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Abstract. Anytime Multi-Agent Path Finding (MAPF) is a promis-
ing paradigm for finding fast and (near-)optimal solutions to large-scale
multi-agent systems within a fixed time budget. The currently leading
approach builds on Large Neighborhood Search (LNS), which iteratively
optimizes a quickly generated initial solution by repeatedly selecting and
replanning paths of subsets of agents using randomized destroy heuris-
tics and Prioritized Planning (PP). In this study, we examine the impact
of initial solutions on the quality of final solutions in a state-of-the-art
LNS-based anytime MAPF algorithm. Our findings demonstrate that its
effectiveness is significantly influenced by the choice of the initial so-
lution. Building on this insight, we propose to run PP many times to
create a larger pool of potential initial solutions, from which we then
select by means of an offline-trained Machine Learning (ML) model a
most promising solution to run the LNS on. Empirical results on well-
established MAPF benchmark instances show that the ML model suc-
cessfully selects a most promising solution from the pool of potential
initial solutions. This leads to improved performance of the state-of-the-
art LNS-based anytime MAPF method in terms of both the final solution
quality and the Area Under the Curve when initiated from the selected
solution.

Keywords: Anytime Multi-Agent Path Finding · Machine Learning ·
Large Neighborhood Search.

1 Introduction

Finding a set of collision-free paths for a group of agents in a shared environment
has many important contemporary real-world applications, including automated
warehouses [17], robotics, and autonomous vehicles [16]. In computer science, this
⋆ This project is partially funded by the Doctoral Program “Vienna Graduate

School on Computational Optimization”, Austrian Science Foundation (FWF), grant
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problem is known as the Multi-Agent Path Finding (MAPF) problem [14]. De-
sirable solutions to the MAPF problem are those which are conflict-free, but also
minimize some objective function. However, finding optimal solutions under var-
ious objective functions, such as the sum of costs, has proven to be NP-hard [18],
as the state-space grows exponentially with the number of agents. In practice,
attempts to solve MAPF instances with a few hundred or more agents using
exact or reasonably bounded suboptimal MAPF algorithms typically requires
far too much time or memory. In contrast, fast constructive heuristics usually
only find low-quality solutions or no feasible solutions in tightly constrained sce-
narios at all. To address these issues, researchers have explored anytime MAPF
approaches [3,7,6] which combine the strengths of both worlds. Anytime algo-
rithms aim to find feasible solutions quickly and then continuously work on
improving them as long as time remains, possibly converging to optimality if
time allows.

In the context of anytime MAPF algorithms, Large Neighborhood Search
(LNS)-based MAPF is a promising approach that relatively quickly finds solu-
tions to the MAPF instances and iteratively improves them to near-optimality
by repeatedly selecting and replanning paths of subsets of agents using destroy
and repair heuristics [7]. The subset of agent paths selected for replanning is
referred to as a neighborhood. If the newly found solution is superior to the in-
cumbent solution, the incumbent solution is replaced by the new solution. This
iterative process continues until an allocated time budget is exhausted.

MAPF-LNS [7] is the currently leading LNS-based approach for anytime
suboptimal MAPF solving. It first produces an initial solution quickly using
an efficient MAPF construction heuristic. Then, MAPF-LNS repeatedly applies
randomized destroy heuristics and replans paths of subsets of agents using Prior-
itized Planning (PP) [12] with random priorities to further improve the solution
until the allotted time is exhausted.

While MAPF-LNS has been empirically demonstrated to scale up to large
instances with several hundreds of agents, we observed that the quality of the
final solution is significantly influenced by the initial solution, even though the
quality of the initial solution is not correlated much with the quality of the
final solution.

This article proposes ISS-MAPF-LNS, the Initial-Solution-Selecting-MAPF-
LNS, which aims to enhance MAPF-LNS’s ability to find high-quality solutions
by initiating the LNS from a more promising initial solution that is selected from
a larger pool. The novel aspect of ISS-MAPF-LNS is an offline-trained machine
learning (ML) model that selects from a pool of initial solutions generated by PP
a most promising solution to run the LNS on. In more detail, a LambdaMART [2]
model is trained to compute scores for the pool of PP-produced initial solutions
and we select the most promising solution based on these scores. Thus, the
learned scoring function reflects how promising each initial solution candidate is
to ultimately get a final solution of highest quality when applying the LNS on it.

