
GRASP and Variable Neighborhood Search

for the Virtual Network Mapping Problem�

Johannes Inführ and Günther Raidl

Vienna University of Technology
Favoritenstraße 9–11/1861, 1040 Vienna, Austria

{infuehr,raidl}@ads.tuwien.ac.at

Abstract. Virtual network mapping considers the problem of fitting
multiple virtual networks into one physical network in a cost-optimal way.
This problem arises in Future Internet research. One of the core ideas is
to utilize different virtual networks to cater to different application classes,
each with customized protocols that deliver the required Quality-of-
Service. In this work we introduce a Greedy Randomized Adaptive Search
Procedure (GRASP) andVariable Neighborhood Search (VNS) algorithm
for solving the Virtual Network Mapping Problem. Both algorithms make
use of a Variable Neighborhood Descent with ruin-and-recreate neighbor-
hoods. We show that the VNS approach significantly outperforms the pre-
viously best known algorithms for this problem.

Keywords: Virtual Network Mapping, Variable Neighborhood Search,
GRASP.

1 Introduction

The Internet as it exists today suffers from ossification [20]. It is hard or even
impossible to introduce new technologies, even though they would bring large
improvements in Quality-of-Service. Examples for such technologies include Ex-
plicit Congestion Notification [21] or Differentiated Services (a Quality-of-Service
framework) [5]. The most prominent example is probably IPV6 [9], which was
first specified in 1998 and is still not implemented completely, despite the obvious
demand. The main reason why upgrades are so problematic is that changes to
the underlying technology, such as employed protocols, would be very disruptive
for the users who depend on the Internet working exactly as it does now.

Network virtualization has been identified as a central technology for alle-
viating the ossification of the Internet in the Future Internet research commu-
nity [3,4]. It is already being successfully employed in scientific network testbeds
such as GENI [1], G-Lab [25] or PlanetLab [8]. In this context, network virtu-
alization is used to share large scale research networks among different research
groups. Each group uses its own virtual network to perform experiments, with-
out fear of interference by other groups even though they are using the same

� This work has been funded by the Vienna Science and Technology Fund (WWTF)
through project ICT10-027.

M.J. Blesa et al. (Eds.): HM 2013, LNCS 7919, pp. 159–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

160 J. Inführ and G. Raidl

underlying physical network. With network virtualization, changes to the Inter-
net technology can be employed in an incremental and non-disruptive manner.
Old and new technologies can coexist in different virtual networks. However,
virtualization does not have to be just a device to gradually move from one
technology to the next. Having multiple virtual networks in place could be the
preferred state, because it allows specialization of the virtual networks to better
cater to the requirements of different application classes. For a survey on network
virtualization, its application and available technologies, see [6].

The Virtual Network Mapping Problem (VNMP) arises in this context. The
multitude of virtual networks (VNs), each with different characteristics and pro-
tocols, still has to be realized by utilizing the available physical network infras-
tructure (the substrate) and the available resources. Additionally, VNs have to
be realized in such a way that they fulfill the required specification with respect
to Quality-of-Service parameters such as available communication bandwidth
and delay.

In this work, we introduce a Greedy Randomized Adaptive Search Procedure
(GRASP) and a Variable Neighborhood Search (VNS) algorithm for solving the
VNMP. Instead of simple Local Search, both algorithms make use of a Variable
Neighborhood Descent with ruin-and-recreate neighborhoods [24]. We will show
that the VNS approach significantly outperforms the previously best known
algorithms from the literature.

The rest of this work is structured as follows: Section 2 defines the VNMP
formally, followed by a discussion of the relevant background in Section 3. The
GRASP and VNS approaches are presented in Sections 4 and 5. Section 6 con-
tains the results of the experimental evaluation of our proposed algorithms and
their comparison to other algorithms presented in the literature. We conclude in
Section 7.

2 The Virtual Network Mapping Problem

Three types of information are required to fully specify a VNMP: The substrate
network (i.e. the physical network) with its available resources, the virtual net-
works (VNs) that need to be realized with their resource requirements and the
location constraints between the nodes of the VNs and the substrate nodes.

A directed graph G = (V,A) with node set V and arc set A models the
substrate network. Each substrate node i ∈ V has a CPU power of ci ∈ N

+. This
CPU power is used by the VN nodes mapped to i, but also by all implementations
of VN arcs traversing it. We assume that routing one unit of bandwidth (BW)
requires one unit of CPU power. It is inconsequential whether this BW is simply
relayed or has originated from a virtual node mapped to the substrate node.
Even if both, the sending and receiving virtual node are mapped to the same
substrate node, CPU capacity is required to route traffic from one virtual node
to the other. Substrate arcs e ∈ A have a BW capacity be ∈ N

+ and a delay
de ∈ N

+ that is incurred when data is sent across e.

GRASP and VNS for Virtual Network Mapping 161

Virtual Network G′

Substrate Network G

3

a′

1

b′

11
a

6

b

12
c

7

d

8
e

(7;12)

(1
3;
6)

(8;6)

(4;
3)

(7;10)

(1
0;
3)

(11;2)

Mapping M

Fig. 1. An illustrative VNMP instance

The disconnected components of another directed graph G′ = (V ′, A′) model
the virtual networks. Each node k ∈ V ′ requires a CPU power ck ∈ N

+. Each
arc f ∈ A′ has a bandwidth requirement bf ∈ N

+ and a maximum allowed delay
df ∈ N

+.
The substrate nodes that a virtual node k is allowed to use are defined by the

set M ⊆ V ′ × V . By s(a) and t(a), ∀a ∈ A ∪ A′, we denote arc a’s source and
target nodes, respectively.

