
Learning Beam Search: Utilizing Machine
Learning to Guide Beam Search for Solving

Combinatorial Optimization Problems?

M. Huber and G. R. Raidl

Algorithms and Complexity Group,
Institute of Logic and Computation, TU Wien, Austria

{mhuber,raidl}@ac.tuwien.ac.at

Abstract. Beam search (BS) is a well-known incomplete breadth-first-
search variant frequently used to find heuristic solutions to hard combi-
natorial optimization problems. Its key ingredient is a guidance heuristic
that estimates the expected length (cost) to complete a partial solution.
While this function is usually developed manually for a specific prob-
lem, we propose a more general Learning Beam Search (LBS) that uses
a machine learning model for guidance. Learning is performed by utiliz-
ing principles of reinforcement learning: LBS generates training data on
its own by performing nested BS calls on many representative randomly
created problem instances. The general approach is tested on two specific
problems, the longest common subsequence problem and the constrained
variant thereof. Results on established sets of benchmark instances in-
dicate that the BS with models trained via LBS is highly competitive.
On many instances new so far best solutions could be obtained, mak-
ing the approach a new state-of-the-art method for these problems and
documenting the high potential of this general framework.

Keywords: Beam Search · Combinatorial Optimization · Machine
Learning · Longest Common Subsequence Problem

1 Introduction

Beam search (BS) is a prominent graph search algorithm frequently applied to
heuristically solve hard planning and discrete optimization problems in limited
time. In this context, it traverses a state graph from a root node, representing
an initial state, in a breadth-first-search manner to find a best path to a target
node. To keep the computational effort within limits, BS evaluates the reached
nodes at each level and selects a subset of only up to β most promising nodes
to continue with; the other nodes will not be pursued further, making BS an
incomplete search. The subset of selected nodes at a current level is called beam,

? This project is partially funded by the Doctoral Program “Vienna Graduate
School on Computational Optimization”, Austrian Science Foundation (FWF), grant
W1260-N35.

2 M. Huber and G. R. Raidl

and parameter β beam width. In this way, BS continues level by level until there
are no nodes to further expand. A shortest or longest path from the root node to
a target node is finally returned as solution. As we consider here maximization
problems, we assume w.l.o.g. that the goal is to find a longest path.

Clearly, the way how nodes are evaluated and selected for the beam plays a
crucial role for the solution quality. Typically, the length of the longest path to
a node so far is considered, and a heuristic value that estimates the maximum
further length to go in order to reach a target node is added. This latter heuris-
tic value is calculated by a function also called guidance function or guidance
heuristic. It is typically developed in a manual, highly problem-specific way, fre-
quently involving many computational experiments and comparisons of different
options. Finding a promising guidance function is often challenging as the func-
tion not only needs to deliver good estimates but also needs to be fast as it is
evaluated for each node in the BS.

The key idea of this work is to use a machine learning (ML) model as guid-
ance function in BS, more specifically a neural network (NN), to approximate
the maximum further length to go from a current node to reach a target node.
In such an approach, it is a challenge to train the ML model appropriately.
Classical supervised learning would mean that labeled training data is available
in the form of problem-specific nodes (states) plus real/exact maximum path
lengths to target nodes. Such data would only be obtainable with huge com-
putational effort and for smaller problem instances. With the BS, however, we
primarily want to address large problem instances that cannot practically be
solved exactly. Concepts from reinforcement learning come to our rescue: In our
Learning Beam Search (LBS) we start with a randomly or naively initialized ML
model and create training data on the fly by performing the search many times
on representative, randomly created problem instances. Better estimates for the
maximum lengths to go than the ML model usually delivers are determined for
subsets of reached nodes by means of nested BS calls. This generated training
data is buffered in a FIFO replay buffer and used to continuously train the ML
model, intertwined with the LBS’s further training data production.

While the general principle of this LBS is quite generic, we consider here
two well-known NP-hard problems as specific case studies: the Longest Common
Subsequence (LCS) problem and the Constrained Longest Common Subsequence
(CLCS) problem. Our experimental results show that for both problems, LBS
automatically trained on independent random instances is able to compete with
the so far leading approaches and in many cases obtains better solutions in
comparable runtimes.

Section 2 reviews related work. In Section 3, we present the new LBS in
a problem-independent way. The LCS and CLCS problems are introduced in
Section 4. The problem-specific state graphs and how the guidance functions
are specifically realized by NNs are described in Sections 5 and 6, respectively.
Results of computational experiments are discussed in Section 7. Finally, we
conclude in Section 8, where we also outline promising future work.

Learning Beam Search 3

2 Related Work

The increasing popularity of ML also affected classical combinatorial optimiza-
tion. There is a growing interest in utilizing ML to better solve hard discrete
problems. While end-to-end ML approaches to combinatorial optimization also
have been attempted by a number of researchers and appear promising, see,
e.g., [5], these approaches are usually still not competitive with state-of-the-art
problem-solving techniques. However, a broader range of approaches has been
suggested to improve classical optimization methods with ML components.

In the context of tree search techniques, one approach is imitation learning,
i.e., to learn a heuristic by imitating an expert’s behavior. In this direction,
He et al. [11] proposed to speed up a branch-and-bound by learning a node
selection and pruning policy from solving training problems given by an oracle
that knows optimal solutions. Concerning variable branching in mixed integer
programming, Khalil et al. [15] suggested a ML framework that attempts to
mimic the decisions made by strong branching through solving a learning to
rank problem. Moreover, Khalil et al. [16] introduced a framework for learning a
binary classifier to predict the probability of whether a heuristic will succeed at
a given node of a search tree. Training data is collected by running a heuristic
at every node at the search tree, gathering the binary classification labels. A
general learning to search framework that uses a retrospective oracle to generate
feedback by querying the environment on roll-out search traces to improve itself
after initial training by an expert was suggested by Song et al. [26].

