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Abstract

The Virtual Network Mapping Problem arises in the context of Future Internet research. The core
idea is the introduction of virtual networks to the Internet to be able to improve its functionality in
a non-disruptive way. This also enables the creation of specialized networks which directly provide
functionality required by some application classes. The challenge of fitting all the virtual networks
(and the resources they require) into a physical network is the Virtual Network Mapping Problem.
In this work, we introduce a Memetic Algorithm that significantly outperforms the previously best
algorithms for this problem. We also offer an analysis of the influence of different problem repre-
sentations and in particular the implementation of an uniform crossover for the Grouping Genetic
Algorithm that may also be interesting outside of the Virtual Network Mapping domain.

1 Introduction

Network virtualization is a central component of scientific network testbeds such as GENI [1], Planet-
Lab [10] or G-Lab [23]. It is necessary to facilitate the sharing of a costly resource: large scale networks
available for testing new technology. Each research group can create its own virtual networks incorpo-
rating the improvements they are working on and test them within those testbeds, without having to fear
interference from other research groups and their tests. This network virtualization approach has been
identified as a central paradigm of Future Internet research [4, 5]. The Internet as it exists today suffers
from ossification [20]. It is hard or even impossible to introduce new technologies to the Internet, even
though they would bring large improvements to the service quality. A good example is IPV6 [11], which
is still not implemented completely despite the obvious demand. The main reason why upgrades are so
problematic is that changes to the underlying technology, such as employed protocols, would be very
disruptive for the users who depend on the Internet working exactly as it does now. With the help of vir-
tualization, such changes can be implemented in an incremental and non-disruptive manner, because old
and new technologies can coexist. But network virtualization has even more potential: instead of using it
just as a device for testing and switching technologies, the coexistence of different technologies may be
the intended state. Multiple virtual networks exist, each with different dedicated and efficient protocols
and capabilities, geared exactly towards specific use cases. For a survey on network virtualization, its
application and available technologies, see [8].

In this context arises the Virtual Network Mapping Problem (VNMP). Even if there are multiple vir-
tual networks with different characteristics and protocols, they still have to share the physically available
resources in such a way that every network fulfills the required specifications, for instance with respect
to quality of service parameters such as communication bandwidth and delay.

In this work, we will introduce a Memetic Algorithm that significantly outperforms the best previ-
ously available algorithms for the VNMP [18]. In addition, we will answer the following questions in
the context of the VNMP:

• What is the influence of different solution representations and crossover operators?

• Is the time for local improvement well spent?

• Does the crossover operation have a beneficial influence on the final outcome?
1This work has been funded by the Vienna Science and Technology Fund (WWTF) through project ICT10-027.
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Section 2 presents the formal definition of the VNMP, followed by a discussion of the relevant back-
ground and related work in Section 3. The proposed Memetic Algorithm is outlined in Section 4 and
Section 5 contains the computational results. We conclude in Section 6.

2 The Virtual Network Mapping Problem

The VNMP consists of three parts: The virtual networks (VNs) that need to be realized, the substrate
network that hosts the virtual networks (i.e. the physical network), and the location constraints between
the virtual networks and the substrate network.

The VNs are modeled by the disconnected components of a directed graph G′ = (V ′, A′) with node
set V ′ and arc set A′. Each VN node k ∈ V ′ requires CPU power ck ∈ N+ to implement custom
protocols. Each VN arc f ∈ A′ has a bandwidth (BW) requirement bf ∈ N+ and a maximum allowed
delay df ∈ N+.

The substrate network is modeled by a directed graph G = (V,A). Each substrate node i ∈ V has an
associated CPU power ci ∈ N+ which is used by the VN nodes mapped to i, but also to route BW. We
assume that one unit of BW traversing a substrate node requires one unit of CPU power. This traversing
BW could be internal to the substrate network, i.e. could be sent from and forwarded to another substrate
node. It could also be sent or received by a virtual node mapped to the substrate node, and it is possible
that both sending and receiving virtual nodes are mapped to the same substrate node. Substrate arcs
e ∈ A have a BW capacity be ∈ N+ and a delay de ∈ N+ that is incurred when data is sent across e.