Two components are required to specify a valid VNMP solution: A mapping
m : V ′ → V such that (k,m(k)) ∈ M, ∀k ∈ V ′ and a substrate path Pf ⊆ A
from m(s(f)) to m(t(f)) for every f ∈ A′ that does not exceed df . The total
CPU load on each i ∈ V (caused by virtual nodes hosted on i and traversing
BW) is not allowed to exceed ci and the BW capacities be have to be respected,
too.

The objective of the VNMP is to minimize the total substrate usage cost. A
price of pVi ∈ N

+ has to be paid for every i ∈ V that hosts at least one virtual
node. Using a substrate arc e ∈ A costs pAe ∈ N

+. The sum of incurred node and
arc usage costs is the total substrate usage cost Cu.

Already finding a valid solution to the VNMP is NP-hard [2]. Therefore we
cannot expect an optimization approach to always be able to find valid solutions
(which may not even exist) within practical time. To get around this problem,
we allow the possibility of adding CPU power to the substrate, each additional
unit costing CCPU, and increasing the available BW on substrate arcs, costing
CBW per additional unit. The sum of the costs for additional resources is the
additional resource cost Ca. For valid solutions to the VNMP, Ca = 0. We call a
VNMP instance solved if a valid solution could be obtained. We set CCPU = 1
and CBW = 5 in this work, which are values we also used in [19], to reflect
the fact that it is cheaper to add additional CPU capacity to a router than to
increase the BW of a network link. We use Ca as primary objective that has to
be minimized. Only if two solutions have the same Ca the one with lower Cu is
preferred. This has the advantage of guiding solutions towards validity during
search.

162 J. Inführ and G. Raidl

Figure 1 shows a simple VNMP instance. The virtual network G′ contains
two virtual nodes, showing their CPU requirement, and a virtual arc connect-
ing them, labeled with its BW requirement and allowed delay. The substrate
network G contains the physical network nodes showing their CPU resources
and the available links between the nodes, labeled by their BW capacity and
the delay that is incurred when data is transmitted across them. The dashed
lines show M , i.e. the allowed locations of the virtual nodes. Usage costs have
been omitted for clarity. This example has only one valid solution, as b′ cannot
actually be mapped to c, even though c has enough resources available. The
path implementing the virtual connection cannot use b, because it does not have
enough resources to route the required BW. The direct connection from a to c
lacks the required BW capacity, and the path (a, d, c) incurs too much delay. So
the only valid solution is to map a′ to a, b′ to e and use the path (a, d, e) to
implement the virtual arc between a′ and b′.

3 Background and Related Work

The Greedy Randomized Adaptive Search Procedure (GRASP) [10] is a meta-
heuristic for combinatorial optimization problems. It works by continually re-
peating two steps. The first step is the randomized greedy construction of a
solution to the problem to be solved. A second step is applying a local improve-
ment technique to the constructed solution. These two steps are repeated until a
termination criterion (like runtime or number of iterations) is reached. The best
found solution is the final result of GRASP. How the randomized greedy solution
construction works is a central aspect of GRASP. It iteratively builds a solution
by adding components that seem good (but not necessarily the best) according
to a greedy criterion. All possible components are collected in a candidate list
(CL). The restricted candidate list (RCL) is created from the CL, usually by
selecting all components from CL that are good enough (only a limited devia-
tion from the perceived best alternative) or by selecting the best ones until the
RCL has a specified length. The actual component that is added to the solution
is selected uniformly at random from the RCL. This procedure usually leads to
promising and at the same time diversified solutions for local optimization. A
comprehensive overview of GRASP can be found in [11,22]. For hybridization
techniques see [12].

The General Variable Neighborhood Search (VNS) [13] algorithm is built
around Variable Neighborhood Descent. In Variable Neighborhood Descent, a lo-
cal search is performed systematically switching between a series of neighborhood
structures until a solution is reached that is local optimal w.r.t. all neighborhood
structures. VNS adds diversification by applying random moves, called shaking,
in successively larger neighborhood structures to escape the basins of attraction of
local optima. VNS is a very successful metaheuristic for combinatorial optimiza-
tion problems, for more details and a survey of applications see [14].

The VNMP appears in the literature as Network Testbed Mapping [23], Vir-
tual Network Embedding [7], Virtual Network Assignment [29] and Virtual

GRASP and VNS for Virtual Network Mapping 163

Network Resource Allocation [26]. Embedding virtual networks into a shared
substrate is always the central problem. Differences arise with the considered
resources. For example, the authors of [29] do not consider any resources explic-
itly, [23,26] use bandwidth and [7,27] add CPU power. We extend on the latter
by also considering the interaction between routing and hosting virtual networks
and supporting delay constraints for the virtual connections. There are different
methods for constraining the allowed mapping locations of virtual nodes present
in the literature. The nodes of a VN might be required to be located at different
substrate nodes [29], the mapping might be predetermined [26] or a a distance
limit between a virtual node and the substrate node that hosts it might be in
effect [7]. The VNMP model we utilize in this work can represent all of these
variants and is thus most flexible. As for the paths used to implement a vir-
tual connection, there are two approaches: using a single path or using multiple
paths. Using multiple paths [7,28]) has the advantage that the problem of finding
the implementations for the virtual connections becomes polynomially solvable
when bandwidth may be arbitrarily split. However, using multiple paths to im-
plement a virtual connection makes its observed behavior much more erratic,
as it depends on multiple physical links. Therefore, we utilize here only a single
path to implement virtual connections.

