
Solving the Virtual Network Mapping Problem
with Construction Heuristics, Local Search and

Variable Neighborhood Descent?

Johannes Inführ and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

{infuehr|raidl}@ads.tuwien.ac.at
http://www.ads.tuwien.ac.at

Abstract. The Virtual Network Mapping Problem arises in the con-
text of Future Internet research. Multiple virtual networks with different
characteristics are defined to suit specific applications. These virtual net-
works, with all of the resources they require, need to be realized in one
physical network in a most cost effective way. Two properties make this
problem challenging: Already finding any valid mapping of all virtual
networks into the physical network without exceeding the resource ca-
pacities is NP-hard, and the problem consists of two strongly dependent
stages as the implementation of a virtual network’s connections can only
be decided once the locations of the virtual nodes in the physical network
are fixed. In this work we introduce various construction heuristics, Local
Search and Variable Neighborhood Descent approaches and perform an
extensive computational study to evaluate the strengths and weaknesses
of each proposed solution method.

Keywords: Virtual Network Mapping Problem, Construction Heuris-
tics, Local Search, Variable Neighborhood Descent, Future Internet

1 Introduction

The Internet has ossified [18]. Core parts of the network protocols have not
been updated for more than a decade and the introduction of new services and
technology is difficult, time consuming and costly. Improvements to the network
protocols, however desirable or necessary, do not see widespread adoption if they
could break existing features. Examples include Explicit Congestion Notification
[19] or Differentiated Services (a quality of service framework) [3].

The Future Internet research community is currently searching for ways to
overcome the ossification of the Internet and network virtualization has been
identified as a promising technology to do this [1,2]. With the help of virtu-
alization, changes to the core protocols of the Internet can be deployed in an

? This work has been funded by the Vienna Science and Technology Fund (WWTF)
through project ICT10-027.

http://www.ads.tuwien.ac.at

2 Johannes Inführ, Günther R. Raidl

incremental and non-disruptive fashion. This idea can be developed even fur-
ther, if one does not view virtual networks as a necessary crutch to move from
one technology to the next, but instead as an integral feature of the network.
If multiple virtual networks are present, then each of them can have different
properties, different protocols, tailored specifically to a user group. In scientific
network testbeds such as GENI [7], PlanetLab [6] or G-Lab [22] network virtu-
alization techniques are already in use to share the underlying network infras-
tructure (substrate) among different research groups. For a survey on network
virtualization, its application and available technologies, see [4].

The Virtual Network Mapping Problem (VNMP) arises in this context. Given
are multiple virtual networks (VNs) which need to be realized by using resources
present in the substrate. We model the substrate by a directed graph G = (V,A)
with node set V and arc set A. The VNs are modeled by the disconnected
components of the directed graph G′ = (V ′, A′). The set M ⊆ V ′ × V defines
the allowed mappings between virtual and substrate nodes. By s(a) and t(a),
∀a ∈ A ∪ A′ we denote the arc’s source and target node, respectively. Each VN
node k ∈ V ′ requires CPU power ck ∈ N+ (to implement custom protocols,
etc.), each arc f ∈ A′ requires bandwidth (BW) bf ∈ N+ and has a maximum
allowed delay df . Substrate nodes i ∈ V have an associated CPU power ci ∈ N+,
which is used to power the VN nodes mapped to i, but also to route BW.
One unit of CPU power is required to route one unit of BW. Substrate arcs
e ∈ A have a BW capacity be ∈ N+ and a delay de ∈ N+. The objective is
to find a mapping m : V ′ → V of virtual nodes to substrate nodes such that
(k,m(k)) ∈ M, ∀k ∈ V ′ and the total CPU load on each i ∈ V caused by
mapped virtual nodes and traversing implementations of virtual arcs does not
exceed ci. Furthermore, we have to find for each f ∈ A′ a substrate path Pf ⊆ A
leading from m(s(f)) to m(t(f)) with a delay of at most df . The BW capacity of
substrate arcs has to be respected by those paths. These are required properties
of a valid solution.