To assess the performance of ISS-MAPF-LNS, we conduct a series of experi-
ments on five well-established MAPF benchmark instances. The results demon-



Learning to Select Promising Initial Solutions for LNS-based MAPF 3

strate that the trained ML model indeed selects a solution being among the
most promising ones from the pool of potentially initial solutions, such that the
subsequent LNS leads to a lower-cost final solution than MAPF-LNS applied to
an average solution. Moreover, the ML model trained on a specific map with 50
agents scales well to the same map and also to unseen maps with hundreds of
agents, leading to improved performance over MAPF-LNS on many instances.

The remainder of this article is organized as follows: Section 2 formally in-
troduces the MAPF problem, and Section 3 reviews related work. Section 4
empirically analyzes the impact of initial solutions on the quality of final solu-
tions in MAPF-LNS and presents our ISS-MAPF-LNS. Results of computational
experiments are discussed in Section 5. Finally, in Section 6, we conclude and
outline promising avenues for future research.

2 Problem Definition

Multi-agent path finding (MAPF) encompasses a wide variety of variants, as
outlined in [14]. In this study, we focus on the simplest and most studied variant
that considers three key elements: (1) vertex and swapping conflicts, (2) the
“stay at target” assumption, and (3) the sum of costs objective function. Time
and space are discretized. The input to the MAPF problem is a connected,
undirected, unweighted graph G = (V,E), along with a set of m agents A =
{a1, . . . , am}. Each agent ai ∈ A has associated a start vertex si ∈ V and a
goal vertex gi ∈ V (which may coincide). It is assumed that each start vertex is
distinct from all other agents’ start vertices and also each goal vertex is distinct
from all others. At each discrete time step t, every agent is located at one of the
graph vertices and can either move to a neighboring vertex or wait at its current
vertex. A path pi = (pi,0, . . . , pi,l(pi)) for agent ai is a sequence of neighboring
vertices, where l(pi) is the length of the path pi. An edge (pi,t, pi,t+1) ∈ E
indicates a move action, while a vertex pi,t = pi,t+1 ∈ V indicates a wait action.
The start vertex is pi,0 = si, while the goal vertex is pi,l(pi) = gi. It is assumed
that an agent remaining at its goal vertex is considered as a wait action if and
only if it will subsequently move away from its goal vertex in a subsequent time
step before finally returning later. The distance between two vertices, d(x, y), is
defined as the length of the shortest path from x to y. The delay of path pi is
delay(pi) = l(pi)−d(si, gi). A solution is a set of paths, one for each agent, such
that the agents can follow these paths simultaneously without colliding with each
other. The objective is to find a solution P = {pi | ai ∈ A} that minimizes its
sum of costs, denoted as SOC =

∑
pi∈P l(pi), or, alternatively, its sum of delays,

denoted as SOD =
∑

pi∈P delay(pi).

3 Related Work

A fast constructive approach to MAPF is Prioritized Planning (PP) [12], which
generates a solution by sorting the agents according to some priority function
and subsequently planning a shortest path for each agent iteratively such that
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agents with lower priority avoid collisions with the already planned paths of
higher-priority agents. While being fast, PP often produces low-quality solutions
or does not find any feasible solution in tightly constrained scenarios.

Research on anytime MAPF has enjoyed an increasing interest in recent
years, due to its practical relevance in finding (near-)optimal solutions within a
reasonable time budget. This family of algorithms is particularly advantageous
in dynamic and large-scale environments where computational efficiency is cru-
cial [15].

In its early stages, several A∗-based algorithms have been proposed. These
approaches achieve the anytime behavior either by repeatedly calling A∗ for
increasing subproblems [13,15] or by iteratively tightening the bounds of focal
search [9], as suggested by Cohen et al. [3]. However, these approaches are primar-
ily effective for instances that are not congested, as the complexity and number
of potential conflicts increase significantly in densely populated environments,
leading to excessive computational overhead.

In a recent publication, Li et al. [7] proposed MAPF-LNS, which effectively
scales to large instances with hundreds of agents and represents the current
leading anytime MAPF approach to date. Given a MAPF instance, the algorithm
first invokes an efficient suboptimal MAPF algorithm to quickly find an initial
solution P . Subsequently, in each iteration, it selects paths of a subset of agents
As ∈ A using a randomized destroy heuristic, deletes their paths P−

s = {pi ∈
P | ai ∈ As} from P , and calls PP with random priorities to find a set of
collision-free paths P+

s that also do not collide with paths still in P . If the paths
in P+

s have smaller sum of cost than the paths in P−
s , MAPF-LNS adds paths

P+
s to P and P−

s otherwise. This procedure is repeated until the allocated time
budget is exhausted.

