
Automatic Generation of 2-AntWars Players

with Genetic Programming

Johannes Inführ and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

{infuehr,raidl}@ads.tuwien.ac.at
http://www.ads.tuwien.ac.at

Abstract. In this work, we show how Genetic Programming can be used
to create game playing strategies for 2-AntWars, a deterministic turn-
based two player game with local information. We evaluate the created
strategies against fixed, human created strategies as well as in a coevolu-
tionary setting, where both players evolve simultaneously. We show that
genetic programming is able to create competent players which can beat
the static playing strategies, sometimes even in a creative way. Both mu-
tation and crossover are shown to be essential for creating superior game
playing strategies.

Keywords: Automatic Strategy Creation, Strongly Typed Genetic Pro-
gramming, Game Rule Evaluation

1 Introduction and Applications

Being able to automatically generate competent artificial intelligence has a mul-
titude of advantages. In this work, we use automatically created artificial in-
telligence to play a game, and in that domain such a method has three main
advantages. First of all, during the creation of a game, a lot of different varia-
tions of game rules can be tested with this method. If for instance dominating
strategies are found, then the game rules are unsuitable [11]. Secondly, the auto-
matically created game players can be used to enhance the game implementation
testing. The third advantage is that the created players can also be used as op-
ponents for human players without having to painstakingly create decision rules
or scripts. A method to automatically create strategies is also useful in many
other domains requiring strategic behaviour, such as in business and economics.

AntWars is a competitive two-player game with local information that was in-
troduced as part of a competition accompanying the Genetic and Evolutionary
Computation Conference 2007 [1,6]. Both players control an ant in a toroidal
world and have to collect randomly placed pieces of food. The player who col-
lects more food wins. 2-AntWars is an extension of AntWars. The main aim
of the extension was to create a game that allows various different strategies
without an obvious best strategy. In 2-AntWars, each player controls two ants
in a rectangular world four times the size of the AntWars world. Controlling

R. Moreno-Dı́az et al. (Eds.): EUROCAST 2011, Part I, LNCS 6927, pp. 248–255, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.ads.tuwien.ac.at

Automatic Generation of 2-AntWars Players 249

two ants increases the complexity of the problem considerably because now each
player has to decide which ant to move in addition to selecting the direction of
the move. Furthermore, the decision to start a battle (by moving an ant onto a
position already occupied by an ant of the enemy) requires more deliberation,
because unlike AntWars, in 2-AntWars the attacked player still has a chance
to win the battle. The complete description of 2-AntWars can be found in [5].
Figure 1 shows a possible initial configuration of the playing field of 2-AntWars.
The marked areas around the ants show the portion of the playing field that can
be seen by each player.

Fig. 1. The 2-AntWars playing field

2 Related Work

Using genetic programming (GP) to develop game players is not a particularly
new idea. Even the first book of Koza [7] on GP already contained an example
of automatic generation of a movement strategy for an ant that tries to follow
a path of food (artificial ant problem) and a lot of research has been done
since then. In [11], genetic programming was used to develop players of a turn
based strategy game. In [2] space combat strategies were created. Other forms
of predator-prey interaction were analyzed in [3] and [9]. Genetic programming
has also been used to develop soccer [8] and chess end game players [4]. However,
these works were mainly concerned with the end result, in this paper we also
want to provide additional insight into genetic programming by analyzing the
development of the population during a run.

3 Implementation

Genetic programming is an evolutionary algorithm that can be used for program
induction [7]. The particular variant we use in this work is Strongly Typed Ge-
netic Programming [10], as 2-AntWars makes use of different data types (e.g.
position of an ant, movement direction, etc.) in a natural way. The population
features a ring structure, and individuals, which are created using the ramped
half-and-half method, are placed so that each has exactly two neighbors. The
applied rank based selection operator uses a small neighborhood around an indi-
vidual (seven individuals in total) to select the successor of that individual in the

250 J. Inführ and G.R. Raidl

next generation. The crossover operator used is subtree crossover, the mutation
operators are point mutation (i.e. change a node in the program tree), replace
mutation (i.e. replace a subtree of the program tree with a newly grown tree),
grow mutation (i.e. add a node inside the program tree) and shrink mutation
(i.e. remove a node from the program tree).

