
A New Solution Representation
for the Firefighter Problem

Bin Hu(B), Andreas Windbichler, and Günther R. Raidl

Institute of Computer Graphics and Algorithms,
Vienna University of Technology,

Favoritenstraße 9-11/1861, 1040 Vienna, Austria
{hu,raidl}@ads.tuwien.ac.at

windbichler.a@gmail.com

Abstract. The firefighter problem (FFP) is used as a model to simulate
how a fire breaks out and spreads to its surroundings over a discrete time
period. The goal is to deploy a given number of firefighters on strategic
points at each time step to contain the fire in a most efficient way, so that
as many areas are saved from the fire as possible. In this paper we intro-
duce a new solution representation for the FFP which can be applied in
metaheuristic approaches. Compared to the existing approach in the lit-
erature, it is more compact in a sense that the solution space is smaller
although the complexity for evaluating a solution remains unchanged.
We use this representation in conjunction with a variable neighborhood
search (VNS) approach to tackle the FFP. To speed up the optimiza-
tion process, we propose an incremental evaluation technique that omits
unnecessary re-calculations. Computational tests were performed on a
benchmark instance set containing 120 random graphs of different size
and density. Results indicate that our VNS approach is highly competi-
tive with existing state-of-the-art approaches.

Keywords: Firefighter problem · Spreading simulation · Variable
neighborhood search

1 Introduction

The firefighter problem (FFP) was introduced by Hartnell [12] as a model to sim-
ulate the spread and containment of fire or disease over a discrete time period in
a simplified way. In each time step the fire (or other malady) infects surrounding
areas whereas a number of firefighters strategically protect certain regions in
order to seal off the respective area and to prevent further spreading. In recent
years this model has also been used to simulate information or virus spreading
in computer networks.

Formally, the problem is defined on an undirected graph G = 〈V,E〉 where
|V | = n and each vertex v ∈ V is initially flagged as untouched. At time t = 1,

This work is supported by the Austrian Science Fund (FWF) grant P24660-N23.

c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 25–35, 2015.
DOI: 10.1007/978-3-319-16468-7 3

26 B. Hu et al.

a fire breaks out at a pre-defined set of vertices Binit ⊆ V , and these vertices
are flagged as burnt. For each time step t = 2, 3, . . . , each member of a set
of D firefighters protects a vertex v ∈ V that is not burnt whereas the fire
propagates to the neighboring vertices that are untouched and burns them. This
process continues until the fire is contained, i.e., it cannot spread any further.
The objective is to choose those D vertices in each step to be protected by the
firefighters so that when the fire is contained, the number of vertices that are not
burnt is maximal. It is assumed that protection is permanent, i.e., a vertex will
not catch fire once it is protected, and that firefighters are able to move between
arbitrary vertices from one time step to the next one.

An example is shown in Fig. 1. Suppose the number of firefighters is two,
i.e., D = 2. At time t = 1 the fire starts at v7 (red circle). At t = 2 we protect
the vertices v4 and v9 (blue squares); the fire spreads to vertex v10. At t = 3
we protect the vertices v5 and v12; the fire spreads to vertex v11. At t = 4 we
protect the vertices v6 and v8; the fire is finally contained. The objective value
of this solution is 9 saved vertices.

Fig. 1. Example for a graph with 12 vertices and two firefighters (Color figure online).

The contribution of this paper is to introduce a new compact solution rep-
resentation for metaheuristic approaches for the FFP. We use it in a variable
neighborhood search (VNS) approach along with an incremental evaluation tech-
nique to boost the performance and compare our results with those existing in
the literature.

2 Previous Work

During the last 10 to 20 years, the FFP was studied by several researchers, but
mostly from a theoretical point of view. An extensive survey can be found in [8].
The complexity of FFP was studied on various types of graphs: Finbow et al.
[9] showed that it is NP-hard on trees with maximum degree three, but solvable
in polynomial time if the fire starts at a vertex of degree two. MacGillivray and
Wang [17] showed that it is NP-hard on bipartite graphs. King and MacGillivray
[16] showed that the FFP is NP-hard if G is a cubic graph. In addition to these

A New Solution Representation for the Firefighter Problem 27

graph types, grid structured graphs are particularly interesting due to their rele-
vance in real world scenarios. Properties of the FFP such as the ability to contain
the fire was studied by Fogarty [10] and Moeller et al. [19] on two dimensional
grids. Later the results were generalized for higher dimensions by Develin and
Hartke [7]. Besides the graph structure, complexity also depends on the number
of available firefighters. Cases with more than one firefighter were studied by
Bazgan et al. [1] and Costa et al. [6]. Apart from the complexity, approximation
algorithms for FFP have been extensively studied in the literature, especially the
case where G is a tree caught great interest. While Hartnell et al. [13] considered
greedy approaches, Hartke [11] proposed a linear programming relaxation based
algorithm and Cai et al. [3] proposed a subexponential algorithm. Later the
approximation ratios of these approaches were improved by Iwaikawa et al. [15].