Building on the popularity of MAPF-LNS, researchers have proposed sev-
eral extensions to the original model. Li et al. [8] suggested MAPF-LNS2, which
begins with an infeasible solution and repeatedly replans paths of subsets of
agents in order to find paths with fewer conflicts. This process is repeated un-
til all paths are conflict-free or the allotted time has elapsed. Huang et al. [4]
proposed MAPF-ML-LNS, which learns a ranking function for a collection of
paths, P = {P−

1 , P−
2 , . . . , P−

n }, generated by the destroy heuristics in MAPF-
LNS, such that replanning increases the solution quality more. Specifically, given
an incumbent solution, MAPF-ML-LNS generates a collection of paths P, using
two randomized destroy heuristics. Then, it applies an offline-trained ranking
function to P and replans the paths in descending order of the predicted scores.
If a solution with smaller sum of costs is found, it discards P and continues to
the next iteration. In contrast, Lam et al. [6] incorporated MAPF-LNS as primal
heuristic in branch-and-cut-and-price. This approach combines the strengths of
LNS with branch-and-cut-and-price techniques and allows for more efficient reso-
lution of large-scale MAPF problems while still retaining optimality guarantees.
Phan et al. [10] proposed BALANCE, a bi-level multi-armed bandit scheme that
dynamically adapts the selection of destroy heuristics and neighborhoods during
the search process. This method aims to avoid expensive prior efforts such as
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Table 1. Variance and correlation results obtained by MAPF-LNS across various sce-
narios and maps.

Scenario
random-32-32-20 empty-32-32 ost003d
m = 150, N = 16 m = 400, N = 8 m = 300, N = 8

σ µσ r σ µσ r σ µσ r

1 10.23 14.68 0.21 81.63 70.01 0.39 156.49 133.41 0.05
2 5.99 11.98 0.24 60.04 71.11 0.05 135.85 157.30 0.62
3 6.83 12.06 0.13 71.68 85.46 0.01 58.74 96.42 -0.14
4 8.96 13.35 -0.02 49.08 59.00 0.43 66.23 93.40 0.16
5 11.21 16.58 0.15 93.45 77.15 0.51 62.13 122.33 0.04
6 7.94 13.91 -0.47 83.26 67.35 0.32 139.85 133.44 0.15
7 12.35 21.03 0.06 69.39 79.00 0.20 108.35 154.04 0.27
8 9.89 20.08 -0.16 111.42 96.67 0.67 149.77 139.49 0.24
9 12.05 18.28 0.08 74.31 73.12 -0.01 112.73 141.86 0.07
10 7.32 13.35 -0.45 52.35 66.10 0.11 152.15 165.48 -0.05
11 7.63 15.08 -0.21 81.09 76.11 0.07 107.96 151.27 0.16
12 7.23 16.47 -0.19 94.79 81.45 0.46 23.00 50.97 0.23
13 5.42 10.88 0.02 46.37 68.30 0.32 112.97 134.84 -0.22
14 9.71 15.38 -0.07 66.96 73.13 0.20 104.65 140.33 0.31
15 11.12 19.49 0.10 43.33 66.08 -0.12 94.41 112.23 0.01
16 9.87 17.81 0.12 76.37 66.28 0.49 83.29 109.03 0.11
17 11.24 18.22 -0.14 61.80 65.84 0.32 114.85 157.16 0.22
18 6.13 12.99 -0.04 59.82 66.97 -0.00 79.40 115.59 0.14
19 6.23 12.46 -0.25 50.33 75.82 0.39 44.46 61.49 0.05
20 8.21 12.57 -0.18 69.73 69.43 0.13 128.85 156.66 0.54
21 6.34 9.40 0.16 56.05 68.82 0.41 98.22 120.50 0.22
22 7.66 16.65 0.19 56.08 76.58 0.30 184.45 175.21 0.51
23 8.63 17.79 -0.19 52.39 66.71 0.54 81.83 128.74 0.08
24 6.57 14.47 -0.05 87.53 87.22 0.19 75.14 116.55 -0.08
25 11.83 15.98 0.39 82.12 85.12 0.08 65.23 72.32 0.44

data acquisition, model training, and feature engineering by adjusting strategies
on the fly based on real-time performance feedback.