The set M ⊆ V ′ × V defines for each virtual node k ∈ V ′ the substrate nodes that can be used to
host it. By s(a) and t(a), ∀a ∈ A ∪A′, we denote the arc’s source and target nodes, respectively.

A valid VNMP solution specifies a mapping m : V ′ → V of virtual nodes to substrate nodes such
that (k,m(k)) ∈ M, ∀k ∈ V ′ and the total CPU load on each i ∈ V (caused by mapped virtual
nodes and traversing BW) does not exceed ci. In addition, there has to be a substrate path Pf ⊆ A
from m(s(f)) to m(t(f)) for every f ∈ A′ that does not exceed the allowed delay df and in which the
bandwidth capacities be on the substrate arcs are respected.

The objective of the VNMP is to minimize the total substrate usage cost. Every substrate node
i ∈ V has an associated usage cost pVi ∈ N+ which has to be paid when at least one VN node uses it.
Furthermore, every substrate arc e ∈ A has a usage cost pAe ∈ N+ which has to be paid when it is used
by at least one virtual arc. The total substrate usage cost Cu is the sum of the node and arc usage costs
that have to be paid.

Finding a valid solution to the VNMP is NP-hard [3]. Therefore we cannot expect heuristic opti-
mization techniques to always be able to find valid solutions (which may not even exist) within practical
time. However, just reporting that no valid solution could be found is unsatisfactory for two reasons: for
optimization purposes, there should be a way to distinguish between invalid solutions, to prefer those
closer to validity and for practical purposes we would like to have a recourse strategy available so that
the required virtual network load can be implemented. To be able to do that, we allow the possibility
of increasing the available CPU power at each substrate node, with the price of CCPU per unit and the
available BW on substrate arcs with the price of CBW per unit. The sum of the incurred costs is the
additional resource cost Ca. For valid solutions to the VNMP, Ca = 0. We will call an instance solved if
a valid solution could be obtained. As in previous work [18], we set CCPU = 1 and CBW = 5 to reflect
the fact that it is easier to increase the CPU power of a router than to increase the BW of a network
connection. With these costs, we create a meaningful result even without solving an instance, because
they show how to change the substrate network in a cost effective way to be able to host the current VN
load. To compare two solutions, we use lexicographic ordering. Solutions with lower Ca are better and
if this cost is equal, lower Cu is preferred.

Figure 1 presents a simple VNMP instance. It shows the substrate network G (nodes a to e) and
its available resources. The available CPU power is written inside the nodes, the arc labels define the
available bandwidth and the incurred delay when data is transferred across this connection. The virtual
network graph G′ consists of one virtual network with two nodes (a′ and b′). The number within the
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Figure 1: A simple VNMP Instance.

nodes define the required CPU power, the arc label specifies the required bandwidth and the maximum
allowed delay. The dashed lines show the possible locations of the virtual network nodes. Usage costs
for substrate nodes and arcs have been omitted for clarity.

This small example has a unique solution, since b′ cannot be mapped to c, even though this mapping
is allowed and c has enough CPU power to host b′ and transfer the required seven units of bandwidth. The
problem is that the virtual connection from a′ to b′ cannot be implemented from a to c. The path (a, b, c)
is not possible, because b does not have the required CPU power to route the bandwidth. The direct
connection from a to c incurs too much delay. The path (a, d, c) is not allowed, because the connection
from d to c does not offer the required bandwidth. So the only remaining possibility is to map b′ to e and
implement the virtual connection with the path (a, d, e).

