a game or an agent based description is available. Imagine two competing com-
panies A and B. A wants to lure customers away from B. It has various actions at its disposals.
It can improve the own product, start a marketing campaign and place advertisements in various
media and at different physical locations or denounce the products of B. B can react in a lot of
different ways to this and A wants to be able to anticipate possible reactions. Based on previous
attempts to improve the market share, A has an elaborate model of the behaviour of the potential
customers. The game is based on this model. A uses its planned strategy as one player and
an automatically generated strategy as approximation of the behaviour of B. The company that
increases its market share wins. The automatically created strategies for B give A an insight
into the weaknesses of its own strategy. The game can also be reversed, the current marketing
strategy of B is implemented as a fixed player and strategies of A are automatically developed
so that A has a good answer to B’s marketing.

The method used in this thesis to automatically create gaming strategies is genetic program-
ming, an evolutionary algorithm that applies the principles of biological evolution to computer
programs. Using genetic programming to develop players of a game is not a particularly new
idea. Even the first book of John Koza [3]] (the inventor of genetic programming) contained the
automatic generation of a movement strategy for an ant that that tries to follow a path of food
(artificial ant) and a lot of research has been done since then. Already mentioned was the work
presented in [2] where genetic programming was used to develop players of a turn based strat-
egy game. In [4] space combat strategies were created. Other forms of predator-prey interaction
were analyzed in (S]] and [6]]. Genetic programming has also been used to develop soccer [[7] and
chess end game players [8]. However, the conducted research is focused on the end result and
emerging evolutionary dynamics that occur during the development are neglected. In this thesis
not only the end results of evolution, but also the developments that led to those results will be
presented to gain insight into the evolutionary process of genetic programming.

The next chapter will introduce the central concepts of genetic programming. Chapter [3]
contains the complete definition of 2-AntWars and a discussion of possible strategies for this
game. This is followed by a description of the genetic programming implementation that was
used for this thesis in chapter {] and the 2-AntWars player model in chapter [5S| Chapters [6] to
[9] contain the main results of this thesis, which are supplemented by experiments reported in
chapter[I0] A summary and directions for future work can be found in chapter|[I1]

CHAPTER

Genetic Programming and Coevolution

Genetic programming is an evolutionary algorithm (EA) variant developed by John Koza [3]].
The primary difference between genetic programming and other EAs is the representation of an
individual. While individuals of genetic algorithms or evolution strategies are typically fixed-
length vectors of numbers, genetic programming individuals (in their original form) are program
trees of variable structure. The program trees consist of functions and terminals. The leaf nodes
are terminals and all inner nodes are functions. The children of functions supply the arguments
of the function when a program tree gets evaluated. A simple example is shown in figure[2.1

()
@ 3

Figure 2.1: Example of an genetic programming solution. The arguments of the binary + func-
tion are supplied by the terminals 4 and 3.

A genetic programming implementation is supplied with a set of functions and terminals
that it can use to solve a problem. One important constraint for the functions and terminals is
the closure property: every argument of every function can be supplied by every function and
terminal available without producing an error. One consequence of this is that, for example,
even when the dividend that is supplied to a division function is zero the result has to be defined.

A program tree is not the only possibility of representing a program, over time other rep-
resentations have been developed. In [9]] a stack based program representation is introduced.
An individual is a simple vector of operations. These operations are executed on a virtual stack-
based machine. Every operator pops its arguments from the execution stack and pushes its result.
If the stack does not contain enough arguments the operation is ignored. Flow control is hard
to achieve with this type of representation. Linear genetic programming [10] uses a similar vec-

5

CHAPTER 2. GENETIC PROGRAMMING AND COEVOLUTION

tor representation, the critical difference is that the arguments of the operations are supplied by
memory cells, much like native assembler code. Before the individual is executed, the memory
cells are initialized with input values. The individual manipulates the memory during execution
and the output is read from one or more memory cells designated as output. This representation
also has problems with flow control. The work cited uses a special operation that conditionally
skips the next (and only the next) operation which eases the implementation of the crossover
operator. Cartesian genetic programming [[11] uses a radically different approach to map an
individual to a program because it uses a genotype to phenotype transformation. The genotype
(the individual) is a list of indices which specify the connections between a fixed number of logic
gates and global inputs and outputs. The indices define for each gate which operation it uses and
which gates (or global inputs) supply the necessary arguments for the operation. The indices
also determine which gates are connected to the global output. The connected gates constitute
the phenotype, i.e. the program. Other types of genetic programming include parallel distributed
genetic programming [12]] and grammatically-based genetic programming [[13]].

A variant of genetic programming that will be important for this thesis is strongly typed
genetic programming [14]. It removes the closure constraint by assigning types to the argu-
ments and return values of functions and terminals. During the construction of individuals, only
functions or terminals with a compatible return type are used as arguments of a parent function.
Applied to the individual of figure on the preceding page this means that the children of the
+-function have to return numbers (like the terminals 4 and 3). A terminal returning a color for
instance would not be considered.

Genetic programming was successfully applied to a lot of problems, but it is not without
its flaws. First and foremost, [15] cites that in most cases the function and terminal set used
for solving a problem is not turing equivalent, i.e. misses loops and memory. In the work that
included loop constructs, only at most two nested loops were evolved. The authors argue that
evolving loops is a hard problem because small errors inside the body of a loop accumulate to
large errors after multiple iterations. Building implicit loops out of lower level constructs like
conditional jumps is even harder. Another focus of critique is the crossover operation as it lacks
context information to select a useful part of one program and insert it at a suitable location in
another program. In [16] the headless chicken crossover (no crossover at all but replacing a part
of a program with randomly created code) outperforms the normal crossover operation.

Apart from these weaknesses, genetic programming typically has the problem of code bloat,
i.e. programs grow in size without increasing their fitness which causes performance deteriora-
tion. In [17]] and [18] six different theories of code bloat are discussed that were proposed over
the years, but there is no single conclusive reason for code bloat. Those theories are:

hitchhiking: The hitchhiking theory states that code bloat occurs because introns (code seg-
ments without influence on the fitness of the program) that are near to advantageous code
segments spread with them through the population of programs.

defence against crossover: According to the defense against crossover theory, code bloat
emerges because large programs with a lot of intron code are more likely to survive the
destructive effects of a crossover than small programs.

removal bias: Code removals by crossover are only allowed to be as large as an inactive code
segment to not influence the fitness of the individual. However, intron code insertions by

crossover do not have any size restrictions, which causes code bloat. This argument is
similar to the defense against crossover theory.

fitness causes bloat: The fitness causes bloat theory sees fitness as the driving factor of code
bloat as experiments with random selection (without any regard for fitness) showed a
complete absence of code bloat.

modification point depth: It was observed that the effect of a crossover on the fitness corre-
lates with the depth of the crossover point, deeper crossover points have a smaller ef-
fect. Therefore large programs have an advantage because they can have deeper crossover
points, which is the core argument of the modification point depth theory.

crossover bias: The crossover bias theory concentrates on the fact that repeated application of
the standard subtree crossover operator creates a lot of small programs. Because small
programs are generally unfit they are discarded and the average program size of the pop-
ulation rises, causing bloat.

Fitting for the high number of bloat theories, there are a lot of methods that aim at controlling
bloat. The goal is to increase the parsimony of the found solutions or to make the evaluation
of programs faster and therefore generate better solutions in the same timeframe. The bloat
control originally used by Koza was a fixed limit on program tree depth. Of course, limiting
the size (in total number of nodes) of a program tree is also an option. Size limits can also
be applied to the whole population instead of each individual. Those limits can be static or
dynamic, i.e. adapting to the current needs. There is a large number of parsimony pressure
methods that produce selective pressure towards small programs. One of them is lexicographic
parsimony pressure which prefers the smaller program when two programs with otherwise equal
fitness are compared. Other methods punish large programs by delaying their introduction into
the population or rising their probability of being discarded. Editing the programs to remove
intron code is also possible to combat code growth but this can lead to premature convergence.
The genetic operators are usually fixed but to mitigate code growth they can also be chosen
dynamically, larger (depending on size or depth) functions are changed by operators that are
more destructive. In this work, a combination of static size limits (based on the node count) and
lexicographic parsimony pressure is chosen.

The second important concept necessary for this work besides genetic programming is co-
evolution. It refers to any situation in which the evaluation of multiple populations is dependent
on each other. It is useful for competitive problems or problems for which an explicit fitness
function is not known or hard to define [19]]. In the domain of competitive problems, coevolu-
tion is motivated by evolutionary arms races. Two or more species constantly try to beat each
other, developing higher and higher levels of complexity and performance. Coevolution can also
be used to solve cooperative problems [20] by training teams of individuals. Each team mem-
ber only has to solve a sub-problem. The central aspect of coevolution is the evaluation. Since
no fitness measure is available, how can be determined which individuals are superior to allow
any kind of progress? The answer is that the individuals of another population take the role of
performance measure and to judge the fitness of one individual, it is pitted against other individ-
uals. The intuitive solution to evaluate every individual against every other individual (complete
evaluation) is usually impractical because it requires a quadratic amount of evaluations (in terms
of population size) so some alternatives were developed. One of those is “All vs Best”. Each in-

7

CHAPTER 2. GENETIC PROGRAMMING AND COEVOLUTION

dividual is evaluated by pitting it against the best individual of the previous generation. Another
one is tournament evaluation [21]. The individuals of the population are paired up and evaluated.
The better individual advances to the next round and is paired up with another individual that
advanced from the first round. The fitness of each individual is determined by how long it stayed
in the tournament.

Even though coevolution is an elegant evolutionary approach in theory, it often exhibits some
rather unpleasant pathologies in practice [22, [23]]:

cycling: especially problematic for intransitive problems like rock-paper-scissors. As soon as
one population chooses mostly one answer (e.g. rock), the opposing population will con-
verge to the appropriate answer (e.g. paper) which in turn can be exploited by the original
population. Both populations will never converge as the Nash equilibrium is unstable
(24} 25]].

disengagement: happens when the evaluation does not deliver enough information to determine
which individuals are better than others. In two population competitive coevolution this
can happen if one population is far superior to the other one. Instead of an arms race that
causes the inferior population to catch up, the evaluation labels every individual (in the
inferior population) as “bad” without any gradient towards better solutions. Depending
on the replacement policy, disengagement can lead to either stalling or drifting. Stalling
happens when new individuals have to be better than the ones that they replace. As a
result, the population will stay the same. Drift happens when individuals only have to be
as good as the ones they replace.

overspecialization: the current population specializes to beat the current opponents without
developing general problem solving capabilities.

forgetting: a trait lost (because at one time it does not offer an advantage) and not rediscovered
when it would be beneficial again.

relative overgeneralization: a problem of cooperative coevolution. Individuals that are com-
patible to a lot of other individuals and offer moderate performance are preferred to indi-
viduals that require highly adapted partner individuals to achieve high performance.

alteration: instead of extending the behaviour of individuals when new opponents are encoun-
tered (elaboration), it is changed.

One approach for solving these problems is archiving. Superior individuals are archived so
that newer individuals can be tested against them to ensure that the pathologies that are based
on some type of trait loss (e.g. cycling, forgetting) do not occur. Archiving methods include hall
of fame [26], dominance tournament [27]], nash memory [28]] and pareto archives [29]. These
methods also help with a related problem of coevolution, the exact meaning of progress. Miconi
[22]] suggests that three types of progress exist in the domain of coevolution: local progress,
historical progress and global progress. Local progress is the only progress that happens on its
own with coevolution. When one compares the performances of a current individual and its
ancestor against a current opponent, the current individual will have a higher fitness because it
is adapted to its opponent. Historical progress occurs when a current individual is better than its
ancestors against all opponents that were encountered. This is the situation one would expect
as it describes what is suggested by the arms race argument, however, it is not a natural result

8

of coevolution. Archiving methods come in handy because they can be used to evaluate current
individuals against the history of opponents to ensure historical progress. Global progress occurs
when the current individuals are better than their predecessors against the entire search space of
opponents. No method exists to ensure global progress and [22] states that “this [such a method]
would involve knowledge of unknown opponents, which is absurd”. This is unfortunate because
global progress is the main goal of artificial coevolution, but historical progress can be used at
least as indicator of global progress.

A more indirect approach to combat the pathologies of coevolution is spatial coevolution.
With spatial coevolution, the individuals have assigned positions so that neighborhoods can
be defined. The evaluation of an individual only regards its neighbors. The basic idea is that
localized species can emerge which promotes diversity and combats the loss of traits. Its success
(especially compared to complete evaluation) was demonstrated in [30].

Spatial coevolution is often combined with host-parasite coevolution, which is the most
common form of competitive coevolution. It was first introduced by Hillis [[19] to solve a sorting
network problem. Incidentally, this is a good example for a problem where defining an explicit
fitness function is infeasible because of the enormous amount of possible input permutations that
would have to be tested. If the fitness function only covers a subset of permutations, the chances
are high that only this subset will be sorted correctly. Host-parasite coevolution is inspired by
the source of the arms race concept: the interactions of hosts and parasites in nature. Parasites
will develop improved means to exploit their hosts and hosts will develop improved defences
against the parasites. True to that inspiration, host-parasite coevolution uses two populations,
the host and the parasite population. In [19], the host population contained sorting networks
and the parasite population permutation subsets. The host population tried to evolve sorting
networks that could sort the permutation subsets of the parasites and the parasites tried to evolve
permutations that the sorting networks could not sort correctly. In [30] host-parasite coevolution
is used to solve a regression problem. The host population contained the functions and each
parasite represented one data point that had to be fitted. The hosts tried to fit the data points
of the parasites while the parasites tried to use data points that the hosts could not fit. Spatial
host-parasite coevolution will be used in this thesis.

CHAPTER

2-AntWars

This chapter describes the original AntWars rules as well as the changes to create 2-AntWars.
Then a discussion of possible playing styles will follow to explore the strategic possibilities of
2-AntWars.

3.1 AntWars Rules

The rules for AntWars are defined in [1]. A short summary is given here for comparison pur-
poses.

AntWars is a two player game that takes place on a square toroidal grid with a side-length of
11. Position (0, 0) denotes the left upper corner. Both players control an ant. The ant of player 1
is located at position (2, 5) and the ant of player 2 at (8,5). The aim of the game is to collect
more of the 15 available pieces of food than the opponent. The food is randomly distributed
on the grid, except that the starting positions never contain pieces of food and there is at most
one piece of food at every position. The ants can move one field (in eight different directions)
and view two fields in every direction. If an ant moves to an empty position, nothing happens.
If there is a piece of food at the new position, it is eaten and the score of the ant’s player is
incremented. If the opposing ant is at the new position, it is neutralized and not allowed to move
any more. This does not contribute to the player’s score. Each ant can move 35 times. A game
is won by the player with the highest score. In case of a tie the player who moved first wins. A
match is won by the first player who wins three games. For the first four games, the player who
is allowed to move first alternates. The player with the highest total score moves first in the final
game. If there is a tie, the player with the highest score in a single game moves first. If the tie
still persists, the first moving player is chosen randomly. Figure [3.T|on the next page shows the
initial state of an AntWars game. The arrows indicate the movement possibilities of the ants.

11

CHAPTER 3. 2-ANTWARS

<

& &
&

L

<

Figure 3.1: The initial state of an AntWars game.

3.2 2-AntWars Rules

The aim for the development of the rules of 2-AntWars was to keep them as close as possible
to the original but also to make sure that the rules are flexible enough to allow for different
strategies without favoring a particular strategy. The first major difference between AntWars
and 2-AntWars is the playing field. The playing field of 2-AntWars is rectangular, with a width
of 20 fields and a height of 13 fields. The field is no longer toroidal so that it is possible for one
player to take control of a large part of the field or to hunt the ants of the other player. Hunting
would not be possible on a toroidal field because the hunted ant could flee indefinitely. Each of
the two players has control over two ants, which start at positions (0,5) and (0, 7) for player 1
and at (19,5) and (19,7) for player 2. Every ant has the same capabilities as their AntWars
brethren, i.e. they are able to move one field in every direction and view two fields in every
direction. Additionally, ants can also stay at their position which might be a valid action in some
situations but of course it also counts as move. Every ant can move 40 times (to compensate that
the size of the playing field not just doubled). After those moves are spent, the ant is neutralized.
Neutralized ants cannot move or interact with other ants in any way, but are still able to see.
An ant also gets neutralized when it tries to move beyond the playing field. The field contains
32 pieces of food at random positions (excluding the starting positions of the ants and with at
most one piece of food per position) to keep the food probability per position in the same range
as AntWars (i.e. about 12%). There is an even number of pieces of food because games of two
equal players should result in ties. To ensure some basic fairness in the random food placement
each half of the playing field (10x13) contains 16 pieces of food.

12

3.2. 2-ANTWARS RULES

< L T <
_ < _
| |© < C |©
< <
< —
el e L *
<
< C |« <

L

<

Figure 3.2: The initial state of a 2-AntWars game.

Figure [3.2] depicts the initial state of a 2-AntWars game. The red line marks the border
between the two halves of the playing field (but has no direct influence on the game). It also
shows the bias random food placement can introduce even with the “half the food on half the
field” constraint. The food in the half of the red player (also called player 1) is clustered on
the top of the field, while the food in the half of the blue player (also called player 2) is evenly
distributed except the top part of the field.

The rules for battle in 2-AntWars have to be more complex than those of AntWars because
now more than two ants may interact. If the ant of one player (attacker) moves to a position
that already contains an ant of the other player (defender) a battle commences. Neither attacker
nor defender can move away from this battle, which lasts five rounds (i.e. both players move
five times) without intervention from the remaining ants. After five rounds the attacker wins
the battle and the defender gets neutralized, with the same implications as above. If one of the
remaining ants joins the ongoing battle (by moving to its position) then the player who has both
ants in the battle wins instantly, with the losing ant being neutralized. If the attacker moves to a
position occupied by both enemy ants he is immediately neutralized. After the conclusion of a
battle, the winning player is free to move as before.

A game of 2-AntWars is won by collecting more food than the opponent. During a game,
a player moves one of his ants before the opposing player is allowed to move. The game lasts
until all food is collected, no ant is able to move (not counting ants in battle) or after 160 moves
in total, whichever happens first. A match lasts five games. The player who is allowed to move
first alternates during the first four games. The player who managed to collect the most food is
allowed to start game five. A match is won by the player who collected the most food in total.

13

CHAPTER 3. 2-ANTWARS

3.3 Strategies

The aim of the 2-AntWars rules was to create a game that has a varied set of possible playing
strategies without preferring a specific strategy. As a consequence of this, every strategy should
have a counter strategy. This section explores three such strategies (Greedy, Scorched Earth,
Hunter) and their abilities to counter each other.

Greedy

The Greedy strategy is the simplest of strategies discussed here. It mandates that ants are always
moved towards the nearest food while completely ignoring the opposing ants. Matches are won
by simply being very efficient at gathering the food. This strategy can be countered by Scorched
Earth or Hunter. Figure 3.3]shows an example of two players using the Greedy strategy.

< ok
; D
O S

A

A

A

¥ k2 & D

A
A
A

Figure 3.3: Playing field after some moves where both players use the Greedy strategy.

Scorched Earth

The Scorched Earth strategy trades the potential of high scores that the greedy strategy provides
for increased security of winning the game. To win a game, it is only necessary to collect one
piece of food from the half of the playing field belonging to the opposing player, if all food in
the own half of the field is collected. Therefore players playing this strategy will move the ants
quickly towards the center of the playing field (possibly ignoring food on the way), collect some
food from the opponent’s half and then collect the food in the own half from the center of the
field towards the own starting positions. Presumably, the opposing player spends his first moves

14

3.3. STRATEGIES

collecting the food near his starting position, so when his ants reach the center of the playing
field he will discover that the food there has already been eaten. This strategy can be countered
with Hunter. Figure [3.4] shows an 2-AntWars game at the critical moment when the red player
(playing Greedy) finds the first eaten food of the blue player (playing Scorched Earth). When
the red player explores the blue player’s half of the playing field he will only find already eaten
food because the blue player’s ants move in front of the red player’s ants towards their starting
position, eating all the food.

)

N

A
A
A
A

L b

s
Y
Y

Figure 3.4: Playing field after some moves where Greedy (left) battles Scorched Earth (right).

Hunter

The Hunter strategy is the most aggressive strategy discussed here. It relies on neutralizing one
or even both ants of the opposing player fast, to gain a significant food gathering advantage.
Figure [3.5] on the next page shows a game where Hunter (red) and Greedy (blue) battle each
other. The red player used his ant H to hunt the prey P. To gain a speed advantage, he moved H
more often than his other ant. P tried to flee but ran into the border of the playing field and was
neutralized. The hunt was successful and now the red player has two ants to collect food, while
the blue player has only one.

This strategy can be countered by any strategy that ensures that the own ants are close enough
to support each other in battle. The rules make certain that when it comes to supporting an
ant in battle the defending player has a slight advantage because he moves first after a battle
started. The result of this can be seen in figure [3.6 on the following page. The ants start out
as close together as possible to minimize the distance between the place of the battle and the
supporting ant [(a)} Then the red player decides to attack [(b)) Now it’s the blue players turn

15

CHAPTER 3. 2-ANTWARS

< <

& &

xI
Y GL‘}
‘}

Y
Y
Y
Y

Y

Y

A

V\}

A
A

A
A

Figure 3.5: Playing field after some moves where Hunter (left) battles Greedy (right).

!

[¥
¥ [F[*

* |k

kD

(a) Initial situation (b) Red attacks

(c) Blue defends

(d) Red loses

Figure 3.6: The aggressive red player cannot win against the defending blue player.

and he immediately supports his ant in battle He wins the battle and the attacking red ant
is neutralized. Then the red player makes another mistake and tries to attack again instead of
fleeing with his remaining ant. He instantly loses as he battles two ants at one position [(d)] This

shows that Hunter (and aggressive strategies in general) can always be countered.

16

Part 11

Genetic Programming System

CHAPTER

Genetic Programming System

This chapter describes the genetic programming system (henceforth called GPS) that was used
to create 2-AntWars players. In a nutshell, it is a compiling typed tree-based (but linearly rep-
resented) evolutionary system with memory. The details will be explained in the following
sections. GPS was developed for 2-AntWars but is not bound to it, it can (try to) solve any prob-
lem that implements the interface GPS expects. When a problem is mentioned in the following
sections, a problem adhering to the GPS problem interface (like 2-AntWars) is meant. Also,
some words will be highlighted, like Function, to emphasise the special meaning they have in
the context of this work. Their meaning will become clear in the course of this chapter.

4.1 The GP-Algorithm

The GP-Algorithm illustrated in listing on the next page is the core of GPS. First, the initial
Population is built and evaluated, then the main loop is entered. Inside of it, a new Population
(Pn) is built by selecting the best Individuals from the old Population. Then the crossover opera-
tor is applied with the new Population as receiver and a newly selected Population as donor (this
increases the probability that good Individuals will be crossed with other good Individuals). See
section [4.6] on page [22]for the semantics of donor and receiver. The new Population is mutated,
evaluated and replaces the old Population. Then the cycle begins anew.

4.2 Individual Structure

The central data structure of GPS is the Individual as shown in figure .1 on the following
page. The genetic operators of selection, crossover and mutation work on it to improve the
performance of said Individual. Individuals are stored in the Population and at the lowest level
they consist of Statements.

Statements are named and modelled after the Statements (and operators) of programming
languages. Statements have a signature (number and type of arguments, return type) and a

19

CHAPTER 4. GENETIC PROGRAMMING SYSTEM

Population gpProcedure(int maxGen){

Population P=initPopulation(); //see on page
4.8 24

evaluatePopulation(P); //seed.8 on page .

for(int generation=1;generation<=maxGen;++generation){

Population Pn=select(P); //seed.5|on page
crossover(Pn,select(P)); //see m on page
4.7

mutate(Pn); //see on page
evaluatePopulation(Pn);
P=Pn;
}
return P;
}
Listing 4.1: The GP-Algorithm.
- Individual
- Score
- FunctionGroup - FunctionGroup
- Name - Name
- Score - Score
- Function - Function - Function - Function
- Signature — - Signature — - Signature — - Signature —
- Name - Name - Name - Name
- Return Type - Return Type - Return Type - Return Type
- Arguments - Arguments - Arguments - Arguments
-Body ——| | Body — -Body ——| | Body
- Statements - Statements - Statements - Statements

Figure 4.1: Structure of GPS Individuals.

name. One example of a Statement might be +: It takes two arguments of type int (the basic
C++ integer data type) and returns a value of type int. More specifically it is a FunctionStatement
because it has arguments. 5 is another Statement. It returns a value of type int (5 according to
its name) and has no arguments (which makes it a TerminalStatement).