Concerning specifically the impact of initial solutions in LNS on the final
solution quality, we are unaware of any specific approach in the literature that
utilizes ML to learn how to select promising initial solutions for LNS.

4 Initial-Solution-Selecting LNS for MAPF

Large Neighborhood Search (LNS) proposed by Shaw [11] is a popular meta-
heuristic widely used to find near-optimal solutions to hard combinatorial opti-
mization problems within a fixed time budget. It has gained prominence for its
ability to escape local optima and explore vast regions of the solution space for a
huge number of applications. LNS achieves this by using more appropriate and
effective algorithms to find better solutions in a larger neighborhood instead of
iterating through all the neighbors.

In contrast to traditional optimization heuristics that often depend heavily
on the quality of the initial solution, LNS can exhibit unexpected behavior where
poor initial solutions occasionally lead to superior final outcomes compared to
starting with high-quality solutions. This phenomenon, akin to the sensitivity
to initial conditions observed in chaotic dynamical systems, suggests that the
trajectory of the search process in LNS is profoundly influenced by its starting
point.
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Fig. 1. Impact of initial solutions on the quality of final solutions in MAPF-LNS.

To examine this behavior in the context of anytime LNS-based MAPF, we
conduct a series of experiments on the following three grid maps from the
MAPF benchmark set [14] with the predefined 25 random scenarios, specif-
ically: random-32-32-20 with m = 150 agents, neighborhood size N = 16,
empty-32-32 with m = 400 agents, N = 8, and ost003d with m = 300 agents,
N = 8. For each instance, we generate 30 initial solutions using PP with random
priorities. Each initial solution is then subjected to 30 MAPF-LNS runs, with a
time limit of 60 seconds and N = {8, 16}.

Table 1 presents the results of these experiments. They show the overall
standard deviation (σ) of final SOCs, the mean of the standard deviations (µσ)
of final SOCs in relation to the initial solutions, and the correlation coefficient
(r) between final SOCs and initial SOCs across the aforementioned three maps
and 25 different scenarios.

The correlation coefficient between the initial and final SOCs varies across
the different scenarios and maps, with values ranging from as low as -0.47 to as
high as 0.67. This wide range of correlation coefficients, often close to zero or
even negative, indicates that the quality of the initial solution does not have a
strong linear relationship with the quality of the final solution. Specifically:

– For random-32-32-20, the correlation coefficients range from -0.47 to 0.39,
with many scenarios showing near-zero or negative correlations.

– For empty-32-32, the correlation coefficients range from -0.12 to 0.67, also
displaying a wide range with several values close to zero.
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– For ost003d, the correlation coefficients range from -0.22 to 0.62, again in-
dicating a lack of consistent correlation.

An examination of the overall standard deviation of final SOCs and the mean
standard deviation of final SOCs in relation to initial solutions provides insight
into the impact of the initial solutions:

– Across all maps and scenarios, the mean of the standard deviations is gener-
ally higher than the overall standard deviation. This pattern indicates that
while the final SOCs exhibit some variability within each group of initial so-
lutions, there is greater variability across the different initial solution groups.
This higher variability between groups signifies that the initial solution plays
a significant role in determining the range of possible final SOCs.

In addition to the conducted variance and correlation analysis, a visualization
of the results on scenario 24 is presented as box plots in Figure 1. It demonstrates
that the quality of the final solution is not correlated much with the quality of the
initial solution. Specifically, we observed that initial solutions with lower SOC
do not necessarily lead to higher final SOC. These results suggest that there
are more intricate relationships between initial solutions and the final solution
quality of the LNS, and there is potential to improve the final solution quality of
MAPF-LNS by starting the LNS from a more cleverly selected initial solution.

Building on this insight, we use data-driven methods to learn a ranking model
for selecting promising initial solutions generated by PP on which to run the LNS
on. The key idea is that by warm-starting MAPF-LNS from a more promising
initial solution, it can more efficiently and effectively explore the search space,
leading to solutions of higher quality. Consequently, we refer to our approach as
Initial-Solution-Selecting-MAPF-LNS (ISS-MAPF-LNS).