3 Background and Related Work

The Genetic Algorithm (GA) [15] is a nature-inspired population-based algorithm for combinatorial
optimization, an overview can be found in [24]. The problem representation plays a crucial role for the
performance of a Genetic Algorithm. In particular, there is a special representation designed for problems
where entities have to be grouped together [12], like in the case of the VNMP virtual nodes mapped to
the same substrate node. We will utilize this representation in this work. Successful applications of
this representation include the access node location problem [2] and the multiple traveling salesman
problem [6]. However, it is not clear that this representation is always advantageous. For instance,
[13] reports a successful application of a GA to the generalized assignment problem, without using this
representation. Also, its robustness is questioned in [7]. Therefore, we will analyze the performance
implications of different representations for the VNMP.

The Memetic Algorithm (MA) is a combination of a population based optimization method (e.g. GA)
and a local improvement technique [19, 21]. The main idea is to use the GA to find promising regions
in the search space and then use the local improvement technique to find excellent solutions in those
promising regions. There is a trade-off between the time spent in the GA and the time spent executing
the local improvement technique. Without enough time for the GA, it will fail to find promising regions,
without enough time for the local improvement method, the found solutions will not be excellent. We
will show how this tradeoff manifests itself for the VNMP.

The VNMP can also be found under the names Virtual Network Assignment [28], Virtual Network
Embedding [9], Virtual Network Resource Allocation [25] and Network Testbed Mapping [22] in the
literature. The basic problem is always the embedding of virtual networks in a substrate network. What
varies are considered resources (e.g. the authors of [28] use no explicit resources, [22, 25] use bandwidth
and [9, 26] add CPU power). We go considerably further by also considering link delays and the inter-
action between hosting virtual nodes and routing bandwidth on substrate nodes. Another possibility is
using an additional resource type to model the capacity of a router to transfer bandwidth, which we did
in previous work [17]. Different possibilities for constraining the mapping of virtual nodes considered
in the literature are the requirement to map the nodes of a VN to different substrate nodes [28], prede-
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Figure 2: Comparison of different implementations of uniform crossover for the direct (a) and grouping
(b) representations.

Population P;
InitializePopulation(P);
while(!terminate()){

VNMPSolution p1=select(P);
VNMPSolution p2=select(P);
VNMPSolution offspring=crossover(p1,p2);
mutate(offspring);
copyArcs(offspring,p1,p2);
localImprovement(offspring);
insert(P,offspring);

}
return best(P);

Listing 1: Memetic Algorithm for the VNMP

fine a mapping [25] or only allow a certain distance between the location of the virtual node and the
substrate node that has to host it [9]. The VNMP model utilized in this work can accommodate all of
those constraint types. In our model, we implement virtual arcs by using a single path, as is also done
for instance in [28]. However, using multiple paths to implement a virtual connection is also prominent
in the literature (e.g. [9]) since it makes the problem of implementing the virtual connections polynomi-
ally solvable and the authors of [27] argue for substrate support for this. However, using multiple paths
to implement a single virtual connection makes the observed behaviour of the virtual connection more
erratic, as multiple physical connections influence it. Therefore, we concentrate on finding simple paths
to implement virtual connections.

4 A Memetic Algorithm for the VNMP

Listing 1 shows the Memetic Algorithm for the VNMP in pseudocode, which we will describe in this
section. Based on previous experience with the VNMP [18], the most important step while constructing a
solution is the choice of the location of the virtual nodes in the substrate. Therefore we chose to utilize a
Genetic Algorithm to work primarily on this node packing aspect of the problem and use other algorithms
to create a complete solution, i.e. to implement the VN connections. The main task of the GA is thus to
assign virtual nodes to substrate nodes, or, when put another way, finding for each substrate node a group
of virtual nodes mapped to it so that a good complete solution can be created. These two different ways
of viewing the problem lead to different problem representations. The first representation is a simple
vector that specifies the mapping target for each virtual node. We will call this representation the direct
representation. The second representation focuses on the grouping aspect and represents a solution as
a vector of sets which specify which virtual nodes are mapped to a particular substrate node. We will
call this representation the grouping representation. Figure 2 shows examples of the direct and grouping
representations of the same VNMP solution. For instance, P1 shows that virtual node 1 is mapped to
substrate node D, while P1’ shows that virtual nodes 7 and 9 are mapped to node A.

