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Abstract The Internet has ossified. It has lost its capability to adapt as requirements
change. A promising technique to solve this problem is the introduction of network
virtualization. Instead of directly using a single physical network, working just well
enough for a limited range of applications, multiple virtual networks are embedded
on demand into the physical network, each of them perfectly adapted to a specific
application class. The challenge lies in mapping the different virtual networks with
all the resources they require into the available physical network, which is the core of
the Virtual Network Mapping Problem. In this work, we introduce a Memetic Algo-
rithm that significantly outperforms the previously best algorithms for this problem.
We also offer an analysis of the influence of different problem representations and
in particular the implementation of a uniform crossover for the Grouping Genetic
Algorithm that may also be interesting outside of the Virtual Network Mapping do-
main. Furthermore, we study the influence of different hybridization techniques and
the behaviour of the developed algorithm in an online setting.
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1 Introduction

As it exists today, the Internet suffers from ossification (National Research Council
2001). It is hard or even impossible to change existing protocols or introduce new
technology to the Internet, even though changes would bring large improvements to
the service quality. Examples of protocols that never saw wide-spread adoption in-
clude Explicit Congestion Notification (Ramakrishnan et al 2001) or Differentiated
Services, which is a quality of service framework (Carlson et al 1998). The best cur-
rent example for the ossification of the internet is IPV6 (Deering and Hinden 1998),
which was introduced more than 15 years ago and is still not implemented completely
despite the obvious demand.

The reasons for ossification are manifold. The history of the Internet shows that
fundamental changes only occur if the network is about to collapse or if there is some
immediate monetary gain. At the moment, the Internet is able to cope with the traf-
fic demand and achieving monetary gain by improving the core Internet protocols is
hard, because the Internet Service Providers (ISPs) need to agree on the changes. If
all ISPs offer the same improvement, then there is no benefit for any of them (An-
derson et al 2005). In National Research Council (2001), the general diagnosis of
ossification is further refined. First, there is intellectual ossification. Any new tech-
nology has to be compatible with the current technology from the outset. This stifles
innovation. Secondly, there is infrastructure ossification. Suggested improvements
are not deployed in the infrastructure, not even for testing purposes. Thirdly, there is
system ossification. Instead of fixing problems at their roots, workarounds and fixes
are employed to keep the system running, making it more fragile and susceptible to
even more problems (Anderson et al 2005).

Any solution to the ossification problem needs to have two properties if it wants
to have any hope of actually being deployed. It needs to be backwards compatible and
incrementally deployable. Network virtualization has been put forward as a suitable
candidate (Touch et al 2003; Gold et al 2004; Anderson et al 2005; Tutschku et al
2008; Berl et al 2010).

The basic idea of network virtualization is straight forward. Instead of using one
physical network that can do everything well, use multiple virtual networks embed-
ded in the physical network. With network virtualization in place, changes to the
underlying technology of the Internet can be implemented in an incremental and non-
disruptive manner, because old and new technologies can coexist in different virtual
networks. However, network virtualization has more to offer than being a crutch for
switching protocols. At the moment, the Internet is a general purpose network, which
supports a lot of applications rather well. With network virtualization, each applica-
tion can have its own virtual network, perfectly adapted to the requirements of the
particular application. Turner and Taylor (2005) describe a virtual network offering a
learning environment with high quality audio and video multicast mechanisms. For-
mat translators are available within the network to enhance compatibility. To allow
for these kinds of applications, the nodes of the virtual networks receive compute
capabilities within the routers of the physical network. Therefore, virtual networks
can offer their own (and application specific) topology, routing, naming services, and
resource management (Tutschku 2009). Network virtualization is already deployed
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in scientific network testbeds such as GENI (GENI.net 2012), PlanetLab (Chun et al
2003) and G-Lab (Schwerdel et al 2010), not as an enhancement to be studied, but
as a central enabling technology for carrying out experiments. Virtual networks are
used to partition the network testbeds so that different research groups can perform
their experiments without interference from each other. For a survey on network vir-
tualization, its application and available technologies, see Chowdhury and Boutaba
(2010).

The Virtual Network Mapping Problem (VNMP) arises in this context. Even if
there are multiple virtual networks with different characteristics and protocols, they
still have to share the physically available resources in such a way that every network
fulfills the required specifications, for instance with respect to quality of service pa-
rameters such as communication bandwidth and delay.

In this work, we will introduce a Memetic Algorithm (MA) that significantly
outperforms the best previously available algorithms for the VNMP (Inführ and Raidl
2013b). In addition, we will answer the following questions in the context of the
VNMP:

– What is the influence of different solution representations and crossover opera-
tors?

– Does the crossover operation have a beneficial impact on the final outcome?
– Is the time for local improvement well spent?
– How do different alternatives for local improvement perform?
– Is it beneficial to keep the population of solutions when the virtual networks

change in an online setting?

The work presented here is a substantial extension of Inführ and Raidl (2013a).
It contributes an analysis of refinement techniques and of the online behaviour of the
presented MA.

Section 2 presents the formal definition of the VNMP, followed by a discussion
of the relevant background and related work in Section 3. The proposed Memetic
Algorithm is outlined in Section 4 and Section 5 contains the computational results.
We conclude in Section 6.

2 The Virtual Network Mapping Problem

To specify a VNMP instance, three types of information are required: The substrate
network to host the virtual networks (i.e. the physical network), the virtual networks
(VNs) that need to be realized and the assignment constraints between virtual net-
works and substrate network.

The substrate network is modeled by a directed graph G = (V,A). Each substrate
node i ∈ V has an associated CPU power ci ∈ N+ which is used by the VN nodes
mapped to i, but also to route BW. We assume that one unit of BW traversing a
substrate node requires one unit of CPU power. This traversing BW could be internal
to the substrate network, i.e. could be sent from and forwarded to another substrate
node. It could also be sent or received by a virtual node mapped to the substrate
node, and it is possible that both sending and receiving virtual nodes are mapped to
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the same substrate node. Substrate arcs e ∈ A have a BW capacity be ∈ N+ and a
delay de ∈ N+ that is incurred when data is sent across e.

The VNs are modeled by the individual connected components of a directed graph
G′ = (V ′,A′) with node set V ′ and arc set A′. Each VN node k ∈ V ′ requires CPU
power ck ∈N+ to implement custom protocols. Each VN arc f ∈ A′ has a bandwidth
(BW) requirement b f ∈ N+ and a maximum allowed delay d f ∈ N+.

The set M ⊆ V ′×V defines for each virtual node k ∈ V ′ the substrate nodes that
can be used to host it. The mapping of virtual nodes to substrate nodes has to be
restricted, because a virtual node should be mapped close to its users. By s(a) and
t(a), ∀a ∈ A∪A′, we denote the arc’s source and target nodes, respectively.

A valid VNMP solution specifies a mapping m : V ′→ V of virtual nodes to sub-
strate nodes such that (k,m(k)) ∈M, ∀k ∈ V ′ and the total CPU load on each i ∈ V
(caused by mapped virtual nodes and traversing BW) does not exceed ci. In addition,
there has to be a simple substrate path Pf ⊆ A from m(s( f )) to m(t( f )) implementing
every f ∈ A′ that does not exceed the allowed delay d f . The implementing paths have
to respect the bandwidth capacities be on the substrate arcs and the CPU capacities
on the substrate nodes.

The objective of the VNMP is to minimize the total substrate usage cost. Every
substrate node i∈V has an associated usage cost pV

i ∈N+ which has to be paid when
at least one VN node uses it. Furthermore, every substrate arc e ∈ A has a usage cost
pA

e ∈ N+ which has to be paid when it is used by at least one virtual arc. The total
substrate usage cost Cu is the sum of the node and arc usage costs that have to be
paid. The motivation for this cost function is that the infrastructure that gets used by
the implementation of any virtual network has to be kept running. The unused parts
can be shut down, which saves operational costs.