The task of a 2-AntWars player is to decide which ant to move in which
direction. To increase solving efficiency, this task is decomposed into the following
functions, developed independently by GP: (a) calculating the belief in food at
every position of the 2-AntWars world (introduced by [6], extended in this work
to allow development of this function), (b) calculating estimated positions of
the opposing player’s ants, (c) determining possible moves for both ants and
finally (d) deciding which ant to move. The functions at the same position in
the population constitute a 2-AntWars player.

For the details concerning the genetic programming implementation, the used
function set and the player structure, see [5].

4 Results

In this section, we present the results of developing 2-AntWars players against
three different fixed playing strategies and against another evolving population of
players. The results were achieved by using a population size of 1000, performing
1000 generations, 60% crossover probability (per function of an individual), 0.1%
mutation probability (per statement of a function) and a 30% chance for each
of the four mutation types to be applied. In the following, a species is defined
as a continuous part of the population that has different properties than the
individuals surrounding it.

4.1 Greedy Opponent

The basic playing strategy of the greedy opponent is to concentrate on effectively
collecting food and ignoring the other player. Figure 2 shows that the player
developed by genetic programming is almost immediately as good as the greedy
opponent. The rest of the run is spent on improving beyond the performance of
the greedy player, so that in the end of the run the developed player significantly
outperforms the greedy opponent. The division of labour of the developed ants
was surprising. Instead of using both ants roughly equally often (as the greedy
opponent does), the developed players use up the moves of one ant before they
use the other ant. This behaviour was typical for all the performed runs.

While developing players against the greedy strategy, we tested the influence
of mutation on the performance of genetic programming. The results are sum-
marised in Figure 3. As can be seen, the developed players of the different runs
reached two distinct performance levels. The deciding factor between those two
levels is whether or not the player is able to use both ants. With mutation,
there is a chance of about 2/3 to develop a player belonging to the high perfor-
mance group. When disabling mutation, the chance drops to about 1/8, which
demonstrates that, for the 2-AntWars problem, mutation plays a crucial role for
developing new behaviours.

Automatic Generation of 2-AntWars Players 251

 8

 12

 16

 20

 24

 0 100 200 300 400 500 600 700 800 900 1000

F
ou

nd
 fo

od
 p

er
 g

am
e

Generation

Developed Player
Greedy Player

Fig. 2. Average number of found food pieces (after 50 games) of the best individual
per generation against the greedy opponent

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000

F
ou

nd
 fo

od
 p

er
 m

at
ch

Generation

(a) with mutation

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000

F
ou

nd
 fo

od
 p

er
 m

at
ch

Generation

(b) without mutation

Fig. 3. Population development of multiple runs with and without mutation against
the greedy opponent

4.2 Scorched Earth Opponent

The Scorched Earth player trades the potential of high scores that the greedy
strategy provides for increased security of winning the game. Since winning a
game only requires to collect one piece of food more than half of the available
food, the scorched earth player moves his ants quickly to the center of the playing
field (ignoring food on the way), collects some food pieces from the enemies half
of the playing field and then moves back to the starting position and collects
all the food on its side. Figure 4 shows that while this strategy may be good
in theory, it is beaten decisively by the developed player. The developed player
adapted to the opponent by collecting food from the opponent’s half of the
playing field before it is collected by the opponent. The pronounced jump in
performance around generation 190 is caused by reducing the greediness of the
ant that is moved first; it leaves food on the players half of the playing field to
be collected later by the second ant in order to reach the opposite half of the
playing field faster.