Singapore, August 4–8, 2013



MIC 2013: The X Metaheuristics International Conference 126–5

The employed representation influences how the crossover operator works. Based on preliminary
results, we decided to utilize only uniform crossover (instead of the simpler one-point and two-point
crossover variants). For the direct representation, the uniform crossover is straight forward; for every
virtual node the mapping target is randomly selected from one of the parents. Figure 2 shows a possible
result of the uniform crossover of P1 and P2 in direct representation (UXD). The marked components are
the ones selected to be carried over to the offspring. UXD’ shows the translation of UXD to the grouping
representation. The uniform crossover for the grouping representation utilizes the same principle. For
every substrate node, the virtual nodes mapped to it are chosen randomly from one of the parents. We
will call the set of virtual nodes mapped to a substrate node a virtual node group from here on out. Due
to this solution structure, two effects can occur that are not possible with the direct representation. In
each solution, a virtual node is part of exactly one virtual node group. When none of those groups are
selected to be present in the offspring, a virtual node remains unmapped after the crossover operation.
If both groups are selected, then the virtual node would be mapped twice, which is not allowed. The
first problem can be remedied by just utilizing the mapping decision of one of the parents after the
crossover procedure has finished for all unmapped virtual nodes. For the second problem, we override
the old mapping with a newer mapping. This means that the sequence in which the groups are copied
matters. We will compare two different copying strategies: copying all groups of one parent, then all
groups of the other (UXA), and copying the groups in order of the substrate node labels (UXB). Figure 2
shows the result of applying these crossover operators using parents P1’ and P2’. Note that in both cases
some virtual nodes remain unmapped. The main idea of the crossover is to combine important solution
properties from the parents to generate superior offspring. In our case, we want to keep the virtual node
groups intact. The marked regions in the crossover results of UXD, UXA and UXB show the groups that
have survived without node removal. We can see that for UXA three groups have survived, for UXB one
group has survived and no group survived UXD. The bad performance of UXD with respect to groupings
was the reason why the grouping representation was introduced in the first place [12]. However, there
is also a big difference between UXA and UXB. With UXA, at least all virtual node groups selected
for crossover of the second parent will survive (which are half of the groups in the expected case). With
UXB, only the last group that is copied is guaranteed to survive. Therefore we use UXA when comparing
the different representation possibilities for the VNMP.

After the crossover operation we apply the mutation operator, which we will call ClearSnode muta-
tion, with a probability of pm. The ClearSnode mutation clears a fraction of substrate nodes by mapping
virtual nodes to substrate nodes that are not selected to be cleared, if it is allowed by the mapping con-
straints. This fraction of cleared nodes is chosen uniformly at random from [0, r], but at least one node
is cleared. In this work we used pm = 0.2 and r = 0.2 based on preliminary results, which also showed
that mutation is required for good performance. Due to space limitations we cannot show the detailed
analysis.

Until now, we have neglected the implementation of virtual arcs. It is also a part of the solution rep-
resentation, even though the crossover and mutation operators do not work on them directly. Since the
arc implementation may represent a significant amount of work done by the local improvement, and the
basic idea of crossover is to transfer as much information as possible from the parents to the offspring,
we copy the arc implementation of the parents once the mapping for the virtual node is fixed. For every
virtual arc f , we check the locations of s(f) and t(f) in the substrate graph for both parents and the
offspring. If one parent utilizes the same mapping locations as the offspring, we copy its arc imple-
mentation. If both parents are compatible, the arc implementation is chosen randomly from one of the
parents. If the mapping is different from both parents, the arc remains unimplemented. Unimplemented
arcs will be assigned an implementation during the local improvement phase.