Already finding a valid solution to the VNMP is NP-hard (Inführ 2013, chap. 3).
Therefore we cannot expect optimization techniques to always be able to find valid
solutions (which may not even exist) within practical time. However, just reporting
that no valid solution could be found is unsatisfactory for two reasons: for optimiza-
tion purposes, there should be a way to distinguish between invalid solutions, to prefer
those closer to validity and for practical purposes we would like to have a recourse
strategy available so that the required virtual network load can be implemented. To
be able to do that, we allow increasing the available CPU power at each substrate
node, with the price of CCPU per unit and the available BW on substrate arcs with
the price of CBW per unit. The sum of the incurred costs is the additional resource
cost Ca. If a solution to a VNMP instance is valid, Ca = 0. We will call an instance
solved if a valid solution could be obtained. As in previous work (Inführ and Raidl
2013b), we set CCPU = 1 and CBW = 5 to reflect the fact that it is easier to increase
the CPU power of a router than to increase the BW of a network connection. We do
not consider changing the delay of a substrate arc because of two reasons. First of all,
it is difficult to change the delay of a connection in practice, because it is dependent
on the employed technology. Changing the delay would typically mean changing the
technology, which is very expensive. Secondly, given some implementing paths of
virtual arcs that exceed their delay constraints, it is not straight forward to determine
where in the substrate the delays have to be reduced to make all paths feasible while
keeping Ca minimal.
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Fig. 1 A simple VNMP Instance

With the concept of additional resource costs in place, we are able to create mean-
ingful results even without finding a valid solution to a VNMP instance, because we
at least know a cost effective way to host the current VN load. When comparing two
solutions, we need to take Cu and Ca into account. Since our first aim is to find a so-
lution where no investment in infrastructure is required (i.e., Ca = 0), solutions with
lower Ca are preferred, even if their Cu is higher. Only if the additional resource cost
of two solutions is equal, lower substrate usage costs are preferred.

Figure 1 shows a simple VNMP instance. The virtual network graph G′ consists
of one virtual network with the two nodes a′ and b′. The number printed in the nodes
define the required CPU power, the arc label specifies the required bandwidth and
the maximum allowed delay. The substrate network G (nodes a to e) shows in the
nodes the available CPU power, arc labels define the available bandwidth and the
delay that is incurred when data is transferred across this connection. The mapping
constraints are visualized with dashed lines; a′ may only be mapped to a, while b′

may be mapped to c or e. The usage costs for the substrate nodes and arcs have been
omitted for clarity.

This small example has a single valid solution, because b′ cannot be mapped to
c. The mapping itself would be possible since c has enough CPU capacity to host b′

and receive the data of the incoming virtual connection (8 units of CPU are required,
c offers 12). The problem is that the virtual connection from a′ to b′ cannot be imple-
mented from a to c. The implementing path cannot cross b, because b does not have
sufficient CPU power to forward seven units of bandwidth. Using the direct connec-
tion from a to c would violate the delay constraint and the path (a,d,c) is not allowed
because the connection from d to c does not have enough bandwidth capacity. There-
fore, the only solution to this VNMP instance is to map a′ to a, b′ to e and implement
the virtual connection between a′ and b′ by using the substrate path (a,d,e).

3 Background and Related Work

Genetic Algorithms are nature-inspired population-based algorithms for optimiza-
tion, an overview can be found in Sivanandam and Deepa (2007). When applying
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a Genetic Algorithm (GA) to solve a problem, one important design decision is the
problem representation, which has a pronounced influence on its performance. For
example, the influence of the chosen problem representation in the context of the
travelling salesman problem is discussed in Larrañaga et al (1999). There exist many
different problem representations for different problem classes. In particular, there
is a special representation designed for problems where entities have to be grouped
together (Falkenauer and Delchambre 1992), like in the case of the VNMP, where
groups of virtual nodes are mapped to the different substrate nodes. In this work,
we will utilize this representation. Successful applications of this representation in-
clude the access node location problem (Alonso-Garrido et al 2009) and the multiple
traveling salesman problem (Evelyn et al 2007). However, it is not clear that this
representation is always advantageous. For instance, Feltl and Raidl (2004) report a
successful application of a GA to the generalized assignment problem, preferring a
different representation. Also, its robustness is questioned in Brown and Sumichrast
(2003). Therefore, we will analyze the performance implications of different repre-
sentations for the VNMP.

Memetic Algorithms (MAs) are combinations of a population based optimization
methods (e.g. GAs) and local improvement techniques (Moscato and Norman 1992;
Radcliffe and Surry 1994; Moscato and Cotta 2010). The main idea is to use the GA
to find promising regions in the search space and local improvement techniques for
intensification, i.e., identifying excellent solutions in those promising regions. There
is a trade-off between the time spent in the GA and the time spent executing the local
improvement technique, corresponding to the usual trade-off between intensification
and diversification. We will show how this tradeoff manifests itself for the VNMP.

The VNMP occurs under the names Virtual Network Assignment (Zhu and Am-
mar 2006), Virtual Network Embedding (Chowdhury et al 2009), Virtual Network
Resource Allocation (Szeto et al 2003) and Network Testbed Mapping (Ricci et al
2003) in the literature. The basic problem of mapping virtual networks in a substrate
network is always the same, but there are substantial differences in the details.

In related work, the substrate and virtual networks are predominantly given as
undirected graphs (Gupta et al 2001; Ricci et al 2003; Zhu and Ammar 2006; Houidi
et al 2008; Chowdhury et al 2009; Razzaq and Rathore 2010; Yeow et al 2010; Fa-
jjari et al 2012; Qing et al 2012; Wang et al 2012; Zhang et al 2012a,b). We are
only aware of the works by Szeto et al (2003), who use directed graphs, and Lu
and Turner (2006), who use directed graphs only for the virtual networks. We chose
the directed approach, since directed graphs allow for example the specification of
asymmetric resource requests, which are important for applications that require a lot
of bandwidth in one direction but have a control path in the other direction which
is not bandwidth-heavy but delay sensitive. The substrate and virtual networks used
for testing are usually random graphs, with substrate network sizes going up to 100
nodes and virtual network sizes of up to 10 nodes. The VNMP instances we use in
this work employ substrate graphs extracted from real network topologies with up
to 1000 nodes. The virtual networks are designed to mimic different real application
scenarios in structure and resource requirements and have sizes up to 30 nodes. For
more details, see Inführ (2013, chap. 5).
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Resources are used to limit the number of virtual networks that fit into a substrate
network. Different approaches exist in the literature. Zhu and Ammar (2006) limit
the number of virtual nodes mapped to substrate nodes and virtual arcs crossing sub-
strate arcs directly. Besides this exception, bandwidth is a resource that is universally
considered, exclusively so for example in Gupta et al (2001). The CPU capacity of
substrate nodes is the second most popular resource for VNMP and is used among
others by Razzaq and Rathore (2010); Qing et al (2012); Wang et al (2012).

In addition to resource restrictions, limiting the mapping possibilities of virtual
nodes is popular. One method to implement this is to assign a location to substrate
nodes and virtual nodes. Virtual nodes may only be mapped to substrate nodes not
too far away. This approach is employed by Lu and Turner (2006); Chowdhury et al
(2009); Zhang et al (2012b). Another way of limiting the mapping possibilities is
to forbid that a substrate node hosts multiple virtual nodes of the same virtual net-
work (Zhu and Ammar 2006; Fajjari et al 2012; Yeow et al 2010). An in-depth dis-
cussion about the possibilities of restricting virtual node placement can be found
in (Yeow et al 2010).

Some less usual resources and restrictions can also be found in the literature. One
example is the work by Zhang et al (2012a), where virtual nodes may be split up and
mapped to multiple substrate nodes, which causes additional overhead. Fajjari et al
(2012) consider available memory as additional resource. Furthermore, Fajjari et al
allow the “overbooking” of bandwidth resources since not all virtual networks will
have their peak communication demand at the same time. A limit is placed on the
probability that the bandwidth capacity of a substrate connection is exceeded.

