
Automatic Generation of 2-AntWars Players
with Genetic Programming

Johannes Inführ and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

{infuehr|raidl}@ads.tuwien.ac.at
http://www.ads.tuwien.ac.at

1 Introduction

AntWars is a competitive two-player game with local information that was in-
troduced as part of a competition accompanying the Genetic and Evolutionary
Computation Conference 2007 [1,3]. Both players control an ant in a toroidal
world and have to collect randomly placed pieces of food. The player who col-
lects more food wins.

2-AntWars is an extension of AntWars. In 2-AntWars, each player controls
two ants in a rectangular world four times the size of the AntWars world. Con-
trolling two ants increases the complexity of the problem considerably because
now each player has to decide which ant to move in addition to selecting the
direction of the move, and he has to keep the location of the ants in mind be-
cause moving an ant into the boundary of the world would make it immovable.
Furthermore, the decision to battle with an ant of the opponent (by moving an
ant to a location that is occupied by an ant of the enemy) requires more finesse
than in AntWars. In AntWars, the aggressor wins instantly as the player who is
attacked can not counteract. In 2-AntWars, the defending player has the possi-
bility to move his second ant to the position of the battle to win. The complete
description of 2-AntWars can be found in [2].

In this work we studied how Genetic Programming can be used to create
competent 2-AntWars players.

2 Genetic Programming

Genetic Programming (GP) is an evolutionary algorithm that can be used for
program induction [4]. The particular variant we use in this work is Strongly
Typed Genetic Programming [6], as 2-AntWars makes use of different data types
(e.g. position of an ant, movement direction, etc.) in a natural way. The popu-
lation features a ring structure, and individuals, which are created using the
ramped half-and-half method, are placed so that each has exactly two neigh-
bors. The applied rank based selection operator uses a small neighborhood to
select individuals for the next generation. The used crossover operator is subtree
crossover, the mutation operators are point mutation (i.e. change a node in the

http://www.ads.tuwien.ac.at


2 Johannes Inführ, Günther R. Raidl

program tree), replace mutation (i.e. replace a subtree of the program tree with
a newly grown tree), grow mutation (i.e. add a node inside the program tree)
and shrink mutation (i.e. remove a node from the program tree).

3 Structure of the 2-AntWars player

The task of a 2-AntWars player is to decide which ant to move in which di-
rection. To increase solving efficiency, this task is decomposed into the following
subtasks: calculating the belief in food at every position of the 2-AntWars world,
calculating estimated positions of the opposing player’s ants, determining pos-
sible moves for both ants and finally deciding which ant to move. Thus, GP has
to evolve six different functions in total, one for each of these subtasks. Food
belief is a concept developed for AntWars to judge if an unseen position of the
world contains food or if food that was seen (but cannot be seen currently by
the ants) is still there [3]. In its original form, food belief was calculated by a
static function, in this work the calculation function for food belief is allowed
to change. Every function of the 2-AntWars player is assigned a separate score,
except for the functions determining the moves and the one deciding which ant
to move. Those three functions form a function group that is assigned a single
score, because what the decision function should do depends strongly on the
functions calculating ant moves. Enforcing a specific behaviour with a fitness
function would be very restricting. Each function (or function group) is evolved
separately, the functions sharing the same position in the population constitute
a 2-AntWars player during evaluation.

4 Results

The developed 2-AntWars players are evaluated in an evolutionary setting, com-
peting against handcrafted players, and in a coevolutionary setting, against a
second population of evolving 2-AntWars players. We show that local rank se-
lection is sufficient to give rise to different species inside the population which
battle for space during the development of 2-AntWars players. Mutation and
crossover are useful for the development of players, albeit in different roles. Mu-
tation helps with the creation of new behaviours, crossover combines behaviours
to form superior players. The created behaviours are surprisingly diverse. Ants
are hidden, used as bait, and generally exploit the weaknesses of the opposing
players. The movement of the ants shows strong greedy tendencies, but non-
greedy behaviour can also be observed when it is advantageous. The players
created by coevolutionary methods generally perform better than the players
created by playing against fixed playing strategies. Code bloat [7] is observed
during player development (and reined in by an upper limit of statements per
function and lexicographic parsimony pressure [5]), but it was not uniform across
the population. Parts of the population increase their size drastically while other
parts show only moderate bloat.



Automatic Generation of 2-AntWars Players 3

References

1. Antwars competition at the Genetic and Evolutionary Computation Conference
2007 (Oct 2010), http://www.sigevo.org/gecco-2007/competitions.html#c3

2. Inführ, J.: Automatic Generation of 2-AntWars Players with Genetic Programming.
Master’s thesis, Vienna University of Technology, Institute of Computer Graphics
and Algorithms (July 2010), supervised by G. Raidl

3. Jaskowski, W., Krawiec, K., Wieloch, B.: Winning ant wars: Evolving a human-
competitive game strategy using fitnessless selection. In: O’Neill, M., et al. (eds.)
EuroGP. LNCS, vol. 4971, pp. 13–24. Springer (2008)

4. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems). The MIT Press (1992)

5. Luke, S., Panait, L.: A comparison of bloat control methods for genetic program-
ming. Evolutionary Computation 14(3), 309–344 (2006)

6. Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation
3(2), 199–230 (1995)

7. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and
a review of past and current bloat theories. Genetic Programming and Evolvable
Machines 10(2), 141–179 (2009)

http://www.sigevo.org/gecco-2007/competitions.html#c3

	Automatic Generation of 2-AntWars Players with Genetic Programming