4 GRASP

A key component for a well working GRASP approach is the randomized greedy
heuristic. We use the best identified construction heuristic configuration from our
previous work in [19] as basis for randomization. In a nutshell, as long as virtual
arcs are implementable (its source and target node have been mapped), the
virtual arc f with the smallest fraction of df to shortest possible delay between
m(s(f)) to m(t(f)) is implemented by the path with the least increase in Cu

without increasing Ca. If no such virtual arc exists, the unmapped node with the
highest total CPU requirement (CPU requirement of the virtual node and BW of
connected virtual arcs) is selected from the VN that has the highest sum of total
CPU requirements. It is mapped to the substrate node with the highest amount
of free CPU capacity, ties are broken by using the amount of free incoming and
outgoing bandwidth. Based on our previous work, we know that the substrate
node selection strategy is the most influential for the overall performance of the
construction heuristic. Therefore we concentrate on randomizing this strategy
and keep all other parts of the randomized construction heuristic deterministic.
We introduce a parameter α ∈ [0, 1] that controls the level of randomization.
When selecting a suitable substrate node for a virtual node, we collect a list
of possible targets sorted by the available CPU and BW, the candidate list.
Let fCPU

Best denote the free CPU capacity and fBW
Best the free BW capacity of the

node that would have been selected by the deterministic strategy. We build the
restricted candidate list by selecting all nodes i with fCPU

i ≥ αfCPU
Best ∧ fBW

i ≥
αfBW

Best. If f
CPU
Best or fBW

Best is negative (i.e. more resources are used than actually are
available), α is replaced by 2−α in the relevant acceptance criterion. The actual
mapping target is chosen uniformly at random from the restricted candidate list.

164 J. Inführ and G. Raidl

After the randomized greedy solution is generated, a local improvement strat-
egy is applied. For comparison purposes, we choose the same method the Genetic
Algorithm (GA) presented in [18] uses. It is a Variable Neighborhood Descent ap-
proach based on three ruin-and-recreate [24] neighborhoods, which are searched
in a first-improvement fashion. They remove a part of a solution and recon-
struct it using a construction heuristic designed for this rebuilding task (CH3
from [19]). The following short description of the used neighborhoods skips this
rebuilding step. The first neighborhood is the set of all solutions reachable by
removing the mapping of a single virtual node. The second neighborhood is the
set of all solutions reachable by clearing a substrate arc, which means that all
virtual arc implementations using this arc are removed. The third neighborhood
is the set of all solutions reachable by clearing a substrate node. This means
that all virtual nodes mapped to the substrate node, and all virtual arc imple-
mentations using this node, are removed from the solution. This neighborhood
configuration was selected because it offers a good balance between required
runtime and solution quality. Also, preliminary experiments showed that using
simple Local Search is not competitive. In this work, we will call this configu-
ration VND. We use VND without timelimit to improve solutions generated by
the randomized greedy heuristic. If the found solution is better than the best
solution found so far, we keep it. Then we repeat the randomized construction
and improvement steps until the timelimit is reached, the best found solution is
the result of GRASP.

5 VNS

Our proposed VNS algorithm uses a single type of shaking neighborhood in
multiple configurations. Let this neighborhood be called Ns(v), with v ∈ [0, 1]
as parameter controlling the shaking vigor. Ns is based on the idea of clearing
substrate nodes. When Ns(v) is applied to a VNMP solution, Ns randomly
selects 	v · |V |
 substrate nodes. All virtual arc implementations that traverse
the selected nodes are removed from the solution. All virtual nodes mapped to
the selected substrate nodes are mapped to a substrate node that is allowed by
M but not selected. If no such node exists, the mapping remains unchanged.
The resulting solution is completed and improved by VND to create the final
solution of one VNS iteration. During the execution of VNS we apply Ns with
different values for v. The used values are determined by two parameters, the
base neighborhood size vb and the count of iterations that have not resulted
in an improvement of the best found solution nni. At the beginning of a new
iteration, Ns(vbnni) is applied to the currently best found solution and the
result is improved by VND. If the solution created in this manner is better than
the currently best known solution, nni is reset to one, otherwise nni is increased
by one. The upper limit for nni is nmax. If this value is exceeded, nni is reset
to one. The largest shaking neighborhood applied during VNS is Ns(vbnmax).
Values for vb and nmax have to be chosen such that vbnmax ≤ 1. The shaking and
improvement steps are applied until the timelimit is reached. The initial solution

GRASP and VNS for Virtual Network Mapping 165

VNMPSolution best=initialize();
nni=1;
while(!terminate()){

VNMPSolution candidate=shake(Ns(vbnni),best);
applyVND(candidate);

if(candidate<best){ //New best solution found
best=candidate;
nni=1;

}else{
++nni;
if(nni>nmax)nni=1;

}
}
return best;

Listing 1.1. VNS for the VNMP

for VNS is built by the same method as for GRASP, but without randomization.
Listing 1.1 shows the general outline of the proposed VNS.