We want to implement the virtual networks with as low costs as possible.
Every substrate node i ∈ V has an associated usage cost pVi ∈ N+ which is
paid when at least one VN node is mapped to it. Additionally, every substrate
arc e ∈ A has a usage cost pAe ∈ N+ which is paid when at least one virtual
connection uses it. The sum of substrate node and arc usage costs, the total
usage cost Cu, is the objective to be minimized.

As already mentioned, just finding a valid solution to this problem is NP-
hard, so we cannot expect efficient heuristic methods to always be able to find
valid solutions. For optimization purposes, we want to be able to determine how
far solutions are away from validity so we can prefer solutions closer to validity.
To do this, every node i ∈ V can increase its available CPU power by aCPU

i units
for the cost of CCPU per unit and every arc e ∈ A can increase its available BW
by aBW

e units for the cost of CBW per unit. The sum of the costs for additional
resources in the substrate will be denoted as Ca; for valid solutions Ca = 0. In
our experiments we set CCPU = 1 and CBW = 5 to reflect the fact that it is
easier to add CPU power to a router than to increase the BW of a data link.

Solving the VNMP with Construction Heuristics, LS and VND 3

3 4

8

4 10

7 9

(5;10)

(7;6)

(5;3)
(3;10)

(5;7)
(8;4)

(7;3)

a' b'

a

b c

d e

Virtual Graph G'

Substrate Graph G

Mapping M

Fig. 1. Example of a VNMP instance.

For comparing two solutions, we used lexicographic ordering, i.e., smaller Ca is
preferred and if it is equal smaller Cu is preferred.

Figure 1 shows a small VNMP instance. It contains the virtual network graph
G′ consisting of one VN with two nodes (a′ and b′), the substrate graph G (nodes
a to e) and the allowed mapping from the virtual network to the substrate nodes
(dashed lines). Node labels define the CPU requirements for VN nodes and the
available CPU power for substrate nodes. Costs have been omitted for clarity.
Arc labels denote bandwidths and delays. Note that in this example, b′ actually
cannot be mapped to c, even though c offers enough CPU capacity. This is
because there is no path from a to c that satisfies the constraints of the virtual
connection between a′ and b′. Node b cannot be used, because its CPU power of
4 is not enough to route the required BW of 5. The direct connection from a to
c does not offer enough BW and the path using d exceeds the delay limit. The
only feasible solution to this instance is to map a′ to a and b′ to e and implement
the connection between a′ and b′ by the path (a, d, e).

In the following Sections, we will introduce construction heuristics, Local
Search and Variable Neighborhood Descent algorithms for solving olso larger
instances of the VNMP and show that depending on the available run-time, every
heuristic can be the best choice. Local Search is the most versatile approach,
which depending on configuration can either perform similar to the Construction
Heuristics, to Variable Neighborhood Descent or somewhere in-between. We also
compare the presented heuristics with the exact method proposed in [15].

2 Related Work

Virtual Network Mapping Problems have received considerable scientific in-
terest in recent years due to their relevance to Future Internet research (e.g.
[20,5,9,11,17,21,23,24,25]). The core problem solved in these works is the same:
virtual networks have to be realized by means of a physical network. The de-
tails however, are always different. This can already be seen when comparing
the names of the problems. Typical names include Virtual Network Embedding,
Virtual Network Assignment or Network Testbed Mapping. A further area for
differences are the resources the virtual networks require. The one demand that
is nearly universally considered is bandwidth, but there is no consensus on how

4 Johannes Inführ, Günther R. Raidl

this demand is taken into account. One method is to use traffic bounds to de-
scribe a whole range of BW requirements that there has to be a feasible routing
for all of them (e.g. [9,17]). Another is to specify the node-to-node communi-
cation demand in the form of a traffic matrix (e.g. [23]). If another resource is
taken into account, it is the required CPU processing power of each virtual node
(e.g. [24,20]). The considered substrate sizes vary between 20 [17] and 100 [25]
nodes and are either real or synthetic topologies.