The last constraint we want to mention is the way virtual arcs are implemented.
In this work, we require a single simple path in the substrate for every virtual arc,
an approach that is also taken for example by Zhu and Ammar (2006). A possible
alternative is to implement a virtual arc by multiple paths in the substrate. This has
the advantage that virtual connections can request more bandwidth than is available
on any arc in the substrate. In addition, algorithms based on multicommodity flow
can be used to solve the problem, see for example the work of Szeto et al (2003). The
disadvantage is that the behaviour of the virtual connection, especially with respect
to the observed delay, becomes more erratic the more substrate paths are used to
implement it.

4 A Memetic Algorithm for the VNMP

In this section, we present a Memetic Algorithm for solving the VNMP. First, Sec-
tion 4.1 will deal with the basic algorithm, while possible refinements are presented
in Section 4.2.

4.1 The Basic Algorithm

Algorithm 1 shows the Memetic Algorithm for the VNMP in pseudocode, the com-
ponents of which we will describe in this section. From our previous work on the
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Algorithm 1: Memetic Algorithm for the VNMP
Input : VNMP instance I
Output: Solution S for I

1 Population P;
2 InitializePopulation(P,I);
3 while !terminate() do
4 Solution p1=select(P);
5 Solution p2=select(P);
6 Solution offspring=crossover(p1,p2);
7 mutate(offspring);
8 copyArcs(offspring,p1,p2);
9 localImprovement(offspring);

10 insert(P,offspring);
11 end
12 return best(P);
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Fig. 2 Comparison of different implementations of uniform crossover for the direct (a) and grouping (b)
representations

VNMP (Inführ and Raidl 2013b), we know that the choice of location for a virtual
node is the most important step when constructing a solution. Because of that, we
decided to utilize a Genetic Algorithm to work primarily on this node packing aspect
of the problem and use existing algorithms to derive complete solutions, i.e. to imple-
ment the VN connections. The main task of the GA is thus to assign virtual nodes to
substrate nodes, or, when put in another way, finding for each substrate node a group
of virtual nodes mapped to it so that a good complete solution can be created.

These two different ways of viewing the problem suggest two different represen-
tations. The first representation is the direct representation; a simple vector specifies
the mapping target for each virtual node. The second representation focuses on the
grouping aspect and represents a solution as a vector of sets determining which vir-
tual nodes are mapped to a particular substrate node. We will call the latter grouping
representation. Figure 2 shows examples both representations for the same VNMP
solution. P1 and P1’ (and P2 and P2’) represent the same mapping of virtual nodes
to substrate nodes, P1 with the direct representation and P1’ with the grouping rep-
resentation. For instance, P1 specifies that virtual node 1 is mapped to substrate node
D, while P1’ specifies that virtual nodes 7 and 9 are mapped to substrate node A.

The way the crossover operation works is heavily influenced by the chosen repre-
sentation. The basis of the utilized crossover operators will be the classical uniform
crossover, as we have seen in preliminary experiment that one-point and two-point
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crossover variants do not perform as well in this context. For the direct representa-
tion, applying the uniform crossover principle is straight forward. The mapping target
of every virtual node is adopted randomly from one of the parents. We will denote
the uniform crossover for the direct representation by UXD. Figure 2 shows a possi-
ble result (labeled as UXD) of applying UXD with P1 and P2 as parents. The marked
mapping decisions of P1 and P2 are selected to be carried over to the offspring. UXD’
shows the translation of the offspring to the grouping representation.

The uniform crossover for the grouping representation utilizes the same principle.
For every substrate node, the virtual nodes mapped to it are chosen randomly from
one of the parents. From here on we will call the set of virtual nodes mapped to a
substrate node a virtual node group. Because we copy sets from different parents,
two effects may occur that are not possible with the direct representation. In each
parent solution, a virtual node is member of exactly one virtual node group. When
none of those groups are selected to be present in the offspring, a virtual node remains
unmapped after the crossover operation. If the groups of both parents are selected, the
virtual node would be mapped twice. Both results are not allowed.

To solve the first problem, we adopt the mapping decision of one of the parents
for all virtual nodes that remain unmapped after the crossover procedure. To avoid
the second problem, we override an old mapping with a newer mapping. The conse-
quence of this is that the sequence in which the groups are copied matters. We will
compare two different copying strategies: copying all selected groups of one parent,
then all selected groups of the other (which we will denote as UXA), and copying the
groups in the order of the substrate node labels (UXB).

The result of applying the UXA and UXB crossover operators with parents P1’
and P2’ is shown in figure 2. For UXA, first the virtual node groups for substrate
nodes A and D get copied from P1’, then the groups for substrate nodes B, C and E
from P2’. The mapping decisions from P2’ override those of P1’, for example, after
the virtual node groups of P1’ are added to the offspring, virtual node 9 is mapped
to A, but this is overridden by P2’, where node 9 is mapped to B. For UXB, we can
observe that later mapping decisions influence earlier ones. After the groups for A to
D are copied from their respective parents, virtual node 4 is mapped to substrate node
D. The final step of UXB is copying the group for E from P2’. This group contains
node 4, so it is removed from D. Note that in the result of UXA and UXB some nodes
remain unmapped.

The main idea of crossover is to combine important solution properties from the
parents to generate superior offspring. In our case, we want to keep the virtual node
groups intact. The marked regions in the results of UXD, UXA and UXB show the
groups that have survived without node removal. We can see that for UXA three
groups have survived, for UXB one group has survived and no group survived UXD.
The bad performance of UXD with respect to groupings was the reason why the
grouping representation was introduced in the first place (Falkenauer and Delchambre
1992). However, there is also a big difference between UXA and UXB. With UXA,
at least all virtual node groups selected for crossover of the second parent will survive
(which are half of the groups in the expected case). With UXB, only the last group
that is copied is guaranteed to survive. Therefore we use UXA when comparing the
different representation possibilities for the VNMP.
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After the crossover operation has finished, we apply the mutation operator with a
probability of pm. It clears a fraction of substrate nodes by mapping all virtual nodes
they host to substrate nodes that are not marked to be cleared, if it is allowed by the
mapping constraints. This fraction of cleared nodes is chosen uniformly at random
from [0,r], but at least one node is cleared. In this work we used pm = 0.2 and r = 0.2
based on preliminary results, which also showed that mutation is required for good
performance.

Until now, we have only considered the mapping of the virtual nodes. To specify
a complete solution, the solution representation also contains the implementation of
the virtual arcs. This implementation is derived by applying one of the improvement
methods described later on. Note that these improvement methods utilize a Construc-
tion Heuristic to generate a complete solution before starting the improvement. Since
the arc implementations may represent a significant amount of work, and the basic
idea of crossover is to transfer as much information as possible from the parents to
the offspring, we copy the arc implementation of the parents once the mapping for
the virtual nodes is fixed. For every virtual arc f , we check the locations of s( f )
and t( f ) in the substrate graph for both parents and the offspring. If one parent uti-
lizes the same mapping locations as the offspring, we copy its arc implementation.
If both parents are compatible, the arc implementation is chosen randomly from one
of the parents. If the mapping is different from both parents, the arc remains unim-
plemented. Unimplemented arcs will be assigned an implementation during the local
improvement phase.

One of our main aims in this work is to check whether the time spent for local
improvement actually improves the performance of the algorithm. Therefore, we ei-
ther use a Variable Neighborhood Descent (Hansen and Mladenović 2001) to perform
local improvement, or we skip local improvement and apply a Construction Heuris-
tic instead. We need to apply the Construction Heuristic, because some virtual arcs
might be unimplemented and we need to guarantee that only complete solutions are
generated. We selected the best Construction Heuristic presented in (Inführ and Raidl
2013b), which means that from all virtual arcs to be implemented, we select in each
step the arc for which the fraction of the delay of the shortest path in the substrate
and the allowed delay is smallest. The path implementing this virtual arc is the path
with the least increase in substrate usage cost Cu among those paths with the minimal
increase in additional resource cost Ca. We will call this method CH.