AlphaGo and its successor AlphaZero gained broader recognition as agents
excelling in the games of Go, chess, and shogi [25]. They are based on Monte
Carlo tree search in which a deep NN is used to evaluate game states, i.e., to
estimate their values in terms of the probabilities to win or lose. Additionally,
the NN provides a policy in terms of a probability distribution over the next
possible moves. Training is done via reinforcement learning by self-play. Thus,
training data is continuously produced by simulating many games against itself,
stored in a replay buffer, and used to continuously improve the NN. We apply
a similar principle also in our LBS. Several researchers adapted AlphaZero to
address combinatorial optimization problems: For example, Laterre et al. [18]
applied it to a 3D packing problem, Abe et al. [1] to problems on graphs including
minimum vertex cover and maximum cut, and Huang et al. [12] to graph coloring.
The latter two approaches used different kinds of graph neural networks as ML
models. Mittal et al. [21] suggested another form of heuristic tree search for
various graph problems that is guided by a graph neural network. Here, training
is done on the basis of smaller instances with known solutions in a supervised
fashion, but results indicate that the approach generalizes well to larger instances
not seen during training. In the more general context of metaheuristics, a recent
survey on utilizing ML can be found in [14].

Beam search was originally proposed in the context of speech recognition [19].
Since then it has been applied in a variety of areas including machine trans-
lation [27] and syntactic parsing [29]. Concerning combinatorial optimization
problems, many applications exist in particular in the domains of scheduling,

4 M. Huber and G. R. Raidl

see, e.g., [23,8,3], and string-related problems originating in bioinformatics, see,
e.g., [13,7,6], but also packing [2].

Concerning specifically the guidance of BS by a ML model, we are only
aware of the work by Negrinho et al. [22], who examined this topic from a pure
theoretical point of view. They formulated the approach as learning a policy for
an abstract structured prediction problem to traverse the combinatorial search
space of beams and presented a unifying meta-algorithm as well as novel no-
regret guarantees for learning beam search policies using imitation learning.

3 Learning Beam Search

We consider a discrete maximization problem that can be expressed as a longest
path problem on a (possibly huge) directed acyclic state graph G = (V,A) with
nodes V and arcs A. Each node v ∈ V represents a problem-specific state, for
example, the partial assignment of values to the decision variables in a solution.
An arc (u, v) ∈ A exists between nodes u, v ∈ V if and only if state v can be
obtained from state u by a valid problem-specific action, such as the assignment
of a specific feasible value to a so far unassigned decision variable in state u. Let
label `(u, v) denote this action transitioning from state u to state v. There is
one dedicated root node r ∈ V representing the initial state, in which typically
all decision variables are unassigned. Moreover, there are one or more target
nodes T ⊂ V , which have no outgoing arcs and represent valid final states, e.g.,
in which all decision variables have feasible values. Note that this definition of
the state graph also covers classical branching trees. Each arc (u, v) ∈ A has
associated a length (or cost) c(u, v). Any path from the root node r to a target
node t ∈ T represents a feasible solution, and we assume that its length, which
is the sum of the path’s edge lengths, corresponds to the objective value of the
solution. As we consider a maximization problem, we seek a longest r–t path,
over all t ∈ T .

Our LBS builds upon classical BS, i.e., a breadth-first-search in which at each
level a subset of at most β nodes, called the beam B, is selected and pursued
further. This selection is performed by evaluating each node u of the current
level with the evaluation function f(v) = g(v) + h(v), where g(v) corresponds
to the length of a longest so far identified path from the root r to node v, and
h(v) is a heuristic guidance function estimating the maximum further length to
go to some target node. Note that in an implementation values g(v) are stored
with each node v as well as a reference to a predecessor node u = pred(v) on a
maximum length path, and thus, g(v) = g(u) + c(u, v); only the root node has
no predecessor. In this way, once a target node t is reached, a maximum length
r–t path within the investigated part of graph G can be efficiently identified,
and the corresponding solution is obtained via the respective arc labels.

As already stated in the introduction, the heuristic guidance function h(v)
estimating the length to go is usually crafted manually in a problem-specific way.
In our LBS, however, we use an ML model. Still, problem-specific aspects will
play a role in the choice of the specific model, in particular, which features are

Learning Beam Search 5

Algorithm 1 Learning Beam Search (LBS)

1: Input: nr. of iterations z, beam width β, exp. nr. of training samples per instance α,
NBS beam width β′, replay buffer size ρ, min. buffer size for training γ

2: Output: trained guidance function h
3: h← untrained guidance function h (ML regression model)
4: R← ∅ // replay buffer: FIFO of max. size ρ
5: for z iterations do
6: I ← create representative random problem instance
7: Beam Search with training data generation (I, β, R, α, β′)
8: if |R| ≥ γ then
9: (re-)train h with data from R

10: end if
11: end for
12: return h

derived from a problem-specific state and which kind of ML is actually used.
But for now, it is enough to assume that h(v) is a learnable function mapping a
state to a scalar value in R.