VNMPs have been solved by simulated annealing [21], (quadratic) mixed
integer programming [5,9,17,15], approximation algorithms [9], distributed al-
gorithms [11], multicommodity flow algorithms [23,24] or algorithms especially
tailored to the considered problem variant [25,20]. To the best of our knowledge,
this is the first application and comparison of the trade-off of construction heuris-
tics, Local Search and Variable Neighborhood Descent in the context of virtual
network mapping. The VNMP variant solved in this work is very general, since
it considers CPU and BW resources, path delays, mapping constraints and the
influence of routing overhead on CPU resources. Therefore most algorithms pre-
sented in previous work do not apply, with the exception of the exact approach
of [15], which we will use for comparisons. Furthermore, we use test instances
that are freely available for comparison and designed with a focus on realism, in
both size (up to 1000 nodes) and structure.

3 Construction Heuristics

A Construction Heuristic (CH) is used to create solutions to problems by follow-
ing heuristic rules that guide the construction process towards feasible solutions
of high quality. For the VNMP, we can already see that these are conflicting
objectives; guiding towards feasibility means spreading resource use across the
whole substrate, which causes Cu to be unnecessarily high. Trying to pack VNs
densely will most likely lead to high Ca, so some kind of balancing is required.
Fortunately, constructing a solution to the VNMP can be split into four different
phases that are iterated and in each phase we can focus on different aspects of
the solution. The four phases are: selecting a virtual node to map (SVN), select-
ing a target for the node (TVN), selecting a virtual arc to implement (SVA) and
implementing the arc (IVA). Additionally, there can be an emphasis on map-
ping the nodes (NE) or an emphasis on implementing virtual arcs (AE). With
NE, all nodes will be mapped before virtual arcs are implemented. With AE,
all implementable virtual arcs will be implemented before a next virtual node is
mapped. Since a virtual arc f can only be implemented if m(s(f)) and m(t(f))
have already been fixed, AE variants will also start by mapping at least two
nodes, but then mapping of virtual nodes and implementing virtual arcs will be
interleaved instead of strictly sequentially as it is done with NE.

Table 1 lists the considered strategies. Note that for the TVN strategies, only
substrate nodes allowed by M are regarded. If a strategy does not find a feasible
node, the one with the most free resources is chosen. The SVA strategies only
consider implementable virtual arcs. All IVA strategies implement a virtual arc

Solving the VNMP with Construction Heuristics, LS and VND 5

Table 1. Implemented SVN, TVN, SVA and IVA strategies.

Name Description

SVN1 Selects the next unmapped node of V ′.
SVN2 Selects the node with the highest sum of CPU requirement and connected BW.
SVN3 Selects with SVN2 from the VN with highest total CPU and BW requirement that has

still unmapped nodes left. Concentrating on one VN when selecting nodes supports AE
variants, because virtual arcs become implementable much faster.

SVN4 Selects with SVN2 from the VN with the lowest total sum of allowed delays and un-
mapped nodes.

TVN1 Maps a virtual node to the first substrate node with enough free CPU capacity.
TVN2 Maps to the first substrate node with enough free CPU capacity to support the CPU

requirements and the total connected BW of the virtual node (total CPU load).
TVN3 Maps to the substrate node with the most free CPU capacity. If there are multiple

choices, the one with the most free incoming and outgoing BW is used as map target.
TVN4 Maps to the substrate node with enough free resources (w.r.t. total CPU load) and least

increase of Cu.

SVA1 Selects the next arc.
SVA2 Selects the arc with the highest BW requirement.
SVA3 Selects arc with the smallest delay.
SVA4 Selects the arc f with the smallest fraction of allowed delay to shortest possible delay

between m(s(f)) and m(t(f)).

IVA1 Arcs have a cost of 0 if they are already used, or their usage cost otherwise. Arcs without
enough free BW cost 106.

IVA2-n The cost of an arc is the sum the fraction of the arcs free BW the virtual arc would use
and the fraction of free CPU power the virtual arc would use on the node the substrate
arc connects to. This cost is then taken to the power of n ∈ {0.5, 1, 2}.

f by finding a Delay Constrained Shortest Path in the substrate from m(s(f))
to m(t(f)) via the Dynamic Program from [8]. The only difference between the
strategies is the calculation of the substrate arc costs, which define the length of
a path. If the following strategies define no specific order of nodes or arcs, it is
arbitrary.