A Function in GPS is an entity that has a signature and a body. The signature consists of the
name of the Function, the return type and the number and types of arguments. The body gets
executed when the Function is called. Conceptually, the body of a Function is represented as
tree of Statements (similar to a parse tree). Examples can be found in Figure [4.3] on page 23]
The primary difference between a Function and a Statement is that the semantic of a Statement is
fixed, that of a Function can be changed by changing its Statement tree. Even though the concept
of a Function is a tree of Statements, it is represented as array in preorder. This representation

20

4.3. POPULATION MODEL

was found to deliver the best speed/size trade-off in [31l]. A Function also manages the memory
available for the Statements.

A FunctionGroup is a collection of Functions. It has a name and an assigned score that
describes the fitness of the set of Functions. A FunctionGroup groups those Functions together
that cannot be scored separately. GPS evolves FunctionGroups independently to increase their
fitness.

Finally, an Individual is a collection of FunctionGroups. It has an overall score that describes
the fitness of the combination of FunctionGroups. This score is used to determine the best Indi-
vidual inside the Population. GPS assumes that improving the FunctionGroups of an Individual
will result in increased overall fitness.

4.3 Population Model

GPS supports both evolution and coevolution and the population model reflects that. The Pop-
ulation consisting of Individuals is split into two halves, the host half and the parasite half. The
size of the Population is defined as the size of one half (so a Population in coevolutionary mode
of size 10 will hold 20 Individuals). In evolutionary mode only the host half is used, while both
halves are used in coevolutionary mode. Each Individual is assigned a position in its half of
the population. This position is relevant for selection, crossover and evaluation. The position
has only one dimension, so the Individuals are put next to each other forming a line. The last
position on that line is adjacent to the first, so the line is actually a ring. With population size
p the A-neighborhood N of position i is defined as Na (i) = {kmodp|i — A < k < i+ A}.
Figure [4.2] shows the structure of a Population of size five in coevolutionary mode.

I4 | I5 | I1

[—
9]
[a—
—
[
N
___'___‘__ _
w

(b) Parasite part

Figure 4.2: The structure of a Population of size five (with 10 Individuals) in coevolutionary
mode with V(1) marked in[(a)]and N2(4) marked in[(b)]

21

CHAPTER 4. GENETIC PROGRAMMING SYSTEM

4.4 Population Initialization

The building blocks of Functions, the Statements, are supplied by the problem. Every Function
can have a different set of Statements to build its Statement tree out of. The Functions are built
with the ramped half and half method. The word “ramped” refers to the depth of the trees, which
is uniformly distributed between some minimum and maximum depth. The “half and half” part
refers to the two building algorithms, grow and fill, which each build one half of total amount
of Functions. The grow algorithm decides at every depth of the tree and for every argument of
a Statement whether it is supplied by a FunctionStatement or TerminalStatement. If the target
depth is reached, the growth of the tree is stopped by only using TerminalStatements to supply
arguments. This algorithm results in sparse trees. The grow algorithm always chooses Func-
tionStatements to supply arguments unless the target depth is reached. This algorithm results
in bushy trees. The built Functions are then assembled into FunctionGroups and subsequently
Individuals which are placed in the Population.

4.5 Selection

The selection operator works on FunctionGroup level. That means it does not select an Individ-
ual based on its score but only a FunctionGroup. GPS tries to increase the performance of an
Individual by increasing the performance of its FunctionGroups. The selection operator uses a
form of localized rank selection. When a new FunctionGroup for position 7 is chosen, the Func-
tionGroups at the positions Na (i) (with the set selection-delta) are sorted according to their
fitness. The sorted FunctionGroups are traversed from best to worst fitness until a Function-
Group is selected. During the traversal, each FunctionGroup has a chance of 50% to be selected.
If no FunctionGroup is selected during the traversal, the worst FunctionGroup is selected.

4.6 Crossover

The crossover operator works as one would expect for genetic programming. A sub-tree of
Statements of a Function (donor) is copied and inserted in another Function (receiver). GPS
ensures that the return types of the root Statement of the copied sub-tree and the sub-tree that
is replaced in the receiver are equivalent (automatic type conversion is not supported). Since
selection works on FunctionGroup level but crossover works on Functions the crossover operator
has the additional task to select which Functions are actually crossed. To do so, the operator is
given the selected donor and receiver FunctionGroups. Then it iterates over the Functions of the
receiving FunctionGroup. Every Function has a probability of p. to be actually used as receiver.
If a Function is used as one, a compatible Function in the donor is selected. Neither does it
have to be the same Function nor a Function in the same FunctionGroup. The problem specifies
which receiver-donor pairs are compatible. If the result of the crossover is bigger than the set
limit for the Function, the original receiver is kept.

22

4.7. MUTATION

A0

(a) Initial (b) Grow (c) Shrink (d) Inplace (e) Replace

Figure 4.3: The effect of the four different types of mutation available in GPS.

4.7 Mutation

The mutation operator works on Statement level. It tries to modify one Statement (and possibly
its children) in a specific way and if that fails leaves the Statement unchanged. In the following
the Statement to be modified is called the active Statement and the sub-tree with this Statement
as its root is called the active sub-tree. GPS uses four different kinds of mutations: grow, shrink,
inplace and replace. They are illustrated in figure 4.3] Figure .33 shows the initial Statement
tree, the active Statement is colored red.

The grow mutation tries to replace the active Statement with a new Statement of the same
return type. The new Statement must have at least one argument of the type of the active State-
ment’s return type, because the active sub-tree will be used as argument. If the new Statement
needs further arguments, they are grown as detailed in section [4.4] on the preceding page. The
effect of the grow mutation is shown in figure f.3b] If a Statement is chosen for mutation, a
grow mutation happens with probability of m,.

The shrink mutation is the opposite of the grow mutation. It tries to replace the active
Statement with one of its arguments if possible. The shrink mutation happens with probability
ms. Its effect is depicted in figure

The inplace mutation replaces the active Statement without changing the rest of the active
sub-tree. The new Statement needs to have exactly the same signature as the active Statement.
This mutation cannot fail because a Statement can always replace itself. The inplace mutation
happens with probability m; and its effect is depicted in figure 4.3d

The replace mutation is the most commonly used mutation in genetic programming. It re-
places the active Statement with a freshly grown sub-tree (see section[4.4|on the preceding page).
The replace mutation happens with probability m,.. Its effect can be seen in figure

All four types get their chance (with their respective probabilities) to modify the active sub-
tree in the order they were explained. They are not mutually exclusive, all four types can be
applied to the active Statement (although the replace mutation will override the effects of the

23

CHAPTER 4. GENETIC PROGRAMMING SYSTEM

other mutations) or even none may be applied. The red markings in figure .3 on the previous
page show which Statements are active after a mutation.

A part of the mutation operator works on Function level. It decides how many places in
the Statement tree are mutated. The probability of a Statement to undergo mutation is p,,. A
Poisson distributed random variable (depending on p,, and the size of the Statement tree) is
used to calculate how many Statements will be chosen randomly for mutation. If the result of
the mutation is bigger that the set limit for the Function, the original is kept.

4.8 Evaluation

The job of the evaluation is to assign a score to each Individual in the Population. The first step
is to transform the Functions of the Individuals into executable code. Every Statement has a
function that allows to print it in a compilable way. During the construction of the source code
file, this function is called before any of the Statement’s children have been printed and after
each printed child. An if-Statement for instance will print “if(” before its arguments are printed,
“Y{ after the first argument (the condition) and “}” after the second argument (the body). The
source code is then split into parts, each containing only a fraction of the code generated from
the Population. This has two advantages. First of all, the code can be compiled in parallel which
speeds up the process immensely because every code fragment is completely independent from
all other fragments. Secondly, the code can be compiled serially in smaller chunks which keeps
the total amount of needed memory low. Which way (or combination) is preferable depends on
compilation flags (aggressive optimization needs more memory), the Individual structure of the
problem GPS has to solve and of course the available memory. To provide a frame of reference,
for the 2-AntWars problem the typical code size was 10MB with 200000 lines of code. It was
compiled in two chunks without optimization (-O0) and each compiler instance needed about
500MB of memory. After the compilation, the object files are linked to form a dynamically
loadable library. This library is loaded by GPS and the function pointers for the Functions are
extracted.

Now the actual evaluation can start. The mode of evaluation depends on whether evolution
or coevolution is performed. In the case of evolution, the problem is given a set of Functions ac-
cording to the Individual-structure. The problem calculates the scores (for each FunctionGroup
and the total score) and returns them to GPS, which assigns them to the Individual. The coevo-
lutionary case is a bit more complex. First of all, the problem gets two sets of functions (one
from an Individual in the host half and one from an Individual in the parasite half) and returns
the score. Normally, the Individuals that are evaluated have the same position in their respective
halves of the population. GPS also allows asymmetric evaluation, where a host Individual is
evaluated multiple times with a A-neighborhood centered around the parasite that is used for
normal evaluation. While the parasite is only assigned the score of the evaluation with the host
at the same position, the host is assigned the combination of scores of all evaluations. How the
scores are combined depends on the problem as it provides the particular score to use.

24

CHAPTER

Modelling the 2-AntWars Player

The model of the 2-AntWars player is based on the successful model for AntWars presented in
[32]. It consists of four FunctionGroups: movement, belief, predict] and predict2.

The movement FunctionGroup is concerned with deciding which ant should move in which
direction. To that effect, it consists of three Functions: decision, movementl and movement?2.
The movementl and movement2 Functions each calculate the movement of one ant and the de-
cision Function decides which ant moves in the end. The score of the movement FunctionGroup
is based on the food the player is able to gather during a 2-AntWars match. This is a good ex-
ample of Functions that cannot be individually scored. It is not known which decision Function
behaviour is advantageous and should be rewarded. Only in combination with the movement
Function a score can be assigned.

The belief FunctionGroup consists of the belief Function. Belief in food was introduced in
[32]. Ants have only a very limited view of the playing field. To support the calculation of the
next move, they remember food they have seen previously (but do not see now). However, it
is not certain that the food that has been seen is still there (the other player might have eaten
it), hence the food belief. It is a measure of how certain a player is that a position still contains
food (or that a never seen field contains food). In [32] the belief was fixed by the program.
After every move it would be reduced to a fraction of its old value. It is not clear that this is
the optimal method. The 2-AntWars model includes an evolvable belief Function to find a good
way to calculate the belief, without any preconceptions. The belief FunctionGroup is scored by
calculating the deviation between belief and reality in the following way, given position p and
belief b: If p has already been seen, 1 — b is added to the belief deviation if p contains food, b is
added otherwise. If p has not been seen and it contains food 1 — b is added. Otherwise nothing
is added which means believing in food at unseen positions does not contribute to the deviation.
This calculation is carried out for every position after every move and the sum of all deviations
gives the final score (in this case a lower score is better). As can be seen from the deviation
calculation, belief is expected to be € [0, 1]. This is not enforced by the model, evolution has
to figure it out. What is enforced, however, is that positions that are currently seen always have

25

CHAPTER 5. MODELLING THE 2-ANTWARS PLAYER

the correct food belief assigned (zero if there is no food, one if there is food), so the player can
change how he believes in his memory but has to believe his eyes.

The predictl and predict2 FunctionGroups each contain one Function with the same name.
Their task is to predict the position of the enemy’s ants. After every move, the distance (in
moves) between the prediction and the corresponding ant is calculated. The sum of the distances
during a match constitutes the score of the two predict FunctionGroups.

So to sum it up, a 2-AntWars player consists of six Functions: belief, decision, movementl,
movement2, predict] and predict2. Listing[5.1]on the facing page gives an overview on how the
Functions are used to decide which ant to move. They (and the Statements that are available
for them) are discussed in detail in the following sections after the basic data types have been
introduced. All the scores use the size of the function as secondary criterion to decide which
score is better. For instance, when two movement FunctionGroups find the same amount of
food the smaller one is better. This introduces selective pressure towards parsimonious solu-
tions and more so in later generations when the probability of FunctionGroups having the same
performance rises.

5.1 Data Types

The data types of Statements (their return type and argument types) are used to decide which
ones are compatible. 2-AntWars uses the following custom data types:

AntID: The ID of an ant. It can be zero or one and is returned by the decision function to
indicate which ant has to be moved.

Ant: The state of an ant. It contains among other things information about the position of the
ant and the amount of moves it has left.

Direction: A single direction, like north (N) or south-west (SW).

Moves: This data type stores a subset of the possible movement directions of an ant. For in-
stance, a variable of type moves may contain the Directions NW, W and S. Set arithmetic
(union, intersection etc.) is possible with variables of type Moves.

Position: A position on the playing field. A Position can be moved by adding a Direction, but
it will always stay valid (i.e. on the playing field).

PositionPredictionInfo: A data structure containing information about the prediction of an en-
emy ant. It contains the time and position of the last sighting of the enemy ant and the
current prediction of the position of the ant. The information whether the ant was seen
movable is also recorded. At the begin of the game it is initialized with the starting posi-
tion of the ant that is predicted.

PlayerState: The complete state of a player. It contains information about his ants, what they
are currently seeing, what positions they have seen, how much food the player has eaten
and all positions where he has seen food and what the food belief for every position on
the playing field is.

26

5.1. DATA TYPES

void movePlayer(PlayerState ps,Functions f,PositionPredictionInfo& el,

{

PositionPredictionInfo& e2)

/fupdating food belief
for(int x=0;x<PlayingField.width;++x){
for(int y=0;y<PlayingField.height;++y){
const Position p(x,y);
if(ps.PosIsVisible(p){
if(ps.PosHasFood(p))ps.foodBelief.at(p)=1;
else ps.foodBelief.at(p)=0;
}
else ps.foodBelief.at(p)=f.belief(...); // see|5.3|on page|33|for complete signature
}

}

/fupdating predictions

el.setPrediction(f.predictl(el,ps)); /see|5.4|on page

e2.setPrediction(f.predict2(e2,ps));

//calculating move

Moves m1=f.movementl(...); /see|5.5| on page|34|for complete signature

Moves m2=f.movement2(...);

AntID antToMove=f.decision(&m1,&m?2,...) //see on page 35| for complete signature

Direction moveDir=antToMove?m2.toRandomDirection():m1.toRandomDirection();

/fupdate ps to reflect the move, manage battles

move(ps,antToMove,moveDir);

}

Listing 5.1: The procedure to decide on a move in 2-AntWars.

In addition to those data types, 2-AntWars uses the standard C++ data types bool (for boolean
values), int, double (for double precision floating point values) and void. The data type void has
a special meaning in GPS. A Statement with a return type of void indicates that it determines
program structure and does not calculate anything on its own. For instance, the IfThenElse
Statement has a return type of void (and two of its arguments are of type void too).

27

CHAPTER 5. MODELLING THE 2-ANTWARS PLAYER

5.2 Available Statements

This section discusses the 91 Statements used by the 2-AntWars problem, sorted by their return
types. Their distribution among the Functions is the topic of the following sections.

Program Structure

All Statements listed here have a return type of void because they are used to define the program
structure.

NoOp: TerminalStatement that does nothing, when printed it results in a semicolon.

Return<T>: FunctionStatement template with one argument of type T. It prints a return state-
ment. Return<int> for instance would take an int argument (which from GPS perspective
means a Statement tree with the root Statement having a return type of int) and might
result in the following code: “return 3+1;”.

Program: FunctionStatement that has three arguments of type void. It prints itself in the fol-
lowing way: “{argl;arg2;arg3;}”.

IfThenElse: FunctionStatement with three arguments, the first of type bool, the remaining two
of type void. When printed, it results in “if(argl){arg2}else{arg3}”. Note that by using
NoOp as arg3 an IfThen Statement can be built without supplying it explicitly.

Boolean Statements

True: TerminalStatement that returns true.

False: TerminalStatement that returns false.

Not: FunctionStatement with one argument of type bool. It is used to express boolean negation
and prints “!(argl)”.

And: FunctionStatement with two arguments of type bool. It is used to express boolean con-
junction and prints “(argl && arg2)”.

Or: like And but represents boolean disjunction and prints “(argl Il arg2)”.

Smaller<T>, SmallerEq<T>, Eq<T>, LargerEq<T>, Larger<T>: FunctionStatement tem-
plates used for comparison purposes. Each of them has two arguments of type T and
prints “(argl OP arg2)” with OP being in order <,<=,==,>=,>. Most commonly int
and double are used as T.

The following Statements (which are 2-AntWars specific) are also available:

SeenMovable: FunctionStatement with one argument of type PositionPredictionInfo. From its
argument it extracts whether the enemy ant was seen movable when it was last seen.
PositionWasSeen: FunctionStatement with one argument of type PlayerState and one of type
Position. It uses the PlayerState to determine whether the Position was seen or not.
IsNorth, IsSouth, IsEast, IsWest, IsSNE, IsSNW, IsSE, IsSSW: FunctionStatements with two
arguments of type Position. Returns whether the direction from the first Position to
the second Position has a north, south, east, west, north-east, north-west, south-east or

south-west component respectively.

28

5.2. AVAILABLE STATEMENTS

AntIsMovable: FunctionStatement that returns true if the Ant supplied as argument is movable
(i.e. has moves left and is not in battle or neutralized).

AntlsPassive: FunctionStatement with one argument of type Ant that returns true if the Ant
cannot move or interact with anything (i.e. is neutralized).

AntInBattle: FunctionStatement that returns true if the supplied Ant argument is currently en-
gaged in battle.

Integer Statements

EpInt(min,max,delta): ephemeral constant with a value € [min, max|. This Statement uses
a custom mutation operator, i.e. it does not use the methods outlined in section on
page Instead, it adds a uniformly distributed value € [—delta, delta] to the current
value (while respecting min and max).

Addl, Subl, ModI: FunctionStatements that facilitate addition, subtraction and modulo divi-
sion. They each have two arguments of type int and print “(argl OP arg2)” with OP being
+,— and %. Note that modulo division is protected and returns the value of argl if arg2
equals zero.

In addition to these general purpose Statements, the following Statements specific to 2-AntWars
are available:

Width, Height: TerminalStatements that return the width (20) and height (13) of the playing
field respectively.

TotalFood: TerminalStatement that returns the total amount of food available on the playing
field (32).

MovesPerAnt: TerminalStatement that returns the total amount of moves that an ant is allowed
to make (40).

BattleRounds: TerminalStatement that returns the number of battle rounds before the battle is
finished (5).

PosGetX, PosGetY: FunctionStatements with one argument of type Position. They extract the
X and Y coordinates of their argument.

DistanceMoves: FunctionStatement with two arguments of type Position that returns the dis-
tance in moves between those Positions.

ElapsedTime: FunctionStatement that extracts the elapsed time (which equals the number of
moves made by a player) from its argument of type PlayerState.

FoundFood: FunctionStatement with one argument of type PlayerState. It returns the amount
of food the player has already found.

SightingTime: FunctionStatement with one argument of typePlayerState and one argument of
type Position. It uses the PlayerState to return the last time the Position was seen. If the
Position was never seen, it returns zero.

AntExtractX, AntExtractY: FunctionStatement with one argument of type Ant. It extracts the
X (or Y) component of the Ant’s position.

AntMovesLeft: FunctionStatement with one argument of type Ant. It extracts the number of
moves the Ant has left.

29

CHAPTER 5. MODELLING THE 2-ANTWARS PLAYER

TimeOfLastSighting: FunctionStatement that extracts the time of last sighting from its argu-
ment of type PositionPredictionInfo.

Double Statements

AddD, SubD, MulD, DivD: FunctionStatements that facilitate addition, subtraction, multipli-
cation and division. They each have two arguments of type double and print “(argl OP
arg2)” with OP being in order +,—,* and /. Note that DivD is not protected and division
by zero will be executed. This results in the value mandated by IEEE 754 floating point
arithmetic rules (i.e. NaN or + INF depending on the divisor).

Sin, Cos: FunctionStatements for trigonometric functions, each taking one argument of type
double.

Pow: FunctionStatement with two arguments of type double. Returns the result of arg]®€?.

Log: FunctionStatement with one argument of type double. Returns the natural logarithm of
argl.

EpDouble(u,0): an ephemeral constant with value p. This Statement uses a custom mutation
operator, i.e. it does not use the methods outlined in section on page 23] Instead, it
uses an N (0, o) distributed random variable to offset its y.

EpDoubleRange(1:,0,min,max): an ephemeral constant like EpDouble but with a value guar-
anteed to be € [min, max].

The following Statements are specific to the 2-AntWars context:

PositionDistance: FunctionStatement with two arguments of type Position. It returns the eu-
clidean distance between them.

FoodBeliefAtPos: FunctionStatement with one argument of type PlayerState and one of Posi-
tion. It returns the food belief at the passed Position on the playing field.

Position Statements

PosPlusDirection: FunctionStatement with one argument of type Position and one argument of
type Direction. It returns a Position moved in Direction. If the Position would leave the
playing field it is not changed.

PosPlusCoordinates: FunctionStatement with one argument of type Position and two argu-
ments of type int. It returns a Position with the int arguments added to the x- and y-
coordinates of the Position argument. The coordinates are clamped to the borders of the
playing field so the resulting Position is always valid.

CurrentPrediction: FunctionStatement with one argument of type PositionPredictionInfo. It
extracts the current predicted position.

LastSeenPosition: Like CurrentPrediction, but extracts the last seen position from its argument.

AntPosition: FunctionStatement that extracts the position of its one argument of type Ant.

EpPosition(d): an ephemeral constant of type Position. It is initialized with a random Position
on the playing field. The custom mutation operator offsets the coordinates of the Posi-
tion with a uniformly distributed random value in the range of £4 (while ensuring valid
coordinate values).

30

5.2. AVAILABLE STATEMENTS

NearestFood: FunctionStatement with four arguments, one of type PlayerState, one Position p,
one double b and one integer n. This Statement sorts the Positions with a food belief not
smaller than b by their distance in moves to p. If there is no such Position, p is returned.
Otherwise the Statement returns the n-th nearest Position, with counting starting at zero.
If n is smaller then zero, zero is assumed. If there is no n-th nearest Position, the Position
with the largest distance is returned.

NearestUnseenField: FunctionStatement with three arguments, one of type PlayerState, one
Position p and one integer n. It works like NearestFood, but Positions qualify if they have
not been seen, not because of their assigned food belief.

Direction Statement

2-AntWars has only one Statement that returns a type of Direction (disregarding constants).
The Statement is called ToRandomDirection. It is a FunctionStatement that returns a random
Direction from its argument of type Moves.

Moves Statements

MNone: TerminalStatement returning a Moves value without any movement directions set.

MAIl: TerminalStatement returning a Moves value with all movement directions set.

MToward, MNeutral, MAway: FunctionStatements with two arguments of type Position and
calculating Moves that will decrease, not change or increase the distance (in number of
moves) between its two arguments when applied to the first argument.

Mlntersection, MUnion, MDifference: FunctionStatements with two arguments of type
Moves and returning the result of the corresponding set operation.

MNot: FunctionStatement that inverts its argument of type Move. The return value will contain
all Directions the argument does not.

MAddDirection, MSubDirection: FunctionStatements with one argument of type Moves and
one of type Direction evaluating to a Moves value with the Direction argument added to
(or removed from) the Moves argument.

FoodEatMoves: FunctionStatement with one argument of type PlayerState and one argument
of type Position. It checks for which of the (at most) eight neighboring Positions of the
Position argument the food belief is above zero and returns a Moves value containing the
directions from the Position argument to those Positions.

FoodEatMovesMaxBelief: FunctionStatement like FoodEatMoves, but instead returns all Di-
rections with the maximum belief.

FoodEatMovesAboveBelief: FunctionStatement like FoodEatMoves, but with one additional
argument of type double. It will only add directions to positions to the return value if the
position’s food belief is not smaller than the double argument.

MaxNewFieldsMoves: FunctionStatement with one argument of type Position and one argu-
ment of type PlayerState. It returns all the movement directions from its Position argument
that achieve the maximum of newly seen fields.

NearestFoodMoves: FunctionStatement with four arguments, one of type PlayerState, a Posi-
tion p, a double b and an integer n. This Statement takes all Positions on the playing field

31

CHAPTER 5. MODELLING THE 2-ANTWARS PLAYER

with a food belief not smaller than b and sorts them by distance (in number of moves) to
p- If no Positions qualify, then an empty Moves value is returned. From all qualifying
Positions, only those on the n-th distance level are regarded (counting starts at zero). If
n is smaller than zero, the zero-th level is used. If n is larger than the total number of
distance levels, the level with the highest distance is used. The Statement then returns
a Moves value with all Directions from p to the Positions on the target distance level.
This is the most powerful Statement available to 2-AntWars as it transforms the seen food
(more precisely the food belief) into useful Moves without the need to evolve loops or
data structures.