Since we want to check whether the time spent for local improvement actually improves the perfor-
mance of the algorithm, we either use a Variable Neighborhood Descent [14] to perform local improve-
ment, or we skip local improvement and apply a Construction Heuristic instead. The only reason for
applying the Construction Heuristic is to implement all virtual arcs that have not been implemented yet
to guarantee that after this step a complete solution has been generated. We selected the best Construc-

Singapore, August 4–8, 2013



126–6 MIC 2013: The X Metaheuristics International Conference

Size |V | |A| |V ′| |A′| |MV ′|
20 20 40.8 220.7 431.5 3.8
30 30 65.8 276.9 629.0 4.9
50 50 116.4 398.9 946.9 6.8

100 100 233.4 704.6 1753.1 11.1
200 200 490.2 691.5 1694.7 17.3
500 500 1247.3 707.7 1732.5 30.2

1000 1000 2528.6 700.2 1722.8 47.2

Table 1: Properties of the used VNMP instances: average number of substrate nodes (V ) and arcs (A),
virtual nodes (V ′) and arcs (A′) and the average number of allowed map targets for each virtual node
(MV ′).

tion Heuristic presented in [18], which means that virtual arc implementations are paths that cause the
least increase in the substrate usage cost Cu without increasing the additional resource cost Ca. We will
call this method CH. As for the Variable Neighborhood Descent, we chose neighborhoods N2, N4 and
N5 from [18]. These are destroy-and-recreate neighborhoods which are searched in a first-improvement
fashion. That means that they remove a part of a solution and then reconstruct it to create a neighboring
solution. For this reconstruction step, we use a construction heuristic designed for this reconstruction
task (CH3 from [18]). We will skip the reconstruction step in the following description of the used
neighborhoods. N2 removes the mapping of a single virtual node (and all implementations of virtual
arcs connected to the virtual node). N4 removes all virtual arc implementations using a substrate arc.
N5 clears substrate nodes, i.e. all virtual nodes mapped to the substrate node are removed (which again
includes the implementations of all connected virtual arcs), in addition to all virtual arc implementations
using the substrate node. We will call this local improvement method VND and execute it without time-
limit. We selected VND and not the best identified Variable Neighborhood Descent configuration in [18]
because this configuration offers a good balance between solution quality and required runtime. How-
ever, we will compare our Memetic Algorithm with the best Variable Neighborhood Descent approach
from [18], which we will call B-VND.

The newly created and improved offspring is immediately inserted back into the population and re-
places the worst solution present (steady-state GA), unless the offspring is already present in the popula-
tion. At this point, one GA iteration is complete, and the next one begins by utilizing a binary tournament
to select the parents for the next crossover operation. Until now, we have neglected the problem of pop-
ulation initialization for reasons that will become obvious shortly. The main aim when initializing a
population is the creation of a diverse set of good solutions. For the VNMP, there are different possi-
bilities. One could simply randomly map virtual nodes to one of the allowed substrate nodes. Mapping
virtual nodes in a way that tries to minimize the increase in Cu is another. Preliminary results showed
that these approaches, while creating a very diverse set of initial solutions, do not work well, because
VND requires a lot of time to improve the offspring during the initial iterations. Therefore, we chose
a different approach: we create one good solution by using VND, and then apply the mutation operator
with r = 0.2 to generate all other initial solutions. This has the additional benefit that the MA will have
a good solution from the beginning. In this work we used a population size of 10.