4.3 Hunting Opponent

The Hunting strategy is the most aggressive strategy studied here. It relies on
quickly neutralizing one or even both ants of the opposing player in order to
gain a significant food gathering advantage. Figure 5 shows the development of

252 J. Inführ and G.R. Raidl

 4

 8

 12

 16

 20

 24

 28

 32

 0 100 200 300 400 500 600 700 800 900 1000

F
ou

nd
 fo

od
 p

er
 g

am
e

Generation

Developed Player
Scorched Earth Player

Fig. 4. Average number of found food pieces (after 50 games) of the best individual
per generation against the scorched earth opponent

artificial players against this strategy. The hunting opponent proved to be the
most difficult of the three opponent types to deal with. It took 2000 generations
(instead of the default 1000) to develop a strategy that could barely beat this
opponent, but the found counter strategy proved quite interesting: The devel-
oped player hides one of his ants at the top side of the playing field, then collects
food with his other ant on the lower side of the playing field, while the hunting
ant of the opponent searches the developed player’s starting position in vain.

4.4 Evolving Opponent

The results of coevolutionary runs are outlined in this subsection. Figure 6 shows
the results of a coevolutionary run that took the better part of a week (Core
i-7 920, 2 threads) to complete, even though the population size was reduced to
500 (per player). During the first 4000 generations, player 1 is clearly superior,
because player 2 was not able to use both of its ants, but after player 2 also
developed the effective use of both ants, both player strategies struggled to beat
one another, without a clear winner. From the game development point of view
this is encouraging, because it shows that genetic programming was not able to
find a dominating strategy.

Another effect that was clearly visible during a coevolutionary run was the
influence of crossover on the overall performance, which is shown in Figure 7.

 10

 12

 14

 16

 18

 20

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
ou

nd
 fo

od
 p

er
 g

am
e

Generation

Developed Player
Hunting Player

Fig. 5. Average number of found food pieces (after 50 games) of the best individual
per generation against the hunting opponent

Automatic Generation of 2-AntWars Players 253

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ro

ba
bi

lit
y

of
 w

in
ni

ng
 a

 m
at

ch

Generation

Player 1
Player 2

Draw

Fig. 6. Development of win probability during a coevolutionary run

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 100 200 300 400 500

In
di

vi
du

al

Generation

 0

 2

 4

 6

 8

 10

 12

 14

P
ie

ce
s

of
 fo

od
B

A C D

E F
G

H

(a) Found food ant 1

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 100 200 300 400 500

In
di

vi
du

al

Generation

 0

 2

 4

 6

 8

 10

 12

 14

P
ie

ce
s

of
 fo

od

B

A C D

E F
G

H

(b) Found food ant 2

Fig. 7. Influence of the crossover operator on the development of a player

After the first 100 generations, two dominant species existed in the population,
which spread rapidly (labeled A and B). They had different means of achieving
their performance. Species A used both of its ants, but every ant rather inef-
fectively, while species B very effectively used only one ant. Where both species
met in the population, species C emerged, containing properties of both A and
B. C used both ants to collect food, and moved ant 1 with the same proficiency
as species B moved ant 2. Later species D emerged, changing the ant that was
primarily used to collect food. The same effect can be seen in another part of
the population, where B spread throughout the population and met species E.
Immediately, species F arose, combining properties of both. The same thing
happened when F met G, but this time it took about 20 generations, nearly
driving G to extinction. This shows how fast attributes spread throughout the
population with the help of the crossover operator and how new and improved
individuals emerge when crossover combines useful behavioural traits.

4.5 Additional Results

Further results which we will not discuss here in detail due to space constraints
include: Code bloat could be observed during the runs, but was not uniform.
Some parts of the population stayed relatively small while others increased in
size until the maximum allowed size was reached.

254 J. Inführ and G.R. Raidl

The belief function was instrumental in guiding the exploration of the playing
field and a lot of different approaches to calculate the belief were found, but all
except one switched directly between 0 and 1 without any intermediate values.
The most common behaviour was row- or column-wise switching of food belief
from 1 to 0 as the game progresses.

The benefit of the predict function was questionable. Mostly it predicted the
opposing player’s ants at some average position. Disabling the prediction func-
tion (by always returning the last known position) in some cases improved the
performance of the players.