NearestUnseenFieldMoves: FunctionStatement with three arguments, one of type PlayerState,
a Position p and an integer n. This Statement works like NearestFoodMoves, but Positions
qualify if they have not been seen yet and not because of food belief.

Special Statements

The Statements presented here either have return types depending on template arguments, are
used to work around some issues with the type system or facilitate special functions of GPS (like
function arguments and memory access).

Constant<T>(V): TerminalStatement that evaluates to a constant of type T with value V.

DefaultReturnBlock<T>: FunctionStatement that is used as root for every Function (instanti-
ated with the return type of the Function). It has the return type T and two arguments, one
of type void and one of type T. It prints “argl;return arg2;”. This makes sure that every
generated program contains a valid return statement.

Convert<S,T>: This FunctionStatement template has a return type of T and one argument of
type S. It is used to facilitate type conversions (which are not supported by GPS). It prints
as “T(argl)”. For 2-AntWars it is most often utilized to use int values (like the width of
the playing field) in floating point calculations.

Argument(T,name): This TerminalStatement has a return type of T and is used to make the
arguments of a Function available to its Statement tree. It is automatically generated after
the problem supplies the description of the Functions to GPS (argument types and their
names, return type and Function name) and not by the problem. Note that the return type
is specified at run-time because of this. When printed, this Statement simply outputs its
name.

LoadVar(T,name): This TerminalStatement has a return type of T. It is used to access the
value of a variable and prints its name. It is automatically generated by GPS based on the
variable description of the problem (number and types of variables).

StoreVar(T,n): This FunctionStatement has a return type of void and one argument of type T
(argl). It is used to store the value of its argument in the variable of type T with name n
and writes “n=argl;”.

Assignment<L,R>: This FunctionStatement template has a return type of void and is besides
return<T> and StoreVar(T,n) the third Statement to facilitate the transition from program
structure to actual program code. The Statement has two arguments, one of type L (argl)
and one of type R (arg2). L has to be a pointer type. When printed, this Statement results

32

5.3. BELIEF FUNCTION

double belief(Position p, bool haveSeenField, bool haveSeenFood, int timeSinceSighting, int
elapsedTime, int foundFood, int seenFields, PositionPredictionInfo enemy]1,
PositionPredictionInfo enemy2);

Listing 5.2: The signature of the belief function.

Position predict(PositionPredictionInfo ppi, PlayerState ps);

Listing 5.3: The signature of the predict functions.

in “(*argl)=arg2;”. It has to be ensured that this assignment makes sense from the point
of view of the C++ type system. For an usage example, see section[5.6|on page [33]

5.3 Belief Function

This section describes the signature of the belief Function and lists the available Statements for
it. The signature is shown in listing and the meaning of its arguments is described below:

p: Position for which the belief is being calculated

haveSeenField: true if the position has been seen

haveSeenFood: true if the position contained food when it was last seen
timeSinceSighting: number of moves since the position was seen
elapsedTime: number of moves since the start of the game

foundFood: number of food the player has already eaten

seenFields: number of fields that have been seen at least once

enemyl, enemy2: prediction information for the ants of the enemy

The following Statements are available for the belief Function:

void: NoOp, IfThenElse, Program, Return<double>

bool: True, Not, And, Or, SmallerEq<double>, LargerEq<double>, SeenMovable

int: Width, Height, TotalFood, PosGetX, PosGetY, TimeOfLastSighting, DistanceMoves

double: EpDouble(0.5,0.15), Sin, Cos, Log, Pow, AddD, SubD, MulD, DivD

Position: CurrentPrediction, LastSeenPosition

Special: DefaultReturnBlock<double>, Convert<int,double>, Constant<double>(0), Con-
stant<double>(1)

The belief Function has no variables and is only to itself crossover compatible.

5.4 Predict Functions

This section describes the signature of the predict Functions and lists the available Statements
for it. The signature is shown in listing[5.3]and its arguments are described below:

33

CHAPTER 5. MODELLING THE 2-ANTWARS PLAYER

Moves movement(Ant myAnt, PlayerState myState, Ant otherAnt);

Listing 5.4: The signature of the movement functions.

ppi: current PositionPredictionInfo for the enemy ant that has to be predicted
ps: state of the player

The following Statements are available for the predict Functions:

void: NoOp, IfThenElse, Program, Return<Position>

bool: True, Not, And, Or, Smaller<int>, Eq<int>, SmallerEq<double>, LargerEq<double>,
Eq<Position>, IsNorth, IsSouth, IsEast, IsWest, ISNE, IsNW, IsSE, IsSW, PositionWas-
Seen, SeenMovable

int: EplInt(-30,30,3), Width, Height, ElapsedTime, Addl, Subl, Modl, DistanceMoves, Pos-
GetX, PosGetY, TimeOfLastSighting, SightingTime

double: EpDouble(0,0.15), AddD, SubD, MulD, DivD, Sin

Position: EpPosition(1), CurrentPrediction, LastSeenPosition, PosPlusDirection, PosPlusCoor-
dinates

Direction: Constant<Direction>(ZERO), Constant<Direction>(NORTH), = Constant<Di-
rection>(SOUTH), Constant<Direction>(EAST), Constant<Direction>(WEST), Con-
stant<Direction>(NE), Constant<Direction>(NW), Constant<Direction>(SE), Con-
stant<Direction>(SW), ToRandomDirection

Moves: MAIIL, MNone, MToward, MNeutral MAway, MUnion, MIntersection, MDifference,
MAddDirection, MSubDirection

Special: DefaultReturnBlock<Position>, Convert<int,double>

The predict Functions have no variables and are crossover compatible to each other.

5.5 Movement Functions

This section describes the signature of the movement Functions and lists the available Statements
for it. The signature is shown in listing[5.4] and its arguments are described below:

myAnt: information about the ant of which the Moves have to be calculated
myState: state of the player
otherAnt: information about the other Ant

The following Statements are available for the movement Functions:

void: Program, IfThenElse, NoOp, Return<Moves>

bool: True, Not, And, Or, Smaller<int>, SmallerEq<int>, Eg<int>, LargerEq<int>,
Larger<int>, Smaller<double>, SmallerEq<double>, Larger<double>, Larg-
erEq<double>, Eq<Position>, AntlsMovable, AntlsPassive, AntlnBattle, IsNorth, Is-
South, IsEast, IsWest, ISNE, IsSNW, IsSE, IsSW

34

5.6. DECISION FUNCTION

AntID decision(Moves+ m1, Movesx m2, Ant al, Ant a2, PositionPredictionInfo enemy1,
PositionPredictionInfo enemy2, PlayerState ps, int battleEndTime);

Listing 5.5: The signature of the decision function.

int: EpInt(0,20,2), AddI, Subl, Width, Height, MovesPerAnt, TotalFood, BattleRounds, Ant-
ExtractX, AntExtractY, AntMovesLeft, PosGetX, PosGetY, ElapsedTime, FoundFood,
DistanceMoves

double: EpDouble(0.5,0.15), FoodBeliefAtPos, PositionDistance

Position: EpPosition(1), AntPosition, NearestFood, NearestUnseenField

Direction: Constant<Direction>(NORTH), Constant<Direction>(SOUTH), Constant<Direc-
tion>(EAST), Constant<Direction>(WEST), Constant<Direction>(NE), Con-
stant<Direction>(NW), Constant<Direction>(SE), Constant<Direction>(SW)

Moves: MAIl, MNone, MToward, MNeutral, MAway, MUnion, Mlntersection, MDif-
ference, MNot, Constant<Moves>(NORTH), Constant<Moves>(SOUTH), Con-
stant<Moves>(EAST), Constant<Moves>(WEST), Constant<Moves>(NE), Con-
stant<Moves>(NW), Constant<Moves>(SE), Constant<Moves>(SW), FoodEatMoves,
FoodEatMovesMaxBelief, FoodEatMovesAboveBelief, MaxNewFieldsMoves, Nearest-
FoodMoves, NearestUnseenFieldMoves, MAddDirection, MSubDirection, PosPlusDi-
rection

Special: DefaultReturnBlock<Moves>

The movement functions have access to two variables of type Position, Direction and Moves and
are crossover compatible to each other.

5.6 Decision Function

This section describes the signature of the decision Function and lists the available Statements
for it. The signature is shown in listing[5.5]and its arguments are described below:

ml, m2: Moves suggested by the movement functions. They are pointers because the decision
function can change them.

al, a2: Ants of the player.

enemyl, enemy2: PositionPredictionInfo about the enemy ants.

ps: State of the player.

battleEndTime: End time of a battle if such a battle exists. If none is being fought, the current
time is passed as argument. If two battles are being fought simultaneously, the argument
is the end time of one of those battles. Which one is unspecified because there are no
movable ants in such a case.

35

CHAPTER 5. MODELLING THE 2-ANTWARS PLAYER

The following Statements are available for the decision Function:

void: Program, I[fThenElse, NoOp, Return<AntID>

bool: True, Not, And, Or, Smaller<int>, SmallerEq<int>, Eg<int>, LargerEq<int>,
Larger<int>, Smaller<double>, Larger<double>, AntlsMovable, AntlsPassive, Antln-
Battle

int: EpInt(0,20,2), EpInt(0,160,2), Addl, Subl, Modl, AntExtractX, AntExtractY,
AntMovesLeft, Width, Height, BattleRounds, TotalFood, ElapsedTime, FoundFood,
DistanceMoves

double: EpDoubleRange(12,5,0,24), PositionDistance

Position: EpPosition(1), AntPosition

Direction: Constant<Direction>(NORTH), Constant<Direction>(SOUTH), Constant<Direc-
tion>(EAST), Constant<Direction>(WEST), Constant<Direction>(NE), Con-
stant<Direction>(NW), Constant<Direction>(SE), Constant<Direction>(SW)

Moves: Constant<Moves>(NORTH), Constant<Moves>(SOUTH), Constant<Moves>(EAST),
Constant<Moves>(WEST), Constant<Moves>(NE), Constant<Moves>(NW), Con-
stant<Moves>(SE), Constant<Moves>(SW), MAIl, MNone, MAway, MNeutral, MTo-
ward, MlIntersection, MUnion, MDifference, MNot

Special: DefaultReturnBlock<AntID>, Convert<Moves&,Moves>, Assignment<Moves*,
Moves>, Constant<AntID>(0), Constant<AntID>(1)

The decision Function has variables of type Moves and Direction (two of each) and is only to
itself crossover compatible.

5.7 Settings

Table[5.Ton the facing page lists the standard settings that were used to create the results reported
in part[[l] on page Deviating settings will be mentioned in the appropriate sections.

After some preliminary runs of GPS the population size and the number of iterations has
been chosen to keep the run-time manageable but ensure enough opportunity for the population
to generate optimized playing strategies. The number of individuals per source code file has been
chosen to allow for parallel compilation with two threads, appropriate for the two threads that
GPS uses to evaluate the Population. The -O0 optimization level has been chosen because the
increased execution speed did not offset the increased compilation time with higher optimization
levels. The selection deltas for the host and parasite parts of the population in combination with
the population size means that one improved Individual can take over the population in 166 gen-
erations. The maximum sizes of the Functions of 2-AntWars were set to reflect that belief and
predict Functions have a auxiliary role while the most work is done in the movement Functions,
with the decision Function in the middle. As a result of the allowed sizes, the total Individual
size cannot exceed 1100 Statements. The crossover and mutation probabilities were found to
deliver a good trade-off between evolutionary speed and the probability of drastically reducing
an Individual’s fitness by changing important parts of its Statement tree. The probabilities of
the different mutation types were chosen so that only a quarter of Statement mutations will not

36

5.7. SETTINGS

result in any change. It is important to note that the minimum depth of the Statement trees is
the real minimum, Statement trees cannot be smaller. The root Statement is always a Default-
ReturnBlock, its argument of type void can be filled by a Return Statement which in turn needs
at least a TerminalStatement as argument, so the total depth of the tree is two.

Table 5.1: Default GPS settings for the 2-AntWars problem.

Setting Name Description Value
Population size Size of the host population 1000
Iterations MaxGen from listing |4.1|on page 1000
Individuals per file Compiled with one gcc instance 500
Compile flags For the population -O0 -DNDEBUG
Ahost Delta for host selection 3
Aparasite Delta for parasite selection 3
Agval Delta for asymmetric evaluation 0
Coevolution No coevolution means evolutionary mode of 0
evaluation

GamesPerMatchBest Number of games per match when the best 50
host battles the best parasite

MaxBeliefSize Size limit for belief Function 100
MaxPredictSize Size limit for predict Functions 100
MaxMovementSize Size limit for movement Functions 300
MaxDecisionSize Size limit for decision Function 200
De Crossover probability (per Function) 0.6
Dm Mutation probability (per Statement) 0.001
Mg Grow mutation probability 0.3
Mg Shrink mutation probability 0.3
m; Inplace mutation probability 0.3
my Replace mutation probability 0.3
TreeDepthMin Minimum depth of Statement trees during 2
growth
TreeDepthMax Maximum depth of Statement trees during 6
growth

37

Part 111

Results

CHAPTER

No Adversary

This chapter presents the results of letting one 2-AntWars player evolve while fixing the other
to do nothing. This will show that the 2-AntWars player model is suited to play 2-AntWars
and that GPS is able to evolve successful strategies. The data outlined here will also serve as
base-line for comparison in the following chapters. The results presented from here on out are
based on one GPS run with the settings from table[5.1]on page Computing results based on
multiple runs was not possible because one run took approximately one day to complete and the
evolutionary dynamic that emerges can only be discussed in detail based on a single run anyway.
One experiment that involved multiple runs can be found in section[I0.2]on page[T107]

6.1 Fitness development

Figure [6.1] on the next page shows the fitness development of the run with no adversary. It can
be seen that GPS learns to play 2-AntWars relatively fast. The best player finds 134 pieces of
food per match in generation six. There is continuous improvement until generation 55 where
the amount of found food per game jumps up to 155 per match. To find the reason for this
sudden increase in performance, the games played by the best Individuals of generations 25 and
100 were studied. It was seen that both Individuals first move ant 2 until it runs out of moves
and then ant 1. However, the Individual of generation 25 sometimes moves to an empty position
even though a position containing food is also reachable with one move. Furthermore, the food
seen by ant 2 seems to have a bigger influence on the movement direction of ant 1 than the
food ant 1 sees itself. In one game where ant 2 ran out of moves in the upper right corner of
the playing field, ant 1 immediately moved to that position to eat the food ant 2 was seeing
while ignoring food on the way. Such wasteful behaviour was not observed with the ants of
the Individual of generation 100. At generation 90 the first Individual achieves the maximum
of 160 pieces of food. Starting with generation 150, the best Individual never finds less than
158 pieces. These results might suggest that GPS is able to evolve perfect 2-AntWars players.
However, this is not the case. As seen in figure 3.2 on page [I3] the random placement of food
can introduce a significant bias. In this case, a positive bias (i.e. suitable food placement) was

41

CHAPTER 6. NO ADVERSARY

ﬁ# Mean
140 Min * o
He

120 b

100

80

Found Food

60 F g

40 ¥ -

20 |5 B

0 100 200 300 400 500 600] 700 800 900 1000
Iteration

Figure 6.1: Fitness development of the 2-AntWars population without opponent.

35

20

Found Food
T T Ril

15

10 1

o Il Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 6.2: Average number of found pieces of food of the best Individual per game.

needed to achieve the perfect score. The study of the games of the best Individuals of generation
25 and 100 showed that the ants simply ran out of movements at the end of the game and could
not continue to collect. The result can be seen in figure[6.2] which depicts the average found food
of the best Individual when it has to play a match with 50 games. The figure shows that the best
Individuals only find about 30 pieces of food on average per game instead of the maximum of
32. In the last 300 generations this average changes by at most 1.06 pieces of food.

Figure [6.3] on the facing page gives another view on the fitness progression of this run. Its
z-values (number of Individuals collecting a specific amount of food) are clipped at 100. The
maximum is 400, but this is reached in the lower left corner, which means it is the number of
Individuals in the first generation not finding any food. As can be seen, the fitness distribution
splits into four distinctive clusters at 150, 90, 60 and 30 pieces of food after 250 generations.

42

6.1. FITNESS DEVELOPMENT

160

80
140 ! ‘ ‘ 70
120 60
100 50

he) i by

3 il

w

kel 80 40

c

3

w
60 30
40 20
20 r" 10

0 0

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 6.3: Number of Individuals finding a particular number of pieces of food.

100

100

80

60

Found Food
Found Food

40 40

20

I ‘H \‘:‘\:\ \H ‘\IN\\\,

0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Ant 1 (b) Ant 2

Figure 6.4: Distribution of found pieces of food per ant and game.

The highest level is what was expected from figure [6.2] on the preceding page, since 150 pieces
of food in a standard match equals to 30 pieces of food per game. The other levels can be
explained by examining figure [6.4 Both ants collect food, ant 1 12 pieces per game (which is
the source of the cluster at 60 pieces of food per match) and ant 2 18 pieces (which is the source
of the cluster at 90 pieces of food per match). That means that the second and third cluster are
the result of a destructive crossover or mutation that damaged one movement Function or the
decision Function so that only one ant collects food. The fourth cluster at 30 pieces of food
seems to be mostly a result of a destructive change in ant 2 but this is not as clear as it is with the
other clusters. It is not surprising that ant 2 collects more food than ant 1 because it moves first.

These subtleties uncovered with figures [6.3] and [6.4] are completely missed by figures like
figure [6.1] on the preceding page so they will not be shown for future runs. Instead, figures like
figure [6.5] on the following page will be used to give an overview of the fitness development of
the population.

43

CHAPTER 6. NO ADVERSARY

1000 160

900 140

800
120
700

600 100

500 |4§ 80

Individual

60

300

40
200

20

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 6.5: Fitness development of the 2-AntWars population without opponent.

A lot of change in the population can be seen in the early generations when improved In-
dividuals spread. As hinted by the previous graphs, the situation stabilizes at generation 200.
But instead of converging, the population still contains two species, labeled A and B. From here
on out a set of Individuals sharing a characteristic will be called species or a subspecies if it is
embedded in a species. Species A slowly replaces species B until B vanishes around generation
700. This shows that, due to the stochastic nature of 2-AntWars, replacement can happen at a
much slower rate than with the maximum determined by the Apog and Apgrasie values but the
process is not stopped completely. The standard settings set them to three which means that in a
population containing two species one can replace the other with a speed of six Individuals per
generation. In the situation depicted in figure [6.5] species B has as size of 450 Individuals at
generation 225 and becomes extinct at generation 700 which means it only loses 0.95 Individu-
als per generation. Species C, that becomes extinct even though it is superior to its neighboring
species, will be discussed later.

1000

8 1000

3/

900

800

700

600

Individual
IS
Individual

0 100 200 300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Ant 1 (b) Ant 2

Figure 6.6: Average number of move directions to chose randomly from after the decision Func-
tion determined the ant that will be moved.

44

6.1. FITNESS DEVELOPMENT

When analyzing other aspects of the population development it becomes clear that B is
not one species, but two that are not distinguishable by their fitness. This can be seen best in
figure[6.6|on the facing page. It shows how many move directions on average the Moves variable
of the ant that is moved contains. One of the directions is chosen randomly (see listing [5.1] on
page [27). One ant in species B moves more randomly than the other one. The distinguishing
feature of the two subspecies of B (B1 and B2) is which one of the ants is the more randomly
moving one.

Individual
u
o
o

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 6.7: Probability that the decision Function returns the AntID of ant 1.

Figure [6.7] shows the probability of the decision Function returning the AntID of Ant 1. It
has to be interpreted in the following way: During a game, every player can move at most 80
times. Every ant of this player can move 40 times, so the efficient thing to do is to use the
moves of both ants. However, there is nothing that forces the developed players to do so. What
happens most often is that the decision Function does not decide at all but returns a constant
AntID. This ant will then be moved 80 times but of course after the 40 available moves of
the ant are spent it will stay at its position. This behaviour can be seen in figure [6.7} In the
beginning, a big fraction of the population consists of decision Functions that constantly return
the same AntID, so the probability of the decision Function returning the AntID of ant 1 is
either zero or one. At the points A, B and C emerge decision Functions that do not return
constant values. From here on out, a point where a distinguishing characteristic is first observed
will be called spawn point. The spawn point A is the source of species A. Spawn point B is a
predecessor of species B. The decision Function emerging at B favours moving ant 2. However,
using both ants is favorable to using only one ant, even if they are not both used to their full
potential, so the movement FunctionGroup spreads (as the decision Function is a member of this
FunctionGroup and selection is based on FunctionGroup scores). It is interesting to note that
while the decision Function originating at B spreads, it changes “sides” at one point and prefers
ant 1. This variant continues to spread in one direction but cannot penetrate the positions already
occupied by the original decision Function. About 50 generations after the first occurrence of

45

CHAPTER 6. NO ADVERSARY

the decision Function at spawn point B it changes so that it moves both ants equally and so
species B is born.

The strategy that is used to move the ants is still unknown though, B could first exhaust the
possible moves of one ant and then use the other ant, or use one ant for one move and than the
other. Figure [6.8]shows the average elapsed time in a game until both ants have left the starting
position. This is an indicator for the used movement strategy, if the average time is 40 then
the moves of one ant were exhausted before the other ant was used. If both ants leave their
starting positions earlier, then some intermittent ant switching has occurred. The graph shows
that beginning with generation 400, the whole population moves one ant after the other. It also
shows an aspect of the development of species B that was previously not recognizable. In the
beginning, it did not exhaust one ant before it used the other. Only later did it switch to that
mode, while the original method held on for 250 generations before it went extinct.

1000
900
800
700
600

500

Individual

400

300

200

100

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 6.8: Average time until both ants have left their starting positions.

6.2 Belief

This section presents the development of the belief Functions. Figure[6.9)on the next page shows
its fitness during the run. One should keep in mind that the score of the Function is the deviation
of the food belief from the real (unobserved) state, so lower values are better. Since the enemy
ants do not move, the belief Function achieves perfect scores rapidly. It is noticeable that the
species inside the population with a medium score (around 1000) resist the destructive effects
of mutation and crossover better than later species. When the perfect score is reached, a lot of
Individuals show an extremely bad performance. Figure[6.10]on the facing page, depicting the
size of the belief Functions, provides an explanation. The Functions are extremely small and so a
lot of changes will be destructive. This is the downside of using the size of the FunctionGroups as
decision criteria, when a lot of Functions reach the perfect score, then the small ones win, even
though they are brittle. In the following runs the second player will also move and excessive
Function shrinking will be of no concern. The graphs also show the reason why species C went

46

6.3. PREDICTION

1000 5000

900
800 4000
700
600 3000

500

Individual

400 2000

300

200 1000

0 100 200 300 400 500 600 700 800 900
Iteration

Figure 6.9: Development of the deviation of the belief Function.

1000 - — 200

¥

900 |

150

100

Individual

50
200 [%

100

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 6.10: Size of the belief Functions.

extinct even though it was clearly superior to its neighbours. It depended on its belief Function to
behave in a non-optimal way and when those were replaced by “better” performing ones species
C could not survive.

6.3 Prediction

The predict Functions did not have anything to do in this run as the opponent ants stayed at their
starting positions. In the spirit of establishing a base line with which to compare further results,
figure[6.11)on the next page shows the development of the score and figure[6.12]on the following
page the development of the size of the predict Functions. Like the belief Function, the predict
Functions suffer from the problem of brittleness due to a very small size. It is also interesting to
note that a slightly smaller but far more susceptible to destroying changes species took over the

47

CHAPTER 6. NO ADVERSARY

1000 - - - 5000 1000 - 5000
900 900
800 | o : % 2 4000 800 [‘ ¥ o 4000
700 700
_ 00 skt ; 5 3000 600 [et ¥ 3000
= e Ty 3 . :
E E
€ 500 S s00
2 ; 3 ;
g g 4 : ¢
00 |40 > 2000 400 . ; 3 s 2000
300 777
o
1000 200 |} 1000
100
o B 5 0 o Lt ;
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration
(a) predict 1 (b) predict 2

Figure 6.11: Fitness development of the predict Functions.