The core idea of LBS is to train function h via self-learning by iterated ap-
plication on many random instances generated according to the properties of
the instances expected in the future application. The principle is comparable
to how learning takes place in AlphaZero [25]. A pseudocode for the main part
of the LBS is shown in Alg. 1. It maintains an initially empty replay buffer R
which will contain the training data. This buffer is realized as a first-in first-out
(FIFO) queue of maximum size γ. The idea hereby is to also remove older, out-
dated training samples when the guidance function has already been improved.
A certain number (z) of iterations is then performed. In each iteration, a new
independent random problem instance is created and the actual BS applied. This
BS, however, is extended by a training data generation that adds in the expected
case α new training samples with labels to the replay buffer R; details on this
data generation will follow below. After each BS run, a check is performed to
determine if the buffer R already contains a minimum number of samples γ, and
if this is the case, the guidance function is (re-)trained with data from R. As
this training is performed in each iteration, it is usually enough to do a small
incremental form of training if the ML model provides this possibility. More
specifically, we will use a neural network and train for one epoch over R with
mini-batches of size 32. The improved guidance function is then immediately
used in the next BS call.

Algorithm 2 shows the actual BS, which is enhanced by the optional training
data generation via nested beam search (NBS) calls. It receives as input parame-
ters a specific problem instance I to solve, the beam width β, and when training
data should be generated the replay buffer R to which the new samples will be
added, the expected number of samples to generate α, and a possibly different
beam width β′ for the NBS. The procedure starts by initializing the beam B with
the single root node created for the problem instance I. The outer while-loop

6 M. Huber and G. R. Raidl

Algorithm 2 Beam Search with optional training data generation

1: Input: problem instance I, beam width β,
2: only when training data should be generated: replay buffer R, exp. nr. of samples α,

NBS beam width β′

3: Output: best found target node t
4: B ← {r} with r being a root node for problem instance I
5: t← none // so far best target node
6: while B 6= ∅ do
7: Vext ← ∅
8: for v ∈ B do
9: expand v by considering all valid actions, add obtained new nodes to Vext

10: end for
11: for v ∈ Vext do
12: evaluate node by f(v) = g(v) + h(v)
13: filter dominated nodes (optional, problem-specific)
14: if v ∈ T ∧ t = none ∨ g(t) < g(v) then
15: // new best terminal node encountered
16: t← v
17: end if
18: if R given ∧ rand() < α/nnodes then // generate training sample?
19: t′ ← Beam Search (I(v), β′) // NBS call
20: add training sample (v, g(t′)) to R
21: end if
22: end for
23: B ← select (up to) β nodes with largest f -values from Vext

24: end while
25: return t

performs the BS level by level until B becomes empty. In each iteration, each
node in the beam is expanded by considering all feasible actions for the state
the node represents and creating respective successor nodes. These are added to
set Vext. Each node in Vext is then evaluated by calculating g(v), h(v) as well
as the sum f(v). Optionally and depending on the specific problem, domina-
tion checks and filtering can be applied to reduce Vext to only meaningful nodes.
Next, line 14 checks if a training sample should be created from the current node
v, which is done with probability α/nnodes when the replay buffer R has been
provided. Hereby, nnodes is an estimate of the total number of (non-dominated)
nodes a whole BS run creates so that we can expect to obtain about α samples.
More specifically, in our implementation we initially set nnodes = 0 for the very
first LBS iteration, actually producing no training data but counting the num-
ber of overall produced nodes, and update nnodes for each successive iteration by
the average number of nodes produced over all so far performed LBS iterations.
Thus, nnodes is adaptively adjusted. To actually obtain a training sample for a
current node v, the sub-problem instance I(v) to which state v corresponds is
determined, and an independent NBS call is performed for this subproblem with
beam width β′. This NBS returns the target node t′ of a longest identified path

Learning Beam Search 7

from node v onward, and thus g(t′) will typically be a better approximation
to the real maximum path length than h(v). State v and value g(t′) are there-
fore together added as training sample and respective label (target value) to the
replay buffer.

Computational complexity. Let us assume that the expansion and evaluation
of one node takes the problem-specific time Tnode and the maximum height of
the BS tree is H. One NBS call then requires time O(β′ ·H ·Tnode). Considering
that LBS performs z iterations and in each makes in the expected case α NBS
calls, we obtain that LBS runs in O(z · (β + α · β′) ·H · Tnode) total time.

4 Case Studies

We test the general LBS approach specifically on the following two problems.

The Longest Common Subsequence (LCS) Problem. A string is a se-
quence of symbols from an alphabet Σ. A subsequence of a string s is a sequence
derived by deleting zero or more symbols from that string without changing the
order of the remaining symbols. A common subsequence of a set of m non-empty
strings S = {s1, . . . , sm} is a subsequence that all these strings have in common.
The LCS problem seeks a common subsequence of maximum length for S. For
example, the LCS of strings AGACT, GTAAC, and GTACT is GAC.

The LCS problem is well-studied and has many applications in particular
in bioinformatics, where it is used to find relationships among DNA, RNA, or
protein sequences. For m = 2 strings the problem can be solved efficiently [10],
while for general m it is NP-hard [20]. Many heuristics have been proposed for
the general LCS problem, and most so far leading ones rely on BS. See [7] for a
state-of-the-art method and a rigorous comparison of methods. The BS proposed
in [7] utilizes a sophisticated guidance function that approximates the expected
LCS length for the remaining input string lengths assuming uniform random
strings.

Notations. For a string s, we denote its length by |s|. Let n = maxsi∈S |si|
be the maximum input string length. The j-th letter of a string s is s[j], with
j = 1, . . . , |s|. By s[j, j′] we refer to the substring of s starting with s[j] and
ending with s[j′] if j ≤ j′ or the empty string ε else. Let |s|a be the number of
occurrences of letter a ∈ Σ in string s.