5 Conclusion and Future Work

In this work, we have shown how genetic programming can be used to develop
playing strategies for 2-AntWars. Local rank selection was sufficient to give rise
to different species inside the population which battle for space during the de-
velopment of players. Both mutation and crossover are useful for developing
players, albeit in different roles. Mutation can introduce new behaviour, as we
have shown that removing mutation significantly decreases the chances of devel-
oping effective strategies for the use of both ants. Crossover is useful to combine
traits of different playing strategies to create a superior strategy.

The created playing strategies were surprisingly diverse. The players followed
greedy strategies (against the greedy opponent), exploited weaknesses in the en-
emy’s strategies (against the scorched earth opponent) or hid their ants (against
the hunting opponent) to win their games. Even though the movements of the
ants showed strong greedy tendencies (due to the supplied terminals), non-greedy
behaviour could also be observed.

One direction for future work ist a better tuning of parameters, because for
example in most of the presented runs 1000 generations were too much. It was
also shown that the prediction functions were of questionable benefit, so they
could either be improved or replaced by something else, possibly functions that
just calculate waypoints, to be used by the movement functions in any way.
The game rules themselves are another interesting topic for future research. The
discussion of the results against the greedy opponent showed that one ant was
nearly sufficient for two competent players to collect all the food on the playing
field, so the number of moves possible for an ant might be reduced. Evaluation
of the developed strategies against human players could further provide addi-
tional insight and determine whether or not the developed strategies are human
competitive.

References

1. Antwars competition at the Genetic and Evolutionary Computation Conference
2007 (October 2010),
http://www.sigevo.org/gecco-2007/competitions.html#c3

http://www.sigevo.org/gecco-2007/competitions.html#c3

Automatic Generation of 2-AntWars Players 255

2. Francisco, T., Jorge dos Reis, G.M.: Evolving combat algorithms to control space
ships in a 2d space simulation game with co-evolution using genetic programming
and decision trees. In: GECCO 2008: Proceedings of the 2008 GECCO Conference
on Genetic and Evolutionary Computation, pp. 1887–1892. ACM, New York (2008)

3. Francisco, T., Jorge dos Reis, G.M.: Evolving predator and prey behaviours with
co-evolution using genetic programming and decision trees. In: GECCO 2008: Pro-
ceedings of the 2008 GECCO Conference on Genetic and Evolutionary Computa-
tion, pp. 1893–1900. ACM, New York (2008)

4. Hauptman, A.: GP-endchess: Using genetic programming to evolve chess endgame
players. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini,
M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 120–131. Springer, Heidelberg (2005)

5. Inführ, J.: Automatic Generation of 2-AntWars Players with Genetic Program-
ming. Master’s thesis, Vienna University of Technology, Institute of Computer
Graphics and Algorithms (2010)

6. Jaskowski, W., Krawiec, K., Wieloch, B.: Winning ant wars: Evolving a human-
competitive game strategy using fitnessless selection. In: O’Neill, M., Vanneschi,
L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino,
E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 13–24. Springer, Heidelberg (2008)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems). The MIT Press, Cambridge
(1992)

8. Luke, S., Hohn, C., Farris, J., Jackson, G., Hendler, J.: Co-evolving soccer softbot
team coordination with genetic programming. In: Kitano, H. (ed.) RoboCup 1997.
LNCS, vol. 1395, pp. 398–411. Springer, Heidelberg (1998)

9. Luke, S., Spector, L.: Evolving teamwork and coordination with genetic program-
ming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Pro-
gramming 1996: Proceedings of the First Annual Conference, pp. 150–156. MIT
Press, Stanford University (1996)

10. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computa-
tion 3(2), 199–230 (1995)

11. Salge, C., Lipski, C., Mahlmann, T., Mathiak, B.: Using genetically optimized
artificial intelligence to improve gameplaying fun for strategical games. In: Sandbox
2008: Proceedings of the 2008 ACM SIGGRAPH Symposium on Video Games, pp.
7–14. ACM, New York (2008)

	Automatic Generation of 2-AntWars Players with Genetic Programming
	Introduction and Applications
	Related Work
	Implementation
	Results
	Greedy Opponent
	Scorched Earth Opponent
	Hunting Opponent
	Evolving Opponent
	Additional Results

	Conclusion and Future Work
	References