1000 100 1000 100
900 900
800 : 80 800 80
700 700
_ 600 60 _ 60 60
5 3
3 2
g 50 S s00
2 2
E E
400 ; 40 400 ; 40
300 . 300
200 [20 200 f 20
100 100
0 h 0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration
(a) predict 1 (b) predict 2

Figure 6.12: Size development of the predict Functions.

population. Another effect worth mentioning is that size anomalies (i.e. suddenly bigger than the
surroundings) occur in the populations of the Functions at the same positions due to the allowed
crossover between them.

6.4 General Performance Observations

Figure [6.13|on the next page shows the development of the total population size during the run.
As is expected with genetic programming, the size of the population increased steadily from
100000 Statements in the beginning to 400000 in the end. Note, however, that the increase
is not monotonic. There are phases where the population is shrinking (in terms of number of
Statements). Figure[6.14] on the facing page shows how the size of the population is distributed
among the Individuals. A correlation between Individual size and fitness can only be observed
during the early generations; the spawn points B and C from figure on page 45| can be
recognised. After that, size is independent from fitness, i.e. code bloat can be observed. It is
interesting to note that species B barely grows, which is in stark contrast to species A. Due to the
exploding population size, one would expect the time needed to evaluate it would also increase.

48

6.4. GENERAL PERFORMANCE OBSERVATIONS

450000

400000

350000

300000

250000

200000

150000

Population Size [# Statements]

100000

50000 1

0 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 6.13: Size of the population in number of Statements.

1000
900 |
800
700 |
600

500

Individual

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 6.14: Development of Individual size.

However, as can be seen in figure @ on the following page, this is not the case. The time
to evaluate a generation even decreases during the first 100 generations and then stays more or
less constant (but still with a downward tendency). Keep in mind that the values presented are
the CPU time of the GPS process. This does not include the time spent waiting for processes
GPS started (compressing the logging information after every generation and, more importantly,
compiling) and the values are, as usual for run-time measurements on PCs, imprecise.

When using genetic programming it is interesting to analyze the influence of the mutation
and crossover operators on the size of the Individuals.

To that effect figure [6.16] on the next page shows the size change of an Individual after
applying the mutation operator. More than 5000 mutation events per generation generate no
size change at all, in the graph the count was clamped at 30 to make other values visible. A
growth of two, three or four Statements seems to be a common result of a mutation. This is most

49

CHAPTER 6. NO ADVERSARY

CPU Time [s]
(2]
o
T
L

0 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 6.15: CPU time needed to calculate one generation.

likely due to the replace mutation that uses the same mechanism as the population initialisation
to grow the replacement Statement trees, which have a minimum depth. This seems to indicate
that the mutation operator has a strong growth bias; however, when looking at table [6.1] on the
facing page it can be seen that the bias is not strong at all, but indeed present. The values are
different for each Function because they are allowed a different amount of Statements and have
a different set of Statements available which has an influence on the success rates of mutations.

40 30

30
20

10
(il ‘|.M,M.J«M.\\w.\ﬁm»Jw.‘m‘.M/.MM,Im.u‘.‘m‘mJMMM.MMWMMWMNWHWWWWWWMWW

Size Change

-10

-20

-30

-40 0
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 6.16: Number of mutation events creating a particular size change per generation.

Figure [6.17] on the next page shows the size change of an Individual after applying the
crossover operator. The counts were clamped at 200 to make infrequent size changes more
visible. A change of zero occurred more than 4500 times per generation, +1 occurred about
200 times per generation. There is no obvious bias visible. Table [6.2] on page [52] shows that
there is a bias, but in both directions. The decision, movementl and movement2 Functions even
shrink on average. This of course begs the question why the Individuals still grow even though

50

6.5. BEST INDIVIDUALS

Table 6.1: Size change (Ag) of Individuals due to mutation.

Function Ag oA s Asmin ASmax
belief 0.056 1.533 -79 94
decision 0.028 3.556 -197 137
movementl 0.073 3.913 -283 147
movement2 0.070 3.901 -287 162
predictl 0.010 0.646 -48 95
predict2 0.012 0.721 -21 97

mutation and crossover do not create bigger Functions on average. The answer is that the shrunk
Individuals are less likely to be selected in the next iteration than others because some important
parts of the Statement tree were destroyed and the fitness will suffer. Changes that cause a
growth in size may also destroy important parts but with a smaller probability, so the smaller
Individuals get weeded out by selection and the population grows. From tables [6.1] and [6.2] on
the following page it can be seen that the crossover operator can create more growth than the
mutation operator, because it can take a big subtree from the donor Function and insert it near
to the leaves in the receiving Function. Mutation has to create new Statement trees, and their
maximum depth (and so the amount of Statements they can contain) is limited.

40 200
30
20 150
o 10
=2
f=
©
S5 o
()
N
AT
-20 L - s0
-30
-40 Lo

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 6.17: Number of crossover events creating a particular size change per generation.

6.5 Best Individuals

This section analyzes the properties of the best Individuals per generation. Figure [6.18] on the
next page shows the positions of the best Individual per generation. The spawn points A,B and
C from figure[6.7)on page 5| can be easily recognised. There is even an additional spawn point
(labeled D in figure [6.18] on the next page) that was not obvious from other figures. The fitness

51

CHAPTER 6. NO ADVERSARY

Table 6.2: Size change (Ag) of Individuals due to crossover.

Function Ag oAy ASmin ASmaz
belief 0.023 3.818 -160 94
decision -0.774 14.317 -197 195

movementl -0.120 13.867 -291 285
movement2 -0.120 13.894 -292 287

predictl 0.062 1.407 -82 96
predict2 0.058 1.392 -80 96
1000 T e o T o ‘.o R ol o . ol o ®o ! T .‘ L
| o o . ¢ * « ° ‘e e Ce * e o]
900 e Xl o o ® o,
o .
c e .. oo . 0
800 . [YCTIN e, 2 . ..
L . i
.
O”oy.. ¢ by 8. N :‘o . %% DR ..’ . ° 3
L . o % . . . LI * o_ |
700 AXT S .OO' v, e o . . o
. o e ° Ll o o M .
L H P . o« . o o« oo
600 o¥, o ° A . ° o o o o
= o &y * %% °s LI K See®
=3 . M . .: * e . .‘ ... o °s ‘ ® o oo See .
3 0gy ® ’ ot . o -
S 500 kebd, soadree T B e L e
2 D eag® 3 o8 o0t on 00 e PR %% R
= 400 B 7 o 0 one’s o 0 C % Plrlen o o 3
e) :.o.,’{’ & o el o\’:o..“ S ”... - o . oo
. e o
300 1 ge o O":. [L o .. ,: o ..', e
o 2 el o ¢ Wt S e Sleet, o .
A AR AR D W COLT AR
200 ot - o o oo o "
b{ * :0 . ° : . L) . oo : ¢ 2T % ot b
100 ol L., o * . MR VI AL IR T L RS SRR N
- B
e " g o SlWge M L e g
o . . . o &% . oo SRS Y
0 P N Y M MR LN PP S) 1Q82%° e8P ¢ Jo0)
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 6.18: Positions of the best Individuals per generation.

development of the best Individuals was already shown in figure[6.2]on page[d2] The size of the
best Individuals fluctuates wildly between 100 and 800, showing that relatively small Individuals
are sufficient to successfully play 2-AntWars when the opponent does not move.

6.6 Conclusion

The analysis of the run showed that the 2-AntWars model is suitable to create players that are
proficient at finding food on the playing field and use both ants effectively. Interestingly, the
developed players use the ants one after another instead of alternating the moved ant which is
what a human player would most likely do. It was also seen that the population model was
conductive to creating different species inside the population without an explicit method to do
so, like partitioning the population to create dedicated space for different species.

52

CHAPTER

Strategies Version 1

This chapter presents the results of trying to evolve players capable of beating the first implemen-
tation of the three discussed strategies in section [3.3]on page During this and the following
chapters, player 1 designates the player that is developed by GPS, player 2 is the player moving
according to a fixed strategy.

7.1 Greedy

This section presents the results of a run against the Greedy strategy. First the implementation
of the strategy is discussed before the run is analyzed in detail.

Implementation

Movement] and movement?2 of the greedy player are the same. During the first four moves, it
returns twice north-west and once north for ant 1 and twice south-east and once south for ant 2 to
separate the ants enough so that they chase different pieces of food. Later, the Function returns
immediately scoring moves if such moves exist. Otherwise the immediately scoring moves from
the positions north-east, north-west, south-east and south-west to the current position of the ant
are compared and the direction with the best scoring potential is returned (if it has at least one
scoring move). Then the moves uncovering the most unseen fields are calculated and returned if
there are moves that uncover unseen fields. In the case that still no moves have been returned,
the nearest food position and nearest unseen field position and their distances to the position of
the ant are calculated. If the distance to the position of the food is not larger than the distance
to the nearest unseen field then the moves towards the food, otherwise the moves towards the
unseen field are returned.

The decision Function for the greedy player alternates between moving ant 1 and 2. It also
prioritizes moves suggested by the movement Functions in the following order: for ant 1 north,
south, north-west, south-west; for ant 2 south, north, south-west, north-west. This is done to
improve collection efficiency; before moving away from the starting positions to reach food,

53

CHAPTER 7. STRATEGIES VERSION 1

more local positions are tried. Ant 1 prioritises north movements, ant 2 south movements to
keep them distant from each other and better explore the playing field (diagonal moves generally
uncover more positions). If the movement Function of the ant that is about to be moved did not
suggest any moves, then north-west and south-west moves are added to continue moving across
the playing field towards the opponent’s half.

The belief Function for the greedy mover behaves in the perfect way if the opponent does
not move. It returns one for every unseen field and every seen field that contained food and zero
otherwise.

The prediction Function for the greedy mover just returns the current prediction because the
prediction information is not used in any way.

Results

Figure shows that GPS was able to develop players that beat the implementation of the
greedy strategy. It took six generations until the developed player beat the greedy strategy for
the first time, by collecting two pieces of food more over 50 games than the opponent (out of
a total of 1600 pieces of food available). The following generations were won by the greedy
player but GPS continued to improve the player (and the frequency of winning) so that in the
last generation player 1 was able to collect 100 pieces of food more than player 2.

32 T

Develo;;ed PIayer‘
Greedy
28 | 1

24 - B
20 1

e et ad 9,
16 K

Found Food

12 | . i
8+ i

4+ i

Il Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 7.1: Average number of found pieces of food of the best Individual per game.

Figure[7.2]on the next page gives an overview of the fitness development of the population. It
can be seen that one species takes over the population after 400 generations have passed, labeled
as A. There are two subspecies (B, C). B is superior to its surroundings and still dies out. Species
C emerges inside of A and is superior to its parent species. This is barely visible in figure[7.2]on
the facing page, but figure [/.3|on the next page shows this clearly.

When analyzing how the collected food is distributed among the ants, the situation depicted
in figure on page [56 emerges. Player 1 mostly uses his second ant to collect food while the
second player’s ants are equally utilized (as expected because they were programmed that way).
It is surprising to see that ant 1 of player 1 mainly finds only one piece of food. Figure[7.5|shows

54

7.1. GREEDY

1000
900
800
700
600

500 4

Individual

400 [
300

200 |

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 7.2: Found food of the Individuals playing 2-AntWars against a Greedy player.

1000
900 |- - Ce T Lo]

800 | .:. .”. . I i

Individual

¢
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 7.3: Location of the best Individual inside the population of a particular generation.

that Player 1 uses one ant until it cannot move anymore before the other one is moved. Combined
with the fact that ant 2 collects more food than ant 1 this means that player 1 uses ant 2 first and
then ant 1. Not every Individual of the population uses this method though, figure [7.5] on the
next page shows at least one distinct subspecies (labeled D) that moves both ants earlier.

It was shown before that there is a species inside the population that is superior to its neigh-
bors but still dies out (species B, figure[7.2). Figure[7.6|on page[57]shows the reason: The belief
Function that B uses gets replaced by a slightly better (but a lot brittler) Function. Now that
player 2 actually moves, the population does not converge to extremely small and extremely
brittle Functions as seen in the run without adversary, but still the better belief Functions seem
to be more susceptible to catastrophic change.

Figure [7.7] on page [57] shows the fitness of the belief Function that was used by the best
Individual in each generation. Three distinct levels of fitness can be observed, the first corre-

55

CHAPTER 7. STRATEGIES VERSION 1

25 200 25 200
20 20
150 150
3 15 3 15
g g
2 2
] 100 2 100
3 H
& 10 & 10
50 50
5 5
LM
0 0 0 . .
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration
(a) Player 1 Ant 1 (b) Player 1 Ant 2
25 200 25 200
20 20
150 150
3 15 3 15
g g
& &
= 100] 100
3 3
&L 10 & 10
50 50
5 5
[0 0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration
(c) Player 2 Ant 1 (d) Player 2 Ant 2

Figure 7.4: Distribution of found food per ant.

1000 80
900 70
800

60
700
600 50
500 40
400 30
300

20
200
100 10

0 0
100 200 300 400 500 600 700 800 900

0 1000
Iteration

Individual

Figure 7.5: Average time when both ants of the developed player leave the starting position.

56

7.1. GREEDY

1000 5000
900
800 4000
700
600 3000

500

Individual

400 2000
300

200 1000

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 7.6: Development of the belief deviation.

1000 T T T
Developed Player
Greedy

800 - 1

Belief Deviation

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 7.7: Average belief deviation of the best Individual per game.

sponding to species A, the second to species B and the third to species C. Only the third level is
better than the belief Function of player 2, which shows that it is hard for GPS to find a suitable
belief Function. The belief Function in the last generation has an average deviation of 343.4 per
game. It reaches that deviation by beginning with a belief of one at every unseen position and
slowly reducing it until it reaches about —0.07 when the game ends (the actual value depends on
the length of the game). The belief depends on the time that has passed but not on the predicted
positions of the enemy’s ants (or any position at all). The belief in food that was seen but is
currently not visible is 0.8.

The fitness of the other auxiliary Functions (predict]l and predict2) of the best Individual
per generation is shown in figure [7.8 on the next page. It can be seen that the performance of
player 1’s predict Functions is relatively stable compared to player 2’s Functions. Player 2 is
very bad at predicting the position of ant 2 of player 1 because as determined earlier, this ant is

57

CHAPTER 7. STRATEGIES VERSION 1

4000 T

T T
. Developed Player predict0
N . Developed Player predietl .
3500 ", : o < Greedy predict0 + A
. Greedy prgdictl

3000 -
2500 |

2000

Predict Deviation

1500

1000

500 - .o .o : . . b

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 7.8: Average predict deviation of the best Individual and its opponent per game.

1000
900
800
700 i
600 f;

500

Individual

400 |
300 &
200

100

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 7.9: Average food remaining on the playing field after a game.

moved first so that predicting it at the starting position is wrong during the whole game. The
prediction of ant 1 of player 2 is not so bad and comparable to the performance of the prediction
Functions of player 1. It is, however, less stable. Player 1 reaches his prediction performance by
moving the predicted positions one field to the west of the current prediction every third move
to approximate the positions of the enemy’s ants.

The average food remaining on the playing field after a game is presented in figure [7.9]
It starts with a maximum of 12, but as the Individuals in the population increase their fitness,
less and less food remains on the playing field so that in the last generation only 0.52 pieces of
food remain uneaten per game. This shows that when two players are active nearly all pieces of
food can be collected without needing a suitable positioning bias as was the case when only one
player was moving.

58

7.1. GREEDY

The total size of the population and the time needed to evaluate it are depicted in figure[7.10}
As was already seen in the run without adversary, the time needed to evaluate a population
is not influenced by its size in Statements. The fitness of the players is more influential as
fitter players find all of the available food faster which shortens the games and reduces the
computational burden. From generation 300 onward, the size of the best Individual is above
300. This indicates that playing successfully against moving opponents requires more complex
programs than playing against stationary opponents.

700000 140
600000

500000

400000

300000

CPU Time [s]

200000

Population Size [# Statements]

100000

0 L L L L L L L L L 0 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) (b)

Figure 7.10: Total number of Statements contained in the population and|(b)|the time needed
to evaluate them.

59

CHAPTER 7. STRATEGIES VERSION 1

7.2 Scorched Earth

This section discusses the run against the Scorched Earth strategy. As before, the implementation
will be presented before the result is analyzed.

Implementation

The decision Function lets every ant move once before the other ant is moved.

The movement Functions move the ants in the following way: When the game begins, move-
ment] moves the ant to position (9, 2), movement2 to position (9, 10), which brings them one
position into the playing field half of player 1. Food is ignored on the way. Then the ants are
moved north and south until all food on positions with the same y-coordinate as theirs is eaten
or all positions have been seen. After that, the ants are moved west once and the process is
repeated. Figure [7.11] shows the movement path of the ants with this implementation of the
Scorched Earth strategy.

The belief and predict Functions are the same as the ones the Greedy strategy used, i.e. belief
as if the other player did not exist and predict always the last prediction.

é’ A

Y
I
>—

& &

&

& k| ¥
&

A
A
A
A
A

6\
Y
Y

\
\

Figure 7.11: Player 2 using the first implementation of the Scorched Earth strategy.

60

7.2. SCORCHED EARTH

32 T

Develoﬁed Player‘
Scorched Earth
28 B

SN

Found Food

8l RO e R R i
4 + i
0 Il Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 7.12: Average number of found pieces of food of the best Individual per game.

1000 —=

‘ Developéd Player‘
Scorched Earth

800 1

Belief Deviation

400 | 1

200 e . N e et s - .

0 Il Il Il Il Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 7.13: Average belief deviation of the best Individual and its opponent per game.

Results

Figure [7.12] shows that GPS had no problem developing players that are capable of beating
the first implementation of the Scorched Earth strategy. Beginning with the second generation,
the best Individual always performed better than its opponent (with the exception of generation
9). During the first 100 generations, the fitness of the Individuals improves steadily, then it
stagnates for 100 generations before it suddenly jumps to its final value. The reason for this last
improvement was found by watching the games of the best Individuals of generation 150 and
200. In both games the players exploited the rigidity of the Scorched Earth player and sent one
ant into his half while his ants were still moving towards the center of the playing field. There
they collected some food, ensuring that the Scorched Earth player cannot win. One might say
that Scorched Earth was beaten by a more efficient form of Scorched Earth. The innovation of

61

CHAPTER 7. STRATEGIES VERSION 1

4000 ——

™ T T
. Developed Player predict0
. . . . Developed Player predictl .
3500 . N Scorched Earth predict0 - E
. Scorched Earth predictl .

3000 F . . : . 4
2500 -
2000 |

1500

Predict Deviation

Ra Siae

AR E

500

0 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 7.14: Average predict deviation of the best Individual and its opponent per game.

1000
900
800 |
700
600

500 |;

Individual

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 7.15: Found food of the Individuals playing 2-AntWars against a Scorched Earth player.

the player at generation 200 was that the ants did not always act greedily while moving towards
the half of player 2. There were situations where the ant could have moved one field backwards
to eat one piece of food but did not do it. Instead, the ant moved towards the enemy’s half of the
playing field (not ignoring the food on the way), was there earlier than the player of generation
150 and collected more food there.

The average belief deviation of the best Individual per generation depicted in figure [7.13)|
on the preceding page shows the same development as the amount of eaten food. First it im-
proves steadily and then it stagnates before jumping to its final value. The average deviation of
the Scorched Earth player is significantly higher than the deviation of the Greedy player (see
figure [7.7)on page [57), even though they use the same Function. The reason for that is that the
Scorched Earth player believes that the food he passes on his way to the center of the playing
field stays there, but in reality it is eaten by the developed player .

62

7.2. SCORCHED EARTH

1000 120 1000
900
800
700
600

500

Individual
@
3
Individual

400 |
300 [*
200 | 4

100

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Ant 1 (b) Ant 2

Figure 7.16: Found food of the ants of player 1 against the Scorched Earth strategy.

1 1000

o00 M. : 900
700

500

Individual
a
&
8
0N
Individual

300

100

0 100 200 300 400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
Iteration Iteration

(a) Ant 1 (b) Ant 2

Figure 7.17: Probability that an ant of player 1 is still movable after the game has ended.

Figure [7.14] on the facing page shows that the predict Functions reached the same level of
precision as in the run against the Greedy player, but the method by which it was reached was
different. The predictl Function constantly returned (14,3) as prediction, predict2 returned
(14,9). Instead of moving the prediction around, it was placed at the center of the path the ants
move on.

The overview of the fitness development of the run against the Scorched Earth player is given
in figure[7.15|on the preceding page. After 100 generations, species A formed and took over the
population. At spawn points B1, B2 and B3 improvements to A emerged that formed species
B which was the only species present in the population by generation 450. Figure [7.16] gives a
more detailed insight into the development of the population by separating the performances of
ant 1 and ant 2 of player 1. It shows that from this point of view, species A is not a coherent
species at all but rather a conglomerate of at least three species. The change to species B was
mostly achieved by improving the performance of ant 1 while the one of ant 2 stays the same.
Species B is also not as homogenous as it seemed. The predominant behaviour is that ant 2
moves first until it has no moves left and then ant 1 starts to move (see also figure [7.17) but
there are two species hidden inside it (C2 and D) that have switched the role of ant 1 and ant 2.

63

CHAPTER 7. STRATEGIES VERSION 1

Found Food

200 300 400 500 600 700 800 900 1000
Iteration

Figure 7.18: Distribution of found food of the Individuals playing 2-AntWars against a Scorched
Earth player.

C2 died out over the course of the run but D remained stable. D is also interesting because it
originated at the beginning of species A (at Individual 870) and not B. C2 even seems to have
roots going back to the first generations, represented by C1. C1 only used ant 1 to gather food,
but was successful enough to survive until species A emerged. It then resurfaced inside of B
in an improved fashion, also using ant 2 to gather food. Beside the fact that C1 and C2 both
dominantly use ant 1 and their location is the same, there is no further evidence that they are
actually related, so these similarities could be coincidence.

The fitness histogram depicted in figure shows the three phases of the development of
player 1. In the first phase, achieving about 80 food per match, the use of ant 2 was optimized.
In the second phase both ants are used effectively and species A is born, achieving about 100
pieces of food per match. The third phase optimized the use of ant 1, resulting in players that
score about 120 food per match. The optimizations increased the average number of positions
seen per game which means that ant 1 had a stronger instinct to explore. Figure [7.19] on the
next page corroborates this interpretation of the fitness histogram. It also shows (in figures[7.19¢|
on the facing page and [7.19d) on the next page) the abysmal performance of the Scorched Earth
player.

Figure [7.20]on the facing page shows whether the predict2 Function of the developed player
was changed during the course of evolution, be it by means of crossover or mutation. A large
portion of the predict2 Functions inside the population was never changed. This can only happen
if the result of a change is larger than the set maximum size (100 for predict Functions) and
the original Function is kept. Normally it is possible for big Functions to shrink as a result
of changes which improves the chances for successful changes even if they result in Function
growth because they now have space to grow. This mechanism is not working for the unchanging
predict2 Function because it starts off much bigger than the maximum size. This is possible
because during the construction of Individuals only the tree depth matters, not the total amount
of Statements, so very large Functions are possible. Normally they die out quickly because initial
Individuals are generally unfit, but this one survived a long time. This could be an indication

64

7.2. SCORCHED EARTH

25 160 25 160
140 140
20 20
120 120
g 15 100 g 15 100
& é
° 80 ° 80
g g
H H
@10 60 @10 | 60
st nh‘n i
40 40
5
20 20
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration
(a) Player 1 Ant 1 (b) Player 1 Ant 2
160 25 160
140 140
20
120 120
3 100 5 15 100
& 8
o 80 o 80
g E
é é
60 60
40 40
20 20
0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration
(c) Player 2 Ant 1 (d) Player 2 Ant 2

Figure 7.19: Distribution of average found food per ant and game.

1000
900
800
700
600

500

Individual

400

300

200

100

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 7.20: Changes to the predict2 Function of player 1. A changed Function is marked with
the value 1, an unchanged Function with the value 0.

65

CHAPTER 7. STRATEGIES VERSION 1

1000
900
800 0.8

700

600 0.6

500

Individual
Iy
&
Individual
@
g
3

400 |8 04

300

o~

200 0.2

100

0 0
[100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) First time both moved (b) Both collecting food

Figure 7.21: Effective use of both ants.

700000 T T T T T T T T T 120

600000 -

500000 -

400000

CPU Time [s]
P
3

300000 -

200000 -

Population Size [# Statements]

100000 ¥

0 L L L L L L L L L 0 L L L L L L L L L
[100 200 300 400 500 600 700 800 900 1000 [100 200 300 400 500 600 700 800 900 1000

Iteration lteration

(a) (b)

Figure 7.22: |(a)| Total number of Statements contained in the population and the time needed
to evaluate them.

that the size limit of 100 is too small because a static large Function survived a long time against
evolving and improving smaller Functions.