Recently Blum et al. [2] presented the so far only existing metaheuristic app-
roach for the FFP based ant colony optimization (ACO). It uses a permutation
based solution encoding representing the order of vertices that are considered
for protection. The pheromone model contains values for each vertex appearing
at each possible position in the permutation. As an extension, the authors also
presented a hybrid ACO variant where half of the computation time is spent by
the ACO and the latter half is used by further tuning the best solution found
by the ACO via mixed integer programming. For this purpose they apply solu-
tion polishing which is a mechanism in CPLEX that emphasizes on improving
a given solution instead of proving optimality. Surprisingly there are so far no
other metaheuristic approaches in the literature to the best of our knowledge.
Therefore the (hybrid) ACO is the main competitor for our VNS approach with
which we will experimentally compare.

There are other variants of the FFP such as the fractional FFP where fire-
fighters can split their strength into fractions to protect the vertices [10] or the
stochastic variant where spreading is non-deterministic [4]. However, those vari-
ants are not the scope of this work.

3 Proposed Algorithm

The main aspect of this paper is to introduce a new solution representation for
the FFP as a more compact alternative to the permutation based encoding in
[2]. We use this new representation in a general variable neighborhood search
(VNS) approach with variable neighborhood descent (VND) as embedded local
improvement, see [18] for basic information on this kind of metaheuristics.

3.1 Solution Representation

We encode a solution as bitvector P = 〈p1, . . . , pn〉 where pv, v ∈ V , is 1 if the
vertex should be protected and 0 otherwise. The solution does not explicitly state
which vertices to be protected at a particular time step, but this information is
implicitly derived during evaluation by Algorithm 1.

28 B. Hu et al.

Algorithm 1. evaluate(P)
Input: solution P = 〈p1, . . . , pn〉
Output: repaired solution P and its objective
∀v ∈ Binit : status[v] = −1 ; // the fire starts at time step 1

∀v ∈ V \ Binit : status[v] = 0 ; // all other vertices are untouched

t = 2;
freeff = 0 ; // number of available firefighters in each step

burnt = 0 ; // number of burnt vertices

burning = true;
while burning do

burning = false;
freeff = freeff + D;
neededff = 0 ; // number of currently needed firefighters

foreach vertex v adjacent to a burnt vertex at step t − 1 do
if pv == 1 then

neededff = neededff + 1;

// now each vertex that is adjacent to a just burnt one has to be

updated, i.e., either protected or burnt

foreach vertex v adjacent to a burnt vertex at step t − 1 do
if pv == 1 then

// if there are too many vertices that should be protected

in the current step, drop a respective number with

uniform probability

if neededff > freeff and random(1,neededff) > freeff then
pv = 0;
neededff = neededff − 1;

else
status[v] = t ; // protect vertex at step t
freeff = freeff − 1;
neededff = neededff − 1;

if pv == 0 then
status[v] = −t ; // burn vertex at step t
burnt = burnt + 1;
burning = true;

t = t + 1;

return n − burnt;

During this procedure, we store for each vertex its status: 0 for untouched,
a positive number z for protected at time step z and a negative number −z
for burnt at time step z. The number of burnt vertices is stored in burnt and
potentially increases over the time steps. The number of available firefighters
in each time step is indicated by freeff and corresponds to the number of fire-
fighters D minus the number of vertices that would be set on fire at the current
step but are marked as protected. This is the actual time when the vertex gets

A New Solution Representation for the Firefighter Problem 29

protected. Additionally, spare firefighters in freeff can be buffered for future
steps in the case not all of them are required at the current time step. Note
that the concept of buffering does not conflict with the original problem defini-
tion since excess firefighters can be regarded as if they were protecting vertices
that would become relevant later, at a time where more than D firefighters are
required to protect the desired vertices. Then the number of required firefighters
neededff is calculated, which consists of the number of vertices that are next to a
burning vertex but should be protected according to the solution P . If neededff
is larger than freeff at a certain time, the solution is actually infeasible since
there are not enough firefighters to protect all the desired vertices from burning.
Therefore, the evaluation procedure also contains an implicit repair function for
this situation. If too many vertices are required to be protected, only freeff out
of neededff vertices are saved and the others are dropped on a random basis
where each vertex has equal probability. Other than that, the fire spreads over
to adjacent vertices that are labeled as untouched.