These strategies result in a total of 512 different construction heuristics, the
results of their evaluation can be found in Sect. 7. The strategies were kept
simple to keep running times short as the following heuristics build on the best
CH variants.

4 Local Search

The basic idea of Local Search (LS) is that a found solution to a problem may
be improved by iteratively making small changes. The solutions immediately
reachable from a starting solution S are defined by a neighborhood N(S). LS
starts with a solution S and replaces it with a better solution from N(S) until
no more improvements can be found. For selecting the neighbor, we use the two
standard strategies first-improvement (select the first improving solution) and
best-improvement (select the best solution from a neighborhood).

6 Johannes Inführ, Günther R. Raidl

Table 2. Implemented neighborhoods for LS.

Name Description

N1 Removes the implementation of an arc.
N2 Removes a virtual node and the implementations of its adjacent arcs.
N3 Removes all virtual nodes and implementations of all virtual arcs of a VN.
N4 Removes the implementation of all virtual arcs using a specific substrate arc.
N5 Removes all virtual nodes and the implementation of all arcs using a specific substrate

node.
N6 Like N2, but tries mapping the virtual node to all allowed substrate nodes instead of

delegating this task to the CH during rebuilding.

The six implemented neighborhoods are listed in Table 2. They all share the
common idea that they remove a part of a complete solution (like the implemen-
tation of a virtual arc) and then complete the solution again by applying a CH.
The neighborhood descriptions will skip this rebuilding step.

For each neighborhood, there is a natural order in which to evaluate the
neighbors (e.g., clearing the first substrate node, clearing the second one and so
on). However, we might be able to speed up the search process by trying other,
more promising, neighbors first. For finding valid solutions, the most promising
neighbors are those that might change Ca, e.g., changing the mapping of a virtual
node that is mapped to an overloaded substrate node. We will call this strategy
OverloadingFirst. A more extreme variant of this is OnlyOverloading, which only
considers the neighbors that OverloadingFirst prefers.

5 Variable Neighborhood Descent

The neighborhoods discussed in the previous section can be applied in com-
bination with a variable neighborhood descent (VND) algorithm [10]. A VND
utilizes a series of neighborhoods N1 . . . Nk. An initial solution is improved by
N1 until no more improvements can be found, then N2 is applied to the solution
and so on. If Nk fails, VND terminates. If an improved solution is found in some
neighborhood, VND restarts with N1. We use the neighborhoods of the previ-
ous section in two variants: as described and in the OnlyOverloading variant,
which we will denote with a prime. For example, N ′

5 is the neighborhood of all
solutions reachable by clearing an overloaded substrate node. Table 3 lists the
tested neighborhood configurations.

6 Test Instances

This Section describes the used VNMP instances. The substrates are subgraphs
of the nren network [16] which contains European research networks and their
interconnects. It’s one of the largest freely available networks based on physi-
cal network structure (1100 nodes) and has geo-location information embedded
which is used for defining meaningful mapping constraints. The instance set

Solving the VNMP with Construction Heuristics, LS and VND 7

Table 3. Implemented neighborhood configurations for VND.

Name Description

C1 N ′
1 N ′

2 N ′
3 N ′

4 N ′
5 N ′

6 N1 N2 N3 N4 N5 N6. All neighborhoods, in order of their size.
C2 N ′

1 N ′
2 N ′

3 N ′
4 N ′

5 N ′
6. All OnlyOverloading neighborhoods.

C3 N1 N2 N3 N4 N5 N6. All complete neighborhoods.
C4 N6 N5 N4 N3 N2 N1. Neighborhoods that produce the largest changes first.
C5 N ′

1 N ′
2 N ′

3. Only neighborhoods of C2 yielding improvements based on preliminary re-
sults.

C6 N ′
3 N ′

2 N ′
1. C5 in reverse order.

Table 4. Properties of the VNMP instances: average number of substrate nodes (V)
and arcs (A), virtual nodes (V ′) and arcs (A′), total usage costs (C) and the average
number of allowed map targets for each virtual node (MV ′).