The Variable Neighborhood Descent algorithm used in this work is based on the
results presented by Inführ (2013, chap. 6). It employs three neighborhood structures,
RemapVnode, ClearSarc and ClearSnode, which will be explained shortly. These are
ruin-and-recreate neighborhoods which are searched in a first-improvement fashion.
That means they remove a part of a solution and then reconstruct it to create a neigh-
boring solution. For the reconstruction task we use a construction heuristic (denoted
by CH-R) that is an extension of CH, as CH only implements virtual arcs. CH-R im-
plements virtual nodes by choosing the mapping to a substrate node that increases Cu
the least. We will skip the reconstruction step in the following description of the three
neighborhood structures.

The RemapVnode neighborhood structure removes the mapping of a virtual node
(and all implementations of virtual arcs connected to the virtual node). The ClearSarc
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neighborhood structure removes all virtual arc implementations crossing a particular
substrate arc. The ClearSnode neighborhood structure follows the same principle, but
for substrate nodes. It removes all virtual nodes mapped to the substrate node (includ-
ing the implementations of the incoming and outgoing virtual arcs connected to the
virtual nodes) in addition to all virtual arc implementations crossing the substrate
node. These neighborhood structures are searched in the first-improvement way. We
will denote this method simply as VND and execute it without time-limit. It is not
the best identified configuration from Inführ (2013), but one that offers a good bal-
ance between solution quality and required runtime. We will however compare the
Memetic Algorithm with the best Variable Neighborhood Descent approach from
Inführ (2013), which we will call B-VND.

After the newly created solution has been improved by VND (or at least com-
pleted by CH), it is inserted back into the population immediately and the worst solu-
tion is removed in a steady-state fashion. The newly created solution is not inserted if
it is already present in the population. This concludes one MA iteration, the next one
begins by utilizing a binary tournament to select the parents for the next crossover
operation.

The one component missing for a complete description of the MA is the popu-
lation initialization. The main aim when initializing a population is the creation of
a diverse set of good solutions. Several possibilities exist for the VNMP. One could
simply map virtual nodes to one of the allowed substrate nodes randomly. Mapping
virtual nodes in a way that tries to minimize the increase in Cu is another. Preliminary
results showed that these approaches, while creating a very diverse set of initial solu-
tions, do not work well, because VND requires a lot of time to improve the offspring
during the initial iterations. Therefore, we chose a different approach: we create one
good solution by using VND, and then apply the mutation operator with r = 0.2 to
generate all other initial solutions. This has the additional benefit that the MA will
have a promising solution from the beginning. In this work we used a population
size of 10, we will show an analysis of the influence of the population size on the
performance of the proposed MA in the following section.

4.2 Refinements

In this section, we discuss some modifications to the presented MA which might help
to improve its performance. One area that could be improved is the initialization.
Currently, the population is created by applying VND once and then mutate to create
the required number of individuals. Our reason for this choice was that we need to
create a diverse set of initial solutions, but these solutions also have to be reasonably
good, as abysmal initial solutions substantially increase the time required for the
local improvement phase in the initial iterations of the MA. An alternative way to
achieve this goal would be to use a randomized construction heuristic to generate
each individual and possibly further improve those individuals via an improvement
heuristic. As a basis for the randomized construction heuristic, we chose CH. We
have already defined how CH selects virtual arcs and implements them, now we cover
virtual node selection and implementation. CH selects the (unmapped) virtual node



12 Johannes Inführ, Günther Raidl

with the highest total CPU load (the sum of the direct CPU demand and the bandwidth
of incoming and outgoing virtual arcs) from the virtual network with the lowest sum
of allowed delays. It is mapped to the allowed substrate node with the most free CPU
capacity. In case of ties, the substrate node with the most free connected bandwidth
is chosen as map target. A virtual node is selected for mapping if no virtual arc can
be implemented, i.e., if there is no arc with mapped virtual source and target nodes.

To derive a randomized Construction Heuristic from CH, we randomize the se-
lection of the mapping target for a virtual node, all other parts stay deterministic. We
introduce a parameter α ∈ [0,1] that controls the level of randomization. When se-
lecting a suitable substrate node for a virtual node, we collect a list of possible targets
sorted by the available CPU and bandwidth, the candidate list. Let f CPU

Best denote the
free CPU capacity and f BW

Best the free bandwidth capacity of the node that would have
been selected by the deterministic strategy. We build the restricted candidate list by
selecting all nodes i with f CPU

i ≥ α f CPU
Best ∧ f BW

i ≥ α f BW
Best. If f CPU

Best or f BW
Best is negative

(i.e., more resources are used than are actually available), α is replaced by 2−α in
the relevant acceptance criterion. The mapping target is chosen uniformly at random
from the restricted candidate list. We will denote this method as RCH.

The solutions created by RCH might be further improved by applying a meta-
heuristic. Using VND is out of the question, because generating the initial population
would take far too long. Therefore, we select two Local Search approaches based
on the results published in (Inführ and Raidl 2013b), one with more emphasis on
speed, the other with more emphasis on solution quality. The first local search algo-
rithm, which we will call LS1, uses the RemapSlice neighborhood structure. Like the
already described neighborhoods, RemapSlice is a ruin-and-recreate neighborhood,
recreation is done by applying CH-R. RemapSlice removes the implementation of
a complete slice from a solution. LS1 searches RemapSlice in a first-improvement
fashion. LS2 focuses more on solution quality and applies the already discussed
ClearSnode neighborhood structure with first-improvement.

Another area for refinement of the presented MA is the application of the local
improvement method. At the moment, we simply apply VND to every newly gen-
erated individual. However, this newly created individual might be so bad in terms
of solution quality that trying to improve it would most likely be a waste of time. A
tiered approach might improve this situation. Every individual benefits from basic im-
provement (for instance by applying LS1), and more powerful (and time-consuming)
methods like LS2 or VND are applied only to promising individuals. We will eval-
uate three variants of this idea. The first one, which we call NewBest, simply states
that if an individual (after the basic improvement) is the new best known solution,
a more powerful improvement heuristic is applied. The second method, NewTopX,
extends the definition of which individual is worthy of more powerful improvement.
If a newly created individual (again after basic improvement) falls within the top
α ∈ [0,1] fraction of the population, it gets improved further. With α = 0.2, a newly
generated individual would have to be better than 80% of the population to benefit
from further improvement. The third method takes a slightly different approach in
that it does not tie the application of the stronger method to the creation of a new
individual. Instead, the top α fraction of the population is improved periodically.
The length of the period is set with parameter β . A value of β = 2 means that the
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Table 1 Properties of the used VNMP instances: average number of substrate nodes (V ) and arcs (A),
virtual nodes (V ′) and arcs (A′) and the average number of allowed map targets for each virtual node (MV ′ )

Size |V| |A| |V′| |A′| |MV′ |

20 20 40.8 220.7 431.5 3.8
30 30 65.8 276.9 629.0 4.9
50 50 116.4 398.9 946.9 6.8

100 100 233.4 704.6 1753.1 11.1
200 200 490.2 691.5 1694.7 17.3
500 500 1247.3 707.7 1732.5 30.2

1000 1000 2528.6 700.2 1722.8 47.2

best fraction of the population is improved every two generations. Since we utilize
a steady-state GA, the improvement is executed after two times the population size
new individuals have been created. We call this method ImproveAfter.

5 Results

To evaluate the performance of the proposed MA, we used the test set available
from Inführ and Raidl (2011b). This set contains VNMP instances with 20 to 1000
substrate nodes, with 30 instances of each size. Each instance contains 40 VNs. Ta-
ble 1 shows the main properties of the instance set, for more information on the in-
stances see (Inführ 2013, chap. 5). We tested the MA on all instances of the instance
set, and in addition also with a reduced load, i.e., fewer VNs. A load of 0.5 means
that only 50% of the available VNs are used. We solved the instances with load levels
0.1, 0.5, 0.8 and 1, yielding a total of 840 test instances. All algorithms compared in
this section have been run on one core of an Intel Xeon E5540 multi-core system with
2.53 GHz and 3 GB RAM per core. A CPU-time limit of 200 seconds was applied
for sizes up to 100 nodes, 500 seconds for larger instances. The reported results of
statistical tests are based on a paired Wilcoxon signed rank test with a 5% level of
significance.