6 Results

The proposed GRASP and VNS algorithms have been tested on the instances
available from [16]. This instance set contains VNMP instances from 20 to 1000
substrate nodes, with 30 instances of each size. Every instance includes 40 VNs
that have to be implemented. The VNs have different properties to cover different
use-cases, like high BW requirements for P2P applications or low delays for VoIP
applications. Table 1 shows the main properties of the used instances, for more
information see [19]. To analyze the behaviour of the proposed algorithms in
different load cases, we also tested with instances from the instance set that had
some of their VNs removed. A load of 0.5 means that only 50% of the available
VNs were used. We considered load levels of 0.1, 0.5, 0.8 and 1. This results in

Table 1. Properties of the used VNMP instances: average number of substrate nodes
(V) and arcs (A), virtual nodes (V ′) and arcs (A′) and the average number of allowed
map targets for each virtual node (MV ′)

Size |V | |A| |V ′| |A′| |MV ′ |
20 20 40.8 220.7 431.5 3.8
30 30 65.8 276.9 629.0 4.9
50 50 116.4 398.9 946.9 6.8

100 100 233.4 704.6 1753.1 11.1
200 200 490.2 691.5 1694.7 17.3
500 500 1247.3 707.7 1732.5 30.2

1000 1000 2528.6 700.2 1722.8 47.2

166 J. Inführ and G. Raidl

a total of 840 VNMP instances, 120 for every size and 210 for every load level,
so the results presented later in this section are averages of 120 or 210 runs
respectively. All algorithms compared in this section have been run on one core
of an Intel Xeon E5540 multi-core system with 2.53 GHz and 3 GB RAM per
core. A CPU-time limit of 200 seconds was applied for sizes up to 100 nodes, 500
seconds for larger instances. All reported results of statistical tests are based on
a paired Wilcoxon signed rank test with a 5% level of significance.

Our design goal for the proposed algorithms was finding good solutions to
the VNMP with respect to the objective function. This is significantly differ-
ent from finding just valid solutions. The following results will show cases where
algorithms find better results on average while solving fewer instances. To recog-
nize the algorithms that create good solutions, we cannot look for low substrate
usage costs Cu, because higher values might be better if the additional resource
costs Ca are lower. Therefore we use the following ranking procedure as intro-
duced in [19]. The achieved results of each algorithm under comparison for a
specific instance are sorted in ascending order. The algorithm that achieved the
best results gets rank 0, the second best rank 1 and so on. Algorithms with the
same result get the same rank. To have a value that is comparable across differ-
ent instances, the rank is divided by the maximum rank to create the relative
rank Rrel. If all results are the same (i.e. the highest rank is zero), Rrel is zero
as well for all algorithms. A Rrel of 0.1 means that the results of the algorithm
in question are within the top 10% of compared algorithms.

Section 6.1 compares the performance of the GRASP approach for different
values of α, Section 6.2 analyzes the performance of the VNS approach for differ-
ent shaking neighborhood configurations and Section 6.3 shows a comparison of
the best GRASP and VNS approach with other approaches from the literature.

6.1 GRASP

To evaluate the influence of α on the GRASP approach, we tested values for α
from 0 (completely random initial solution) to 0.9 in 0.1 increments and 0.99
(very similar initial solutions). The average performance depending on the in-
stance size can be seen in Table 2. The symbol next to the relative rank shows the
relation to the best Rrel based on a statistical test, > means that the reported
Rrel is significantly larger than the best, = means that no significant difference
could be observed. Immediately visible is the tendency of the best α value to
rise with the instance size. For size 20, α ∈ [0, 0.4] yields the best results w.r.t.
Rrel, while for size 1000 α ∈ [0.5, 0.8].

The reason for this behaviour is that for small instances, the randomized
construction heuristic does not have to make as many random choices as for
the larger instance sizes. Therefore, to get the same search space coverage w.r.t
initial solutions, α has to be small for small instances. The results for the larger
instances show that if α is too small, then the performance degrades, because the
initial solution is far too random. Another contributing factor is that VND takes
longer to optimize a very random initial solution, as can be seen by the iteration
counts. Therefore, fewer iterations can be performed in the same amount of time.

GRASP and VNS for Virtual Network Mapping 167

Table 2. Average relative rank Rrel and its relation to the best result, average number
of iterations (Its.) and fraction of solved instances (Solv.) in percent for different values
of α per instance size

Size GR-0.00 GR-0.10 GR-0.20 GR-0.30 GR-0.40 GR-0.50 GR-0.60 GR-0.70 GR-0.80 GR-0.90 GR-0.99

Rrel 20 0.278 = 0.216 = 0.219 = 0.235 = 0.215 = 0.331 > 0.384 > 0.445 > 0.516 > 0.618 > 0.842 >

30 0.431 > 0.337 > 0.318 = 0.288 = 0.266 = 0.341 > 0.337 > 0.461 > 0.551 > 0.626 > 0.826 >

50 0.549 > 0.512 > 0.463 > 0.362 > 0.311 = 0.329 = 0.402 > 0.484 > 0.536 > 0.640 > 0.868 >

100 0.870 > 0.665 > 0.468 > 0.362 = 0.319 = 0.359 = 0.410 > 0.384 > 0.460 > 0.554 > 0.692 >

200 0.889 > 0.737 > 0.488 > 0.361 > 0.301 = 0.301 = 0.313 = 0.339 = 0.436 > 0.531 > 0.740 >

500 0.856 > 0.718 > 0.511 > 0.449 > 0.381 > 0.306 = 0.325 = 0.358 > 0.390 > 0.488 > 0.617 >

1000 0.902 > 0.665 > 0.623 > 0.529 > 0.425 > 0.354 = 0.338 = 0.341 = 0.375 = 0.426 > 0.470 >

Its. 20 1998 2323 2641 2916 3142 3291 3453 3677 3751 3836 3897

30 780 896 1034 1153 1248 1399 1534 1588 1676 1667 1664

50 282 329 390 442 481 497 531 553 565 567 566

100 39 47 56 62 66 71 77 82 83 87 87

200 45 54 66 78 90 98 103 112 116 127 129

500 15 18 22 26 30 33 36 39 41 41 42

1000 4 5 7 7 9 10 11 12 12 12 12

Solv. 20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.2

[%] 30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 100.0 100.0 100.0 99.2 98.3 97.5 97.5 99.2 99.2 97.5 95.8

200 95.8 99.2 99.2 99.2 98.3 97.5 97.5 96.7 95.8 95.0 91.7

500 71.7 80.8 81.7 81.7 76.7 80.8 78.3 75.8 77.5 75.0 70.0

1000 34.2 58.3 57.5 55.8 60.0 55.0 54.2 55.8 55.0 55.0 55.8

Note that for finding valid solutions, low α values seem to be beneficial, even for
large instances.