An example for this procedure is shown in Fig. 2. The number of firefighters is
again two and the fire starts at v7 (red circle) at time t = 1. The solution vector is
P = 〈1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0〉 and states that vertices v1, v2, v4, v6, v8, v9, v10
should be protected (blue boxes). At t = 2 three protected vertices are adjacent
to a burning vertex: v4, v9 and v10. Since there are only two firefighters, vertex
v4 gets dropped at random and catches fire (red square) while the other two are
protected (blue squares). At t = 3 only one protected vertex v1 is adjacent to
burning vertices, so one spare firefighter is buffered. The unprotected vertex v5
catches fire. At t = 4 three protected vertices are adjacent to burning vertices
and all of them can be saved due to the buffered firefighter. This is equivalent
to as if the spare firefighter had saved one of these vertices in the previous time
step. Now the fire is fully contained and the objective value of this solution is
again 9.

Fig. 2. Solution evaluation example for a graph with 12 vertices and two firefighters
(Color figure online).

The whole evaluation procedure that includes the fire-spreading simulation
runs in time O(|V | + |E|) since each vertex and each edge is considered only
once. This is the same complexity as the evaluation procedure of the ACO in [2].

30 B. Hu et al.

However, the bitvector representation is more compact as its solution space has
a size 2n instead of n! permutations.

3.2 Initial Solution

We tested two different strategies for creating initial solutions. In variant A,
we assign a closeness centrality value cv to each vertex v ∈ V \ Binit. This is
done by calculating for each vertex the sum of its distances to all other vertices
and then taking the inverse value as its closeness. This criterion is often used to
determine the influence of a vertex to spread information through a network [20].
A vertex with a small closeness value indicates that once it burns, it has a high
potential to further spread the fire. Based on the closeness centrality, we protect
each vertex v ∈ V \ Binit with a probability of cmax−cv

2(cmax−cmin)
where cmax and

cmin are the minimal and maximal closeness values over all vertices V \ Binit,
respectively. This means that the vertex with minimal closeness gets protected
with a probability of 50 % whereas the vertex with maximal closeness never gets
protected.

In variant B, we just use an empty solution, i.e., where no vertex is set to be
protected. This way we entirely rely on the improvement procedures of the VNS
to set the protection status.

During preliminary tests, we applied local improvement via VND on these
initial solutions and it turned out that no obvious trends between the two vari-
ants could be observed. Over a set of 120 instances (see Sect. 4), variant A was
better in 32 cases and variant B in 49 cases. However the average solution qual-
ity of variant A was better by 0.2 %. On the one hand, it is a good sign that
the improvement procedure works so well since it minimizes the differences of
initial solutions. On the other hand, we also feel that the construction heuristic
certainly has some improvement potentials. Since there was no obvious trend,
we used variant B in the later tests since it is the simpler approach.

3.3 Variable Neighborhood Descent

In order to locally improve a solution, we use VND which considers the follow-
ing neighborhood structure in a best improvement fashion. For neighborhood
Nl(P), l = 1, 2, . . . , we consider in the current solution P a set Wl consisting
of vertices with l unprotected adjacent vertices, respectively. For each vertex
w ∈ Wl, we test if the solution improves by protecting its adjacent vertices, see
Algorithm 2. This procedure maximizes the locality of the neighborhood struc-
ture since correlated vertices are considered together. If an infeasible solution
arises, it is repaired during the evaluation procedure automatically. After that,
the improve procedure tries to add single vertices to the protection until the
solution does not improve.