5 Results

To evaluate the performance of the proposed MA, we used the test set available at [16]. The set contains
VNMP instances with 20 to 1000 substrate nodes, with 30 instances of each size. Each instance contains
40 VNs. Table 1 shows the main properties of the instance set, for more information on the instances
see [18]. The MA was tested on all instances, and additionally with different loads, i.e. reduced numbers
of VNs. A load of 0.1 means that only 10% of the available VNs are used. We tested load levels of 0.1,
0.5, 0.8 and 1. This results in a total of 840 test instances. All algorithms compared in this section have
been run on one core of an Intel Xeon E5540 multi-core system with 2.53 GHz and 3 GB RAM per core.
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Size D-CH G-CH D-VND G-VND G-CH-B G-VND-B G-VND-N VND B-VND FLOW
Rrel 20 0.352 > 0.367 > 0.206 = 0.196 = 0.366 > 0.231 > 0.205 = 0.914 > 0.761 > 0.000

30 0.442 > 0.452 > 0.232 = 0.231 = 0.445 > 0.230 = 0.247 = 0.922 > 0.727 > 0.000
50 0.475 > 0.475 > 0.249 = 0.259 = 0.471 > 0.288 > 0.378 > 0.942 > 0.746 > 0.030

100 0.409 = 0.408 = 0.388 = 0.411 = 0.419 = 0.364 = 0.546 > 0.969 > 0.614 > 0.359
200 0.393 = 0.373 = 0.425 = 0.410 = 0.389 = 0.461 > 0.633 > 0.941 > 0.379 = 0.656
500 0.438 > 0.444 > 0.609 > 0.645 > 0.402 > 0.628 > 0.757 > 0.992 > 0.143 = 0.750

1000 0.525 > 0.547 > 0.715 > 0.729 > 0.536 > 0.715 > 0.788 > 0.664 > 0.240 = 0.818
GA: Its. 20 393268 357568 8185 8169 359589 8141 8265 0.2 0.4 131.2

Other: t[s] 30 259702 241245 3899 3854 238717 3869 3912 0.7 1.3 1338.8
50 163663 151068 1663 1671 151207 1657 1691 2.1 4.2 2832.1

100 63276 59591 314 325 59571 315 328 16.0 29.7 6117.2
200 109125 104063 333 352 103817 340 355 40.2 119.7 7140.3
500 43412 42076 94 95 42057 93 99 126.6 605.1 3211.1

1000 13631 13348 23 25 13407 24 27 397.1 828.1 9144.5
Solv. [%] 20 97.5 97.5 100.0 100.0 97.5 100.0 100.0 96.7 97.5 100.0

30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
50 99.2 99.2 100.0 100.0 99.2 100.0 100.0 99.2 98.3 97.5

100 95.0 95.0 100.0 100.0 95.0 99.2 99.2 95.0 97.5 64.1
200 94.2 93.3 95.8 96.7 94.2 96.7 97.5 90.0 98.3 35.0
500 77.5 78.3 76.7 79.2 78.3 77.5 76.7 73.3 90.8 25.0

1000 60.0 59.2 58.3 57.5 59.2 61.7 57.5 57.5 61.7 18.3
Ca 20 9.9 8.4 0.0 0.0 7.4 0.0 0.0 13.1 4.5 0.0

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 4.9 4.9 0.0 0.0 4.9 0.0 0.0 4.9 2.1 0.0

100 5.3 6.3 0.0 0.0 5.3 2.1 0.6 6.3 3.3 19142.5
200 5.5 4.1 3.0 3.4 5.6 7.6 4.4 19.0 1.0 71648.7
500 62.4 73.6 77.3 76.6 70.9 64.4 65.9 97.6 13.9 3413.8

1000 215.4 215.5 215.9 214.7 216.2 214.1 215.9 184.1 198.9 3952.2

Table 2: Average relative rank Rrel and its relation to the best result, average number of iterations (Its.)
for GA based algorithms or average run-time for the other algorithms, fraction of solved instances (Solv.)
in percent and average Ca for all compared algorithms per instance size.

A CPU-time limit of 200 seconds was applied for sizes up to 100 nodes, 500 seconds for larger instances.
The reported results of statistical tests are based on a paired Wilcoxon signed rank test with a 5% level
of significance.