Table 3 shows the influence of α for different load cases. Again we can observe
that higher values of α allow for more iterations, but they do not lead to improved
performance for high load. Instead, a value for α ∈ [0.4, 0.5] seems to be best
suited when performance at a specific load level across different sizes is most
important. Low α values are again beneficial for finding valid solutions.

Based on these results, we select the GRASP approach with α = 0.4 for
further comparisons.

6.2 VNS

To analyze the influence of different shaking neighborhood configurations, we
tested nmax ∈ 2, 5, 10 and vb ∈ 0.01, 0.05, 0.1 to cover the range from very small
changes with few shaking neighborhoods (i.e. few different configurations for Ns)
to large changes with a lot of neighborhoods. Table 4 shows the performance of
different neighborhood configurations based on instance size. The different con-
figurations are labeled as “VNS-nmax.vb”, e.g. VNS-2.05 uses nmax = 2 and
vb = 0.05. We can see a similar behaviour to GRASP. For smaller sizes, large
shaking neighborhoods are beneficial, while large instance sizes require small
neighborhoods for the best levels of performance. Smaller shaking neighborhoods
lead to an increased number of iterations in the same amount of time. Also note
the similarity in number of iterations between VNS-5.05 and VNS-2.10, caused
by the very similar maximum shaking neighborhood sizes. Indeed, between sizes

168 J. Inführ and G. Raidl

Table 3. Average relative rank Rrel and its relation to the best result, average number
of iterations (Its.) and fraction of solved instances (Solv.) in percent for different values
of α per load

Load GR-0.00 GR-0.10 GR-0.20 GR-0.30 GR-0.40 GR-0.50 GR-0.60 GR-0.70 GR-0.80 GR-0.90 GR-0.99

Rrel 0.10 0.520 > 0.413 > 0.330 > 0.288 = 0.299 = 0.335 = 0.419 > 0.495 > 0.573 > 0.683 > 0.766 >

0.50 0.744 > 0.586 > 0.445 > 0.384 > 0.307 = 0.313 = 0.324 = 0.354 = 0.473 > 0.574 > 0.773 >

0.80 0.782 > 0.634 > 0.521 > 0.430 > 0.305 = 0.318 = 0.312 = 0.350 > 0.397 > 0.482 > 0.695 >

1.00 0.682 > 0.568 > 0.470 > 0.377 = 0.356 = 0.360 = 0.380 = 0.407 > 0.423 > 0.482 > 0.654 >

Its. 0.10 1529 1737 1990 2193 2348 2490 2638 2781 2871 2917 2947

0.50 108 142 173 208 239 267 298 322 330 333 336

0.80 80 105 120 137 155 169 180 190 192 195 201

1.00 90 114 126 139 151 160 167 173 175 176 173

Solv. 0.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

[%] 0.50 90.0 97.1 97.6 97.1 97.1 96.7 96.7 96.7 96.2 95.7 95.7

0.80 81.0 90.5 89.0 89.5 90.0 87.6 87.6 89.0 88.6 86.7 85.2

1.00 72.9 77.1 78.1 76.7 74.8 76.2 74.3 72.9 73.8 73.3 69.0

Table 4. Average relative rank Rrel and its relation to the best result, average number
of iterations (Its.) and fraction of solved instances (Solv.) in percent for different shaking
neighborhood configurations per instance size