In order to boost the performance, we implemented an incremental evaluation
scheme on the evaluation procedure. Whenever we change for a vertex v its
protection status pv, we know the time it was processed in the last evaluation

A New Solution Representation for the Firefighter Problem 31

Algorithm 2. VND
Input: solution P = 〈p1, . . . , pn〉, neighborhood l
Output: Improved solution P
Wl = set of vertices with l unprotected adjacent vertices;
Pbest = P ;
foreach w ∈ Wl do

P ′ = P ;
∀v adjacent to w : p′

v = 1;
evaluate(P ′);
improve(P ′);
if P ′ better than Pbest then

Pbest = P ′;

return Pbest;

by looking at status[v]. Either it was protected at time t if status[v] > 0, or
it got burnt if status[v] < 0. Therefore when we evaluate the new solution
after changing pv in the neighborhood search or in the improve-procedure, we
only have to re-calculate vertices w ∈ V with |status[w]| > t and possibly
untouched vertices. In other words, the fire spreading simulation until time t with
the status values of corresponding vertices will not change. We only have to take
the existing status values from the previous evaluation, calculate the number
of spare firefighters freeff and set Binit to those vertices burnt at time t − 1 to
continue the fire simulation. If the protection status of more than one vertex gets
changed, we have to continue the fire simulation at the smallest time where these
vertices were processed. During preliminary tests this incremental evaluation
scheme was able to speed up the whole approach by a significant amount. One
variant we also considered was to use a first improvement strategy where we could
cascade the neighborhood solutions in a way that solutions requiring less re-
calculations are evaluated first to maximize the potential gain of the incremental
evaluation. However, the best improvement strategy still produced better results
in comparable time.

3.4 Variable Neighborhood Search

We use the general VNS framework with shaking when VND is not able to
improve the solution any further. A common situation where VND gets stuck in
local optima is that when evaluating and repairing an infeasible solution, vertices
close to Binit are less likely to become dropped from protection than vertices that
are farther away. This is due to the repair mechanism that always “activates” the
protection for vertices close to Binit first. If there are too many vertices marked
for protection at a certain time step, it repairs the solution by dropping vertices
from the current step. However, dropping vertices from previous time steps would
actually also work since excess firefighters would be buffered and carried over
to the time where the deficit arises. Since this is not considered in the current

32 B. Hu et al.

implementation, we have a slight bias that prefers vertices close to Binit. While
this is in fact a reasonable strategy most of the time since protecting vertices
close to Binit from early on often has a positive impact, there are situations
where this behaviour causes the VND to get stuck in local optima.

For this reason, if shaking is called with a size k, it drops the protection
status of k vertices selected randomly in the solution so that VND is able to
explore new combinations of protected vertices.

4 Computational Results

We tested our VNS on the benchmark set from [2]. It consists of instances with
50, 100, 500, and 1000 vertices with three different edge densities, respectively.
The edge density describes the probability of having an edge between two vertices
in a random graph and are stated in the Tables 1, 2, 3 and 4. Each combination
of vertex count and edge density contains 10 random instances, which results in
a benchmark set containing 120 instances in total. In addition, each instance is
considered with different number of firefighters D ∈ {1, . . . , 10}. All tests were
carried out on a single core of an Intel Xeon E5540 with 2.53 GHz and 3 GB
RAM. Compared to the hardware used in [2] for the (hybrid) ACO, it is around
twice as fast according to the Standard Performance Evaluation Corporation
(SPEC) benchmark1. Therefore we use half of the ACO runtime for our VNS
which is n/4 seconds for each instance to obtain roughly comparable results.

In Tables 1, 2, 3 and 4 we show the results grouped by the number of vertices
and the edge density. We compare four different approaches: beside our VNS,
the other three are taken from [2] and consist of an exact approach using mixed
integer programming solved via CPLEX, the ACO and the hybrid ACO. Each
line corresponds to a different number of firefighters D whereas each cell shows
the average final solution values over 10 random graphs. Best results are marked
bold. In the last two lines of the tables, we give a summary by showing for each

Table 1. Results for graphs with 50 vertices, time limit of 12.5 s for VNS.

Edge propability pe = 0.1 Edge propability pe = 0.15 Edge propability pe = 0.2
D CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS

1 7.4 7.4 7.4 7.3 4.5 4.5 4.5 4.5 3.1 3.1 3.1 3.1
2 26.6 26.4 26.5 26.6 9.7 9.7 9.7 9.7 7.2 7.2 7.2 7.2
3 41.8 40.9 41.6 41.7 18.8 16.5 18.5 18.7 11.2 11.1 11.2 11.2
4 47.9 47.8 47.9 47.9 31.2 30.5 30.9 31.2 17.5 16.0 17.2 17.2
5 48.5 48.5 48.5 48.5 39.1 36.1 39.1 39.1 27.7 26.1 27.6 27.6
6 48.8 48.8 48.8 48.8 43.7 42.7 43.7 43.7 33.0 31.4 33.0 32.9
7 49.0 49.0 49.0 49.0 46.3 45.4 46.3 46.3 37.5 35.7 37.5 37.5
8 49.0 49.0 49.0 49.0 48.1 46.8 48.1 48.1 42.7 40.3 42.6 42.6
9 49.0 49.0 49.0 49.0 48.6 48.2 48.6 48.6 46.1 44.4 46.1 46.1
10 49.0 49.0 49.0 49.0 48.8 48.8 48.8 48.8 47.5 47.1 47.5 47.5
∑