Algorithm 1 shows a pseudocode for the training of the ranking model for
ISS-MAPF-LNS. The input is a set of training instances I, each consisting of
a fixed grid map and a scenario generated by randomly selecting m start and
goal vertices on the grid map. For each instance I ∈ I, the training algorithm
generates T initial solutions (P t

I )t=1,...,T using PP with a random priorities.
From each initial solution P t

I , MAPF-LNS is invoked K times to produce a
set of final solutions S. Subsequently, a feature function ϕ : (I, P t

I ) → [0, 1]p is
applied to derive a p-dimensional feature vector representing meaningful infor-
mation for P t

I . This feature vector, along with the median of the objective values
of the solutions in S, are stored as training data set D.

Once the training data collection is complete, D is divided into a training
set Dtrain and a test set Dtest. Hyperparameter tuning is then performed on
Dtrain using an automated hyperparameter tuning framework that adjusts the
parameters θ of the ranking model πθ. Finally, the model is validated on Dtest,
and the performance, measured by the normalized discounted cumulative gain
(nDCG), is recorded.

The feature function ϕ : (I, P t
I ) is computed in accordance with Huang et al. [4],

where for each agent ai ∈ A a set of 16 agent features is considered as listed in
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Algorithm 1 Training Algorithm
1: Input: Training instance set I, nr. of initial solutions T , nr. of final solutions K
2: Output: trained ranking model πθ, nDCG
3: πθ ← ranking model
4: D,Dtrain, Dtest ← ∅
5: for I ∈ I do
6: for t = 1 to T do
7: S ← ∅
8: P t

I ← runPP(I) // generate initial solution
9: for k = 1 to K do

10: S ← S ∪ runLNS(I, P t
I ) // generate final solution quality

11: end for
12: D ← D ∪ (ϕ(I, P t

I ),Median(S)) // store features and median of solutions
13: end for
14: end for
15: Dtrain, Dtest ← Split(D)
16: πθ ← HyperparameterTuning(πθ, Dtrain)
17: nDCG← Validate(πθ, Dtest)
18: return πθ, nDCG

Table 2. Subsequently, the minimum, maximum, sum, and average of each fea-
ture value across all agents are also determined, resulting in 4×16 = 64 features
in total. Finally, all 64 feature values are normalized to the range of [0, 1] by
applying min-max-normalization.

With regard to the ranking model, LambdaMART [2] is a state-of-the-art
learning-to-rank approach that has proven to be highly successful in solving di-
verse real-world ranking problems. While our primary objective is to accurately
predict the most promising initial solution, which also alignment with the ob-
jectives of simpler binary classification approaches, we encountered significant
challenges when training a binary classifier due to issues related to imbalanced
data. These challenges persist even when the problem is relaxed to predicting
the top three most promising initial solutions. LambdaMART, however, excels
in this context by focusing on the ranking order, thereby mitigating the impact
of data imbalance. It emphasizes the correct placement of top solutions, ensur-
ing that the most relevant items are identified and ranked appropriately. This
ranking-centric approach enables LambdaMART to overcome the limitations of
traditional binary classifiers, providing more accurate and reliable predictions,
rendering it suitable for the task at hand.

LambdaMART takes as input a feature matrix, relevance scores, and query
IDs, where the query IDs group instances that belong to the same query. To
transform our data into this format, we assign each feature vector of an instance
I ∈ I a unique query ID and convert the solution qualities within each instance
to relevance scores ranging from one to T .
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Table 2. Features of agent ai ∈ A with respect to instance I and solution PI .

Features Count

Distance d(si, gi) between the start vertex si and the goal
vertex gi of agent ai.

1

Row and column numbers of the start vertex si and goal vertex
gi of agent ai.

4

Degree of the goal vertex gi of agent ai. 1

Delay delay(pi) of the agent ai. 1

Ratio delay(pi)/d(si, gi) between the delay of agent ai and the
distance between ai’s start and goal vertices.

1

The minimum, maximum, sum, and average of the heat values
of the vertices along agent ai’s path pi. The heat value of a
vertex v ∈ V is the number of time steps that v is occupied by
an agent. If agent ai revisits a vertex multiple times before
reaching its goal, the heat value of that vertex is counted
multiple times in both the sum and the average.