In the previous section, we defined three different types of crossover and two
methods for local improvement. To be able to fully answer what the influence of
different solution representations and crossover operators is and whether the time for
local improvement is well spent, we evaluated every combination of crossover and
local improvement. These are:

D-CH: Direct representation with CH as local improvement and UXD
D-VND: Direct representation with VND as local improvement and UXD
G-CH: Grouping representation with CH as local improvement and UXA
G-VND: Grouping representation with VND as local improvement and UXA
G-CH-B: Grouping representation with CH as local improvement and UXB
G-VND-B: Grouping representation with VND as local improvement and UXB

Another configuration of interest is G-VND-N, a variant of G-VND with disabled
crossover operator, i.e., one individual is selected from the population, mutated, im-
proved and then reinserted. This configuration allows us to determine if the crossover
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operation is actually necessary for good performance. We also compare the perfor-
mance of the MA approaches to VND on its own, to see if and by how much the
GA changes the performance, i.e., whether the VNMP problem solving capability
comes primarily from VND or GA. We also compare our results to the best Variable
Neighborhood Descent configuration (B-VND) from Inführ and Raidl (2013b) and
the multicommodity-flow based integer linear programming formulation (FLOW)
presented by Inführ and Raidl (2011a) with small modifications to match the VNMP
model used in this work. The results of FLOW were achieved using a time-limit of
10 000 seconds.

In this work, we do not try to find valid VNMP solution, we try to find valid
VNMP solutions with minimal Cu. However, we cannot simply compare Cu values for
different algorithms, because higher values might be better if Ca is lower. We could
have used a fitness function like M ·Ca +Cu, with M being a constant larger than the
usage cost of the complete substrate. However, this introduces a strong bias towards
algorithms that are able to find valid solutions for VNMP instances. Consider two
algorithms applied to ten VNMP instances, one finds very cheap solutions but fails
to find a valid solution for one instance while the second algorithm finds expensive
but valid solutions to all instances. It might happen that the second algorithm has a
better average fitness value, even though the first algorithm is more useful. Therefore,
we employ a ranking procedure to compare different algorithms for the VNMP: For
a single VNMP instance, order the compared algorithms based on the results they
achieved, best algorithm first. The best algorithm gets assigned rank 0, the second best
rank 1, and so on. Algorithms with the same result share the same rank. The rank of an
algorithm still cannot be compared across multiple instances, because the number of
ranks may be different for each instance. Therefore we calculate the relative rank Rrel
of an algorithm when solving a particular instance as its rank divided by the highest
rank for this instance. If all algorithms achieve the same result (i.e., the highest rank
is zero), then Rrel is zero for all algorithms. Averages of Rrel can be compared in a
meaningful way. An algorithm achieving an average relative rank of 0.1 generates
results that are among the top 10% on average of all compared algorithms.

The average performance of the tested algorithms for different instance sizes is
shown in Table 2. The symbol next to the reported relative ranks shows the relation
to the best Rrel (disregarding FLOW) based on the mentioned Wilcoxon signed rank
test, = means that there is no significant difference between the reported Rrel and the
best observed value, > means that the reported rank is significantly higher than the
best.

We can see that D-VND and G-VND achieve the best results for all instances
up to and including size 200. For the largest two size classes, no MA configuration
can beat B-VND. However, B-VND also requires more time (a maximum of 1000
seconds was allowed in (Inführ and Raidl 2013b)) than the 500 seconds allowed for
all GA variants for these sizes. The GA variants based on CH achieve the best results
at sizes 100 and 200. With smaller instances, local improvement with VND is better
than a higher number of iterations made possible by not spending time on local im-
provement. The number of iterations starts getting relevant for sizes 100 and above
as CH matches or outperforms VND. Even though the used Variable Neighborhood
Descent configuration was selected for low runtime-requirements, the number of it-



A Memetic Algorithm for the Virtual Network Mapping Problem 15

Table 2 Average relative rank Rrel and its relation to the best result, average number of iterations (Its.) for
GA based algorithms or average runtime for the other algorithms, fraction of solved instances (Solv.) in
percent and average Ca for all compared algorithms per instance size

Size D-CH G-CH D-VND G-VND G-CH-B G-VND-B G-VND-N VND B-VND FLOW

Rrel 20 0.352 > 0.367 > 0.206 = 0.196 = 0.366 > 0.231 > 0.205 = 0.914 > 0.761 > 0.000
30 0.442 > 0.452 > 0.232 = 0.231 = 0.445 > 0.230 = 0.247 = 0.922 > 0.727 > 0.000
50 0.475 > 0.475 > 0.249 = 0.259 = 0.471 > 0.288 > 0.378 > 0.942 > 0.746 > 0.030

100 0.409 = 0.408 = 0.388 = 0.411 = 0.419 = 0.364 = 0.546 > 0.969 > 0.614 > 0.359
200 0.393 = 0.373 = 0.425 = 0.410 = 0.389 = 0.461 > 0.633 > 0.941 > 0.379 = 0.656
500 0.438 > 0.444 > 0.609 > 0.645 > 0.402 > 0.628 > 0.757 > 0.992 > 0.143 = 0.750

1000 0.525 > 0.547 > 0.715 > 0.729 > 0.536 > 0.715 > 0.788 > 0.664 > 0.240 = 0.818

GA: Its. 20 393268 357568 8185 8169 359589 8141 8265 0.2 0.4 131.2
Other: t[s] 30 259702 241245 3899 3854 238717 3869 3912 0.7 1.3 1338.8

50 163663 151068 1663 1671 151207 1657 1691 2.1 4.2 2832.1
100 63276 59591 314 325 59571 315 328 16.0 29.7 6117.2
200 109125 104063 333 352 103817 340 355 40.2 119.7 7140.3
500 43412 42076 94 95 42057 93 99 126.6 605.1 3211.1

1000 13631 13348 23 25 13407 24 27 397.1 828.1 9144.5

Solv. [%] 20 97.5 97.5 100.0 100.0 97.5 100.0 100.0 96.7 97.5 100.0
30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 99.2 99.2 100.0 100.0 99.2 100.0 100.0 99.2 98.3 97.5

100 95.0 95.0 100.0 100.0 95.0 99.2 99.2 95.0 97.5 64.1
200 94.2 93.3 95.8 96.7 94.2 96.7 97.5 90.0 98.3 35.0
500 77.5 78.3 76.7 79.2 78.3 77.5 76.7 73.3 90.8 25.0

1000 60.0 59.2 58.3 57.5 59.2 61.7 57.5 57.5 61.7 18.3

Ca 20 9.9 8.4 0.0 0.0 7.4 0.0 0.0 13.1 4.5 0.0
30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 4.9 4.9 0.0 0.0 4.9 0.0 0.0 4.9 2.1 0.0

100 5.3 6.3 0.0 0.0 5.3 2.1 0.6 6.3 3.3 19142.5
200 5.5 4.1 3.0 3.4 5.6 7.6 4.4 19.0 1.0 71648.7
500 62.4 73.6 77.3 76.6 70.9 64.4 65.9 97.6 13.9 3413.8

1000 215.4 215.5 215.9 214.7 216.2 214.1 215.9 184.1 198.9 3952.2

erations for larger instances is very low. For the largest instances and highest loads,
the final result is basically the one created during population initialization. As to the
difference between UXA and UXB, results show that surprisingly UXB does not
cause any noteworthy performance degradation. G-VND has a slight advantage com-
pared to G-VND-B, but no clear pattern is visible. Disabling crossover (G-VND-N)
on the other hand has a pronounced negative effect on the outcome for medium sized
instances.