As in previous work [7], we prepare the following data structure in preprocess-
ing to allow an efficient “forward stepping” in the strings. For each i = 1, . . . ,m,
j = 1, . . . , |si|, and c ∈ Σ, succ[i, j, c] stores the minimal position j′ such that j′

≥ j ∧ si[j′] = c or 0 if c does not occur in si from position j onward.

The Constrained Longest Common Subsequence (CLCS) Problem.
This problem extends the LCS problem on m input strings by additionally con-
sidering a pattern string P that must appear as subsequence in a solution.

For m = 2 input strings besides the pattern string, this problem can again be
solved efficiently, see, e.g., [28], but for general m the problem also is NP-hard.

8 M. Huber and G. R. Raidl

Concerning heuristics to address large instances of this general variant, there
exists an approximation algorithm [9], which, however, is in practice clearly out-
performed by the BS approaches in [6]. One of these BSs is of similar nature
as the above-mentioned BS for the LCS problem [7] as it also utilizes an ex-
pected length calculation, however, it required a careful extension to consider
the pattern string.

As additional data structure, a table embed [i, j], i = 1, . . . ,m, j = 1, . . . , |P |
that stores the right-most position j′ in input string si such that P [j, |P |] is a
subsequence of si[j

′, |si|] is prepared here during preprocessing.

5 State Graphs for the LCS and CLCS Problems

The state graph G = (V,A) searched by our LBS for solving the LCS prob-
lem corresponds to the one used in former work [7]. We therefore only briefly
summarize the main facts. A state (node) v is represented by a position vector
pv = (pvi)i=1,...,m with pvi ∈ 1, . . . , |si|+ 1, indicating the still relevant substrings
of the input strings si[p

v, |si|], i=1,. . . ,m. Note that these substrings form the
LCS subproblem instance I(v) induced by node v, for which LBS may perform
an independent NBS call to obtain a target value for training. The root node
r ∈ V has position vector pr = (1, . . . , 1), and thus, I(v) corresponds to the orig-
inal LCS instance. An arc (u, v) ∈ A refers to transitioning from state u to state
v by appending a valid letter a ∈ Σ to a partial solution, and thus, arc (u, v) is
labeled by this letter, i.e., `(u, v) = a. In other words, appending letter a ∈ Σ to
a partial solution at state u only is feasible if succ[i, pvi , a] > 0 for i = 1, . . . ,m,
and yields in this case state v with pvi = succ[i, pvi , a] + 1, i = 1, . . . ,m. States
that allow no feasible extension are jointly represented by the single terminal
node t ∈ V with pt = (|si| + 1)i=1,...,m. As the objective is to find a maximum
length string, and with each arc always one letter is appended to a partial solu-
tion, the length (cost) of each arc (u, v) ∈ A is here c(u, v) = 1, and thus, g(v)
corresponds to the number of arcs of the longest identified r–v path.

In case of the CLCS problem, we also need to consider pattern string P .
The position vector is therefore extended by an additional value pvm+1 indicat-
ing the position from which on P is not yet covered by the partial solutions
leading to state v. A letter a ∈ Σ is only feasible as extension, if the state that
would be obtained by it still allows to cover the remaining pattern string, i.e., if
succ[i, pvi , c(a)] + 1 ≤ embed [i, pvm+1] for i = 1, . . . ,m.

For both, the LCS and the CLCS problem, dominance checks and filtering
are performed in our LBS exactly as described in [7] and [6], respectively.

6 ML Models for the LCS and CLCS Problems

In principle, any ML regression model may be considered for LBS as guidance
function h(v). Clearly, the model needs to be flexible enough, and providing the
possibility of incremental learning is a particular advantage in the context of the
LBS. Therefore, we consider here for both of our test problems a simple dense

Learning Beam Search 9

feedforward NN with two hidden layers, both equipped with ReLU activation
functions. The output layer consists of a single neuron without activation func-
tion only – remember that its value is supposed to approximate the maximum
further length to go from state v.

Formally, we have defined h(v) to directly receive a state v as input. However,
it makes sense to consider the actual input used for the NN more carefully. As
an intermediate step, we transform the raw state (and problem instance) infor-
mation into a more meaningful feature vector, which is then actually provided
to the NN.

The well-working guidance heuristic from [7] is based on the remaining string
lengths |si| − pvi + 1, i = 1, . . . ,m, only. Therefore, we also use them as features
for our NN. Note that the order of the strings and therefore also these values are
irrelevant. To avoid possible difficulties in learning these symmetries, we avoid
them by always sorting the remaining string lengths before providing them as
input to the NN.

In case of the CLCS problem, we additionally have the position pvm+1 in
the pattern string P as part of the state, and consequently, we also provide
|P | − pvm+1 + 1 as an additional feature.

Moreover, earlier guidance heuristics for the LCS problem rely on the mini-
mum numbers of letter appearances mini=1,...,m |si[pvi , |si|]|c, c ∈ Σ, from which
also a (usually weak) lower bound on the solution length may be calculated.
Therefore, we also provide these values for both problems as further features to
the NN.

The NN is initialized with random weights. Once the replay buffer has reached
the minimum fill level of γ samples, incremental training is done in each LBS
iteration by sampling one mini-batch of 32 random samples from the replay
buffer and applying the ADAM optimizer with step size 0.001 and exponential
decay rates for the moment estimates 0.9 and 0.999 as recommended in [17]. As
loss function we use the mean squared error.