We compare four different MA configurations: direct representation with CH as local improvement
(D-CH), with VND as local improvement (D-VND), grouping representation using UXA and CH as lo-
cal improvement (G-CH) and with VND as local improvement (G-VND). To fully compare the influence
of the employed crossover operator, we also test the grouping representation with UXB and CH as lo-
cal improvement (G-CH-B) and VND as local improvement (G-VND-B). Furthermore, we investigate
the G-VND variant with disabled crossover (G-VND-N), i.e. one individual is chosen from the popula-
tion, mutated, improved and then reinserted. Finally, we also consider VND on its own, the best VND
configuration from [18] (B-VND) and compare the results to the multicommodity-flow based integer lin-
ear programming formulation presented in [17] (FLOW) with small modifications to match the VNMP
model used in this work. The results of FLOW were achieved using a time-limit of 10 000 seconds.

Our aim in this work was finding good solutions to the VNMP (instead of only finding valid solutions
for example). However, we cannot simply compare Cu values for different algorithms, because higher
values might be better, if Ca is lower. Therefore we use the same ranking procedure as employed in [18]:
For a single VNMP instance, order the compared algorithms based on the results they achieved, best
algorithm first. The best algorithm gets assigned rank 0, the second best rank 1, and so on. Algorithms
with the same result share the same rank. The rank of an algorithm still cannot be compared across
multiple instances, because the number of ranks is different for each instance. Therefore we calculate
the relative rank Rrel of an algorithm when solving a particular instance as its rank divided by the highest
rank for this instance. If all algorithms achieve the same result (i.e. the highest rank is zero), then Rrel is
zero for all algorithms. Averages of Rrel can be compared in a meaningful way.

Table 2 shows the average performance of the tested algorithms for different instance sizes. The
symbol next to the relative rank shows the relation to the best Rrel (disregarding FLOW) based on a
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Load D-CH G-CH D-VND G-VND G-CH-B G-VND-B G-VND-N VND B-VND FLOW
Rrel 0.10 0.302 = 0.297 = 0.317 = 0.319 = 0.289 = 0.312 = 0.411 > 0.893 > 0.527 > 0.045

0.50 0.355 = 0.382 > 0.449 > 0.454 > 0.358 = 0.432 > 0.561 > 0.981 > 0.479 > 0.394
0.80 0.492 > 0.492 > 0.425 = 0.473 > 0.500 > 0.475 > 0.559 > 0.912 > 0.495 > 0.517
1.00 0.584 > 0.582 > 0.423 = 0.401 = 0.582 > 0.448 > 0.499 > 0.839 > 0.562 > 0.538

GA: Its. 0.10 430129 401525 6354 6321 401711 6323 6373 5.6 41.7 1946.6
Other: t[s] 0.50 82299 75242 1016 1020 74971 1010 1027 50.2 218.3 3216.1

0.80 48183 43667 537 547 43522 533 566 111.2 316.2 4441.3
1.00 37147 33257 385 393 33147 385 420 166.0 331.6 5668.0

Solv. [%] 0.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.7
0.50 99.0 98.6 97.1 97.6 98.6 99.0 97.1 95.7 99.0 61.0
0.80 88.6 88.6 88.6 88.1 88.6 90.0 88.1 85.7 91.9 48.6
1.00 68.6 68.6 74.8 76.2 69.0 73.8 75.2 68.1 77.1 46.2

Ca 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 567.3
0.50 0.1 0.1 0.6 0.4 0.1 0.2 0.5 0.7 0.1 4306.8
0.80 19.0 18.3 21.4 26.5 21.1 23.1 19.4 30.0 11.4 20967.5
1.00 154.3 160.3 147.3 141.6 156.1 141.5 144.0 155.0 116.3 43651.8

Table 3: Average relative rank Rrel and its relation to the best result, average number of iterations (Its.)
for GA based algorithms or average run-time for the other algorithms, fraction of solved instances (Solv.)
in percent and average Ca for all compared algorithms per load.