4

The number of time steps that agent ai spends on a vertex with
degree j (1 ≤ j ≤ 4) before reaching its goal vertex.

4

5 Experimental Evaluation

This section presents a comparative evaluation of the performance of ISS-MAPF-
LNS and MAPF-LNS. It begins with a detailed account of the experimental
setup, followed by description of the performed model training. Finally, the ob-
tained results are presented and discussed.

5.1 Experimental Setup

We implemented ISS-MAPF-LNS1 in C++ as an extension of the existing MAPF-
LNS2 framework2. The gradient boosting framework LightGBM [5] was em-
ployed for training LambdaMART [2] models. The evaluation was performed
on five representative grid-based maps from the MAPF benchmark suite [14],
specifically: empty-8-8 (8× 8), empty-32-32 (32× 32), random-32-32-20 (de-
noted as random, 32 × 32), warehouse-10-20-10-2-1 (denoted as warehouse,
161 × 63), and ost003d (194 × 194). For each map and number of agents, the
corresponding 25 predefined random scenarios from the MAPF benchmark suite
were utilized to determine the start and goal vertices of the agents. Unless oth-
erwise specified, PP with random priorities was employed for generating initial
solutions, and a total runtime limit of 60 seconds along with neighborhood sizes
comparable to those used by Li et al. [7] were applied. All experiments were
conducted in single-threaded mode on a machine equipped with an AMD EPYC
7402 processor running at 2.80 GHz, with a memory limit of 8 GB.

1 https://github.com/isomorphist/ISS-MAPF-LNS
2 https://github.com/Jiaoyang-Li/MAPF-LNS2

https://github.com/isomorphist/ISS-MAPF-LNS
https://github.com/Jiaoyang-Li/MAPF-LNS2


10 M. Huber, G. R. Raidl, and C. Blum

5.2 Model Training

One of three LambdaMART models was trained on map random with m = 50,
and N = 16 by applying Algorithm 1 with |I| = 1000, and parameters T = 30,
and K = 41. In this process, the dataset D was randomly split w.r.t. the query
IDs into |Dtrain| = 90% training data and |Dtest| = 10% test data. This ensured
that samples with the same query IDs were contained in the same dataset. Hy-
perparameter tuning for LambdaMART was conducted on the training dataset
Dtrain using Optuna [1] with the objective of maximizing the nDCG@3 metric
and GroupKFold (k=5) cross-validation with groups corresponding to the query
IDs. The training procedure was performed in an analogous manner on the map
warehouse with m = 150 and N = 16, as well as on the map random with
m = 50 and N = 8, resulting in a total of three trained models: Mr16 , Mw16 ,
and Mr8 .

5.3 Testing Procedure

During the testing phase, PP was executed 30 times in ISS-MAPF-LNS to pro-
duce a pool of initial solutions, while it was applied only once in MAPF-LNS.
The total time required for the generation of initial solutions and the time re-
quired for the prediction of scores were subtracted from the total runtime limit
of 60 seconds, with the remaining time allocated for running the LNS from the
selected initial solution. The following questions were addressed through exper-
imentation:

1. Can we train a ranking model that performs well on the same grid map with
the same and different numbers of agents?

2. Can we train a ranking model that generalizes to unseen grid maps with
different numbers of agents?

To evaluate these questions, we employed the model Mr16 in ISS-MAPF-LNS
to select promising initial solutions for the maps random and empty-8-8, the
model Mw16

for the map warehouse, and the model Mr8 for the maps ost003d
and empty-32-32. For each map and number of agents, 60 ISS-MAPF-LNS
runs and 60 MAPF-LNS runs were performed, resulting in a total of 60 × 25
evaluations for each approach on each map and number of agents.

5.4 Results

Table 3 presents the mean values of the results obtained in our experimental eval-
uation of ISS-MAPF-LNS (abbreviated as ISS) and MAPF-LNS (abbreviated as
LNS), focusing on the following four key metrics:

– Initial SOD: Initial Sum of Delays (SOD) of the selected initial solution.
– Final SOD: Final SOD after optimization.
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Table 3. MAPF-Benchmark results obtained by ISS and LNS.