7 Experimental Evaluation

We implemented LBS in Julia 1.6 using the Flux package for the NN. All ex-
periments were performed in single-threaded mode on a machine with an Intel
Xeon E5–2640 processor with 2.40 GHz and a memory limit of 20 GB. Bench-
mark instances are grouped by the alphabet size |Σ|, the number of input strings
m, and the maximum string length n. LBS was applied to train a NN for each
combination of |Σ|, m, and n. Remember that this learning takes place on the
basis of independent random instances that LBS creates on its own. Finally, the
benchmark instances are used to evaluate the performance of the BS using the
correspondingly trained NN as guidance function. Preliminary tests led to the
following LBS configuration that turned out to be suitable for all our bench-
marks unless stated otherwise: no. of LBS iterations z = 1000, min. buffer size
for learning γ = 3000, LBS and NBS beam widths β = β′ = 50, max. buffer size
ρ = 5000, and exp. nr. of training samples generated per instance α = 60. In the

10 M. Huber and G. R. Raidl

[5,5
]

[10
,10

]
[20

,20
]
[40

,40
]
[80

,80
]

Numbers of nodes in hidden layers

132.5

135.0

137.5

S
o
lu
ti
o
n

le
n
g
th

rat(|Σ| = 4, m = 100, n = 600)

[5,5
]

[10
,10

]
[20

,20
]
[40

,40
]
[80

,80
]

Numbers of nodes in hidden layers

25

30

35

S
o
lu
ti
o
n

le
n
g
th

rat(|Σ| = 20, m = 100, n = 600)

Fig. 1. Impact of the numbers of nodes in the hidden layers on the solution length of
LBS on rat benchmark instances.

following, we first discuss the experiments for the LCS problem and then those
for the CLCS problem.

7.1 LCS Experiments

For the LCS problem, two frequently used benchmark sets are considered. The
first one denoted as rat was introduced in [24] and consists of 20 instances
composed of sequences from rat genomes. The sequences of these instances are
close to independent random strings, each sequence has length n = 600, but
all instances differ in their combinations of values for |Σ| and m. The second
benchmark set BB from [4] consists of 80 random instances for eight different
combinations of |Σ| and m (ten instances per combination) and all have string
lengths up to n = 1000. These instances stand out in that the strings of each ex-
hibit large similarities. Consequently, we generated the random instances within
the LBS in the same manner, to obtain suitable NNs specifically for this kind of
instances.

A parameter of major importance is the number of hidden nodes in the NN.
Clearly, the network size has a direct impact on the computation times of the BS
as the guidance function needs to be evaluated for each non-terminal node. Thus,
we want to make the NN as small as possible, but at the same time, large enough
to get high-quality predictions. In order to examine this aspect, we made tests
with different NN configurations. Figure 1 shows exemplary box plots for final
LCS lengths obtained from ten LBS runs per NN configuration on selected rat

instances. We conclude that 20 nodes in both hidden layers are a robust choice.
Smaller NNs are sometimes too restrictive, occasionally implying significantly
worse results. Therefore, we use this configuration in all further experiments.

Next, we investigate the impact of the beam width on the solution quality,
performing again ten runs per configuration. Figure 2 shows respective boxplots.
The same beam width has been used for the LBS (β), for the NBS calls (β′), as
well as for the final testing on the rat benchmark instances. As one may expect,
larger beam widths in general yield better results. In particular, using NBS beam
widths of β′ ≤ 30 turned out to yield clearly inferior results. Therefore, we set
β = β′ = 50 in all further experiments if not indicated otherwise.

Learning Beam Search 11

20 30 50 80 100

Beam width

116

118

120

122

S
o
lu
ti
o
n

le
n
g
th

rat(|Σ| = 4, m = 200, n = 600)

20 30 50 80 100

Beam width

32

33

34

S
o
lu
ti
o
n

le
n
g
th

rat(|Σ| = 20, m = 200, n = 600)

Fig. 2. Impact of beam width β = β′ in training and testing on rat instances.

10 40 100 200

m

0.0

2.5

5.0

7.5

M
A
E

|Σ| = 4, n = 600

Method

NN

EX

10 40 100 200

m

0

1

2

3

M
A
E

|Σ| = 20, n = 600

Method

NN

EX

Fig. 3. Mean absolute error of the trained NNs and EX on test samples created by a
BS with EX guidance function.

Of interest also is how well a NN trained by LBS actually approximates
the real LCS length. As we cannot obtain exact LCS lengths for instances of
interesting size, we approximate them by applying the so far leading BS with the
approximate expected length (EX) guidance function from [7]. More specifically,
to consider instances with a broad range of different input string lengths, we
generated 10000 labeled test samples by LBS using EX as guidance function in
the outer BS as well as in the NBS calls instead of an NN. This was done for
|Σ| ∈ {4, 20}, m ∈ {10, 40, 100, 200}, and n = 600. Ten NNs were then trained
by LBS for each configuration, and these NNs as well as EX were tested on the
generated data sets. Figure 3 shows obtained Mean Absolute Errors (MAEs);
standard deviations are indicated by the small black lines. We can observe that
the NNs approximate the LCS lengths much better than EX, and differences are
particularly large for smaller m. The MAE of EX is about four to six times as
large as the MAE of the NNs.