With respect to the differences between the direct and the grouping representa-
tion, no significant differences could be observed. The choice and type of local im-
provement has a much greater impact on the performance. The results for VND show
that the combination with the GA has a significant positive effect. When comparing
to FLOW, we can observe that FLOW is able to obtain the best results for sizes 20
and 30 and is also able to find valid solutions to all instances of this size. But with
respect to the required runtime, FLOW is only competitive for size 20. Increasing the
instance size reduces the fraction of valid solutions drastically, for the largest instance
size, FLOW only finds a valid solution to 18% of the instances. The GA based algo-
rithms, on the other hand, achieve 60%. Also note that the average Ca is far worse for
FLOW.

In Table 3 we show the average performance of the tested algorithms depend-
ing on the load of an instance. For the lowest load, every tested GA configuration
achieves basically the same results, except for G-VND-N which performs far worse
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Table 3 Average relative rank Rrel and its relation to the best result, average number of iterations (Its.) for
GA based algorithms or average runtime for the other algorithms, fraction of solved instances (Solv.) in
percent and average Ca for all compared algorithms per load

Load D-CH G-CH D-VND G-VND G-CH-B G-VND-B G-VND-N VND B-VND FLOW

Rrel 0.10 0.302 = 0.297 = 0.317 = 0.319 = 0.289 = 0.312 = 0.411 > 0.893 > 0.527 > 0.045
0.50 0.355 = 0.382 > 0.449 > 0.454 > 0.358 = 0.432 > 0.561 > 0.981 > 0.479 > 0.394
0.80 0.492 > 0.492 > 0.425 = 0.473 > 0.500 > 0.475 > 0.559 > 0.912 > 0.495 > 0.517
1.00 0.584 > 0.582 > 0.423 = 0.401 = 0.582 > 0.448 > 0.499 > 0.839 > 0.562 > 0.538

GA: Its. 0.10 430129 401525 6354 6321 401711 6323 6373 5.6 41.7 1946.6
Other: t[s] 0.50 82299 75242 1016 1020 74971 1010 1027 50.2 218.3 3216.1

0.80 48183 43667 537 547 43522 533 566 111.2 316.2 4441.3
1.00 37147 33257 385 393 33147 385 420 166.0 331.6 5668.0

Solv. [%] 0.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.7
0.50 99.0 98.6 97.1 97.6 98.6 99.0 97.1 95.7 99.0 61.0
0.80 88.6 88.6 88.6 88.1 88.6 90.0 88.1 85.7 91.9 48.6
1.00 68.6 68.6 74.8 76.2 69.0 73.8 75.2 68.1 77.1 46.2

Ca 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 567.3
0.50 0.1 0.1 0.6 0.4 0.1 0.2 0.5 0.7 0.1 4306.8
0.80 19.0 18.3 21.4 26.5 21.1 23.1 19.4 30.0 11.4 20967.5
1.00 154.3 160.3 147.3 141.6 156.1 141.5 144.0 155.0 116.3 43651.8

Table 4 Comparison of the average Rrel of D-VND with different population sizes per VNMP instance
size

Size 2 5 10 25 50 100 200 500

20 0.380 > 0.329 > 0.308 > 0.296 > 0.209 = 0.270 = 0.310 > 0.531 >
30 0.346 > 0.330 > 0.243 = 0.232 = 0.235 = 0.297 = 0.473 > 0.589 >
50 0.413 > 0.283 = 0.281 = 0.281 = 0.345 > 0.505 > 0.616 > 0.737 >

100 0.441 > 0.377 = 0.347 = 0.390 = 0.447 > 0.551 > 0.566 > 0.643 >
200 0.566 > 0.331 = 0.335 = 0.402 > 0.439 > 0.522 > 0.588 > 0.692 >
500 0.597 > 0.416 = 0.388 = 0.451 = 0.388 = 0.483 > 0.524 > 0.714 >

1000 0.450 = 0.463 > 0.379 = 0.394 = 0.420 = 0.479 > 0.605 > 0.804 >

due to the disabled crossover operator. To solve instances of load 0.5, using the direct
representation with CH as local improvement is essential. Interestingly, the group-
ing representation only achieves the same performance when combined with UXB. It
seems as if the additional disruption caused by the crossover operation is the key for
good performance for this load case. For higher loads, a MA configuration is required
for the best performance. For load 0.8 the direct representation (D-VND) is signifi-
cantly better, for load 1 the grouping representation (G-VND) has an advantage, but
the difference is not statistically significant. As we have already seen previously, dis-
abling the crossover operation reduces the performance significantly. Also, B-VND is
outperformed by the MAs for every load case. Note that for the higher loads, B-VND
also requires a similar amount of time as the GA variants, which have an average run-
time of 328.5 seconds due to the set runtime limits. The advantage of B-VND is that
it is able to solve more instances of the highest load than all other algorithms. FLOW
is best used for load 0.1. Increasing the load causes significantly longer runtimes and
reduces the number of solved instances. We will continue our analysis with D-VND
as best MA configuration, since it is slightly better than G-VND.

Before we discuss the effect of possible refinements of D-VND, we look briefly
into the influence of different population sizes on the performance of D-VND, which
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Table 5 Comparison of the average Rrel and initialization time tinit of the standard D-VND configuration
and alternative initialization methods

Size D-VND RCH RCH-LS1 RCH-LS2

Rrel 20 0.285 = 0.291 = 0.323 = 0.335 =
30 0.322 = 0.274 = 0.283 = 0.319 =
50 0.409 = 0.400 = 0.421 = 0.392 =

100 0.435 = 0.435 = 0.494 = 0.515 >
200 0.497 = 0.419 = 0.490 = 0.615 >
500 0.462 = 0.475 = 0.583 > 0.511 =

1000 0.388 = 0.473 > 0.621 > 0.533 >

tinit 20 0.2 > 0.1 = 0.2 > 0.9 >
30 0.6 > 0.1 = 0.4 > 2.6 >
50 1.8 > 0.2 = 0.9 > 9.0 >

100 13.3 > 0.7 = 3.3 > 77.1 >
200 37.7 > 1.5 = 8.7 > 258.7 >
500 127.6 > 4.7 = 40.0 > 346.1 >

1000 312.6 > 11.8 = 157.2 > 407.9 >

is presented in Table 4. It can be seen that the population size of 10 chosen for D-VND
works well across nearly the whole range of instance sizes. Only for the smallest
instances can the performance be substantially improved by increasing the size of
the population. Generally, a trend towards lower population sizes as the instance size
rises is visible. For the largest instance sizes, there is not enough runtime available to
allow the influence of the population size to manifest itself.

5.1 Refinement of D-VND

As the first step of refinement of D-VND, we evaluate different initialization methods.
We initialize the individuals by applying RCH and RCH with subsequent improve-
ment by LS1 and LS2. Based on experiments with α-values from 0.05 to 0.99 we
determined that α = 0.5 is best for initialization with RCH, when LS1 or LS2 are
used to improve the solution generated by RCH, α = 0.7 achieves the best results.

Table 5 shows the comparison of D-VND and different alternative initialization
methods. It can be seen that the chosen initialization method generally has little in-
fluence on the final result. The best variant is still to use VND and mutate, but RCH
is very close and has a deciding advantage: the initialization is significantly faster.
That means that more time is available to do more GA iterations and with improved
hybridization the standard D-VND configuration could be beaten. Therefore, we will
continue with RCH as initialization.

The three methods for local improvement we discussed as alternatives to simply
applying VND to every new offspring solution require two improvement methods.
We have CH, LS1, LS2 and VND available, therefore every combination of a weaker
method with a stronger method was evaluated, which in this case corresponds to six
combinations. For NewBest, the combination LS2-VND performed best, based on a
comparison of the average Rrel. As a side note, if the main aim is simply to find valid
solutions, LS1-LS2 performs much better, being able to solve every instance up to
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and including size 200 and finding valid solutions to 90% of the instances of size 500
and 66% of size 1000.

For NewTopX, we evaluated the six improvement method combinations, in addi-
tion to values of α from 0.2 to 0.8. We could observe that the value of α has only a
weak influence on the quality of the final solution, with a tendency of small values
being better for larger instances. Again, the combination LS2-VND performed best,
for α we chose a value of 0.3.