Size |V | |A| |V ′| |A′| C |MV ′ |

20 20 40.8 220.7 431.5 1536.0 3.8
30 30 65.8 276.9 629.0 2426.6 4.9
50 50 116.4 398.9 946.9 4298.1 6.8

100 100 233.4 704.6 1753.1 8539.1 11.1
200 200 490.2 691.5 1694.7 17584.2 17.3
500 500 1247.3 707.7 1732.5 44531.8 30.2

1000 1000 2528.6 700.2 1722.8 89958.4 47.2

contains substrates of 20 to 1000 nodes, 30 instances of each size. The VN sizes
are chosen uniformly at random from [5,min(30, 0.3 ∗ |V |)]. In order to reflect
realistic use cases, the VNMP instances contain 10 VNs of each of four different
types: Stream, Web, Peer-to-Peer (P2P) and Voice-over-IP (VoIP).

Stream VNs have a tree structure and model video streaming services. They
have high BW and CPU requirements but are not delay constrained. Web VNs
have a star structure and very low BW and CPU requirements but hard delay
constraints. P2P and VoIP VNs have small world structure. P2P VNs have high
BW and medium CPU requirements, but no delay constraints. VoIP VNs have
medium CPU and BW requirements and moderate delay constraints.

Bandwidth and CPU capacities of the substrates are based on the require-
ments of a random implementation of all VNs. Table 4 shows the main properties
of the instance set, which is available at [14].

7 Results

Each CH, LS and VND variant was tested on the full instance set as described
in Section 6. Additionally, each instance was tested with different loads, i.e.,
reduced numbers of VNs. A load of 0.5 means that only 50% of the VNs of each
type were used. Load levels of 0.1, 0.5, 0.8 and 1 were tested, which results in
a total of 840 test instances (120 per size). The proposed algorithms have been
run on one core of an Intel Xeon E5540 multi-core system with 2.53 GHz and
3 GB RAM per core. A CPU-time limit of 1000 seconds was applied.

8 Johannes Inführ, Günther R. Raidl

We evaluated each algorithm from two points of view: Capability of finding
valid solutions and capability of finding a best solution among all considered
algorithms. To evaluate the second aspect, we cannot search for the lowest av-
erage Cu values, because higher values might be better if Ca is lower. Therefore
we used the following ranking procedure to compare different algorithms: Con-
sidering a specific instance, the algorithm that achieves the best solution gets
assigned rank 0, the second best rank 1 and so on. Algorithms with the same
results share the same rank (no rank is skipped). The relative rank Rrel of an
algorithm when solving a particular instance is its rank divided by the highest
rank for this instance. Average Rrel values can be compared in a meaningful
way. For example, an average Rrel of 0.1 means that the algorithm in question
belongs to the top 10% of all compared algorithms over the compared instances.

7.1 Construction Heuristics

Before we could compare all implemented heuristics, we needed to identify
promising CH variants which can be used to generate the initial solution for
LS and VND and perform the rebuilding step of the proposed neighborhoods.

Considering the average Rrel of each construction heuristic variant over all
tested instances, the best construction heuristic (CH1) reached a Rrel of 0.093.
It used the strategies SVN3, TVN3, SVA4 and IVA1 with AE and was able to
find valid solutions to 60.8% of all instances. This strategy is geared towards
reducing Cu. For initialization purposes it might be interesting to use a strategy
that focuses on finding valid solutions and leave cost reductions to the used
neighborhoods, so we changed the IVA to IVA2-1. This variant is denoted with
CH2 and is able to find valid solutions to 70.8% of all instances. The results
showed that more than the 100 best CH variants (according to Rrel) used TVN3,
which introduces a strong bias towards validity that might hamper LS and VND
during the search for minimal Cu with neighborhoods that remove the mapping
of a node. So for the third CH variant (CH3), we changed the TVN of CH1 to
TVN4. Both CH1 and CH2 were tested for initialization, all three were tested for
rebuilding. This led to 216 LS and 72 VND variants. Now follows their evaluation
and comparison.