Finally, we compare our approach to the state-of-the-art methods from the
literature. While all training with LBS was done with β = β′ = 50, we do the
tests on the benchmark instances following [7] with two different beam widths:
aiming for low (computation) time with β = 50 and aiming for high quality with
β = 600. Table 1 shows obtained results. For our LBS, the average solution
length |sLBS| and the runtime of the BS with the trained NN tLBS are listed for
each instance group. Columns |sBS-EX| and tBS-EX show the respective solution
qualities and runtimes for the BS from [7] with the EX guidance function. For a

12 M. Huber and G. R. Raidl

Table 1. LCS results on benchmark sets BB and rat.

low times high quality

Set |Σ| m n |sLBS| tLBS [s] |sBS-EX| tBS-EX [s] |slit-best| |sLBS| tLBS [s] |sBS-EX| tBS-EX [s] |slit-best|

BB 2 10 1000 651.2 0.855 635.1 0.824 662.9 673.1 12.044 673.5 9.180 676.5
BB 2 100 1000 *556.1 1.550 525.1 1.765 551.0 *565.8 22.979 536.6 18.368 560.7
BB 4 10 1000 *540.1 1.262 453.0 0.954 537.8 545.4 18.112 545.2 12.467 545.4
BB 4 100 1000 *381.3 2.591 318.6 2.174 371.2 *392.9 35.331 329.5 24.233 388.8
BB 8 10 1000 462.4 1.452 338.8 1.270 462.6 462.7 28.232 462.7 19.155 462.7
BB 8 100 1000 *267.4 4.319 198.0 3.257 260.9 *274.8 60.682 210.6 36.785 272.1
BB 24 10 1000 385.6 5.430 385.6 4.172 385.6 385.6 67.455 385.6 48.177 385.6
BB 24 100 1000 *148.2 10.314 95.8 9.399 147.0 149.5 153.194 113.3 138.174 149.5
rat 4 10 600 199.0 0.550 198.0 1.138 201.0 205.0 8.591 205.0 4.240 204.0
rat 4 15 600 *184.0 0.660 182.0 1.134 182.0 185.0 9.097 185.0 7.276 184.0
rat 4 20 600 169.0 0.620 168.0 2.082 169.0 *173.0 8.082 172.0 4.120 170.0
rat 4 25 600 166.0 0.766 167.0 1.182 166.0 *171.0 9.295 170.0 4.766 168.0
rat 4 40 600 *152.0 0.844 146.0 1.172 151.0 *156.0 10.064 152.0 5.265 150.0
rat 4 60 600 149.0 0.868 150.0 1.315 149.0 152.0 12.129 152.0 12.016 151.0
rat 4 80 600 *138.0 1.056 137.0 1.368 137.0 140.0 12.564 142.0 13.292 139.0
rat 4 100 600 *135.0 0.483 131.0 1.408 133.0 137.0 13.650 137.0 7.739 135.0
rat 4 150 600 127.0 1.176 127.0 2.734 125.0 *130.0 11.625 129.0 16.841 126.0
rat 4 200 600 121.0 1.572 121.0 1.733 121.0 123.0 14.117 123.0 19.567 123.0
rat 20 10 600 70.0 1.108 70.0 2.501 70.0 71.0 10.104 71.0 7.579 71.0
rat 20 15 600 62.0 1.117 62.0 2.660 61.0 63.0 12.048 63.0 13.448 62.0
rat 20 20 600 *54.0 1.059 53.0 2.553 53.0 54.0 13.704 54.0 7.970 54.0
rat 20 25 600 *51.0 1.152 50.0 2.545 50.0 52.0 13.073 52.0 13.573 51.0
rat 20 40 600 *49.0 0.529 47.0 2.872 48.0 49.0 16.005 49.0 8.801 49.0
rat 20 60 600 46.0 1.945 46.0 3.234 46.0 47.0 19.734 46.0 13.413 47.0
rat 20 80 600 42.0 1.953 41.0 2.236 43.0 43.0 24.741 43.0 23.051 44.0
rat 20 100 600 38.0 2.007 38.0 3.932 38.0 39.0 24.441 40.0 25.239 39.0
rat 20 150 600 *37.0 2.457 36.0 2.481 36.0 37.0 28.719 37.0 29.312 37.0
rat 20 200 600 34.0 2.048 34.0 3.189 34.0 34.0 32.118 34.0 26.838 34.0

fair time comparison, we re-implemented this approach in our Julia-framework
and list the times measured by us, while the solution lengths correspond to those
reported in [7]. Last but not least, so far best known solution lengths from other
approaches, as also reported in [7], are shown in column |slit−best|. Best solution
lengths are printed bold, and new best ones obtained by LBS are additionally
marked with an asterisk. In 13 out of 28 cases from the low time experiments and
in 7 out of 28 cases from the high quality experiments, new best results could be
achieved by LBS. In the remaining cases, the quality of the LBS solutions either
matched so far best results or were only by a small amount behind. Concerning
runtimes, we can conclude that they are very similar to those of BS-EX.

7.2 CLCS Experiments

For the CLCS problem, we use the benchmark set from [6]: ten instances for each
combination of |Σ| ∈ {4, 20}, m ∈ {10, 50, 100}, and n ∈ {100, 500, 1000}, and
ratios of n

|P | ∈ {4, 10} concerning the pattern strings. Note that it is guaranteed

that the pattern string appears in the input strings in the way the instances
were created, for details on the creation see [6]. We compare the results of the
following seven methods from the literature with those obtained by the LBS:
the approximation algorithm from [9] (Approx), and Greedy, Random, BS-UB,
BS-Prob, BS-EX, and BS-Pat from [6]. In all BS approaches, the same beam
width β = 2000 was used for the tests on the benchmark instances. Results are
shown in Table 2. Here, in ten out of 36 cases, new best results could be achieved

Learning Beam Search 13

Table 2. Results for the CLCS problem on benchmark instances from [6].

n
|P | |Σ| m n |sLBS| tLBS [s] |sApprox| |sGreedy| |sRandom| |sBS-UB| |sBS-Prob| |sBS-EX| |sBS-Pat|