To select the best configuration for ImproveAfter, we evaluated the six improve-
ment methods, α values from 0.2 to 0.8 and β ∈{0.5,1,5,20}. The general behaviour
we could observe was that for weaker improvement method combinations, the best
value for α was high (i.e., a large fraction of the population gets improved), as was
the value for β (i.e., the improvement happens only seldomly). For instance, the best
configuration when choosing CH and LS1 as improvement methods was α = 0.8 and
β = 5. With increasing power of the improvement methods (up to LS1-VND), the
best β value decreases to 0.5. Among all configurations, the best results are again
achieved by using the combination LS2-VND, with α = 0.8 and β = 0.5, i.e., we
improve a large fraction of the population by VND rather often.

Before we compare the refined hybridization approaches with the D-VND con-
figuration, we want to point out two properties that we could observe while working
on the refinement techniques. The first is the success rate when applying the stronger
optimization method. We count an application as success if the offspring could be
improved and is a new best known solution. The success rate is heavily dependent
on instance size and load. For low load and small instances, the success rate is below
10%, but exceeds 80% for high sizes and high loads. That means that the additional
improvement is most beneficial for challenging instances. Another behaviour that we
noticed during our experiments was that the number of new best known solutions
during search (the number of improvements) is not correlated with the final solu-
tion quality. Indeed, we could often observe that methods finding a high number of
improvements had significantly worse results than the alternatives.

Table 6 shows a comparison of the quality of the final result between the standard
D-VND configuration and the discussed alternative improvement methods. As can be
seen, for a wide range of instance sizes and loads, the initial configuration performs
best or at least not significantly worse than the alternatives, so as a general purpose
solution method, the D-VND MA configuration is still best. Only if high quality
solutions for large instance sizes with low loads are the main objective, ImproveAfter
would be a better choice.

5.2 Online Behaviour of D-VND

Now, we will analyze the behaviour of D-VND in an online setting, i.e., when slices
continuously arrive and depart. This is interesting for two reasons. First of all, this
application is more likely in practice, because usually we do not know all virtual net-
works beforehand. They arrive dynamically and we need to fit them into the current
substrate together with the already present virtual networks. Secondly, we can expect
that a population based method performs well in this scenario, since it keeps a col-
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Table 6 Comparison of the average Rrel of the standard D-VND configuration and improvement methods

Size Load D-VND NewBest NewTopX ImproveAfter

20 0.10 0.067 = 0.167 = 0.067 = 0.167 =
0.50 0.156 = 0.311 = 0.339 > 0.411 >
0.80 0.167 = 0.583 > 0.361 = 0.439 >
1.00 0.256 = 0.478 > 0.467 > 0.400 =

30 0.10 0.000 = 0.233 > 0.250 > 0.167 >
0.50 0.211 = 0.233 = 0.306 = 0.317 =
0.80 0.378 = 0.561 = 0.517 = 0.411 =
1.00 0.450 = 0.533 = 0.489 = 0.528 =

50 0.10 0.089 = 0.233 = 0.128 = 0.250 >
0.50 0.472 = 0.578 > 0.367 = 0.467 =
0.80 0.567 = 0.483 = 0.450 = 0.517 =
1.00 0.556 = 0.517 = 0.456 = 0.472 =

100 0.10 0.389 = 0.311 = 0.372 = 0.561 >
0.50 0.394 = 0.433 = 0.567 = 0.606 >
0.80 0.322 = 0.522 > 0.622 > 0.533 >
1.00 0.344 = 0.533 = 0.478 = 0.644 >

200 0.10 0.578 = 0.533 = 0.439 = 0.417 =
0.50 0.378 = 0.578 = 0.611 > 0.433 =
0.80 0.361 = 0.578 > 0.589 > 0.489 =
1.00 0.189 = 0.511 > 0.544 > 0.756 >

500 0.10 0.800 > 0.417 = 0.472 = 0.294 =
0.50 0.444 = 0.489 = 0.522 = 0.544 =
0.80 0.356 = 0.467 = 0.511 = 0.667 >
1.00 0.222 = 0.489 > 0.467 > 0.822 >

1000 0.10 0.667 > 0.461 = 0.433 = 0.422 =
0.50 0.344 = 0.467 = 0.544 = 0.644 >
0.80 0.300 = 0.500 > 0.478 = 0.722 >
1.00 0.044 = 0.600 > 0.711 > 0.644 >

lection of good results and when a new virtual network arrives one of those results
might be easily extended to accommodate the new virtual network with only a small
increase in cost.

We test two different scenarios for dynamic behaviour, which we call RampUp-
Down and RampDownUp. For RampUpDown, we start with a VNMP instance at
load 0.1 and increase the load in steps of 0.1 until we reach full load. Then the load is
decreased again with the same step size until we reach load 0.1 again. The set of vir-
tual networks to implement at a particular load level is the same, regardless whether
virtual networks are currently being added or being removed; e.g., the VNMP in-
stance at load 0.4 when virtual networks are being added is the same as the VNMP
instance at load 0.4 when virtual networks are being removed. RampDownUp goes
the other way, i.e., we start at full load, decrease the load until we reach 0.1, and then
increase the load again. The VNMP instances at a particular load level are again the
same (and also the same as the ones for RampUpDown). At each load level, the MA
is run with the time limits used previously, i.e., 200 seconds for instances of size 100
and below, 500 seconds for instances of size 200 and beyond. When the load is in-
creased, the solutions in the current population are not complete. We implement the
newly added virtual networks by applying CH. We will call this MA-Keep. As we
have stated in the introduction, our main goal when analyzing the online behaviour
of the MA is determining whether keeping the population during changes is actually
beneficial. Therefore, we also test the alternative of rebuilding the population every
time virtual networks are added or removed, which we will denote by MA-Reset.
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Fig. 3 Development of the substrate usage cost with the RampUpDown dynamic behaviour for MA-Keep
and MA-Reset for an instance of size 100, the optimal values derived by FLOW are shown for reference
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Fig. 4 Development of the substrate usage cost with the RampDownUp dynamic behaviour for MA-Keep
and MA-Reset for an instance of size 100, the optimal values derived by FLOW are shown for reference

We evaluated MA-Keep and MA-Reset with RampUpDown and RampDownUp for
every (full load) instance in the VNMP instance set.

Figures 3 and 4 show the behaviour of MA-Keep and MA-Reset for RampUp-
Down and RampDownUp, respectively, for a single instance of size 100. Also shown
are the optimal solution values as derived by FLOW (with a time-limit of 10000
seconds) for reference. The first notable observation is that the initial solution of
MA-Keep is much worse than that of MA-Reset when the load increases. We would
have expected the exact opposite, as new solutions are built from already optimized
solutions for lower load, but it seems that CH is not good enough to be able to add
additional virtual networks without substantial increase in substrate usage cost. For
the downward direction, it seems that the initial solutions of MA-Keep are better
than those of MA-Reset. The final solution before the load changes is of course more
interesting, and MA-Keep has advantages here, even though for some load levels
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Table 7 Comparison of the average Rrel of the initial (RInit
rel ) and final (RFinal

rel ) solutions for MA-Keep and
MA-Reset for each load level of RampUpDown and RampDownUp in the upward direction

RampUpDown RampDownUp
Load MA-Keep MA-Reset MA-Keep MA-Reset

RInit
rel 0.10 0.965 > 0.155 = 0.453 > 0.155 =

0.20 0.892 > 0.169 = 0.908 > 0.178 =
0.30 0.913 > 0.210 = 0.889 > 0.203 =
0.40 0.907 > 0.239 = 0.891 > 0.227 =
0.50 0.891 > 0.227 = 0.876 > 0.224 =
0.60 0.895 > 0.260 = 0.876 > 0.273 =
0.70 0.883 > 0.291 = 0.882 > 0.280 =
0.80 0.880 > 0.331 = 0.889 > 0.319 =
0.90 0.894 > 0.316 = 0.880 > 0.319 =
1.00 0.593 > 0.093 = 0.591 > 0.072 =

RFinal
rel 0.10 0.282 = 0.284 = 0.300 = 0.289 =

0.20 0.324 = 0.393 > 0.302 = 0.334 =
0.30 0.410 = 0.387 = 0.349 = 0.400 =
0.40 0.427 > 0.376 = 0.441 = 0.412 =
0.50 0.437 = 0.442 = 0.434 = 0.448 =
0.60 0.449 = 0.449 = 0.416 = 0.473 =
0.70 0.493 = 0.511 = 0.449 = 0.507 =
0.80 0.476 = 0.534 > 0.473 = 0.492 =
0.90 0.442 = 0.539 > 0.432 = 0.545 >
1.00 0.385 = 0.564 > 0.374 = 0.516 >

MA-Reset achieves the best results. One last point of interest with respect to the final
solution is, whether the final solution of MA-Keep for RampUpDown is better on the
downward direction than when going up. That would indicate that keeping the pop-
ulation intact really is useful. Unfortunately, such a tendency is not readily visible in
the presented figures.