Size VNS-2.01 VNS-5.01 VNS-10.01 VNS-2.05 VNS-5.05 VNS-10.05 VNS-2.10 VNS-5.10 VNS-10.10

Rrel 20 0.389 > 0.436 > 0.396 > 0.416 > 0.240 > 0.244 > 0.340 > 0.198 = 0.163 =

30 0.402 > 0.404 > 0.394 > 0.344 > 0.305 > 0.293 > 0.229 = 0.304 > 0.283 =

50 0.457 > 0.390 = 0.356 = 0.396 = 0.333 = 0.368 = 0.338 = 0.390 = 0.472 >

100 0.432 > 0.371 = 0.372 = 0.349 = 0.486 > 0.506 > 0.425 > 0.578 > 0.630 >

200 0.460 > 0.360 = 0.316 = 0.376 > 0.490 > 0.554 > 0.479 > 0.591 > 0.685 >

500 0.467 > 0.420 > 0.344 = 0.395 = 0.500 > 0.520 > 0.547 > 0.658 > 0.624 >

1000 0.468 > 0.339 = 0.366 = 0.462 > 0.459 > 0.518 > 0.579 > 0.596 > 0.665 >

Its. 20 7327 7327 7345 7325 6796 5812 6822 5701 4742

30 3721 3699 3670 3590 3132 2577 3156 2511 2010

50 1766 1758 1664 1583 1321 1042 1327 1001 786

100 415 389 346 311 237 181 233 169 127

200 504 450 399 349 270 208 260 192 147

500 157 143 124 110 85 67 83 62 48

1000 51 44 39 33 25 20 25 18 14

Solv. 20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

[%] 30 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

100 98.3 99.2 100.0 100.0 99.2 100.0 100.0 100.0 99.2

200 93.3 95.8 97.5 95.8 95.0 99.2 99.2 98.3 100.0

500 74.2 74.2 76.7 79.2 76.7 77.5 80.0 76.7 76.7

1000 55.8 55.0 59.2 53.3 55.0 54.2 55.0 55.0 53.3

50 and 500, there is no significant difference between the two configurations.
Larger shaking neighborhoods seem to increase the chance of finding valid so-
lutions. The results indicate that increasing the shaking neighborhood size in
multiple small steps works better than few large steps. This can be seen with con-
figurations that have the same maximum shaking neighborhood size. VNS-10.01
and VNS-2.05 show no significant difference in Rrel, except for sizes 200 and
1000 where using smaller steps is significantly better. The difference is more
pronounced for VNS-10.05 and VNS-5.10. Until size 50 there is no difference in
performance, for larger instances using smaller steps is significantly better.

GRASP and VNS for Virtual Network Mapping 169

Table 5. Average relative rank Rrel and its relation to the best result, average number
of iterations (Its.) and fraction of solved instances (Solv.) in percent for different shaking
neighborhood configurations per load

Load VNS-2.01 VNS-5.01 VNS-10.01 VNS-2.05 VNS-5.05 VNS-10.05 VNS-2.10 VNS-5.10 VNS-10.10

Rrel 0.10 0.393 > 0.289 = 0.253 = 0.242 = 0.239 = 0.250 = 0.250 = 0.304 > 0.390 >

0.50 0.464 > 0.408 = 0.360 = 0.407 > 0.415 > 0.458 > 0.436 > 0.486 > 0.516 >

0.80 0.446 = 0.451 = 0.408 = 0.467 > 0.471 > 0.479 > 0.486 > 0.559 > 0.535 >

1.00 0.454 = 0.407 = 0.432 = 0.449 = 0.482 > 0.528 > 0.506 > 0.546 > 0.572 >

Its. 0.10 6220 6176 6100 5992 5451 4640 5472 4542 3744

0.50 924 905 877 853 712 550 708 526 410

0.80 483 477 458 444 360 274 367 262 204

1.00 339 335 329 312 257 196 256 186 141

Solv. 0.10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

[%] 0.50 95.2 96.7 98.1 96.7 97.1 97.1 97.6 97.1 96.2

0.80 87.1 87.1 88.6 85.7 86.7 87.1 88.6 87.1 88.6

1.00 72.9 72.9 75.2 76.7 73.8 76.2 76.2 75.7 74.8

The influence of the shaking neighborhood configuration across different load
cases can be seen in Table 5. Small shaking neighborhoods lead to the best
performance. Load 0.10 is an exception, as larger shaking neighborhoods achieve
the best results. As for the configurations with the same maximum shaking
neighborhood size, smaller steps are an significant advantage for half of the load
cases.

Based on these results, we chose VNS-10.01 for further comparison.

6.3 Comparison

In this section, we compare our proposed algorithms GR-0.4 and VNS-10.01
with approaches from the literature. These are GA-D-VND, the Genetic Algo-
rithm for the VNMP introduced in [18], B-VND, the Variable Neighborhood
Descent algorithm with the best performance with respect to Rrel from [19] and
FLOW, a multicommodity-flow based integer linear programming formulation
presented in [17] with small modifications to match the VNMP model used in
this work. FLOW was solved by CPLEX 12.4 [15]. We also compare to VND,
the Variable Neighborhood Descent algorithm used within GR-0.4, VNS-10.01
and GA-D-VND. The timelimits used in [18] were the same as the ones used
in this work. The results of VND and B-VND had a timelimit of 1000 seconds
and FLOW had 10000 seconds. Note that we do not directly compare FLOW
to the other algorithms, because it can fail to generate any solution to a VNMP
instance due to runtime or memory limits. This is true starting with instances
of size 50, and for size 1000 FLOW only generates a solution for 30 out of 120
instances. However, for instances with a result generated by FLOW, this result
was used for the calculation of Rrel. For comparison purposes, missing results
were treated as Rrel = 1 and as instance that could not be solved, so these values
can be directly compared with the other reported results. The reported values
for the average runtime and Ca are only based on instances where FLOW gen-
erated a solution and are therefore not directly comparable to the other results.

170 J. Inführ and G. Raidl

Table 6. Average relative rank Rrel and its relation to the best result, average number
of iterations (Its.) or runtime, fraction of solved instances (Solv.) in percent and average
Ca for different solution methods per instance size