The effective use of both ants is analyzed in figure[7.21] Figure[7.2Tashows the average of
the first time per game when both ants have left their starting positions. The use of both ants was
present in the population from the beginning, but only effective when species A emerged. There
are also two additional species visible (E,F) that move both ants earlier. Note that F is a part
of D. The population also contains some very small species that move both ants nearly at the
beginning of the game. As figure [7.21b]indicates, those small species use both ants effectively
and are not simply defective Individuals. This is the behaviour one would expect from a human
player (moving both ants “simultaneously” and collecting food with both), so GPS is indeed
able to develop it; however, it does not survive against the more common strategy of moving one
ant until the moves run out and then the other.

As always, the end of the discussion of a run is a look at the development of the size of the
population and the time needed to evaluate it, provided by figure[7.22] The size of the population
rises fast towards 600000 Statements, which is the same value that was seen in the discussion
of the Greedy strategy. Again, the time needed to evaluate the population is independent of the
actual size (in Statements) of the population.

66

7.3. HUNTER

7.3 Hunter

This section discusses the run against the Hunter strategy.

Implementation

The Hunter implementation assigns two roles to its ants. Ant 1 is the hunter and therefore doing
all the hunting, and Ant 2 is the gatherer, doing no hunting but tasked with collecting as much
food as possible to make the implementation more productive. Movement1 does not return any
moves because the move for the hunter ant is calculated by the decision Function, which has
access to the position predictions of the enemy’s ants. Movement2 uses the movement Function
of the Greedy strategy, see section [7.T|on page[53|for its implementation. The decision Function
decides to use the hunter ant as long as it is movable and the gatherer ant otherwise. If the hunter
ant is chosen, its move is calculated in the following way: If the hunter ant is one move away
from one of the ants, it attacks immediately. Otherwise the moves towards the enemy’s ants
(predicted) positions (if they were seen movable) and towards food that is reachable with one
move are calculated. The intersections of the following moves are tried in that order and returned
if they are not empty: all three moves, move towards nearer ant and food, move towards nearer
ant. If this does not result in any move (for example if both ants were already neutralized) the
movement Function of the Greedy strategy is used to determine the move of the hunting ant. The
belief Function uses the same method to calculate the food belief as the Greedy and Scorched
Earth implementations. The implementation of the predict Functions was a bit tricky, because
it is not really possible to predict how the enemy’s ants move before the run, so the prediction
was simply moved randomly either one position north-east, east or south-east from the current
prediction every second move. If the predicted position is visible and the enemy’s ant is not on
it then the nearest unseen position to the predicted position is chosen as new prediction.

Results

Figure on the following page shows that GPS was able to evolve players that beat the Hunter
strategy, but it took 700 generations to do so. Interestingly, the developed belief Function was
not able to beat the belief Function of the Hunter (figure[7.24a]on the next page), unlike the two
previous runs. The next figure on the following page) shows that the predict Functions
for the Hunter are not better than the “do not predict” Functions of the Greedy and Scorched
Earth strategies and that the developed player uses prediction Functions that beat them in terms
of precision. Also note that the prediction accuracy of predictl is better than for predict2, which
is no surprise because the hunting ant behaves more predictably than the gathering ant. It is also
helpful that the hunting ant tries to be close to player 1’s ants so that it is seen and therefore
accurately predicted. The study of the games of the best Individuals showed that predict 1 of the
developed player is very close to the actual position of the hunter ant on its way to the starting
position of player 1.

The fitness development of the whole population (figure on page [69) shows species
A spread throughout the population to be replaced by the successors B and C. As figure [7.26]
on page [69) shows, A spreads because it uses both of its ants to gather food. However, this

67

CHAPTER 7. STRATEGIES VERSION 1

32 T T T
Developed Player

Hunter
28 - 1

vl
R
AL

Found Food

0 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 7.23: Average number of found pieces of food of the best Individual per game.

1000 [

5000

Developed Player predict0

T T T
Developed Player -
Hunter - B ; Developed Player pregictl

: Hunter predict0

Hunter predictl

4000

3000 f-

Belief Deviation
Predict Deviation

2000

1000

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Belief deviation (b) Predict deviation

Figure 7.24: Average belief and predict deviations of the best Individual and its opponent per
game.

feature does not spread as fast as in the previous runs. An explanation for this could be that the
developed player uses his ants sequentially again (figure[7.31bon page[72) and when the hunter
ant of player 2 reaches the starting position of player 1, it can neutralize the waiting ant at the
starting position and using both ants to collect food is not possible any more. Figure[7.26on the
facing page also shows an interesting development concerning species D. The Individuals at D
consist of a movement2 Function that emerged before A spread and was enhanced by decision
and movement] Functions that enabled the effective use of both ants. Also, species C changed
tactics and actually moves ant 1 before ant 2. A part of species B also changed, as did three more
species hidden in A. Seeing as this behavior is able to spread through the population it seems to
have an advantage over moving ant 2 first. It may well be the deciding factor that allowed the
developed player to beat the Hunter strategy. When watching the games that the best Individual
played in the last generation, it becomes clear that ant 1 is used as bait to lure the hunting ant
away. The hunting ant is also ant 1 which means it is more likely to find ant 1 of player 1 when

68

7.3. HUNTER

moving across the playing field. It then follows ant 1 (the lure) which is busy collecting food
and moving away from the starting position (and from ant 2). When the hunter finally catches
up with the bait, it has already eaten some food and is quite a distance away from ant 2, so ant 2
can begin to collect food unhindered. Furthermore, the hunter already spent a lot of moves on
hunting and will not reach ant 2 in time. The gatherer ant does not hunt the remaining ant of
player 1, so player 1 is able to win.

1000
900
800
700
600

500
\

Individual

40

300 |
200

100

0 : o e . -
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 7.25: Found food of the Individuals playing 2-AntWars against a Hunter player.

1000

120 1000

900

800

700

600

500

Individual
@

3
Individual
@

S
3

400 |

300

200

100

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Ant 1 (b) Ant 2

Figure 7.26: Found food of the ants of player 1 against the Hunter strategy.

The histogram of the fitness development (figure [7.27] on the next page) shows that the
population as a whole fails to reach the 80 pieces of food mark and that it is not as clearly split
up into different performance levels as the populations in the previous runs were. The reason
for this is seen in figure [7.28 on the following page. The performance of both ants of player 1
is distributed among the same two levels which are the result of choosing one ant or the other
to move first. Unsurprisingly, the performance of ant 2 of player 2 is better than that of ant 1
because it is the gatherer ant’s job to be good at collecting food.

69

CHAPTER 7. STRATEGIES VERSION 1

140 40

120

100

Found Food

300 400 500 600 700 800 900 1000
Iteration

Figure 7.27: Distribution of found food of the Individuals playing 2-AntWars against a Hunter
player.

Found Food

Found Food

70

120 25
100
80

60

W _— W‘Mr,ww

0 0

Found Food

@

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration
(a) Player 1 Ant 1 (b) Player 1 Ant 2
25 120 25
100
20 20

80

15 3
8
60 o
g
10 e
40
5 [
20
\
0 0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration
(c) Player 2 Ant 1 (d) Player 2 Ant 2

Figure 7.28: Distribution of average found food per ant and game.

120

100

7.3. HUNTER

1000
900
800 0.8

700

600 0.6

500 |-

Individual

400 0.4
300

200 0.2

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 7.29: The developed ants winning against the Hunter strategy.

1000 2 1000 2

900 900

800 800

700 700

600 600

500 1 500 1

Individual
Individual

400 400

300 300

200 200

100 100

0 0 0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Iteration Iteration

(a) Player 1 (b) Player 2

Figure 7.30: Number of times a player supported a battle with his second ant during a match.

Figure[7.29| gives an interesting view on the result of the matches played by the population.
Even though it took 700 generations for the best Individual to start consistently beating the
hunter strategy, single matches were won much earlier.

The most surprising result of this run is shown in figure There are actually multiple
species contained in A that use the battle support rule to win fights against player 2. It does not
happen often (once of a maximum of ten during a match), but it does happen and it is not only
coincidence, because figure [7.30b] shows how often player 2 supported his battles even though
he was not programmed to do so; it rarely happened.

Figures [7.3Ta] on the following page and [7.31b|on the next page show that the population is
still very diverse from generations 700 to 1000 regarding the movement probabilities of the ants
and when both ants are used for the first time. Figure [7.31b|on the following page indicates that
moving both ants earlier than after 40 moves is spreading inside the population. This could be
an effect of the lure strategy, where the luring ant does not use its full 40 moves before it gets
caught.

71

CHAPTER 7. STRATEGIES VERSION 1

1000 1 1000
900
0.8 800
700
0.6 600

500

Individual
@
3
3
Individual

0.4 400

300

0.2 200

100

. . . 0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Iteration Iteration

(a) Probability of choosing ant 1 for movement (b) Average time until both ants leave their starting posi-
tions

Figure 7.31: Indicators of the decision method used by player 1 against the Hunter strategy.

140

700000

600000

500000

400000

60 - 1

CPU Time [s]

300000

200000 40 |- 1

Population Size [# Statements]

100000 20 -

L L L L L L L L L 0 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Iteration Iteration

0

(a) (b)

Figure 7.32: Total number of Statements contained in the population andthe time needed
to evaluate them.

The size development of the population (figure [7.32a)) and the time needed to evaluate on
generation (figure [7.32b)) offer no surprises. The total number of Statements contained in the
population rises fast towards 600000 but does not effect the execution time. The execution time
is on a higher level than in the run against the Scorched Earth strategy, at least partly because
the Hunter strategy is computationally more expensive.

72

CHAPTER

Strategies Version 2

For this chapter, the implementation of the strategies from the previous chapter was improved.
Section [8.1] contains the documentation of the run against the second implementation of the
Greedy strategy, section [8.2] on page presents the improved Scorched Earth strategy and
section [8.3] on page [84] the Hunter strategy.

8.1 Greedy

Implementation

The movement Function (used for both movement1 and movement2) of the second implementa-
tion of the Greedy strategy was, compared to the first implementation, greatly simplified. It only
uses the functionality provided by the NearestFood Statement. When it is executed, it calcu-
lates the Moves towards the nearest, second nearest and third nearest food positions and returns
the intersection of those Moves if it is not empty, or the intersection of the nearest and second
nearest (if not empty) or just the Moves towards the nearest food positions.

The decision Function was modelled after the results of the runs against the first imple-
mentations. In all cases, the developed players used the ants sequentially which seemed to be
advantageous, so the decision Function uses ant 1 as long as it is movable and ant 2 otherwise.

The predict Functions are still of no concern to the Greedy strategy and simply return the
previous prediction.

The belief Function behaves as it did in the original implementations, i.e. believe that food is
on positions that were not previously seen and that food seen previously stays there (and is not
eaten by enemy ants). The belief in food at unseen positions is also necessary to keep exploring
the playing field, because otherwise the movement Functions would not return Moves if the ants
have not seen food, as the implementation of the NearestFood Statement is based on food belief.

73

CHAPTER 8. STRATEGIES VERSION 2

32 T T T
Developed Player
Greedy V2

28 1

Found Food

0 I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 8.1: Average number of found pieces of food of the best Individual per game.

1000 T T T 5000 T T T
Developed Player - Developed Player predict0

GreedyV2 - . Developed Player predictl
Greedy V2 predict0
. . Greedy V2 predictl -
800 - 4 4000 X 4

3000

2000

Predict Deviation

Belief Deviation

200 - 1 1000

0 L L L L L L L L L 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Iteration Iteration

(a) Belief deviation (b) Predict deviation

Figure 8.2: Average belief and predict deviations of the best Individual and its opponent per
game.

Results

Figure [§.T shows that GPS was able to develop players that are on par with the Greedy strategy,
but it was not able to beat it with both averaging to about 16 eaten food pieces per game.

The developed belief Function did beat the belief Function of the Greedy player as can be
seen in figure [8:2a] It behaves in the following way: Belief in food at unseen fields and in seen
fields with food is 0.985 and does not change over time, with the exception that the belief in food
at unseen positions jumps to zero after 24 moves. Note that the best Individuals per generation
sometimes use a bad belief Function, which indicates that in this case the quality of the belief
Function is not all that important for a high performing 2-AntWars player.

The predict deviation of the Greedy player (figure [8.2b) shows that the developed players
again first use up the moves of ant 2 before ant 1 is moved, so always predicting the last seen
position is a bad choice for the prediction of ant 2. The developed player does better with the

74

8.1. GREEDY

1000

900

800

700

600

500

Individual

400

300

200

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 8.3: Found food of the Individuals playing 2-AntWars against a Greedy player.

1000 e 1.4

Individual

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 8.4: Average number of begun battles per game.

prediction of ant 1 of the Greedy player by moving the prediction to (12,5). The developed
player keeps the prediction of ant 2 on the starting position.

Figure[8.3]gives the overview of the fitness development of the population. This time around
it only shows one species slowly taking over the whole population. Other graphs are needed to
better distinguish between species inside the population.

One graph helpful in that respect is figure[8.4] It shows the average number of begun battles
per game of ant 2 of the developed player and one can see that the feature of aggressive use of
ant 2 spreads through the population, every increase in aggressiveness giving an evolutionary
advantage. At the end of the run the Individuals with the most aggressive use of ant 2 take up
more than half of the population.

Figure[8.3]on the next page shows two principal decision strategies present in the population.
The more aggressive species moves ant 2 more often than ant 1 while the less aggressive species

75

CHAPTER 8. STRATEGIES VERSION 2

1000 1 1000 1
900 | § e % 2 A : 900

800 o, TRt 2 0.8 800

700

0.6 600

500

Individual
Individual

04 400
300 |+

200 (PR i < . - : 02 200 [

100 AN — 5 : 100

2 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

Figure 8.5: Probability that player 1 chooses Figure 8.6: Player 2 not finding food with
ant 1 for movement. both ants.

uses the ants with equal probability. Furthermore, the usage of both ants originated from four
players in the original population, where one died out, two merged into the less aggressive
species and one was the ancestor of the more aggressive species which slowly drove the less
aggressive species to near extinction.

Figure [8.6] shows which Greedy players were able to use both ants to find food. Normally,
every Greedy player should use both ants to collect food, but some of them could not. The
reason for this is that the developed players neutralized ant 2 of the greedy player before it could
begin collecting food. The Greedy player fails to use both ants in the early generations because
players that move one ant constantly east are better than the most randomly generated players
and player 1 moving ant 2 constantly east will neutralize the waiting ant 2 of the greedy player.

140 60 0.5

120
04
100

03

Found Food

02

Match Win Probability

01

20 S
i #
i o
W St
o . .

0 0 L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Distribution of found food (b) Probability of winning a match

Figure 8.7: Distribution of found food and probability of winning a match of an Individual
in the population against a Greedy player.

The distribution of the fitness values of the Individuals in the population (figure [8.7a) shows
the population slowly increasing its fitness without the formation of secondary fitness levels
as has been observed before. Figure [8.7b] shows the corresponding probability of a random
Individual in the population winning against a Greedy player which at the end of the run was
0.4. This was also hinted at by the fitness distribution, as the center of the distribution did not

76

8.1. GREEDY

25 160 25 160

20 20
15 100 15
)
"‘ i 8
10 10
40 40
5
20 I ﬁ II 20
0 0

0 0

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Player 1 Ant 1 (b) Player 1 Ant 2

Found Food
Found Food

@

25 160 25 160

20

Found Food
®
]
Found Food
®
]

0 0 0 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(c) Player 2 Ant 1 (d) Player 2 Ant 2

Figure 8.8: Distribution of average found food per ant and game against a Greedy player.

reach 80 pieces of food per match (and obviously more Individuals lie below the center of the
distribution than above).

The histogram of the performance of each individual ant per game confirms previously made
assertions about the behaviour of each ant. Player 1 predominantly uses ant 2 to collect food but
is not as efficient as ant 1 of player 2. Ant 2 of the greedy player gets more and more suppressed
until it hardly finds any food at all.

The time to evaluate each generation showed the same behaviour as was already seen before,
the early generations took 140 seconds which decreased to 100 seconds after 200 generations.
The size development of the population also offered no surprises, it rose fast from 100000 State-
ments in the beginning to 600000 after 400 generations.

Due to the unsatisfying performance of the developed player, a run with 2000 generations
and 2000 Individuals was attempted, the results, however, were worse than the first run, as is
depicted in figure [8.9) on the next page. It took GPS the whole 2000 generations to generate
players on par with the Greedy strategy. Interestingly, the same development of aggressiveness
could not be observed.

77

CHAPTER 8. STRATEGIES VERSION 2

32 T T
Developed Player
Greedy V2
28 - B
24 | E

Found Food

0 L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration

Figure 8.9: Average number of found pieces of food of the best Individual per game.

78

8.2. SCORCHED EARTH

8.2 Scorched Earth

Implementation

The Scorched Earth strategy had the most need for change since the first implementation was
beaten by a wide margin. The reason for this was the rigidly defined movement of the ants which
was subsequently exploited by the evolved players. The first change was to make the movement
Function to use one ant as long as it is movable and then use the second ant. The movement
Function for ant 2 is the same as the movement Function of the Greedy implementation in
the previous section, so the idea of Scorched Earth is incorporated solely into the movement
Function of ant 1. Since rigidity proved to be the downfall of the first implementation, ant 1’s
movement direction is not strictly predetermined in this implementation but rather guided by
waypoints. During the first 12 moves, ant 1 moves towards (10, 1) which brings it to the middle
of the playing field. The next 12 moves are towards (10, 11), crossing the playing field south-
ward and after that for the next 12 moves ant 1 moves towards (18, 11), finishing the half-circle
of scorched earth. During those movements, the exact move is computed by calculating the
moves towards the current waypoint, the moves towards the nearest food pieces and returning
the intersection of them if it is not empty or the moves towards the waypoint otherwise. When
the earth is sufficiently scorched (after 36 moves), ant 1 spends its remaining moves by collecting
food in a greedy fashion, like the second Greedy implementation.

The decision Function moves ant 1 until it cannot move any more and then ant 2. It is crucial
for the scorched earth strategy to keep the enemy’s ants out of the own half of the playing field
before the food has been collected, so the decision Function overrides the movements suggested
by the movement Functions if one of the ants can attack an ant of the enemy in one move.

The belief Function is the same that the second Greedy implementation used, and the predict
Functions are the same as the first implementation of the Hunter strategy.

Results

Due to a configuration error, the run against the second implementation of the Scorched Earth
strategy used the value of 5 for the GamesPerMatchBest setting instead of 50. It was repeated
with the correct settings yielding essentially the same result, but the run with the erroneous
setting will be presented here because it showed the interaction between the Functions of the
2-AntWars player in a clarity not seen previously.

Figure [8.10| on the following page shows the fitness development of the best Individual per
generation for both configurations. In both runs, GPS was able to develop players capable of
beating the Scorched Earth strategy (but with less margin than the first implementation showing
that the second implementation indeed was an improvement). Figure[8.10a]on the next page also
serves the purpose of showing with what kinds of random fitness fluctuations GPS has to deal
when trying to evolve capable 2-AntWars players.

Because of the configuration error, the data on the belief and predict deviation shown in fig-
ure [8.11] on the following page is fuzzier than usual which hampers the interpretation process.
The belief deviation shows that the belief Functions of the evolved players beat the belief Func-

79

CHAPTER 8. STRATEGIES VERSION 2

T T T 32 T T T

Developed Player Developed Player

Scorched Earth V2 - Scorched Earth V2
28 4 28 4

24 4 24 4

20 I 4

16 [

Found Food
Found Food

S
12 B
8 4 8t 4
4+ - 4+ B
0 0 12)0 2(‘)0 3(‘)0 42)0 5(‘)0 6(‘)0 72)0 82)0 9(‘)0 1000 ° 0 1(‘)0 21)0 31)0 4(‘)0 51)0 61)0 7(‘)0 8(‘)0 91)0 1000
Iteration Iteration
(a) Erroneous 5 GamesPerMatchBest (b) Correct 50 GamesPerMatchBest

Figure 8.10: Average number of found pieces of food of the best Individual per game, |[(a)| with
only five games between the best Individual and the Scorched Earth strategy and [(b)| the correct
amount of games between them.

1000

7000 T

T T T T T
Developed Player - Developed Player predict0

Scorched Earth V2«) - . Developed Player predictl
. Scorched Earth V2 predict0
Scorched Earth V2 predictl

6000 |-

5000 |-

3000 F;

Belief Deviation
Predict Deviation

0 L L L L L L L L L 0 L s L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Iteration Iteration

(a) Belief deviation (b) Predict deviation

Figure 8.11: Average belief and predict deviations of the best Individual and its opponent per
game.

tion of the Scorched Earth player. Note the improvement of the evolved belief Function around
generation 800, this will come into play later.

The belief Function that the best Individual of the last generation uses showed the most
complex behaviour of all the belief Functions discussed until now. It believes in seen food
constantly with a value of one. Initially, it also believes in unseen food with the same value.
After 20 moves, the belief in food at unseen positions only remains in the seven rows on the
top of the playing field and it shrinks to two rows after 40 moves. This is a result of the fact
that ant 1 of the Scorched Earth player misses more food at the begin of his arc than at the end
(because at the end it greedily collects food in the area at the bottom of the playing field). After
ant 1 has exhausted its moves, ant 2 collects food around its starting position in the center area
of the playing field, leaving only the top most rows unharvested (with a certain probability, not
always). The downside of this is that food in the south-western corner of the playing field goes

80

8.2. SCORCHED EARTH

1000

900

800

700

600

500

Individual

400
300 |°

200

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 8.12: Found food of the Individuals playing 2-AntWars against a Scorched Earth player.

1000 5000
900
800 4000
700
600 3000

500

Individual

2000

1000

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 8.13: Belief deviation of the Individuals playing 2-AntWars against a Scorched Earth
player.

uneaten by the evolved players because they evolved in a way that lets them be guided by the
food belief but not by unseen fields and it is too far away for ant 2 of the Scorched Earth player.

The predict Functions did not evolve this kind of behavioural complexity. The prediction of
ant 1 moves to (12, 6) and then jumps around in a one move neighborhood around it which is a
good approximation of the later positions of ant 1. The prediction of ant 2 stays at the position
one move to the west of ant 2’s starting position.

The fitness development of the population depicted in figure [8.12] shows fairly standard be-
haviour during the first 500 generations, with species A taking over the population. A obviously
consists of multiple subspecies but this is not the focus of concern right now. What’s impor-
tant is spawn point B, where it seems that a species with inferior fitness emerged that spread
throughout the whole population. Only some time later, another species reestablished the fitness

81

CHAPTER 8. STRATEGIES VERSION 2

Found Food
@
3
Found Food

1
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Ant 1 (b) Ant 2

Figure 8.14: Distribution of average found food per ant and game against a Scorched Earth
player.

1000
900
800
700
600

500

Individual

400

300

200

100

0

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 8.15: Average time when both ants of the Individuals playing 2-AntWars leave their
starting positions against a Scorched Earth player.

level of A at spawn point C. Here figure [8.1Tal on page 80| comes to mind as it showed that the
best Individuals of the population began to use improved belief Functions around generation
800 which is also the same time C emerges. This indicates that an improvement in the belief
Function might be responsible for the inferior species B.

Figure [8:13] on the previous page shows the development of the belief deviation of the pop-
ulation and indeed, spawnpoint B marks the rise of a new and improved belief Function. It be-
haved differently than its predecessor and damaged the performance of the evolved 2-AntWars
players, but what exactly changed? The performance of ant 1 (figure [8.14a) was influenced,
while the one of ant 2 (figure [8.14D)) stayed constant. Figure [§.15]shows the average time when
both ants of the developed player have left the starting positions. Note that B is visible, but not as
usual for this graph where new species show up by moving both ants before the player moved 40
times. Instead, the ants of B take more than 40 moves on average to leave their starting positions.

82

8.2. SCORCHED EARTH

140 60 0.8

120 o7 r

100

80

60 | |

Found Food
Match Win Probability

40

10
20 W“ 01l
0 0 0

ki L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Distribution of found food (b) Probability of winning a match

Figure 8.16: Distribution of found food and probability of winning a match against a
Scorched Earth player.