Map m N
Initial SOD Final SOD AUC tinit[s]

ISS LNS ISS LNS ISS LNS ISS LNS

empty-8-8
16 16 10.560 10.722 2.520 2.520 151.257 151.262 0.007 0.000
24 16 34.280 35.057 10.427 10.430 629.894 629.600 0.018 0.001
32 16 93.760 82.563 25.133 25.185 1545.085 1548.529 0.088 0.003

empty-32-32
300 8 2372.84 2371.52 440.09 442.37 33518.82 33632.40 2.69 0.09
350 8 3231.12 3230.97 939.54 942.58 70978.30 71157.98 5.42 0.18
400 8 4363.44 4354.11 1805.67 1791.05 132203.40 130981.41 11.61 0.37
450 8 6170.04 6045.67 3134.15 3101.54 219306.41 216669.17 29.69 0.98

ost003d
100 8 1441.40 1242.43 43.67 41.27 4021.85 3698.54 3.46 0.10
200 8 3902.96 4000.67 217.78 220.86 30693.53 31512.05 11.43 0.35
300 8 7970.24 7985.14 932.51 968.17 120037.50 123283.20 22.36 0.74
400 8 13055.96 13118.59 3212.46 2931.14 312943.46 303192.39 41.12 1.35

random
50 16 106.84 119.77 24.24 24.24 1466.29 1466.62 0.12 0.00
100 16 467.74 462.95 125.76 125.83 7809.09 7813.90 0.45 0.01
150 16 1048.85 1026.20 342.63 342.75 22113.44 22106.02 1.37 0.05
200 16 1959.77 1958.99 815.28 818.59 54776.02 55069.65 4.31 0.15
250 16 3496.92 3515.45 1667.38 1669.86 116124.45 115630.32 17.71 0.61

warehouse
150 16 1844.67 1853.64 115.86 116.32 8481.24 8370.05 3.32 0.10
200 16 3131.47 3024.86 258.14 257.94 19925.99 19661.84 6.68 0.21
250 16 4494.93 4534.01 464.60 462.98 38343.22 38725.28 12.20 0.43
300 16 6228.19 6044.16 751.20 756.10 66391.85 66866.06 19.59 0.67
350 16 7914.13 7696.34 1200.63 1203.22 110245.29 110509.65 30.02 1.07

– AUC: Area Under the Curve (AUC), defined as the integral of the SOD
Graph, starting from the time the initial solution is selected until the speci-
fied time limit is reached.

– tinit[s]: Runtime required to generate initial solutions.

The results demonstrate that for the map empty-8-8 with 16, 24, and 32
agents, ISS tends to favor initial solutions with lower initial SODs compared
to LNS. The values for 16 and 24 agents are 10.560 vs. 10.722, respectively,
and 34.280 vs. 35.057 for 32 agents. However, for 32 agents, the initial SOD for
LNS is 82.563, while that of ISS is 93.760. With regard to the final SOD, both
algorithms achieve identical final SODs for 16 agents. However, the final SOD
for ISS is marginally superior for 24 agents and slightly better for 32 agents,
with values of 25.133 compared to 25.185 for LNS. Regarding the AUC values,
ISS outperforms LNS in two out of three cases. It shows superior performance
for 32 agents and slightly better performance for 16 agents compared to LNS.

On the map empty-32-32 with 300, 350, 400, and 450 agents, LNS yields
lower initial SODs across all number of agents compared to ISS. However, ISS
outperforms LNS slightly in terms of final SOD values for 300 and 350 agents.
For instance, the final SOD for 300 agents is 440.09 for ISS compared to 442.37
for LNS. However, LNS achieves significantly superior final SOD values for 400
and 450 agents. With regard to the AUC values, ISS yields significantly lower
values for 300 and 350 agents than LNS, whereas LNS achieves significantly
lower values for 400 and 450 agents.

For the map ost003d with 100, 200, 300, and 400 agents, ISS favors lower
initial SODs for 200, 300, and 400 agents compared to LNS. With regard to
the final SODs, ISS achieved significantly lower values for 200, and 300 agents,
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with particularly notable performance for 300 agents. The final SOD for 300
agents was 932.51 for ISS, in contrast to 968.17 for LNS. Moreover, ISS achieves
significantly lower AUC values for 200 and 300 agents than LNS, whereas LNS
yields significantly lower AUC values for 100 and 400 agents.