7.2 Comparing CH, LS and VND

Figure 2 shows the trade-off between low Rrel and low run-time for all tested
heuristics over all instances. Label (A) marks the best non-dominated construc-
tion heuristics. They all use SVN4 and TVN3. They emphasise implementing
arcs, so the selected SVA strategy has not a lot of influence. This can be seen
here since the two visible configurations are actually multiple configurations us-
ing different SVA strategies. The faster but slightly worse clusters use IVA2-1,
while the better CH methods use IVA2-2.

Label (B) marks the first LS strategies. They use N2 in the OnlyOverloading
variant with first-improvement. Because they use the reduced neighborhoods,
they are very fast, even faster than some of the tested CH variants. A marginally

Solving the VNMP with Construction Heuristics, LS and VND 9

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 1 10 100

R
re

l

Run-time [s]

(A)

(B)
(C)

(D)

(E) (F) (G)

(H)
(I) (J)

CH
LS

VND
Pareto-Optimal

Fig. 2. Pareto-front of the tested heuristics regarding average Rrel and run-time over
all instances.

better ranking can be achieved by initializing with CH1 instead of CH2. The
small visible differences are caused by different rebuilding strategies.

The LS variants at (C) use neighborhood N4 (faster) and N5 (slower). Oth-
erwise they are equivalent to the better ranked variants at (B).

The run-time jump from (C) to (D) is caused by not using the neighborhoods
in the OnlyOverloading variant. Also, starting with the LS configurations at
(D), only CH3 is used to rebuild solutions. The effect of using CH3 can be
seen comparing the unlabeled LS configuration between (C) and (D) and the
faster variant at (D). They are equivalent except for the rebuilding strategy. The
variants at (D) use N3 with first-improvement and OverloadingFirst. Again using
CH1 instead of CH2 for initialization causes better ranking but longer run-times.
The variants close to the marked ones do not use OverloadingFirst. Variant (E)
offers a slight improvement in rank at a high run-time cost by switching to best-
improvement. The pattern visible at (D) and (E) is repeated twice with (F) and
(G), and (H) and (I). The difference is the used neighborhood, at (F) N2 is used,
at (H) N5.

The heuristics at (J) mark the emergence of VND as best solution heuristic.
Using VND instead of the best LS variant halves Rrel at the cost of doubling
the average run-time. The two visible different clusters are caused by the dif-
ference between first-improvement (faster) and best-improvement (lower Rrel).
Both clusters contain VND variants using C1 and C3.

Figure 3 shows the trade-off between solving instances, i.e., just finding a
feasible solution and low run-time. Label (A) marks the best non-dominated
CHs. They use SVN4, TVN3 and IVA2-1 and AE. Seven percent more instances
can be solved when switching to SVN3, marked with (B). The small differences
in performance visible at (A) and (B) are caused by different SVA strategies,
SVA2 performs better than SVA3.

10 Johannes Inführ, Günther R. Raidl

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.1 1 10 100

F
ra

c
ti
o

n
 o

f
s
o

lv
e

d
 i
n

s
ta

n
c
e

s

Run-time [s]

(A)

(B)

(C)

(D)
(E) (F)

(G)

CH
LS

VND
Pareto-Optimal

Fig. 3. Pareto-front of the tested heuristics regarding the fraction of solved instances
and run-time over all instances.

The heuristics at (C) are the first Pareto-optimal LS heuristics. They use N3

with first-improvement in the OnlyOverloading configuration. Both use CH2 to
construct the initial solution. Using CH3 instead of CH1 for rebuilding causes the
increase in solved instances. All of the following algorithms use this configuration
for initialization and rebuilding.

The fist VND variants (using C6) can be seen at (D). Since they start with
the same neighborhood as the LS at (C) but also search other neighborhoods,
they perform slightly better than LS. The better but slower variant at (D) uses
best-improvement instead of first-improvement.