Size GR-0.4 VNS-10.01 GA-D-VND VND B-VND FLOW

Rrel 20 0.476 > 0.222 = 0.192 = 0.912 > 0.753 > 0.000

30 0.518 > 0.222 = 0.241 = 0.920 > 0.705 > 0.000

50 0.598 > 0.214 = 0.275 > 0.930 > 0.696 > 0.029

100 0.606 > 0.187 = 0.368 > 0.916 > 0.564 > 0.362

200 0.577 > 0.197 = 0.413 > 0.859 > 0.372 > 0.655

500 0.628 > 0.489 > 0.538 > 0.846 > 0.171 = 0.750

1000 0.623 > 0.592 > 0.589 > 0.569 > 0.228 = 0.817

Its. / 20 3142 7345 8185 0.2 0.4 131.2

t[s] 30 1248 3670 3899 0.7 1.3 1338.8

50 481 1664 1663 2.1 4.2 2832.1

100 66 346 314 16.0 29.7 6117.2

200 90 399 333 40.2 119.7 7140.3

500 30 124 94 126.6 605.1 3211.1

1000 9 39 23 397.1 828.1 9114.5

Solv. 20 100.0 100.0 100.0 96.7 97.5 100.0

[%] 30 100.0 100.0 100.0 100.0 100.0 100.0

50 100.0 100.0 100.0 99.2 98.3 97.5

100 98.3 100.0 100.0 95.0 97.5 64.1

200 98.3 97.5 95.8 90.0 98.3 35.0

500 76.7 76.7 76.7 73.3 90.8 25.0

1000 60.0 59.2 58.3 57.5 61.7 18.3

Ca 20 0.0 0.0 0.0 13.1 4.5 0.0

30 0.0 0.0 0.0 0.0 0.0 0.0

50 0.0 0.0 0.0 4.9 2.1 0.0

100 2.5 0.0 0.0 6.3 3.3 19142.5

200 0.4 6.1 3.0 19.0 1.0 71648.7

500 47.1 68.5 77.3 97.6 13.9 3413.8

1000 245.5 311.2 215.9 184.1 198.9 3952.2

Note that we show the average runtime only for VND, B-VND and FLOW, since
the other algorithms were run until the timelimit was reached, so we show the
performed iterations for them instead. For reference, the average runtime when
considering different load cases is 328.5 seconds.

Table 6 shows the performance of the compared algorithms in relation to each
other. It can be seen that the results achieved by the GR-0.4 are disappointing.
The GRASP approach is significantly outperformed by the VNS and GA algo-
rithms. However, using GRASP around VND is significantly better than using
VND alone, except for size 1000, where both perform equally well. B-VND can
only be beaten or matched up to size 100, then B-VND achieves significantly
better results. The VNS approach works far better, achieving the best solutions

GRASP and VNS for Virtual Network Mapping 171

Table 7. Average relative rank Rrel and its relation to the best result, average number
of iterations (Its.) or runtime, fraction of solved instances (Solv.) in percent and average
Ca for different solution methods load

Load GR-0.4 VNS-10.01 GA-D-VND VND B-VND FLOW

Rrel 0.10 0.497 > 0.215 = 0.315 > 0.876 > 0.528 > 0.045

0.50 0.616 > 0.294 = 0.384 > 0.913 > 0.450 > 0.393

0.80 0.602 > 0.333 = 0.397 > 0.841 > 0.484 > 0.517

1.00 0.586 > 0.371 = 0.400 = 0.771 > 0.532 > 0.538

Its. / 0.10 2348 6100 6354 5.6 41.7 1946.6

t[s] 0.50 239 877 1016 50.2 218.3 3216.1

0.80 155 458 537 111.2 316.2 4441.3

1.00 151 329 385 166.0 331.6 5668.0

Solv. 0.10 100.0 100.0 100.0 100.0 100.0 95.7

[%] 0.50 97.1 98.1 97.1 95.7 99.0 61.0

0.80 90.0 88.6 88.6 85.7 91.9 48.6

1.00 74.8 75.2 74.8 68.1 77.1 46.2

Ca 0.10 0.0 0.0 0.0 0.0 0.0 567.3

0.50 0.5 6.9 0.6 0.7 0.1 4306.8

0.80 18.3 29.6 21.4 30.0 11.4 20967.5

1.00 150.0 183.9 147.3 155.0 116.3 43651.8

for sizes 30 to 200. For size 20, the GA approach works marginally better. Keep
in mind however, that we selected a shaking configuration for the VNS that
was significantly worse for the smallest instance sizes than the alternatives, so
it should be possible to at least match the GA with a different configuration.
For the two largest sizes, VNS is beaten by B-VND, partly because the B-VND
had more runtime available (and also made use of it) as evidenced by the aver-
age runtimes. Also, it is not a coincidence that there is no significant difference
between the GRASP, VNS, GA and VND approaches for size 1000. They all
use VND as local improvement strategy, and as can be seen by the iteration
count, not enough iterations could be performed to reap the benefits of the more
involved heuristics within the available runtime. FLOW generates the best re-
sults for sizes 20 to 50, but based on the runtimes it is only competitive for size
20. Also note the quick degradation of the number of solved instances and the
average Ca compared to the heuristic approaches.

For solving instances at a specific load level, Table 7 shows that the VNS
approach is the best choice across all load levels, achieving significantly better
results than all of the other compared algorithms. There is no reason to use
GR-0.4, it is matched or outmatched by B-VND within the same or lower run-
time. For the least challenging problem class (load of 0.1), FLOW again achieves
better results than the heuristics. Note however that it does not even find valid
solutions for all instances in this class while requiring a lot more runtime.

172 J. Inführ and G. Raidl

7 Conclusions

In this work, we have presented a GRASP and VNS algorithm for solving the
Virtual Network Mapping Problem. We have shown that the VNS algorithm pro-
duces significantly better results than the GA and VND approaches previously
introduced. It also compares favourably against an integer linear programming
approach. Based on the presented results, we can conclude that the main idea
of VNS (successively larger random moves away from local optima) works bet-
ter than learning from a set of good solutions (GA) or improving good random
solutions (GRASP) for the Virtual Network Mapping Problem. The comparison
is fair since the same improvement strategy (VND) was used, the parameters of
all algorithms have been optimized and the same timelimits were employed.