statistical test, > means that the reported Rrel is significantly larger than the best, = means that no
significant difference could be observed. It can be seen that D-VND and G-VND achieve the best results
for all instances up to and including size 200. For sizes 500 and 1000 B-VND performs best. However,
B-VND also takes more time (a maximum of 1000 seconds was allowed in [18]) than the 500 seconds
allowed for all GA variants for these sizes. The GA variants based on CH achieve the best results at sizes
100 and 200. With smaller instances, local improvement with VND is better than a higher number of
iterations made possible by not spending time on local improvement. However, starting with size 100,
performing more iterations gets more important and CH outperforms VND. Even though the VND was
selected for low runtime-requirements, the number of iterations for larger instances is very low. For the
largest instances, the final result is basically the one created during population initialization. Surprisingly,
UXB achieves the same results as the algorithms using UXA. G-VND has a slight advantage compared
to G-VND-B, but no clear pattern is visible. Disabling crossover (G-VND-N) however has a pronounced
negative effect on the results for medium sized instances. Generally, no significant differences could be
observed between direct and grouping representations. The influence of the type of local improvement
is far more pronounced. The results for VND show that the combination with the GA has a significant
positive effect on the achieved results. FLOW is able to obtain the best results for sizes 20 and 30 and is
also able to solve all instances of this size. However, only the required runtime at size 20 is competitive.
For the largest instance size, FLOW only finds a valid solution to 18% of instances, while the GA based
algorithms achieve 60%. Also note that the average Ca is far worse for FLOW.

Table 3 shows the average performance of the tested algorithms for different loads. For low loads,
every tested GA achieves basically the same results, except G-VND-N which performs far worse due
to the disabled crossover operator. For medium load, a direct representation and CH as local improve-
ment are essential. Interestingly, the grouping representation is only able to achieve the same level of
performance by using UXB. It seems as if the additional disruption caused by the crossover operation is
the key for good performance for this load case. Higher loads require a MA for the best performance,
for load 0.8 the direct representation is significantly better, for load 1 the grouping representation has
an advantage, but is not significantly better. Note that disabling the crossover operation results in bad
solutions for every tested load case. Also, B-VND is outperformed by the MAs for every load case. Keep
in mind that for the highest load, B-VND requires the same amount of time as all the tested GA variants,
which have an average runtime of 328.5 seconds due to the set runtime limits. However, B-VND is able
to solve more instances of the highest load than all other algorithms. FLOW is best used for load 0.1.
Higher loads increase the runtime significantly and reduce the number of solved instances.
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6 Conclusion and Future Work

In this work we have introduced the Memetic Algorithm D-VND that significantly outperforms the best
previously available algorithm for the VNMP over a wide range of instance sizes and load cases. With
reference to the main questions we set out to answer with this paper, we have shown that there is no
significant difference between different representations if performance for specific instance sizes is rele-
vant. For high loads, the grouping representation might offer an advantage. As for the difference between
UXA and UXB, we have shown that UXB can cause performance degradations, but also seen one case
where it is beneficial. We believe that analyzing the difference between those crossover variants warrants
further research. Whether or not the time for local improvement is well spent depends on the instance
size and load. For small sizes, local improvement increases performance, while for large instances exe-
cuting more GA iterations is more important. For high loads, using local improvement is essential. We
have shown that disabling crossover decreases performance in all cases.

The current VNMP model assumes constant delay on substrate arcs without regard for the current
load and no overhead for mapping a lot of virtual nodes to a substrate node. More work is needed to
address these shortcomings. Also the dynamic behaviour of the proposed algorithm in the presence of
arriving and departing virtual networks needs to be studied. We believe that a GA is a good basis for
dynamic VNMP problems because it creates a collection of excellent solutions, some of which might
lead to good solutions when VNs are added.
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