On the map random with 50, 100, 150, 200, and 250 agents, ISS achieves
superior final SODs across all scenarios despite having higher initial SODs in
four out of five cases. This indicates that the final solution quality is indeed
dependent on the initial solution. For instance, the final SOD for 150 agents was
342.63 for ISS and 342.75 for LNS, but ISS has a significantly higher initial SOD
of 1048.85 compared to 1026.20 for LNS. The AUC values for ISS are lower in
three out of five cases, which highlights the benefit of initiating the optimization
process from a promising initial solution.

For the map warehouse with 150, 200, 250, 300, and 350 agents, LNS achieves
lower initial SODs in three out of five cases, while ISS outperforms LNS in three
out of five cases in terms of final SOD. In particular, ISS exhibits significantly
superior results for higher numbers of agents. For example, the final SOD for
350 agents is 1200.63 for ISS compared to 1203.22 for LNS. Regarding the AUC
values, ISS achieves significantly superior solutions in three out of five cases lower
than LNS, while LNS yields superior solutions for 150 and 200 agents.

With regard to tinit[s], for all maps and number of agents, the initialization
times are approximately 30 times higher for ISS compared to LNS. This reflects
the additional effort required to generate multiple initial solutions.

Key Insights:

– Initial Solution Quality: In many cases, the initial solutions generated by
ISS exhibit lower quality. However, the final solutions achieved by ISS are of
a higher quality, particularly in constrained environments such as on maps
warehouse and random.

– Final Solution Quality and AUC: In 13 out of 21 cases, the final SODs
found by ISS were lower than those of LNS. Moreover, the AUC values
obtained by ISS were in 12 out of 21 cases lower than those of LNS. This
demonstrates the effectiveness of using LambdaMART to select promising
initial solutions.

– Computational Overhead: The primary trade-off for the superior perfor-
mance of ISS is the increased time required to generate initial solutions. This
overhead is particularly evident in larger and more complex maps.

– Seen maps: (1) random: ISS performs particularly well, achieving lower final
SODs in four out of five scenarios compared to LNS. This indicates the effi-
cacy of the learned model in handling familiar environments. (2) warehouse:
ISS shows robust performance, with lower final SODs in three out of five
groups compared to LNS. Despite the longer initial solution generation time,
ISS effectively optimized the solutions.

– Unseen Maps: ISS remains competitive with LNS on unseen maps like
empty-32-32 and ost003d, which highlights the generalization capability of
the trained models.
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The results indicate that the quality of the final solution in LNS is strongly
correlated with its initial solution. ISS leverages its ability to select a promis-
ing solution from a diverse pool of generated initial solutions, which, although
time-consuming, results in better overall optimization. The extended initial so-
lution time for ISS is a trade-off that pays off in terms of final solution quality,
particularly in complex and large maps like warehouse.

The strength of ISS lies in its ability to learn from training data and apply
this learning to both seen and unseen scenarios, providing a robust solution
even when starting late in the LNS process. This demonstrates the potential
of integrating ML techniques with traditional optimization methods in MAPF
problems.

6 Conclusion and Future Work

In this work, we addressed the significant dependency of the final solution qual-
ity of MAPF-LNS on its initial solution. Despite the fact that the initial solution
quality is not strongly correlated with the final solution quality, the choice of
an initial solution has a substantial impact on the performance of MAPF-LNS.
We proposed ISS-MAPF-LNS, a novel extension of MAPF-LNS. This approach
involves executing PP with random priorities multiple times to generate a large
pool of potential initial solutions. From this pool, the most promising initial
solution is selected using LambdaMART, a state-of-the-art learning-to-rank al-
gorithm, to run the LNS on.

LambdaMART was trained offline on two well-known maps, and the exper-
imental results demonstrate that the trained model generalizes well to different
numbers of agents on both seen and unseen grid maps. This indicates that our
approach can effectively leverage ML to enhance the performance of MAPF-LNS.

In order to improve the robustness and generalization capability of ISS-
MAPF-LNS, future research should focus on creating a more diverse set of train-
ing data. By including a wider variety of maps and scenarios during the training
phase, we may reduce the model’s dependence on specific map features and en-
hance its ability to generalize to different environments. This broader training
dataset may help the model to better understand the diverse characteristics of
various maps, leading to more reliable performance in new scenarios.

One of the primary challenges identified is the computational overhead as-
sociated with generating multiple initial solutions. An alternative or additional
ML-based approach is to employ machine learning techniques to directly predict
promising destroy sets, which are crucial components of the LNS optimization
process.
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