The main direction for future work will be testing the presented algorithms in
an online setting that allows for the arrival and departure of virtual networks. In
particular, the fact that GA produces a set of good solutions instead of a single
one might prove useful.

References

1. GENI.net Global Environment for Network Innovations, http://www.geni.net

2. Andersen, D.: Theoretical Approaches to Node Assignment. Unpublished
Manuscript (December 2002),
http://www.cs.cmu.edu/~dga/papers/andersen-assign.ps

3. Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the Internet im-
passe through virtualization. Computer 38(4), 34–41 (2005)

4. Berl, A., Fischer, A., de Meer, H.: Virtualisierung im Future Internet. Informatik-
Spektrum 33, 186–194 (2010)

5. Carlson, M., Weiss, W., Blake, S., Wang, Z., Black, D., Davies, E.: An architecture
for differentiated services. IETF, RFC 2475 (1998)

6. Chowdhury, N., Boutaba, R.: A survey of network virtualization. Computer Net-
works 54(5), 862–876 (2010)

7. Chowdhury, N., Rahman, M., Boutaba, R.: Virtual network embedding with coor-
dinated node and link mapping. In: INFOCOM 2009, pp. 783–791. IEEE (2009)

8. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-
man, M.: Planetlab: an overlay testbed for broad-coverage services. SIGCOMM
Comput. Commun. Rev. 33, 3–12 (2003)

9. Deering, S., Hinden, R.: Internet protocol, version 6 (ipv6) specification (December
1998), http://tools.ietf.org/html/rfc2460

10. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of
Global Optimization 6, 109–133 (1995)

11. Festa, P., Resende, M.: An annotated bibliography of grasp–part i: Algorithms.
International Transactions in Operational Research 16(1), 1–24 (2009)

12. Festa, P., Resende, M.G.C.: Hybrid GRASP heuristics. In: Abraham, A., Has-
sanien, A.-E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational In-
telligence Volume 3. SCI, vol. 203, pp. 75–100. Springer, Heidelberg (2009)

13. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-
tions. European Journal of Operational Research 130(3), 449–467 (2001)

http://www.geni.net
http://www.cs.cmu.edu/~dga/papers/andersen-assign.ps
http://tools.ietf.org/html/rfc2460

GRASP and VNS for Virtual Network Mapping 173

14. Hansen, P., Mladenović, N., Moreno Pérez, J.: Variable neighbourhood search:
methods and applications. 4OR 6, 319–360 (2008)

15. IBM ILOG: CPLEX 12.4, http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer

16. Inführ, J., Raidl, G.R.: The Virtual Network Mapping Problem benchmark set,
https://www.ads.tuwien.ac.at/projects/optFI/

17. Inführ, J., Raidl, G.R.: Introducing the virtual network mapping problem with
delay, routing and location constraints. In: Pahl, J., Reiners, T., Voß, S. (eds.)
INOC 2011. LNCS, vol. 6701, pp. 105–117. Springer, Heidelberg (2011)

18. Inführ, J., Raidl, G.R.: A memetic algorithm for the virtual network mapping
problem. In: Lau, H., Van Hentenryck, P., Raidl, G. (eds.) The 10th Metaheuristics
International Conference, MIC13, Singapore (2013), submitted for review

19. Inführ, J., Raidl, G.R.: Solving the Virtual Network Mapping Problem with Con-
struction Heuristics, Local Search and Variable Neighborhood Descent. In: Midden-
dorf, M., Blum, C. (eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 250–261. Springer,
Heidelberg (2013)

20. National Research Council: Looking Over the Fence at Networks. National
Academy Press (2001)

21. Ramakrishnan, K.K., Floyd, S., Black, D.: The addition of explicit congestion
notification (ECN) to IP. IETF, RFC 3168 (2001)

22. Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In:
Handbook of Metaheuristics, pp. 219–249 (2003)

23. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping prob-
lem. SIGCOMM Comput. Commun. Rev. 33(2), 65–81 (2003)

24. Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record breaking op-
timization results using the ruin and recreate principle. Journal of Computational
Physics 159(2), 139–171 (2000)

25. Schwerdel, D., Günther, D., Henjes, R., Reuther, B., Müller, P.: German-lab exper-
imental facility. In: Berre, A.J., Gómez-Pérez, A., Tutschku, K., Fensel, D. (eds.)
FIS 2010. LNCS, vol. 6369, pp. 1–10. Springer, Heidelberg (2010)

26. Szeto, W., Iraqi, Y., Boutaba, R.: A multi-commodity flow based approach to
virtual network resource allocation. In: Global Telecommunications Conference,
GLOBECOM 2003, vol. 6, pp. 3004–3008. IEEE (2003)

27. Yeow, W.L., Westphal, C., Kozat, U.: Designing and embedding reliable virtual
infrastructures. In: Proceedings of the Second ACM SIGCOMM Workshop on Vir-
tualized Infrastructure Systems and Architectures, VISA 2010, pp. 33–40. ACM,
New York (2010)

28. Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding:
substrate support for path splitting and migration. ACM SIGCOMM Computer
Communication Review 38(2), 17–29 (2008)

29. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to vir-
tual network components. In: Proceedings of the 25th IEEE International Confer-
ence on Computer Communications, pp. 1–12 (2006)

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
https://www.ads.tuwien.ac.at/projects/optFI/

	GRASP and Variable Neighborhood Searchfor the Virtual Network Mapping Problem
	Introduction
	The Virtual Network Mapping Problem
	Background and Related Work
	GRASP
	VNS
	Results
	GRASP
	VNS
	Comparison

	Conclusions