This can happen in two ways. The first way is that ant 1 (which is the ant that moves second)
might wait some moves after ant 2 ran out of moves before it starts moving, which seems un-
likely. The second possibility is that in some cases ant 1 moves immediately after ant 2 ran out
of moves, but in some cases does not move at all. This can happen when the belief Function
does not believe in food at unseen positions, the player has not seen food that he has not eaten
and does not explore unseen fields. That seems to be the reason for the less fit individuals.

Note also how this figure shows the existence of additional species that move both of their
ants earlier, confirming the previous assertion that A consists of multiple species.

The fitness distribution of the Individuals in the population (figure[8:16a) shows the damage
done by the emergence of the improved belief Function at B. It is even more visible in fig-
ure [8.16b] with the probability of winning a match dipping from 0.6 to 0.5. The run with the
correct settings did not have this dip and the probability of winning converged to 0.7. Also note
that the whole population reaches a win probability of 0.5 after 400 generations while the best
Individuals start beating the Scorched Earth player after 100 generations.

In this run, the population size rose only to 500000 Statements instead of the 600000 State-
ments seen previously. The time needed to evaluate a generation also diverged from the stan-
dard behaviour, it decreased from 120 to 100 seconds during the first 500 generations but then
increased, reaching 120 again at the end of the run.

83

CHAPTER 8. STRATEGIES VERSION 2

8.3 Hunter

Implementation

It was hard for GPS to evolve players that beat the first implementation of the Hunter strategy,
so the improved implementation of the Hunter kept the separation of concern between hunting
ant and gathering ant and was made even more aggressive and focused on one target.

The base of movement, the implementation of the movement Functions, reused the move-
ment Function of the second implementation of the Greedy player so it would benefit from its
improvements.

The decision Function was still the centerpiece of the hunting behaviour, because it has
access to the position predictions of the enemy’s ants. The first step of the decision Function
is checking if one of the ants is one move away from one of the ants of the enemy, if so, the
ant will attack. Otherwise the Moves towards both of the enemy’s ants are calculated. If the
intersection is not empty, the intersection is used as the base for the further decision process. In
the case that the intersection is empty, the Moves towards the nearest (or the union of the Moves
if the distance is the same) is used as the base. If the intersection of the base with the Moves-
suggestion of movementl is not empty, the result is used to override the Moves-suggestion for
ant 1, otherwise the base overrides the Moves-suggestion and the ID of ant 1 is returned. This
calculation is only done if ant 1 is actually movable, in the case that it is not, the ID of ant 2 is
returned.

The belief and predict Functions work exactly like they did in the first implementation of the
Hunter strategy.

Results

The run against the second implementation of the Hunter strategy was not successful as is shown
by figure on the next page. Around generation 720 the evolved players were finally able
to catch up but not competent enough to actually beat the Hunter strategy. The problem was that
the evolved players did not use both ants effectively until this jump in fitness around generation
720, so the run was repeated with a population size of 2000 and 2000 generations. The results
of this run are presented here.

Figure[8.17b|on the facing page shows the result of the run with changed settings against the
Hunter strategy. In this run, the best Individuals were on par with the Hunter player after 1000,
and able to beat it after 2000 generations.

The belief Functions of the developed player were not able to beat the belief Function of
the Hunter player until generation 1600 (figure on the next page). Beginning with that
generation a transition to a better performing belief Function can be witnessed, so even though
the run had already lasted for 1600 generations, there were still improvements found. The belief
Function of the best Individual of the last generation always believes in food that was once seen
and in food at unseen positions until the 31-st move, when it only believes in food at unseen
positions at the two northern-most rows of the playing field. This is a good approximation of
the behaviour of the Hunter, because the hunting ant will go most likely straight west and the
gathering ant starts in the southern half of the playing field.

84

8.3. HUNTER

32 T 32 T

T T T T
Developed Player Developed Player

Hunter V2 Hunter V2
28 4 28 4

24 4 24 4

Found Food
Found Food

0 100 200 300 400 500 600 700 800 900 1000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration Iteration

(a) Normal settings (b) Large population

Figure 8.17: Average number of found pieces of food of the best Individual per game, |[(a)| with
the normal settings and@with 2000 iterations and 2000 Individuals.

1000 T T T 4000 T T T =

Developed Player - K Developed Player predictd. + - *

Hunter V2« . - . Developed Player predictl

3500 |- . . Hunter V2 predict0
.. . . s .. Hinter V2 pred

3000
2500

2000

Belief Deviation
Predict Deviation

1500

1000

500

0 L L L L L L L L L 0 L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration Iteration

(a) Belief deviation (b) Predict deviation

Figure 8.18: Average belief and predict deviations of the best Individual and its opponent per
game.

The predict Functions (figure [8.18b) showed much more prediction precision than the ones
of the Hunter and was doing better with the prediction of the hunting ant because its general
direction is constant. The prediction Function for ant 1 of the best Individual in the last gener-
ation moved the prediction one step west with each move and stopped at (5,5). The prediction
Function for ant 2 kept the prediction at the starting position until the 34-th move, when it was
set to (14, 8). Note that the prediction Function of the Hunter worked worse than in the run with
the previous implementation, even though they are identical which indicates that the evolved
players move their ants in a way very contrary to the expectations of the predict Functions of the
Hunter. This seems logical as the hunting ant bases its movement decisions on these predictions
and the evolved player’s ants do not want to be found and attacked.

The development of the found food per match depicted in figure [8.19] on the next page is
rather unremarkable. After 700 generations the species in the population seem to have con-
verged, some variation in fitness level can be seen but not enough to separate different species.

85

CHAPTER 8. STRATEGIES VERSION 2

2000
1800
1600
1400
1200 | 4

1000

Individual

800
600

400 |5

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration

Figure 8.19: Found food of the Individuals playing 2-AntWars against a Hunter player.

140 80 05

120 7
04|
100

03

Found Food

02

i o1l
20 W 10
0

0 0 L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration Iteration

N
]
Match Win Probability

(a) Distribution of found food (b) Probability of winning a match

Figure 8.20: Distribution of found food and probability of winning a match against a
Hunter player.

Another insight into the fitness development can be gained by studying figures [8.20a]
and [8.20b] There is only one dominant level of fitness present in the population as it slowly
improves. The probability of winning a game improves by 10 percent between generations 1000
and 2000, a fact which is completely invisible in figure[8.19]

Figure[8.21] on the next page shows how the ants of the players contribute to the final fitness.
It can be seen immediately that the division of labour between the ants of player 1 (the developed
player) is completely different when compared to the previous runs. In this run, both ants con-
tributed equally to the total amount of found food while in previous runs one ant was dominant,
moved first and collected most of the food while the second ant searched for the missed pieces
of food. Also interesting is the fact that the hunting ant (ant 1 of player 2) collects more food
than the gathering ant, simply because it moves first and has more opportunity to do so.

Now the obvious question is what the developed player was doing with his ants to reach this
equal distribution of found food between the ants. The next figures shed light on this subject.

86

8.3. HUNTER

25 250 250
20 200 200
3 15 150 3 150
g | g
2 2
3 3
@10 100 o 100
5 50 50
: ok
o o A A o
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration Iteration
(a) Player 1 Ant 1 (b) Player 1 Ant 2
25 250 25 250
20 200 20 200
3 15 150 3 15 150
& s
s L
5 5
£ 10 100 £ 10 100
5 50 5 50
0 0 0 0
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration Iteration
(c) Player 2 Ant 1 (d) Player 2 Ant 2
Figure 8.21: Distribution of average found food per ant and game against a Hunter player.
80 1
70
0.8
60
50 06
E z '
E 20 2
E E
30 0.4
20
0.2
10
0 200 400 600 800 1000 1200 1400 1600 1800 2000 ° 0 200 400 600 800 1000 1200 1400 1600) 1800 2000
Iteration Iteration

Figure 8.22: Average time when both ants of Figure 8.23: Probability of choosing ant 1 for
the Individuals playing 2- AntWars leave their movement.
starting positions against a Hunter player.

87

CHAPTER 8. STRATEGIES VERSION 2

2000 2

1800
1600
1400
1200
1000

800 i

600

T
1
[N

Individual

400

200

0 — 0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration

Figure 8.24: Number of times a player supported a battle with his second ant during a match.

Figure [8.22] on the preceding page shows that the ability to move both ants emerged at four
positions in the population, one dying out almost immediately. Two of them used the traditional
movement method of using up the moves of one ant before moving the other while one moved
both ants earlier. A lot of times in the previous runs, the dominant species at the end of the
run contained subspecies that moved both ants earlier. In this case, this property spread through
the whole population. Even the two species originally moving one ant after another developed
it. However, the population did not converge as figure [8.23|on the previous page shows. There
are still two species present, one moving predominantly ant 1 and one predominantly moving
ant 2. This does still not fully explain what the developed player does to keep his ants from
being neutralized, so the games of the best Individuals were analyzed. It was seen that the
evolved players first move one ant and collect some food. Then, when the hunting ant is about
five to seven fields away from the starting positions of the ants, the other ant is moved so that
the hunting ant does not find it. This ant then continues to search for food and if it runs out of
moves, the ant that was moved first continues. With this procedure, the evolved players can keep
searching food long enough to win games and matches.

The developed players also had a battle support component, as figure [8.24| shows. Fig-
ure [8.25] on the next page is proof that the population still contains a lot of diversity regarding
the movement Functions. It is noticeable that the movement Functions of the ants mirror each
other as a result of the crossover operation.

In this run, the population size rose to 1200000 Statements in the first 600 generations. The
time needed to evaluate a generation became shorter, from 250 seconds in the beginning of the
run to 170 seconds in the end.

88

8.3. HUNTER

Individual
e
5
8
IS
Individual

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration Iteration

(a) Ant 1 (b) Ant 2

Figure 8.25: Number of moves to choose randomly from after the decision Function of the
developed player was called.

89

CHAPTER

Coevolutionary Runs

This chapter details four coevolutionary runs, that means that both player 1 and player 2 were
subject to evolution. Section(9.1|reports on a coevolutionary run with the standard settings, while
section [9.2] on page [97] presents the results of a run using asymmetric evaluation with a Aeyar of
1. As a result, the Individuals in the host population are evaluated by playing three matches
against Individuals from the parasite population while only the result of one match is used to
assign a score to the parasite Individuals.

The following two sections document runs where the aim was to explore the long term
behaviour of coevolution. Both runs used a population of 500 Individuals and more generous
size limits for the Functions of the 2-AntWars players (belief 200, predict 200, decision 300 and
movement 400 Statements). Apose and Aparasite Were set to 2 instead of 3 because of the smaller
population. For every other setting (except the number of generations) the standard values were
used. Section [9.3] on page [I0I] presents a run with these settings over the course of 10000
generations. The run that delivered the content of section 9.4 on page used asymmetric
evaluation with a Ay, of 1. Originally it was planned to let GPS evolve players for 10000
generations but due to the exorbitant time requirements the run was aborted after two weeks and
6500 generations.

9.1 Run with Standard Settings

Figure[9.1|on the following page shows the average number of pieces of food the best Individual
of the host population (playing as player 1) and the best Individual of the parasite population
(playing as player 2) found on average during a game. It took player 2 200 generations to reach
the level of player 1 and from that generation on the performance of the players was about the
same. It seems, however, that player 1 has a slight advantage as there are more outliers with
better performance than worse performance.

It has to be mentioned that this type of graph is only of limited significance in coevolutionary
runs because the best player 1 is most likely at a different position in the population than the best
player 2 so when each of them adapts to their opponents they do not adapt to each other. It is

91

CHAPTER 9. COEVOLUTIONARY RUNS

32 T T
Player 1

Player 2 .
28 - 1

o0 [,
20F]

16 *

Found Food

12 F .

0
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 9.1: Average number of found pieces of food of the best Individuals per game.

1000 — 5000 — T T

"Player1 - Player 1 predict0

Player2 - T Player 1 predictl ~ *
: . . Player 2 predict0
Player 2 predictl

4000

3000

Belief Deviation

2000

Predict Deviation

1000 f-*

L L L L L L L L L P - - ! -
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Belief deviation (b) Predict deviation

Figure 9.2: Average belief and predict deviations of the best Individuals per game.

possible that the best player 1 beats the best player 2 but player 2 is far superior to its local
opponent and has a better fitness than player 1 against his opponent.

The belief Function of the best player 2 (figure is worse than the belief Function of
the best player 1 during the first 200 generations. Then the belief Function of player 2 starts to
improve until it is better than that of player 1.

In the last generation, the belief Function of the best player 1 showed the same behaviour
as the belief Function used for the implementation of the strategies in chapters [7] on page [53]
and [8]on page[73] i.e. always believe in food at unseen positions and always believe in food that
was once seen. The belief Function of player 2, however, demonstrated a more sophisticated
behaviour. It also believes in food that was once seen and in food at unseen positions, but the
latter only until the 41-st move, then the food belief at the six west-most columns of the playing
field goes to zero. This may have been instrumental for the victory of the best Individual of
the parasite population against the best individual of the host population in the last generation,
because ant 1 (which is moved after ant 2 runs out of moves) does not waste moves by searching

92

9.1. RUN WITH STANDARD SETTINGS

160 1000 160

140 900 140
800

120 120
700

100 600 100

80 500 80

60 400 60
300

40 40
200

20 100 20

0 0

. 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Player 1 (b) Player 2

1000
900
800
700
600

500 ¥

Individual
Individual

400
300
200

100

Figure 9.3: Found food of the Individuals playing 2-AntWars.

1000 80 1000 80

900 900

70
800 800
60

700 700

600 600 50

500 500 40

Individual
IS
S
Individual

400 400

30

300 300

e 20
200 (o 200

100 100 10

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Player 1 (b) Player 2

Figure 9.4: Average time when both ants of the Individuals playing 2-AntWars leave their start-
ing positions.

food near the starting position of player 1 but stays near to its own starting position and searches
for food that ant 2 might have missed there.

The development of the predict deviation (figure [9.2b] on the facing page) shows that ant 1
of both players is easier to predict than ant 2. This indicates that at least the best of both players
use ant 2 first and then ant 1. That the one of the predict Functions of the best player 1 had a
perfect score for the first 180 generations shows that the best player 2 only used one ant during
that time. The best players of the last generation showed the following prediction behaviour:
Player 1 predicted ant 1 (of player 2) at its starting position, as it did move after ant 2. The
predicted position of this ant was moved to (12, 7). Player 2 predicted ant 1 (of player 1) to be
at the position one field east to its starting position. Ant 2 was predicted to move to the positions
between (7, 3) and (7, 7); the y-coordinate had a random component.

The fitness development depicted in figure [9.3] surprises with one feature that is not visible:
local species that clearly beat their opponents. Instead, the whole population seems to follow
the trends already indicated by the fitness of the best Individuals. At first there is a species in the
host population that beats its opponents by a wide margin (labeled A in figure until a fit

93

CHAPTER 9. COEVOLUTIONARY RUNS

1000 ¥ 120 1000 120

900 900
100

800 800

700 700

80

600 600

500 500 60

Individual
@
3
Individual

400 400

300 300
200 200

100

100

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Ant 1 (b) Ant 2

Figure 9.5: Found food per ant of player 2.

species in the parasite population emerges that achieves the same score the host population does
(labeled B in figure [0.3b|on the previous page). Nothing out of the ordinary seems to happen,
until one compares the spawn point of B to the location where the use of both ants emerged
(labeled C in figure 0.4b] on the preceding page). They do not coincide, in contrast to every
run that was presented until now. There are three points at which B and C met and combined
to create a superior species D that uses both ants. Later the species switched to the standard
movement mode of moving one ant until it cannot move any more, labeled E.

Figure[9.4alon the previous page shows that for player 1 the use of both ants emerged at least
at three positions but only at one position it offered enough of a fitness advantage to survive.

Figure [9.5] demonstrates how movement capabilities transfer seamlessly from one ant to
another. In this run it is visible in two places.

The first place is where B and C collide to form a new species. In species B, ant 2 did all the
food collecting and ant 1 did not move. But when B and C merged, two things happened: the
performance of the player improved and ant 1 started to find more food than ant 2. Obviously the
capability to move both ants came from C, but C’s ants did not find a lot of food and a sudden
increase of ant 1’s capability at three separate positions and at the same time another species
comes into play is very unlikely, so the performance increase of ant 1 has to have come from
species B by transferring the important parts of the movement Function of ant 2 to the movement
Function of ant 1 of species C. Ironically, the decision Function from C changed soon after the
creation of D and ant 2 was again the dominant ant, which also was better than the ants of C.

The second place is where the spread of B wraps around to the lower positions (generation
110). There it meets with a species F that uses only ant 1 and that not very efficiently. Without
any delay species F incorporates the important parts of the movement Function of B’s ant 2,
creating species G which enjoys a pronounced increase in fitness. This modification spread
through the original F and again the improved movement Function switched ants, but this time
with some delay. This delay nearly drove H to extinction before it created I.

The development of the fitness of the two players from the histogram perspective (figure[9.6]
on the next page) shows the initial supremacy of the host population and the increase in fitness
of the parasite population until it cannot be distinguished visually from the host population. In

94

9.1. RUN WITH STANDARD SETTINGS

140 50 140 50

120 i 120
100 100

80 80

Found Food
Found Food

60 60

0 100 200 300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Player 1 (b) Player 2

Figure 9.6: Fitness distribution.

‘ Playerl‘
| Player 2 i
0.9 Tie
0.8 | ottt WA -
,."*.“.’-"—\,-_‘_ & -)q::"'ﬁ--‘?’:, P
r's & R)
> 0.7 | ¢ “aL 1
= ¢
T 06+
[
T $
s OS¢
= s
S 04l . ’&.:
g 3 e SR
= o3f’ T X0 A E
R e
ey AR S
02 F w :‘)’;.&,::%?fm . |
0.1 1
0 g s 3 AN fign A g i ' YA ek s
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 9.7: Probability of winning a match.

the last 20 generations, every Individual of the host population found 79.44 pieces of food, while
the Individuals of the parasite population found 76.28 pieces on average.

Figure shows the probability of a random player of the host and parasite population
winning a match. The first short-lived increase in win probability of player 2 coincides with
the emergence of species B. It clearly can be seen that the probability of winning the match
for player 2 does not reach the probability for player 1. Note that as the winning probabilities
draw closer, the probability of a tie increases, which was 2% at the end of the run. The increase
of winning probability for player 1 around generation 900 was not visible in any of the other
graphs so it is not clear what caused it. It is, however, noteworthy that if the host population
increased its fitness by changing its behaviour, the parasite population was able to adapt fast to
reach the previous fitness levels. If the change was caused by some sort of defect in the parasite
population, it was corrected fast. Whatever the cause, it does suggest stable populations and
performance levels.

95

CHAPTER 9. COEVOLUTIONARY RUNS

No species in both parts of the population evolved any kind of aggressiveness, there were of
course some battles but they were more like accidents when the ants crossed paths than deliberate
choices to fight. Similarly no support in battle evolved.

The fact that this and the following runs used coevolution had no influence on the qualitative
characteristics of the population size and execution time. The population size doubled because
the number of Individuals doubled. The execution time did not double because even with normal
evolution some player 2 had to be executed every game. Again the execution time showed no
correlation to the size of the population.

1.2e+06

1e+06

800000

600000
60 —

CPU Time [s]

400000 -
40 4

Population Size [# Statements]

200000 20 7

0 L L L L L L L L L L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Iteration Iteration

(a (b)

Figure 9.8: |(a)| Total number of Statements contained in the population and|(b)|the time needed
to evaluate them.

96

9.2. RUN WITH ASYMMETRIC EVALUATION

32 T T
Player 1
Player 2
28 1

T ~’.,§,§.3,.‘.‘\.’..
St AW
ECEC s

Found Food

0 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 9.9: Average number of found pieces of food of the best Individual per game.

T T 6000 — T o T T T T T T
Playerl - - Player 1 predict0
Player2 - - Player 1 predictl
AR . Player 2 predict0 +
5000 |+ - - R . . Player 2 predictl -

1000 T T T T T T T

4000

3000

Belief Deviation
Predict Deviation

2000 f

1000

L L L L L L L 0 e L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Belief deviation (b) Predict deviation

Figure 9.10: Average belief and predict deviations of the best Individual and its opponent per
game.

9.2 Run with Asymmetric Evaluation

The expectation for the run with asymmetric evaluation was that player 1 would beat player 2
because he gets three times more evaluation information and GPS can better select the fitter
Individuals. The run, however, did not turn out that way. Figure 9.9 shows the results of the
battle between the best player 1 and the best player 2. Player 2 consistently beats player 1 by a
convincing margin. Player 2 was able to do that after it developed the efficient use of both ants.

The deviation of the belief Functions in figure [0.10a] shows that the best Individuals of the
parasite population start using an improved version beginning with the 800-th generation. This
improved belief Function initially believes in food at unseen positions and that food once seen
is never eaten by the enemy’s ants. After some moves, however, the belief Function reduces the
belief at the west-most column of the playing field to zero. Every two moves on average the
west-most column that still believes in food at unseen positions has its belief reduced to zero.

97

CHAPTER 9. COEVOLUTIONARY RUNS

160

1000 160 1000 —

900 900 140

800 | 800

120
700 700
100

600 600

500 500 80

Individual
Individual

400 400 60

300 | 300
20
200 | A 200

100 100

0 0 .
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Player 1 (b) Player 2

Figure 9.11: Found food of the Individuals playing 2-AntWars.

This method takes the movements of the enemy’s ants into account, in areas where they collect
food the belief is reduced to zero after some time.

The prediction deviations visible in figure [9.10b] on the previous page show that in the first
generations of the run the best Individuals of both players only use one ant to gather food. After
25 generations the best Individuals of player 1 started using both ants, the best Individuals of
player 2 began using both ants at generation 140. The change of prediction accuracy of player 2’s
predict 1 Function around generation 400 means that the best Individuals of the host population
started moving ant 1 first instead of ant 2. During the match of the best Individuals in the last
generation, player 2 predicted player 1°s ant 1 to stay at its starting position but it started to move
and moved the prediction of ant 2 to (8,5) even though that ant did not move during most of
the game. Player 1 predicts the enemy’s ant 1 at its starting position and ant 2 at (13,5) which
corresponds to the actual behaviour of the ants.

Figure [0.11] shows the found food per match of the Individuals in the population and even
though player 1 does not beat player 2 as was expected, another expected result emerges: there
is an area where player 1 beats player 2 (labeled A) and an area where player 2 beats player 1.
This is only hinted at in this figure and will become clearer later.

The performance distribution of the ants depicted in figure on the next page shows
player 1 consisting of Individuals that use ant 1 predominantly and Individuals that instead use
ant 2. Player 2 follows the behaviour most often observed until now by relying on ant 2 to find
most of the food and cleaning up with ant 1 afterwards. Note that the found food of the ants of
player 1 is three times as high compared to player 2 because player 1 got evaluated three times.

In the runs against a fixed strategy the amount of positions that a player uncovered was
correlated with the fitness of the player because exploring more means finding more food in
general. Figure [9.13]on the facing page, however, shows that for this run exploring less does
not automatically mean lower fitness. For instance, in the parasite population (figure 9.13b] on
the next page) species C emerges that explores a big portion of the playing field. It is, however,
replaced by D and E in quick succession, each exploring less of the playing field.

98

9.2. RUN WITH ASYMMETRIC EVALUATION

70 60 70 60
60 50 60 50
50 k 50
y 40 40
- -
S 40 S 40
8 &
e 30 2 30
2 3 2 3
20 20
20
10 10 L i ““ﬁ‘ bl 10
il 0 0 i) I I A | 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration
(a) Player 1 Ant 1 (b) Player 1 Ant 2

25

100

100

20

15 il '“ o

10 ‘“\ I \‘ ‘: I‘\ H\H‘\‘\‘\‘\‘I‘\‘I\H\ w

Found Food
Found Food

V ”/HI

I 1 A 40 40
It | ‘H
‘Hh“\"“:lw“‘\‘ I‘ I Il
5 Il H I 20 20
o Il i o
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration
(c) Player 2 Ant 1 (d) Player 2 Ant 2

Figure 9.12: Average found food per ant and game.

260
240
220
200
180
160
140
120
100
80
60
40
20

Individual
Individual

25 0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Player 1 (b) Player 2

Figure 9.13: Average seen positions per game.

Figure [9.14] on the following page shows with more clarity what the fitness development
of the population already suggested: two sections in the population, in one section player 1 is
dominant, in one section player 2 is dominant. The sections are not stable, B slowly takes over
the population and A does not find a way to beat it. Note that the data of player 1 is based on
three matches but the data of player 2 on one match because of the asymmetric evaluation.