Of course, these observations are only based on a single run with a single in-
stance, so we need to check whether they are representative for all instances and
the relevant comparisons will follow shortly. Before that, just one technical detail:
for RampUpDown and RampDownUp, every load level occurs twice (once while in-
creasing the load, once while decreasing), except load 1 for RampUpDown and load
0.1 for RampDownUp. We will consider the results at those load levels to belong to
both the upward (increasing load) and downward (decreasing load) direction.

Table 7 shows a comparison of initial and final results achieved by MA-Keep and
MA-Reset when increasing the load. The comparison is done separately for Ramp-
UpDown and RampDownUp. It can be observed that indeed, when increasing the
load the initial results of MA-Reset are significantly better than those of MA-Keep.
For the final solution, however, the situation is reversed. Final solutions generated
by MA-Keep are significantly better than those of MA-Reset. Only for low loads is
MA-Reset competitive.

Table 8 presents the same comparison, but now for the downward direction. It
can be seen that for RampDownUp, the initial solutions of MA-Reset are much bet-
ter than those of MA-Keep. For RampUpDown, the situation is more complicated.
For high loads, it seems that having a population optimized for even higher loads and
then simply removing the virtual networks yields better results than creating a new
population. This also explains why the initial solution of MA-Reset for load 1 is bet-
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Table 8 Comparison of the average Rrel of the initial (RInit
rel ) and final (RFinal

rel ) solutions for MA-Keep and
MA-Reset for each load level of RampUpDown and RampDownUp in the downward direction

RampUpDown RampDownUp
Load MA-Keep MA-Reset MA-Keep MA-Reset

RInit
rel 0.10 0.449 > 0.146 = 0.453 > 0.155 =

0.20 0.357 > 0.170 = 0.338 > 0.176 =
0.30 0.336 > 0.213 = 0.309 > 0.206 =
0.40 0.271 = 0.231 = 0.327 > 0.231 =
0.50 0.242 = 0.238 = 0.336 > 0.224 =
0.60 0.215 = 0.277 > 0.326 > 0.266 =
0.70 0.193 = 0.279 > 0.315 = 0.274 =
0.80 0.164 = 0.333 > 0.326 > 0.293 =
0.90 0.125 = 0.322 > 0.367 > 0.291 =
1.00 0.593 > 0.093 = 0.891 > 0.049 =

RFinal
rel 0.10 0.309 = 0.313 = 0.300 = 0.289 =

0.20 0.385 = 0.358 = 0.362 = 0.348 =
0.30 0.354 = 0.426 > 0.344 = 0.380 =
0.40 0.444 = 0.441 = 0.411 = 0.442 =
0.50 0.379 = 0.407 = 0.499 > 0.428 =
0.60 0.340 = 0.458 > 0.497 = 0.438 =
0.70 0.354 = 0.500 > 0.518 > 0.466 =
0.80 0.292 = 0.549 > 0.519 = 0.481 =
0.90 0.266 = 0.568 > 0.511 = 0.489 =
1.00 0.385 = 0.564 > 0.611 > 0.488 =

Table 9 Comparison of the average Rrel of the solutions generated by MA-Keep for RampUpDown in the
upward and the downward direction

Load Up Down

0.10 0.282 = 0.309 =
0.20 0.324 = 0.385 >
0.30 0.410 > 0.354 =
0.40 0.427 = 0.444 =
0.50 0.437 > 0.379 =
0.60 0.449 > 0.340 =
0.70 0.493 > 0.354 =
0.80 0.476 > 0.292 =
0.90 0.442 > 0.266 =
1.00 0.385 = 0.385 =

ter than that of MA-Keep, as no population for even higher load exists. With respect
to the final results, we can see that for RampUpDown and high loads, MA-Keep is
significantly better than MA-Reset. For RampDownUp, however, MA-Reset is ad-
vantageous. This implies that MA-Keep is better for RampUpDown in the downward
direction not because keeping the population is an advantage when removing virtual
networks, but because we revisit load levels that have already been optimized.

This brings us to our final question: are the solutions of MA-Keep for Ramp-
UpDown in the downward direction better than in the upward direction? This is an-
swered in Table 9. We can see that especially for high loads, the second visit of a
particular load level yields much better results.

What do these results mean for a virtual network operator who continually wants
to optimize the implementation of the virtual networks? Generally, the population
should be kept when virtual networks arrive or depart, especially if the load is high.
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If the operator wants to take advantage of found improved solutions immediately (and
does not wait until the MA has converged), then some care has to be taken, since the
initial solutions when keeping the population and adding virtual networks are quite
bad. Using stronger methods than CH to rebuild the solutions in the population might
be advisable, but this of course increases the time until the MA can actually run and
improve the solutions.

6 Conclusion and Future Work

In this work we have introduced the Memetic Algorithm D-VND that significantly
outperforms the best previously available algorithm for the VNMP over a wide range
of instance sizes and load cases. With reference to the main questions we set out
to answer with this paper, we have shown that there is no significant difference be-
tween different representations if performance for specific instance sizes is relevant.
For high loads, the grouping representation might offer an advantage. As for the dif-
ference between UXA and UXB, we have shown that UXB can cause performance
degradations, but also seen one case where it is beneficial. We believe that analyzing
the difference between those crossover variants warrants further research. Whether
or not the time for local improvement is well spent depends on the instance size and
load. For small sizes, local improvement increases performance, while for large in-
stances executing more GA iterations is more important. For high loads, using local
improvement is essential. We have shown that disabling crossover decreases perfor-
mance in all cases.

We studied various improvements to D-VND, both with respect to the population
initialization and how the local improvement of newly created offspring solutions
works. We could find an initialization method that holds the performance levels of
D-VND while substantially reducing the time required for initialization, but none of
the studied local improvement methods could improve on D-VND in general. Just
for the special case of large instances with low loads an improvement over D-VND
could be observed.

We could show that keeping the population when the VNMP instance changes in
a dynamic setting is preferable to rebuilding it. More work is still required to improve
the completion of solutions when virtual networks are added, as currently the initial
solutions are rather bad.

The current VNMP model assumes constant delay on substrate arcs without re-
gard for the current load and no overhead for mapping a lot of virtual nodes to a
substrate node. More work is needed to address these shortcomings. We have shown
that keeping the solutions in the presence of changes is beneficial. It would be inter-
esting to see whether this still holds for single solution based optimization methods,
or if the solution to a slightly different problem is misleading.

The MA presented in this work has various parameters, which were tuned by
hand, and only with one objective in mind. Automatic parameter tuning techniques
should also be considered, especially when the objective changes, for instance just
finding valid solutions.
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Inführ J, Raidl GR (2013a) A memetic algorithm for the virtual network mapping problem. In: Lau H,
Van Hentenryck P, Raidl G (eds) Proceedings of the 10th Metaheuristics International Conference,
Singapore, pp 28/1–28/10
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