Once again we can observe the run-time increase caused by considering the
complete neighborhoods, this time between (D) and (E). The LS variants at (E)
use N2 with first-improvement and prioritisation (faster) or without (marginally
better). The variant at (F) is the same as the faster one at (E), but with best-
improvement. The VND configurations C1 and C3 can be found at (G). The
faster configurations use first-improvement, the others best-improvement.

We further compare the heuristics with the Integer Linear Programming
(ILP) approach presented in [15] (with slight modifications to account for dif-
ferences in the problem definition). For solving the ILP with CPLEX 12.4 [12],
we used a time-limit of 10000 seconds and a memory limit of 4 GB. It has to be
noted that this method solved instances none of the tested heuristics could and
even solved four instances of the largest size to optimality. All instances of size 20
could be solved to optimality with an average run-time of 131 seconds. The best
algorithm variants of all classes are compared in Table 5. Among other things, it
shows the average relative decrease in Cu required (Cu-Gap) for each algorithm
to match the performance of the ILP. This value is only based on instances that
could be solved by the considered algorithm. Due to space limitations we cannot
show a more detailed analysis here and refer instead to [13].

Solving the VNMP with Construction Heuristics, LS and VND 11

Table 5. The best algorithms of each class (according to the number of solved in-
stances S or their average Rrel), their average runtime t and Cu-Gap over all instances.
Bracketed values are the number of instances considered for calculating Cu-Gap.

Algorithm S Rrel t[s] Cu-Gap[%]

CH: SVN4, TVN3, SVA4, IVA1, AE 511 0.236 0.3 24.0 (434)
CH: SVN3, TVN3, SVA1, IVA2-1, AE 650 0.248 0.2 30.8 (512)
LS: N2, best-improvement, OverloadingFirst, CH2, CH3 703 0.049 115.0 8.7 (511)
LS: N6, best-improvement, OverloadingFirst, CH2, CH1 764 0.096 258.5 18.3 (518)
VND: C1, best-improvement, CH2, CH3 773 0.019 226.9 7.1 (519)
VND: C1, best-improvement, CH1, CH2 774 0.093 264.7 18.1 (520)
ILP 527 - 2466.0 0.0 (527)

8 Conclusion

In this work, we compared 512 CH, 216 LS and 72 VND algorithms. We could
show that for the VNMP, each algorithm class has its application area: CHs
for finding solutions fast, VND for finding the best solutions and LS covering
the range in-between, depending on the used neighborhoods. For CHs, the most
important strategy is the target choice for virtual nodes, so this is a clear area
of interest for future improvements. For LS we could see that best-improvement
works slightly better than first-improvement, but at a significant run-time cost.
Reducing the neighborhood size also reduced the performance, but brought the
execution speed into CH territory. VND benefited from the reduced neighbor-
hoods too when searching for valid solutions. For LS, the initialization strategy
has a pronounced influence on the result. For the best ranking, CH1 was used
while CH2 was the better strategy when comparing the number of found valid
solutions. The discussed VND variants produced the best results, but at a high
run-time cost. Some fine-tuning with respect to the neighborhood configurations
is still necessary.

References

1. Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the Internet im-
passe through virtualization. Computer 38(4), 34 – 41 (2005)

2. Berl, A., Fischer, A., de Meer, H.: Virtualisierung im Future Internet. Informatik-
Spektrum 33, 186–194 (2010)

3. Carlson, M., Weiss, W., Blake, S., Wang, Z., Black, D., Davies, E.: An architecture
for differentiated services. IETF, RFC 2475 (1998)

4. Chowdhury, N.M.K., Boutaba, R.: A survey of network virtualization. Computer
Networks 54(5), 862 – 876 (2010)

5. Chowdhury, N., Rahman, M., Boutaba, R.: Virtual network embedding with coor-
dinated node and link mapping. In: INFOCOM 2009. pp. 783 –791 (2009)

6. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-
man, M.: Planetlab: an overlay testbed for broad-coverage services. SIGCOMM
Comput. Commun. Rev. 33, 3–12 (2003)