99

CHAPTER 9. COEVOLUTIONARY RUNS

1000 1 1000

900
0.8
700 ff
0.6

500

Individual
@
3
3

Individual

0.4

300 [

0.2

100

300 400 500 600 700 800 900 1000
Iteration Iteration

(a) Player 1 (b) Player 2

Figure 9.14: Probability of Individuals winning their matches.

1 | |
Player 1
i Player 2 i
- Tie
z]
2 . 20 ente }'M.‘ i
: B it
: SR PR
< kLA
S i o 4
2 Wi T
e e e i 50
g TSR S Fn |
g TRy TR 6%\",9 " X
A Wt e 2 ta
0.1 | |
0 [t T i . - - .
0 100 200 300 400 500 600 700 800 900 1000

Iteration

Figure 9.15: Probability of a random Individual winning an 2-AntWars match.

An overview of the development of winning probabilities is given by figure [0.15] It shows
how the initially superior player 1 gets beaten more and more frequently, at the end of the run a
random Individual playing player 1 has only a 35% chance of winning a match, while the chance
of player 2 is 63%.

100

9.3. LONG RUN

9.3 Long Run

The run presented in this section lasted 10000 generations. The aim was to study the long term
coevolutionary behaviour of the 2-AntWars players and the data presented will focus on that.

The best overview of the long term evolution of the 2-AntWars players in this particular run
is given by the probability of a random Individual winning his match, which is depicted in fig-
ure[9.16] Where shorter runs showed mostly static behaviour with one player constantly beating
the other one in later generations, the winning probabilities of this run paint a completely dif-
ferent picture. For 4000 generations, player 1 won his matches very convincingly, then player 2
for 2000 generations. This was followed by player 1 winning for 1000 generations, no clear
winner for 2000 generations and player 2 winning for the last 1000 generations. Player 1 had
such a high probability of winning during the first 4000 generations because player 2 did not
use both ants to collect food. The reasons for the superiority of one player over the other one in
the following generations proved to be very difficult to extract. After both players learned to use
both ants they reached a basic level of competence and only details in their behaviour varied.
For instance, from generation 4000 to 6000 player 2 supports his ants in battle, around gener-
ation 6600 player 2 does not move with either ant if no position has food belief. In generation
9500 player 1 does not move with his free ant if the other one is in battle, player 2 does that.
These differences might have been the important advantage for winning matches, but are not
completely satisfactory explanations.

Pla))er 1
Player 2
Tie

Match Win Probability

03 [

02, ..

ot .. e,
e et et e ek Lo

01 F "oTEETT 4

) L I i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration

Figure 9.16: Probability of a random Individual winning a match of every fifth generation.

From the probability of choosing ant 1 for a move in figure [9.17| on the next page we can
see exactly how long it took the parasite population to use both ants effectively and that player 1
favoured ant 2 and player 2 favoured ant 1. Player 1 seems to use ant 2 even more intensively as
player 2 develops the use of both ants but this is only the result of shorter games (which means
ant 1 of player 1 moves less often) as player 2 gathers food faster. It can also be seen that time
and time again species emerged in the populations of both players that switched the use of the
ants. These species were able to survive some time. It is unfortunate that there were no such

101

CHAPTER 9. COEVOLUTIONARY RUNS

Individual

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration

(a) Player 1

500

0.8

0.6

Individual

0.4

100 0.2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

(b) Player 2

Figure 9.17: Probability of choosing ant 1 for a move.

switched species at the same time and location in both populations, maybe then they could have
survived. This is based on the assumption that moving first with the same ant as the opponent is
a disadvantage because of a higher risk of running into the opponent’s ant.

Previous runs showed how the population size developed over time, and this run was no
exception. Figure [9.18 on the facing page permits to gain insight into the size development of
Individuals in the populations. Surprisingly, the populations diverged in terms of maximum size.
Player 1’s population was saturated with large Individuals while large sections of player 2’s pop-
ulation contained medium sized Individuals, even after the use of both ants developed (which
needs bigger Individuals). Normally one would expect both populations to behave in a similar
way because they are manipulated in the same manner. The only difference is the actual com-
position of Individuals, so the structure of the Individuals might play a more important role for
code bloat than previously thought.

102

9.3. LONG RUN

Individual

Individual

1800

1500

1200

900

600

300

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration

(a) Player 1

500 1800

1500
400

1200
300

900
200

600
100

300

0 i 3 i U i i J I, i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

(b) Player 2

Figure 9.18: Size of the Individuals playing 2-AntWars.

103

CHAPTER 9. COEVOLUTIONARY RUNS

9.4 Long Run with Asymmetric Evaluation

This section presents the long term evolutionary development of a run spanning 6500 generations
with asymmetric evaluation.

Figure [9.19|shows the probability of a random Individual winning a match. Once again the
population did not converge to stable performance levels, both players fought for superiority
instead. The actual reasons as to why one player was better than the other one proved to be
elusive. The initial advantage of player 1 was due to the fact that it took player 2 200 generations
to develop the use of both ants. During the rest of the run the belief Function and the adaption
of the movement and decision Functions seemed to be pivotal to the superiority of one player
over the other. The analysis of the games of the best Individuals of generation 1004 showed that
the belief Function of player 1 switched the belief in food on unseen positions very early to zero
and his ants stopped moving because of that, which gave player 2 a significant advantage. In
generation 4500 the situation was reversed, player 2 was hindered by absent food belief at unseen
positions. At the end of the run, player 2 regained the upper hand by using a belief Function that
set the food belief from the forth to the seventh row from the top of the playing field to zero after
13 moves. This corresponds to the immediate surroundings of ant 2 of player 1. The section of
zero belief grew larger until only the top-most and bottom-most row had food belief remaining.
This has the effect that when an ant has explored one of the rows in search of food it traverses the
playing field to explore the other row. During the traversal the ant has a chance to find food that
it does not believe in. This chance would not be present if the food belief was reduced to zero
column wise from the starting positions of the opposing ants towards the own starting positions,
which was the behaviour observed in section[9.1]on page [01]

1

Playerﬁ.
09k Playe_l[ig
08 o
0.7
0.6 _.‘_."-_ 5
05 Ft

04 |7t

Match Win Probability

0.3

0.2 - B

0.1 B

0 1 i i I I I f 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

Iteration

Figure 9.19: Probability of a random Individual winning a match of every fifth generation.

Ant 2 of player 1 (which was the preferred ant of that player) was more aggressive than
any other ant but was so consistently during the whole run and therefore did not influence the
changes of the chance to win a game. In contrast to the previous run with asymmetric evaluation,
no coadapted species emerged that occupied parts of the population.

104

CHAPTER
Special Analysis

This chapter examines properties of the 2-AntWars problem and GPS that did not receive suffi-
cient attention in the previous chapters. Section|10.I|reports on experiments that tried to develop
players against multiple opponent strategies simultaneously. In section[I0.2]on page[I07]the sta-
bility of the results of GPS when solving the 2-AntWars problem is investigated. Section[I0.3|on
page [I09] determines how much the developed players are adapted to their opponents and how
much the predict Functions influence the performance of the developed players.

10.1 Mixed Opponent Strategies

The runs against fixed strategies until now developed players by opposing them with one strat-
egy. As a result, the developed players adapted to the specific strategy of their opponent to beat
it (the extent of this adaption is discussed in section[I0.3|on page[T09). However, it is not clear if
players can be developed that beat multiple strategies simultaneously. In this section the results
of two runs against a mix of strategies are presented. The population of player 2 did contain
the second implementations of the Greedy, Scorched Earth and Hunter strategies. Two different
configurations of the player 2 population were tested, Block and Stripe.

In the Block configuration each strategy is placed at a continuous range of positions spanning
one third of the population. For the run with this configuration the Greedy strategy was placed
at positions 1 to 333, Scorched Earth at 334 to 666 and Hunter at 667 to 1000. Figure [I0.T]on
the next page shows the fitness development of the population, the three opponent strategies can
be clearly distinguished. The population achieved the best results against the Scorched Earth
strategy and the worst results against the Hunter strategy. As can be seen from Figure [10.2|on
the following page, the developed players were not able to beat any of the opposing strategies. It
took 900 generations until a species emerged that could beat Scorched Earth. This species was
the first one fit enough to survive by using both ants to collect food.

In the Stripe configuration each strategy is placed at every third position, i.e. the Greedy
strategy is at the first position, the Scorched Earth strategy is at the second position, the Hunter
strategy is at the third position, the Greedy strategy is at the fourth position and so on. Figure[I0.3]

105

CHAPTER 10. SPECIAL ANALYSIS

1000 100
900
800 80
700
600 60

500

Individual

400 40

300

200 | . 20

100

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 10.1: Found food of the Individuals playing 2-AntWars against the Block configuration.

1000 1 1 T T o T
900 09 Player 1
Player 2
800 08 Tie
700 z 07 1
_ 600 § 0.6 4
g 53
2 s00 S o5 i
E 400 : E 04 4
300 = o3t g
200 02 —
100 01 1
N]
0 0 100 200 300 400 500 600 700 800 900 1000 0 0 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration
(a) Players winning against the Block configuration (b) Probability of winning a match

Figure 10.2: Location of players able to win and probability of winning a match against
the Block configuration.

1000
900
800
700
600

500

Individual

400

300

200

100

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 10.3: Found food of the Individuals playing 2-AntWars against the Stripe configuration.

106

10.2. STABILITY OF RESULTS

1000 T T
Player 1 -
Player 2
Tie

Individual
o
3
3
Match Win Probability

0 i
1000 0 100 200 300 400 500 600 700 800 900 1000
Iteration Iteration

0 100 200 300 400

(a) Players winning against the Stripe configuration (b) Probability of winning a match

Figure 10.4: Location of players able to win and |(b)| probability of winning a match against
the Stripe configuration.

1000
900
800
700
600

500

Individual

400
300
200 bt

100

0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 10.5: Average time until both ants have left their starting positions.

shows that the run against the Stripe configuration was more successful than the one against
the Block configuration but the developed players were still not able to beat all the opponent
strategies, as can be seen in figure [[0.4] The dip in the win probability shown in figure [T0.4b|
is caused by the spread of the inferior species A (figure [I0.5) which does not move both ants
in some of its games. Once again, this effect was traced back to the spread of a fitter belief
Function the movement FunctionGroup was not adapted to.

10.2 Stability of Results

Due to the computational requirements of 2-AntWars runs, the results presented so far were
based on a single run. A single run is not enough evidence to reason about the general behaviour
of GPS in the 2-AntWars context. To mitigate this shortcoming, the run against the second im-
plementation of the Greedy strategy was repeated 30 times. This particular opponent was chosen

107

CHAPTER 10. SPECIAL ANALYSIS

90

Found Food

10 1

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 10.6: Running average (using 10 values) of found pieces of food per match of the best
Individuals of 30 runs against the second implementation of the Greedy strategy.

because the one run that was presented in section [8.I] on page [73|did not yield a satisfactory re-
sult. Figure[T0.6]shows the fitness development of the 30 runs. It can be seen that there were two
principal outcomes of a run, the best Individuals either reached about 68 or 77 pieces of food.
The difference between those clusters is that the Individuals contained in the better group used
both ants to gather food. 13 best Individuals of the last generation were not able to do that. The
games that those Individuals played showed that the decision Function was not the sole problem,
more than once even the one ant that was used stopped moving after the food belief at unseen
positions was set to zero. In 10 runs the best Individuals (regardless from which generation)
never used both ants. The graph of the fitness development also shows that the successful use of
both ants can develop at any time, as early as the 50-th generation or as late as the 900-th.

To answer the question whether GPS was able to develop a 2-AntWars player capable of
beating the Greedy strategy the best Individuals of the 10 last generations of every run were
selected to play 1000 matches against the Greedy strategy. On average the Individuals only had
a 19.8% chance of winning a match. The Individuals of the worst run had a 4.2% chance to win
while the Individuals of the best run had a chance of 43.7% on average. Only one Individual
from the best run had a higher chance of winning than the Greedy strategy but the difference was
not statistically significant, based on a one-tailed t-test. All of the following significance results
were calculated with this test (two-tailed where necessary).

Since the data of 30 runs against the Greedy strategy was available it was decided to test
the influence of the mutation operator on the end result. With the standard settings a single
Statement has a probability of 0.1% to mutate which lets one question the beneficial influence
mutation could possibly have. 16 runs against the Greedy strategy were performed without
mutation while keeping all the other settings. Figure on the facing page shows the fitness
development of those runs. It can be seen that again 2 clusters formed. Only the Individuals
belonging to the two runs in the better cluster used both ants effectively.

To evaluate the capabilities of the created players the same procedure as before was used, i.e.

108

10.3. PLAYING AGAINST UNKNOWN OPPONENTS

90

Found Food

10 1

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 10.7: Running average (using 10 values) of found pieces of food per match of the best
Individuals of 16 runs without mutation against the second implementation of the Greedy strat-

cgy.

the best Individuals of the last 10 generations of every run had to play 1000 games against the
Greedy strategy. On average, the Individuals had a 7.8% chance of winning, which is far worse
than the runs with enabled mutation. The difference is significant at the 1% level. This proves
that, at least when developing players against the second implementation of the Greedy strategy,
runs using mutation yield far better results. The usefulness of the crossover operator was already
seen in the runs where beneficial movement behaviour switched between the movementl and
movement2 Functions.

10.3 Playing against Unknown Opponents

While 2-AntWars players are developed, they are always battled against the same (or the three
same) fixed strategies or against players from the same generation in coevolutionary runs. It is
expected that the developed players adapt to their opponents to be able to beat them. The extent
of the adaption, however, is unknown. For instance, are players that were developed against the
Scorched Earth strategy able to beat other strategies or is their behaviour only successful against
this one strategy? A related question concerns the development of players in coevolutionary
runs. Is a player that is superior to its current opponent also able to beat opponents from previous
generations? The expected answer is no, because coevolution does in no way ensure this; see
the discussion of historical progress in chapter 2] on page[5] With this kind of data available also
a third question can be answered. Do the developed players use the position predictions of the
enemy’s ants in a constructive way or do they ignore this information? In the analysis of the runs
against fixed strategies it could not be observed that the position predictions have any influence
at all on the performance of the developed players.

To determine the performance of the developed players, the best Individuals of the 10 last
generations of a run were chosen to represent the result of the run. Each of these Individuals then

109

CHAPTER 10. SPECIAL ANALYSIS

vsNone
vsGreedy
vsGreedyV2
vsScorch
vsScorchV2
vsHunter
vsHuntervV2 0.5

vsBlock

P1 Strategies

vsStripe
Coevolutionary
CoevolutionaryA
Long

LongA

P2 Strategies

Figure 10.8: Results of battling developed and fixed 2-AntWars strategies against each other.
1 denotes that the strategy of player 1 is superior, match-ups where it loses are marked with
0. Differences in the probability of winning between player 1 and 2 that are not statistically
significant at the 1% level are marked with 0.5.

played 100 matches against each of the 10 Individuals representing the result of the opposing
strategy which was chosen in the same way. If player 2 was a fixed strategy, it was simply used
10 times. The results of the matches were used to determine the win probabilities of player 1
and player 2 which can be found in appendix |A|lon page|121

Figure [I0.8] shows the results of battling the developed players and fixed strategies against
each other. The most difficult fixed strategies to beat were the second implementation of Greedy
(GreedyV2) and both Hunter strategies. It can be seen that there is no statistically significant
difference between the performance of the player developed against the Greedy V2 strategy (vs-
GreedyV2) and GreedyV2. However, when looking at the results of the 10 Individuals of vs-
Greedy V2 separately, four Individuals beat GreedyV?2 at the 1% level and two additional Indi-
viduals beat GreedyV2 at the 5% level, so GPS was successful in finding a player capable of
beating Greedy V2. It is notable that vsGreedyV2 was beaten by Greedy. The only other player
that was able to beat GreedyV2 was the result of the long coevolutionary run with asymmetric
evaluation (LongA). The HunterV?2 strategy was only beaten by vsHunterV2, the player that was
developed specifically to beat this strategy. This means that HunterV2 requires special adaption
to beat it. The performance of the players developed against the Block and Stripe configurations
was very poor. Only the player developed against the Stripe configuration was able to beat one of
the opponent strategies, ScorchV2. The best found players were the player 2 Individuals of the
coevolutionary runs with asymmetric evaluation which were able to beat every other developed
player.

110

10.3. PLAYING AGAINST UNKNOWN OPPONENTS

| '
|

vsNone
vsGreedy
vsGreedyV2
vsScorch
vsScorchV2
vsHunter
vsHunterV2
vsBlock
vsStripe

P1 Strategies

Coevolutionary
CoevolutionaryA

Long
LongA
%, <
() 2 %,
b, O %y
“%
2
S,
) 2 €.
P2 Strategies v

Figure 10.9: Results of battling developed and fixed 2-AntWars strategies against each other.
The predict Functions of all developed strategies were overridden with a Function that always
returns the last prediction. 1 denotes that the strategy of player 1 is superior, match-ups where it
loses are marked with 0. Differences in the probability of winning between player 1 and 2 that
are not statistically significant at the 1% level are marked with 0.5.

vsNone
vsGreedy
vsGreedyV2
vsScorch
vsScorchV2
vsHunter

vsHunterV2 - - -
vsBlock

vsStripe

P1 Strategies

Coevolutionary
CoevolutionaryA

g |

LongA

P2 Strategies
Figure 10.10: Match-ups between strategies where the probability of winning of either player 1

or player 2 differs significantly (at the 1% level) between matches with the original and overrid-
den prediction Functions.

111

CHAPTER 10. SPECIAL ANALYSIS

Figure [10.9] on the preceding page shows the same results after the prediction Functions of
the developed players were overridden with a prediction Function that always returns the last
prediction, which is equivalent to the starting position or the location where the enemy’s ant was
last seen. The results are essentially the same, but in two additional match-ups the performance
difference is not statistically significant. This is a hint that the predict Functions indeed have
an influence on the performance of the developed players. Figure [[0.10]on the previous page
shows this more clearly. Especially the performance of vsHunterV2 is significantly influenced
by changed predict Functions. Contrary to expectations the performance of vsHunterV2 actu-
ally improved from a 52.7% to a 55.3% chance of winning a match against HunterV2. In the
other two match-ups the player 1 strategy suffers a reduction in performance when the predict
Functions are overridden.

To evaluate the strategies developed during the long coevolutionary run, 10 Individuals were
chosen from six distinct phases of the fitness development of this run that was shown in fig-
ure 0.16] on page [I0I] No Individuals were chosen from the first 5000 generations because
player 2 had not developed the use of both ants. Player 2 dominated at generations 5000 and
5500, player 1 gained the upper hand at generation 6800. At generation 8000 both players
seemed to be on equal footing. Player 2 won around generation 9500 and player 1 at the end of
the run. The Individuals of each phase were chosen among the best Individuals from generations
around the mentioned ones. Only Individuals were chosen that conformed to the current trend,
for instance for generation 5000, players from a particular generation (around generation 5000)
were only chosen if player 2 beat player 1. For the phase around generation 8000 five generations

9999
9500

8000

0.5

P1 Strategies

6800

5500

5000

o

5000 5500 6800 8000 9500 9999
P2 Strategies

Figure 10.11: Results of battling Individuals from different generations of the long coevolution-
ary run against each other. 1 denotes that the strategy of player 1 is superior, match-ups where it
loses are marked with 0. Differences in the probability of winning between player 1 and 2 that
are not statistically significant at the 1% level are marked with 0.5.

112

10.3. PLAYING AGAINST UNKNOWN OPPONENTS

9999

9500

8
28000
g
© L 4 05
17y
o 6800

5500

5000

L1 o

5000 5500 6800 8000 9500 9999
P2 Strategies

Figure 10.12: Results of battling Individuals from different generations of the long coevolu-
tionary run against each other. The predict Functions of all Individuals were overridden with
a Function that always returns the last prediction. 1 denotes that the strategy of player 1 is su-
perior, match-ups where it loses are marked with 0. Differences in the probability of winning
between player 1 and 2 that are not statistically significant at the 1% level are marked with 0.5.

were chosen where player 1 won and five where player 2 won. Each player of each development
phase played 100 matches against every other player of every phase. The results are presented
in figure |10.11| on the preceding page. The sampled player 2 strategies from generation 8000
were able to beat the sampled player 1 strategies. The player 1 strategies from generation 6800
demonstrate the effect that was searched for. They are able to beat every player 2 strategy but
the later player 1 strategies are not able to do so. Even the player 1 strategies from the end of
the run which were superior to their opponents (from the same generation) were not able to beat
every strategy.

With overridden predict Functions the player 1 strategies of the end of the run were able to
beat all strategies of player 2 as shown in figure Figure on the next page shows
which match-ups were significantly influenced by the removal of the predict Functions. As al-
ready mentioned, the player 1 strategies of the end of the run improved but it is not clear if they
really improved or the opposing player 2 strategies depended on functioning predict Functions
and were damaged by their removal. Note that this kind uncertainty does not exist for the per-
formance improvement of vsHunterV2 because the prediction Functions of the fixed strategies
(and therefore also HunterV2) were not changed. The second set of significant differences also
saw an increase in performance of player 1.

113

CHAPTER 10. SPECIAL ANALYSIS

1

9500

8000

6800

P1 Strategies

5500

5000

5000 5500 6800 8000 9500 9999
P2 Strategies

Figure 10.13: Match-ups between strategies extracted from the long coevolutionary run where
the probability of winning of either player 1 or player 2 differs significantly (at the 1% level)
between matches with the original and overridden prediction Functions.

114

CHAPTER

Conclusion

In the course of this thesis, the results of nine evolutionary and four coevolutionary experiments
to develop capable 2-AntWars players were presented. It was demonstrated that the used genetic
programming system was powerful enough to beat all of the seven static game strategies.

The basis of all developed players was greedy movement in order to to collect as much
food as possible, but the details varied a lot and were tailored to the specific strategy of the
opponent. The first implementation of the Scorched Earth strategy for example was beaten by
Reverse Scorched Earth; the developed player moved one of his ants into the opponent’s half
of the playing field and collected the food located there before the opponent (playing Scorched
Earth) had the opportunity. This strategy even reduced the greediness of one ant to get it faster
into the opponent’s half. The two implementations of the Hunter strategy were beaten by baiting
the, and hiding from the, hunting ant respectively. In addition, the battle support mechanic was
used to combat the hunting ant. During most of the runs the developed players showed a rather
pacifistic behaviour by ignoring the opposing ants. One exception, however, was the run against
the second implementation of the Greedy strategy, the developed player routinely neutralized
one of the opponent’s ants.

Another trend that was observed during the runs was that the developed players always used
one ant until it was not able to move anymore before the second ant was moved. Which ant
moved first depended on the opponent. For instance, against the first implementation of the
Hunter strategy ant 1 was moved first, against the second implementation of the Greedy strategy
ant 2 was dominant. When faced with the second implementation of the Hunter strategy, using
a specific ant first did not yield any advantage and the population was split in two halves, one
moving ant 1 first and one ant 2. Of course there were exceptions to this general trend. In
nearly every run species emerged that switched the moved ant more freely, but those species
did not survive unless it was a clear advantage. This was the case in the run against the second
implementation of the Hunter strategy, where both ants were moved early to hide from the
hunting ant of the opponent. Repeated runs against the second implementation of the Greedy
strategy showed that about 1/3 of the conducted runs did not create players that are able to use
both ants effectively.

115

CHAPTER 11. CONCLUSION

The success of the runs was not only due to high performing movement and decision Func-
tions. The belief Functions in particular developed some interesting methods of approximating
the disappearance of food from the playing field. Most of them were based on switching the
food belief from one to zero instead of interpolating between those values based on the elapsed
time. The interpolation of belief only occurred in the run against the first implementation of the
Greedy strategy. During all other runs the developed belief Function started out with food belief
everywhere and then switched it off based on time. This switch-off occurred in multiple variants
depending on the opponent that was faced. Sometimes the food belief for all unseen fields was
set to zero and sometimes the disbelief grew row wise or column wise from the starting positions
of the opponent’s ants and once the disbelief grew row wise from the top of the playing field to
the bottom. The behaviour of the belief Function was observed to have significant influence
on the performance of the player. Unfortunately, this influence was not always positive, in at
least three runs otherwise superior species went extinct or suffered a significant performance
penalty because they were depending on a non-optimal belief Function. In the run against the
second implementation of the Scorched Earth strategy a species was able to adapt to a changed
behaviour of the belief Function and regained its lost performance.