4 4 10 100 34.5 0.198 28.6 32.2 31.4 34.5 34.5 34.5 34.5
4 4 50 100 27.5 0.009 26.4 26.9 26.9 27.5 27.5 27.5 27.5
4 4 100 100 26.5 0.006 25.9 26.2 26.1 26.5 26.5 26.5 26.5
4 4 10 500 *183.2 12.080 134.3 160.4 153.8 179.3 182.4 181.1 168.6
4 4 50 500 147.9 9.912 130.1 139.5 138.1 146.2 148.3 146.3 142.7
4 4 100 500 140.6 10.387 128.9 135.8 134.5 140.4 140.8 140.3 137.3
4 4 10 1000 *366.5 27.570 264.7 317.4 308.1 350.3 361.7 361.4 330.8
4 4 50 1000 *296.6 23.909 257.4 277.3 274.5 291.9 296.4 289.5 284.2
4 4 100 1000 282.5 27.273 256.4 270.7 268.1 279.7 282.5 279.0 273.3
4 20 10 100 25.0 0.005 25.0 25.0 25.0 25.0 25.0 25.0 25.0
4 20 50 100 25.0 0.005 25.0 25.0 25.0 25.0 25.0 25.0 25.0
4 20 100 100 25.0 0.005 25.0 25.0 25.0 25.0 25.0 25.0 25.0
4 20 10 500 125.0 0.006 125.0 125.0 125.0 125.0 125.0 125.0 125.0
4 20 50 500 125.0 0.009 125.0 125.0 125.0 125.0 125.0 125.0 125.0
4 20 100 500 125.0 0.012 125.0 125.0 125.0 125.0 125.0 125.0 125.0
4 20 10 1000 250.0 0.012 250.0 250.0 250.0 250.0 250.0 250.0 250.0
4 20 50 1000 250.0 0.014 250.0 250.0 250.0 250.0 250.0 250.0 250.0
4 20 100 1000 250.0 0.031 250.0 250.0 250.0 250.0 250.0 250.0 250.0

10 4 10 100 34.6 2.628 22.9 29.6 26.5 34.6 34.6 34.3 32.1
10 4 50 100 *25.1 3.307 19.8 21.8 21.0 24.9 25.0 24.3 23.5
10 4 100 100 23.0 3.668 18.9 20.8 19.6 23.0 23.0 21.9 21.5
10 4 10 500 *186.3 21.081 121.4 163.7 147.9 182.2 185.0 184.8 165.9
10 4 50 500 *143.4 26.723 114.2 129.5 123.6 138.7 142.9 141.8 131.2
10 4 100 500 *133.8 37.620 111.3 122.0 118.3 129.2 133.3 132.0 124.3
10 4 10 1000 *377.2 43.442 245.5 329.1 294.8 365.0 375.8 376.3 330.4
10 4 50 1000 *290.9 56.531 233.5 266.5 254.9 279.6 289.2 290.4 266.0
10 4 100 1000 *272.7 79.228 230.3 253.2 246.8 262.3 270.9 272.1 255.2
10 20 10 100 10.2 0.004 10.2 10.1 10.2 10.2 10.2 10.2 10.2
10 20 50 100 10.0 0.005 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10 20 100 100 10.0 0.005 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10 20 10 500 53.1 0.007 51.0 52.5 52.7 53.1 53.1 53.1 53.1
10 20 50 500 50.0 0.006 50.0 50.0 50.0 50.0 50.0 50.0 50.0
10 20 100 500 50.0 0.008 50.0 50.0 50.0 50.0 50.0 50.0 50.0
10 20 10 1000 105.4 0.011 101.0 103.9 104.6 105.4 105.4 105.4 105.4
10 20 50 1000 100.0 0.009 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10 20 100 1000 100.0 0.012 100.0 100.0 100.0 100.0 100.0 100.0 100.0

by LBS, and it scores worse in only two out of 36 cases; in the remaining cases,
the solutions values from LBS are equal to the so far best known ones.

8 Conclusions and Future Work

We presented a general learning beam search framework to solve combinatorial
optimization problems for which the solution space can be represented by a
state graph. Instead of the frequently challenging manual design of a meaningful
guidance function, we train a regression model to approximate the real length
to go from a state and use this model thereafter in a BS. Training is done in
the spirit of reinforcement learning by performing many BS runs on randomly
created instances and calling a nested beam search to obtain labeled training
data. Our case studies on the LCS and the CLCS problems clearly show that
this learning approach can be highly effective. On many benchmark instances
new best solutions could be obtained, making this approach a new state-of-the-
art method for the considered two problems.

Clearly, the proposed LBS is not entirely problem-agnostic: Still, it is im-
portant to use a suitable state space, to derive meaningful features from states,
and to choose an appropriate ML model for a problem at hand. Moreover, note

14 M. Huber and G. R. Raidl

that in our implementation for the LCS and CLCS, individual models need to
be trained for specific choices of |Σ|, m, and n. In future work specifically for
the LCS and CLCS problems, we aim at relying on different features that just
describe the distribution of remaining input string lengths, in order to learn
models that are independent of m and possibly also n.

General improvement potential for LBS lies in the fact that the guidance
function actually does not need to approximate the length to go well, but only
needs to provide scores for ranking the solutions in the beam. Can this flexibility
be used to come up with alternative optimization targets and loss functions for
the training, yielding overall better results? Parallelization and the utilization
of GPUs are further natural possibilities to speed up in particular the learning.
Last but not least, we aim at applying LBS to further problems and to also
investigate other ML models than NNs.