12 Johannes Inführ, Günther R. Raidl

7. GENI.net: Global Environment for Network Innovations. http://www.geni.net
(2012)

8. Gouveia, L., Paias, A., Sharma, D.: Modeling and solving the rooted distance-
constrained minimum spanning tree problem. Computers & Operations Research
35(2), 600–613 (2008)

9. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual
private network: a network design problem for multicommodity flow. In: STOC
’01. pp. 389–398 (2001)

10. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-
tions. European Journal of Operational Research 130(3), 449 – 467 (2001)

11. Houidi, I., Louati, W., Zeghlache, D.: A distributed virtual network mapping al-
gorithm. In: Communications, 2008. ICC ’08. IEEE International Conference on.
pp. 5634 –5640 (2008)

12. IBM ILOG: CPLEX 12.4. http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer

13. Inführ, J., Raidl, G.R.: Data supplement, https://www.ads.tuwien.ac.at/

projects/optFI-wiki/images/a/a7/DataSupplement.pdf

14. Inführ, J., Raidl, G.R.: The Virtual Network Mapping Problem benchmark set,
https://www.ads.tuwien.ac.at/projects/optFI/

15. Inführ, J., Raidl, G.R.: Introducing the virtual network mapping problem with
delay, routing and location constraints. In: Pahl, J., Reiners, T., Voß, S. (eds.)
Network Optimization: 5th International Conference, INOC 2011. LNCS, vol. 6701,
pp. 105–117. Springer, Hamburg, Germany (2011)

16. Knight, S., Nguyen, H., Falkner, N., Roughan, M.: Realistic network topology
construction and emulation from multiple data sources. Tech. rep., The University
of Adelaide (2012)

17. Lu, J., Turner, J.: Efficient mapping of virtual networks onto a shared substrate.
Tech. rep., Washington University in St. Louis (2006)

18. National Research Council: Looking Over the Fence at Networks. National
Academy Press (2001)

19. Ramakrishnan, K.K., Floyd, S., Black, D.: The addition of explicit congestion
notification (ECN) to IP. IETF, RFC 3168 (2001)

20. Razzaq, A., Rathore, M.S.: An approach towards resource efficient virtual network
embedding. In: Proceedings of the 2010 2nd International Conference on Evolving
Internet. pp. 68–73. INTERNET ’10, IEEE Computer Society (2010)

21. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping prob-
lem. Special Interest Group on Data Communication Comput. Commun. Rev.
33(2), 65–81 (2003)

22. Schwerdel, D., Günther, D., Henjes, R., Reuther, B., Müller, P.: German-lab ex-
perimental facility. In: Berre, A., Gómez-Pérez, A., Tutschku, K., Fensel, D. (eds.)
Future Internet - FIS 2010, Lecture Notes in Computer Science, vol. 6369, pp.
1–10. Springer (2010)

23. Szeto, W., Iraqi, Y., Boutaba, R.: A multi-commodity flow based approach to
virtual network resource allocation. In: Global Telecommunications Conference,
2003. GLOBECOM ’03. IEEE. vol. 6, pp. 3004 – 3008 vol.6 (2003)

24. Yeow, W.L., Westphal, C., Kozat, U.: Designing and embedding reliable virtual
infrastructures. In: Proceedings of the second ACM Special Interest Group on Data
Communication workshop on Virtualized infrastructure systems and architectures.
pp. 33–40. VISA ’10, ACM, New York, NY, USA (2010)

https://www.ads.tuwien.ac.at/projects/optFI-wiki/images/a/a7/DataSupplement.pdf
https://www.ads.tuwien.ac.at/projects/optFI-wiki/images/a/a7/DataSupplement.pdf
https://www.ads.tuwien.ac.at/projects/optFI/

Solving the VNMP with Construction Heuristics, LS and VND 13

25. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to vir-
tual network components. In: INFOCOM 2006. 25th IEEE International Confer-
ence on Computer Communications. Proceedings. pp. 1 –12 (2006)

	Solving the Virtual Network Mapping Problem with Construction Heuristics, Local Search and Variable Neighborhood Descent