The contribution of the predict Functions to the overall performance of players was ques-
tionable. Overriding the developed Functions either did not change the fitness in a significant
way or actually improved it. Two principal behaviours were observed with the predict Functions,
jumping with the prediction to some location that is a reasonable approximation of the position
of the predicted ant or moving the prediction from the starting position to such a location.

The coevolutionary runs showed that it is possible for the players to adapt to each other in
a way that one species in one population beats the Individuals at their positions in the other
population while the other population contains a second species that beats Individuals in the
first population at their positions. The experiments testing long term coevolution demonstrated
that the populations were not subject to loss of gradient or disengagement. They battled fiercely
for dominance and the inferior player always developed a way to gain the upper hand again.
Historical progress could not be observed as the players of later generations in some cases lost
to players from earlier generations. Asymmetric evaluation did not yield any notable changes in
the evolutionary process besides taking three times longer than symmetric evaluation.

The deeper analysis of the runs unearthed some quite interesting evolutionary behaviour.
The first coevolutionary run showed that movement capabilities of one movement Function can
switch almost seamlessly to the movement Function of the other ant. The same run also demon-
strated that the combination of two species can yield a new species that is superior to both when
a species with an exceptional movement Function for one ant combined with a species that used
both ants to collect food. This proves the usefulness of the crossover operator for the 2-AntWars
problem. Mutation was also instrumental for the success of the runs as removing mutation in-
creased the chance of not discovering the use of both ants from 1/3 to 7/8. In the first run with
asymmetric evaluation there were two species in a row that reduced the amount of positions they
uncovered to improve their performance, which is quite counter-intuitive because normally more
uncovered fields result in more opportunities to find food. In these cases not exploring every po-
sition was advantageous because the unexplored positions were most likely already harvested
by the enemy’s ants and so the available moves could be spent more wisely.

116

Generally, the populations converged to one level of fitness but that does not mean that there
was a loss of diversity. Often there were species contained in the populations that chose different
ants for the majority of the game, moved less random than others or were more aggressive,
so after a run had finished there were lots of Individuals with different successful strategies
available. This was especially true of the long coevolutionary runs where both parts of the
populations developed capable players and only small variances in playing style tipped the scales
from one player to the other.

From the point of view of evaluating the rules of 2-AntWars, it seemed that there are not
enough reasons to use both ants simultaneously. In some runs this simultaneous use emerged
only to die out again. With the rules as they are now, a game is split up into two phases. In the
first phase one ant of each player tries to find as much food as possible and in the second phase
the other ant of each player tries to find the food that was left behind. When two competent
players face each other, the second phase is usually short, with the ants finding about 2 pieces
of food on average. Maybe it would have been a good idea to reduce the allowed moves by the
ants. That way a movable ant is more valuable and both ants of both players are really needed
to find all the food on the playing field.

There are multiple directions for future research. One main task is to make it feasible to
repeat runs multiple times to investigate the influence the population model and selection op-
erator have on the final result. This thesis demonstrated that the chosen model and selection
operator enabled the creation of multiple species inside the population but it is not clear that this
has a positive influence on the final outcome. The chosen selection operator could probably be
improved by taking the stochastic nature of evaluation into account, for instance it could use a
statistic test to determine if one Individual is significantly better than another one. Furthermore,
it could be beneficial to develop a system that automatically recognises an emerging species and
puts it into a repository, so that one long coevolutionary run is enough to create a wide range
of successful playing strategies without human intervention. Another direction for research is
adapting the rules of 2-AntWars to explore the influence of changed rules on the playing style
of the developed players. Reducing the number of allowed moves per ant was already men-
tioned, other possibilities are adding a third ant for each player, making the capabilities of the
ants asymmetric (e.g. one ant can move faster but the other ant sees further) or reducing the
number of games per match to see when the noise of random food placement prevents evolu-
tionary progress. A third direction could be adapting the model of the 2-AntWars player. It was
already seen that the predict Functions did not help the performance of the players but more fun-
damental changes could also result in a more capable playing style. The presented model was
decision based, i.e. Functions calculated explicitly the next move. Another possibility would be
to develop scoring functions for each possible move and the move with the highest score will be
executed.

117

Part IV

Appendix

APPENDIX

Strategy Evaluation

This chapter contains the data that section[I0.3]on page [I09 was based upon.

Table A.1: Win probabilities of player 1 (p1) and player 2 (p2) strategies extracted from different
development phases (labeled by the generations they occurred in) of the coevolutionary run
spanning 10000 generations based on 10000 matches.

Player 2

5000

5500

6800

8000

9500

9999

Player 1

P

D2

P

P2

y4!

P2

P

P2

y4!

P2

P1

p2

5000

0.441

0.514

0.390

0.566

0.400

0.558

0.332

0.620

0.355

0.597

0.336

0.618

5500

0.439

0.521

0.345

0.618

0.383

0.577

0.313

0.639

0.320

0.639

0.326

0.630

6800

0.726

0.244

0.649

0.315

0.635

0.329

0.546

0.404

0.541

0.411

0.545

0.406

8000

0.640

0.331

0.538

0.426

0.544

0.421

0.444

0.514

0.453

0.506

0.475

0.484

9500

0.542

0.425

0.450

0.518

0.480

0.482

0.385

0.570

0.382

0.581

0.395

0.561

9999

0.656

0.315

0.574

0.395

0.569

0.395

0.478

0.477

0.477

0.481

0.500

0.453

Table A.2: Win probabilities of player 1 (p;) and player 2 (p2) strategies extracted from different
development phases (labeled by the generations they occurred in) of the coevolutionary run
spanning 10000 generations based on 10000 matches. The predict Functions of the strategies
were overwritten with Functions that always return the last prediction.

Player 2

5000

5500

6800

8000

9500

9999

Player 1

P

P2

y48

P2

y4!

P2

P

P2

P

P2

P1

P2

5000

0.447

0.512

0.397

0.557

0.401

0.555

0.331

0.619

0.358

0.594

0.336

0.619

5500

0.442

0.519

0.349

0.610

0.377

0.585

0.303

0.651

0.308

0.645

0.330

0.621

6800

0.729

0.243

0.648

0.312

0.642

0.319

0.570

0.382

0.585

0.370

0.576

0.380

8000

0.645

0.327

0.534

0.429

0.535

0.431

0.467

0.493

0.471

0.491

0.482

0.475

9500

0.551

0.417

0.446

0.518

0.481

0.486

0.394

0.560

0.397

0.563

0.401

0.557

9999

0.673

0.296

0.569

0.398

0.577

0.384

0.505

0.450

0.519

0.438

0.516

0.438

121

APPENDIX A. STRATEGY EVALUATION

Table A.3: Win probabilities of player 1 (p;) and player 2 (p2) strategies extracted from the
results of the runs against fixed strategies (no opponent (N), Greedy opponent (G,G2), Scorched
Earth opponent (S,S2), Hunter opponent (H,H2)) and the coevolutionary runs (coevolutionary
with standard settings (C), with asymmetric evaluation (CA), long run (L) and long run with

asymmetric evaluation (LA)). The player 1 strategies also contain the results of the run against

the Block (BL) and Stripe (ST) opponent configurations. The probabilities are based on the
results of 10000 matches.

Player 2

Player 1

G2

S2

H

H2

CA

LA

N

b1
D2

1.000
0.000

0.919
0.064

0.370
0.588

0.994
0.004

0.508
0.452

0.356
0.625

0.268
0.709

0.556
0.402

0.216
0.750

0.310
0.640

0.357
0.594

G

p1
P2

1.000
0.000

0.864
0.114

0.250
0.715

0.995
0.004

0.335
0.628

0.229
0.756

0.108
0.878

0.466
0.502

0.137
0.839

0.201
0.763

0.254
0.711

G2

p1
D2

1.000
0.000

0.410
0.549

0.491
0.476

1.000
0.000

0.570
0.397

0.209
0.770

0.085
0.902

0.607
0.362

0.346
0.618

0.447
0.515

0.455
0.505

b1
P2

1.000
0.000

0.315
0.647

0.347
0.609

1.000
0.000

0.892
0.095

0.266
0.713

0.138
0.847

0.736
0.243

0.237
0.728

0.365
0.588

0.284
0.683

S2

p1
P2

1.000
0.000

0.753
0.220

0.396
0.571

1.000
0.000

0.802
0.178

0.465
0.509

0.284
0.687

0.623
0.348

0.191
0.782

0.375
0.584

0.358
0.606

p1
D2

1.000
0.000

0911
0.073

0.392
0.566

0.995
0.004

0.535
0.423

0.626
0.347

0.410
0.561

0.546
0.412

0.252
0.706

0.307
0.640

0.386
0.568

H2

b1
P2

1.000
0.000

0.565
0.399

0.285
0.678

0.879
0.116

0.502
0.461

0.659
0.323

0.527
0.452

0.339
0.633

0.174
0.802

0.231
0.735

0.372
0.591

BL

b1
P2

1.000
0.000

0.712
0.255

0.325
0.639

0.866
0.117

0.468
0.494

0.528
0.446

0.347
0.628

0.247
0.727

0.113
0.871

0.301
0.651

0.360
0.598

ST

P1
D2

1.000
0.000

0.601
0.378

0.251
0.718

0.953
0.043

0.515
0.454

0.347
0.633

0.161
0.826

0.339
0.634

0.152
0.821

0.226
0.739

0.260
0.702

b1
P2

1.000
0.000

0.615
0.357

0.369
0.590

0.999
0.001

0.769
0.210

0.286
0.690

0.177
0.805

0.640
0.328

0.206
0.762

0.352
0.606

0.321
0.640

CA

b1
D2

1.000
0.000

0.797
0.176

0.384
0.575

0.994
0.005

0.618
0.350

0.431
0.544

0.228
0.750

0.532
0.435

0.259
0.706

0.344
0.608

0.365
0.595

P1
D2

1.000
0.000

0.756
0.235

0.450
0.514

1.000
0.000

0.840
0.141

0.248
0.734

0.148
0.834

0.741
0.235

0.256
0.711

0.457
0.500

0.348
0.619

LA

b1
P2

1.000
0.000

0.831
0.161

0.499
0.467

1.000
0.000

0.879
0.109

0.333
0.641

0.234
0.744

0.827
0.155

0.266
0.701

0.524
0.434

0.384
0.578

122

Table A.4: Win probabilities of player 1 (p1) and player 2 (p2) strategies extracted from the
results of the runs against fixed strategies (no opponent (N), Greedy opponent (G,G2), Scorched
Earth opponent (S,S2), Hunter opponent (H,H2)) and the coevolutionary runs (coevolutionary
with standard settings (C), with asymmetric evaluation (CA), long run (L) and long run with
asymmetric evaluation (LA). The player 1 strategies also contain the results of the run against
the Block (BL) and Stripe (ST) opponent configurations. The predict Functions of the player 1
and the coevolutionary player 2 strategies were overwritten with a Function that always returns
the last prediction. The probabilities are based on the results of 10000 matches.

Player 2
Player 1 N G G2 S S2 H H2 C CA L LA
N | P 1.000 | 0.921 | 0.363 | 0.994 | 0.518 | 0.368 | 0.276 | 0.555 | 0.211 | 0.293 | 0.366
p2 | 0.000 | 0.062 | 0.597 | 0.004 | 0.443 | 0.613 | 0.702 | 0.405 | 0.759 | 0.656 | 0.591
p1 | 1.000 | 0.856 | 0.243 | 0.997 | 0.334 | 0.230 | 0.111 | 0.460 | 0.136 | 0.189 | 0.241
p2 | 0.000 | 0.120 | 0.725 | 0.002 | 0.633 | 0.752 | 0.875 | 0.506 | 0.842 | 0.777 | 0.726
p1 | 1.000 | 0.423 | 0.488 | 1.000 | 0.566 | 0.203 | 0.078 | 0.606 | 0.347 | 0.470 | 0.455
p2 | 0.000 | 0.533 | 0.478 | 0.000 | 0.395 | 0.783 | 0.914 | 0.358 | 0.620 | 0.490 | 0.508
g | P 1.000 | 0.305 | 0.345 | 1.000 | 0.887 | 0.264 | 0.138 | 0.723 | 0.231 | 0.378 | 0.278
p2 | 0.000 | 0.656 | 0.612 | 0.000 | 0.100 | 0.712 | 0.846 | 0.255 | 0.736 | 0.577 | 0.688
g | Pt 1.000 | 0.758 | 0.388 | 1.000 | 0.798 | 0.457 | 0.291 | 0.619 | 0.187 | 0.380 | 0.352
p2 | 0.000 | 0.217 | 0.576 | 0.000 | 0.181 | 0.518 | 0.685 | 0.352 | 0.784 | 0.579 | 0.608
1.000 | 0.911 | 0.387 | 0.996 | 0.538 | 0.639 | 0.409 | 0.542 | 0.254 | 0.283 | 0.386
p2 | 0.000 | 0.074 | 0.566 | 0.003 | 0.421 | 0.339 | 0.564 | 0.411 | 0.709 | 0.666 | 0.566
p1 | 1.000 | 0.606 | 0.301 | 0.877 | 0.412 | 0.676 | 0.553 | 0.345 | 0.180 | 0.194 | 0.402
p2 | 0.000 | 0.354 | 0.661 | 0.116 | 0.552 | 0.308 | 0.423 | 0.625 | 0.800 | 0.767 | 0.557
p1 | 1.000 | 0.710 | 0.332 | 0.863 | 0.463 | 0.530 | 0.347 | 0.252 | 0.108 | 0.259 | 0.359
p2 | 0.000 | 0.257 | 0.631 | 0.122 | 0.501 | 0.442 | 0.627 | 0.723 | 0.873 | 0.695 | 0.597
ST | Pt 1.000 | 0.604 | 0.248 | 0.952 | 0.520 | 0.343 | 0.164 | 0.330 | 0.152 | 0.214 | 0.257
p2 | 0.000 | 0.372 | 0.721 | 0.043 | 0.450 | 0.636 | 0.819 | 0.640 | 0.825 | 0.755 | 0.708
c| P 1.000 | 0.620 | 0.368 | 0.999 | 0.762 | 0.285 | 0.172 | 0.640 | 0.206 | 0.350 | 0.324
p2 | 0.000 | 0.351 | 0.593 | 0.001 | 0.217 | 0.691 | 0.812 | 0.331 | 0.760 | 0.610 | 0.638
p1 | 1.000 | 0.800 | 0.400 | 0.995 | 0.617 | 0.432 | 0.232 | 0.523 | 0.258 | 0.336 | 0.364
p2 | 0.000 | 0.175 | 0.562 | 0.004 | 0.351 | 0.545 | 0.748 | 0.439 | 0.706 | 0.623 | 0.594
p1 | 1.000 | 0.707 | 0.440 | 1.000 | 0.842 | 0.244 | 0.146 | 0.736 | 0.248 | 0.470 | 0.344
p2 | 0.000 | 0.278 | 0.523 | 0.000 | 0.142 | 0.735 | 0.836 | 0.240 | 0.720 | 0.488 | 0.618
LA | Pt 1.000 | 0.833 | 0.501 | 1.000 | 0.882 | 0.340 | 0.241 | 0.822 | 0.265 | 0.537 | 0.389
p2 | 0.000 | 0.159 | 0.465 | 0.000 | 0.106 | 0.632 | 0.737 | 0.159 | 0.701 | 0.423 | 0.582

G

G2

H2

BL

CA

123

[4]

[6]

Bibliography

Antwars competition, April 2010. |http://www.sigevo.org/gecco-2007/
competitions.html#c3l

Christoph Salge, Christian Lipski, Tobias Mahlmann, and Brigitte Mathiak. Using genet-
ically optimized artificial intelligence to improve gameplaying fun for strategical games.
In Sandbox ’08: Proceedings of the 2008 ACM SIGGRAPH symposium on Video games,
pages 7-14, New York, NY, USA, 2008. ACM.

John R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection (Complex Adaptive Systems). The MIT Press, December 1992.

Tiago Francisco and Gustavo Miguel Jorge dos Reis. Evolving combat algorithms to con-
trol space ships in a 2d space simulation game with co-evolution using genetic program-
ming and decision trees. In GECCO ’08: Proceedings of the 2008 GECCO conference
companion on Genetic and evolutionary computation, pages 1887-1892, New York, NY,
USA, 2008. ACM.

Tiago Francisco and Gustavo Miguel Jorge dos Reis. Evolving predator and prey be-
haviours with co-evolution using genetic programming and decision trees. In GECCO
"08: Proceedings of the 2008 GECCO conference companion on Genetic and evolutionary
computation, pages 1893-1900, New York, NY, USA, 2008. ACM.

Sean Luke and Lee Spector. Evolving teamwork and coordination with genetic program-
ming. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors,
Genetic Programming 1996: Proceedings of the First Annual Conference, pages 150-156,
Stanford University, CA, USA, 28-31 July 1996. MIT Press.

Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and James Hendler. Co-evolving
soccer softbot team coordination with genetic programming. In Hiroaki Kitano, editor,
RoboCup-97: Robot Soccer World Cup I, volume 1395 of Lecture Notes in Computer
Science, pages 398-411. Springer-Verlag, 1997.

Ami Hauptman. Gp-endchess: Using genetic programming to evolve chess endgame
players. In Maarten Keijzer, Andrea Tettamanzi, Pierre Collet, Jano van Hemert, and
Marco Tomassini, editors, Proceedings of 8th European Conference on Genetic Program-
ming (EuroGP2005), volume 3447 of Lecture Notes in Computer Science, pages 120—131.
Springer, 2005.

125

http://www.sigevo.org/gecco-2007/competitions.html#c3
http://www.sigevo.org/gecco-2007/competitions.html#c3

BIBLIOGRAPHY

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

126

Timothy Perkis. Stack-based genetic programming. In Proceedings of the 1994 IEEE
World Congress on Computational Intelligence, volume 1, pages 148-153, Orlando,
Florida, USA, 27-29 June 1994. IEEE Press.

Markus F. Brameier and Wolfgang Banzhaf. Linear Genetic Programming (Genetic and
Evolutionary Computation). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

Julian F. Miller and Peter Thomson. Cartesian genetic programming. In Riccardo
Poli, Wolfgang Banzhaf, William B. Langdon, Julian F. Miller, Peter Nordin, and Ter-
ence C. Fogarty, editors, Genetic Programming, Proceedings of EuroGP’2000, volume
1802 of Lecture Notes in Computer Science, pages 121-132, Edinburgh, 15-16 April 2000.
Springer-Verlag.

Riccardo Poli. Parallel distributed genetic programming. In David Corne, Marco Dorigo,
Fred Glover, Dipankar Dasgupta, Pablo Moscato, Riccardo Poli, and Kenneth V. Price,
editors, New ideas in optimization, pages 403—432. McGraw-Hill Ltd., UK, Maidenhead,
UK, England, 1999.

Peter A. Whigham. Grammatically-based genetic programming. In Justinian P. Rosca,
editor, Proceedings of the Workshop on Genetic Programming: From Theory to Real-World
Applications, pages 33—41, Tahoe City, California, USA, 9 July 1995.

David J. Montana. Strongly typed genetic programming. Evolutionary Computation,
3:199-230, 1994.

John R. Woodward and Ruibin Bai. Why evolution is not a good paradigm for program
induction: a critique of genetic programming. In GEC ’09: Proceedings of the first
ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pages 593—600, New
York, NY, USA, 2009. ACM.

Lorenz Huelsbergen. Finding general solutions to the parity problem by evolving machine-
language representations. In Morgan Kaufmann, editor, Genetic Programming 1998: Pro-
ceedings of the Third Annual Conference, pages 158—166. University of Wisconsin, Madi-
son, Wisconsin, USA, July 1998.

Sean Luke and Liviu Panait. A comparison of bloat control methods for genetic program-
ming. Evol. Comput., 14(3):309-344, 2006.

Sara Silva and Ernesto Costa. Dynamic limits for bloat control in genetic programming and
areview of past and current bloat theories. Genetic Programming and Evolvable Machines,
10(2):141-179, 2009.

Daniel W. Hillis. Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D: Nonlinear Phenomena, 42(1-3):228 — 234, 1990.

Mitchell A. Potter and Kenneth A. de Jong. A cooperative coevolutionary approach to
function optimization. In PPSN Ili: Proceedings of the International Conference on Evo-
lutionary Computation. The Third Conference on Parallel Problem Solving from Nature,

[21]

[26]

[27]

[31]

volume 866 of Lecture Notes in Computer Science, pages 249-257, London, UK, 1994.
Springer-Verlag.

Peter J. Angeline and Jordan B. Pollack. Competitive environments evolve better solutions
for complex tasks. In Stephanie Forrest, editor, Proceedings of the 5th International Con-
ference on Genetic Algorithms, ICGA-93, pages 264—270, University of Illinois at Urbana-
Champaign, 17-21 July 1993. Morgan Kaufmann.

Thomas Miconi. Why coevolution doesn’t "work": Superiority and progress in coevolu-
tion. In Leonardo Vanneschi, Steven Gustafson, Alberto Moraglio, Ivanoe De Falco, and
Marc Ebner, editors, EuroGP, volume 5481 of Lecture Notes in Computer Science, pages
49-60. Springer, 2009.

Edwin D. de Jong, Kenneth O. Stanley, and R. Paul Wiegand. Introductory tutorial on
coevolution. In GECCO ’07: Proceedings of the 2007 GECCO conference companion
on Genetic and evolutionary computation, pages 3133-3157, New York, NY, USA, 2007.
ACM.

John Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286-295, Septem-
ber 1951.

Sevan G. Ficici and Anthony Bucci. Advanced tutorial on coevolution. In GECCO ’07:
Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary com-
putation, pages 3172-3204, New York, NY, USA, 2007. ACM.

Christopher D. Rosin and Richard K. Belew. New methods for competitive coevolution.
Evolutionary Computation, 5(1):1-29, 1997.

Kenneth O. Stanley and Risto Miikkulainen. The dominance tournament method of mon-
itoring progress in coevolution. In Alwyn M. Barry, editor, GECCO 2002: Proceedings
of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference,
pages 242-248, New York, 8 July 2002. AAAL

Sevan G. Ficici and Jordan B. Pollack. A game-theoretic memory mechanism for co-
evolution. In GECCO’03: Proceedings of the 2003 international conference on Genetic
and evolutionary computation, volume 2723 of Lecture Notes in Computer Science, pages
286-297, Berlin, Heidelberg, 2003. Springer-Verlag.

Edwin D. de Jong. The incremental pareto-coevolution archive. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCOO04, volume 3102 of Lecture
Notes in Computer Science, pages 525-536. Springer Verlag, 2004.

Nathan Williams and Melanie Mitchell. Investigating the success of spatial coevolution.
In GECCO °05: Proceedings of the 2005 conference on Genetic and evolutionary compu-
tation, pages 523-530, New York, NY, USA, 2005. ACM.

Mike J. Keith and Martin C. Martin. Genetic programming in c++: implementation issues.
Advances in genetic programming, pages 285-310, 1994.

127

BIBLIOGRAPHY

[32] Wojciech Jaskowski, Krzysztof Krawiec, and Bartosz Wieloch. Winning ant wars: Evolv-

128

ing a human-competitive game strategy using fitnessless selection. In Michael O’Neill,
Leonardo Vanneschi, Steven Gustafson, Anna Esparcia-Alcéazar, Ivanoe De Falco, Anto-
nio Della Cioppa, and Ernesto Tarantino, editors, EuroGP, volume 4971 of Lecture Notes
in Computer Science, pages 13-24. Springer, 2008.

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Introduction
	Genetic Programming and Coevolution
	2-AntWars
	AntWars Rules
	2-AntWars Rules
	Strategies

	Genetic Programming System
	Genetic Programming System
	The GP-Algorithm
	Individual Structure
	Population Model
	Population Initialization
	Selection
	Crossover
	Mutation
	Evaluation

	Modelling the 2-AntWars Player
	Data Types
	Available Statements
	Belief Function
	Predict Functions
	Movement Functions
	Decision Function
	Settings

	Results
	No Adversary
	Fitness development
	Belief
	Prediction
	General Performance Observations
	Best Individuals
	Conclusion

	Strategies Version 1
	Greedy
	Scorched Earth
	Hunter

	Strategies Version 2
	Greedy
	Scorched Earth
	Hunter

	Coevolutionary Runs
	Run with Standard Settings
	Run with Asymmetric Evaluation
	Long Run
	Long Run with Asymmetric Evaluation

	Special Analysis
	Mixed Opponent Strategies
	Stability of Results
	Playing against Unknown Opponents

	Conclusion

	Appendix
	Strategy Evaluation
	Bibliography