References

1. Abe, K., Xu, Z., Sato, I., Sugiyama, M.: Solving NP-hard problems on graphs with
extended AlphaGo Zero. arXiv:1905.11623 [cs, stat] (2020)

2. Akeba, H., Hifib, M., Mhallah, R.: A beam search algorithm for the circular packing
problem. Computers & Operations Research 36(5), 1513–1528 (2009)

3. Blum, C., Miralles, C.: On solving the assembly line worker assignment and balanc-
ing problem via beam search. Computers & Operations Research 38(1), 328–339
(2011)

4. Blum, C., Blesa, M.J.: Probabilistic beam search for the longest common subse-
quence problem. In: Stützle, T., et al. (eds.) Engineering Stochastic Local Search
Algorithms. Designing, Implementing and Analyzing Effective Heuristics. pp. 150–
161. Springer (2007)

5. Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial op-
timization algorithms over graphs. In: Advances in Neural Information Processing
Systems. vol. 31, pp. 6348–6358. Curran Associates, Inc. (2017)

6. Djukanovic, M., Berger, C., Raidl, G.R., Blum, C.: On solving a generalized con-
strained longest common subsequence problem. In: Olenev, N., et al. (eds.) Opti-
mization and Applications, LNCS, vol. 12422, pp. 55–70. Springer (2020)

7. Djukanovic, M., Raidl, G.R., Blum, C.: A beam search for the longest common
subsequence problem guided by a novel approximate expected length calculation.
In: Nicosia, G., et al. (eds.) Proc. of the 5th Int. Conf. on Machine Learning,
Optimization and Data Science. LNCS, vol. 11943, pp. 154–167. Springer (2020)

8. Ghirardi, M., Potts, C.N.: Makespan minimization for scheduling unrelated parallel
machines: A recovering beam search approach. European Journal of Operational
Research 165(2), 457–467 (2005)

9. Gotthilf, Z., Hermelin, D., Lewenstein, M.: Constrained LCS: Hardness and ap-
proximation. In: Ferragina, P., et al. (eds.) Combinatorial Pattern Matching. pp.
255–262. Springer (2008)

10. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

11. He, H., Daumé, H.C., Eisner, J.M.: Learning to search in branch-and-bound algo-
rithms. In: Ghahramani, Z., et al. (eds.) Advances in Neural Information Processing
Systems. vol. 27. Curran Associates, Inc. (2014)

Learning Beam Search 15

12. Huang, J., Patwary, M., Diamos, G.: Coloring big graphs with AlphaGo Zero.
arXiv:1902.10162 [cs] (2019)

13. Huang, L., Zhang, H., Deng, D., Zhao, K., Liu, K., Hendrix, D.A., Mathews, D.H.:
LinearFold: linear-time approximate RNA folding by 5’-to-3’ dynamic program-
ming and beam search. Bioinformatics 35(14), i295–i304 (2019)

14. Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M.,
Talbi, E.G.: Machine learning at the service of meta-heuristics for solving combina-
torial optimization problems: A state-of-the-art. European Journal of Operational
Research (2021), 10.1016/j.ejor.2021.04.032

15. Khalil, E.B., Bodic, P.L., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch
in mixed integer programming. In: Proc. of the 26th Int. Joint Conf. on Artificial
Intelligence. pp. 724–731. AAAI Press (2016)

16. Khalil, E.B., Dilkina, B., Nemhauser, G.L., Ahmed, S., Shao, Y.: Learning to
run heuristics in tree search. In: Proc. of the 26th Int. Joint Conf. on Artificial
Intelligence. pp. 659–666. Melbourne, Australia (2017)

17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proc. of
the 3rd Int. Conf. on Learning Representations. San Diego, CA (2015)

18. Laterre, A., Fu, Y., Jabri, M.K., Cohen, A.S., Kas, D., Hajjar, K., Dahl, T.S.,
Kerkeni, A., Beguir, K.: Ranked reward: Enabling self-play reinforcement learn-
ing for combinatorial optimization. In: AAAI 2019 Workshop on Reinforcement
Learning on Games. AAAI Press (2018)

19. Lowerre, B.: The Harpy Speech Recognition System. Ph.D. thesis, Carnegie Mellon
University, Pittsburgh, PA (1976)

20. Maier, D.: The complexity of some problems on subsequences and supersequences.
Journal of the ACM 25(2), 322–336 (1978)

21. Mittal, A., Dhawan, A., Manchanda, S., Medya, S., Ranu, S., Singh, A.: Learning
heuristics over large graphs via deep reinforcement learning. arXiv:1903.03332 [cs,
stat] (2019)

22. Negrinho, R., Gormley, M., Gordon, G.J.: Learning beam search policies via imi-
tation learning. In: Bengio, S., et al. (eds.) Advances in Neural Information Pro-
cessing Systems. vol. 31, pp. 10652–10661. Curran Associates, Inc. (2018)

23. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal
of Production Research 26, 297–307 (1988)

24. Shyu, S.J., Tsai, C.Y.: Finding the longest common subsequence for multiple bio-
logical sequences by ant colony optimization. Computers & Operations Research
36(1), 73–91 (2009)

25. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis,
D.: A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science 362(6419), 1140–1144 (2018)

26. Song, J., Lanka, R., Zhao, A., Bhatnagar, A., Yue, Y., Ono, M.: Learning to search
via retrospective imitation. arXiv:1804.00846 [cs, stat] (2019)

27. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems. vol. 27. Curran
Associates, Inc. (2014)

28. Tsai, Y.: The constrained longest common subsequence problem. Information Pro-
cessing Letters 88, 173–176 (2003)

29. Weiss, D., Alberti, C., Collins, M., Petrov, S.: Structured training for neural net-
work transition-based parsing (2015)

	Learning Beam Search: Utilizing Machine Learning to Guide Beam Search for Solving Combinatorial Optimization Problems