417.0 415.8 416.7 416.8 338.8 329.2 338.2 338.7 273.5 262.4 273.0 272.9
% 100.00% 99.71% 99.93% 99.95% 100.00% 97.17% 99.82% 99.97% 100.00% 95.94% 99.82% 99.78%

1 www.spec.org/cpu2006.

http://www.spec.org/cpu2006

A New Solution Representation for the Firefighter Problem 33

Table 2. Results for graphs with 100 vertices, time limit of 25 s for VNS.

Edge propability pe = 0.05 Edge propability pe = 0.075 Edge propability pe = 0.1
D CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS

1 9.2 9.1 9.2 9.1 5.4 5.4 5.4 5.4 3.9 3.9 3.9 3.9
2 26.9 25.7 27.6 27.7 11.3 11.2 11.3 11.2 8.5 8.3 8.7 8.7
3 62.8 54.6 62.7 63.6 41.5 41.0 41.6 41.5 21.4 21.0 21.3 21.4
4 85.3 66.3 85.5 86.0 53.7 52.4 53.3 53.8 25.5 24.5 25.5 25.7
5 97.3 92.3 97.3 97.3 65.7 63.5 65.9 66.5 30.2 29.1 29.5 30.1
6 98.5 98.3 98.5 98.5 87.5 75.1 87.3 87.6 41.8 33.9 41.0 42.3
7 98.8 98.8 98.8 98.8 98.1 87.9 98.1 98.1 58.7 46.4 56.3 56.9
8 98.9 98.9 98.9 98.9 98.6 93.5 98.6 98.6 74.8 62.0 74.0 74.8
9 99.0 99.0 99.0 99.0 98.8 98.8 98.8 98.8 89.2 77.3 88.0 89.2
10 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 94.7 85.9 94.4 94.6
∑

775.7 742.0 776.5 777.9 659.6 627.8 659.3 660.5 448.7 392.3 442.6 447.6
% 99.70% 95.37% 99.81% 99.99% 99.83% 95.02% 99.79% 99.97% 99.80% 87.26% 98.44% 99.56%

Table 3. Results for graphs with 500 vertices, time limit of 125 s for VNS.

Edge propability pe = 0.015 Edge propability pe = 0.02 Edge propability pe = 0.025
D CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS

1 7.6 7.5 7.8 7.6 5.3 5.2 5.6 5.7 4.2 4.4 4.3 4.5
2 5.6 13.0 13.6 14.6 10.6 10.4 11.2 11.3 9.1 8.5 9.0 9.3
3 3.1 18.8 21.3 22.3 60.3 63.1 63.6 65.0 12.8 12.7 13.8 13.7
4 150.2 119.9 168.3 170.3 69.5 67.6 70.4 70.0 17.7 16.9 18.6 18.1
5 250.5 218.9 265.9 267.5 45.6 72.7 74.6 75.1 6.5 21.6 22.4 23.2
6 349.1 268.8 363.0 362.9 102.4 123.8 126.5 126.1 25.6 26.3 33.8 28.7
7 448.9 407.6 453.5 453.7 102.7 128.1 130.1 133.1 78.1 77.6 93.0 80.1
8 449.1 453.9 455.0 454.7 299.0 135.8 315.6 316.1 154.2 127.6 173.5 175.5
9 449.1 454.7 456.6 456.9 349.0 317.5 363.8 364.1 223.2 221.8 225.4 223.8
10 498.8 455.5 498.8 498.8 409.2 321.1 410.2 409.3 221.5 225.1 229.6 227.3
∑

2612.0 2418.6 2703.8 2709.3 1462.6 1245.3 1571.6 1575.8 753.0 742.4 823.5 804.2
% 96.39% 89.25% 99.77% 99.98% 92.72% 78.94% 99.63% 99.89% 91.09% 89.80% 99.61% 97.28%

Table 4. Results for graphs with 1000 vertices, time limit of 250 s for VNS.

Edge propability pe = 0.0075 Edge propability pe = 0.01 Edge propability pe = 0.125
D CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS CPLEX ACO HyACO VNS

1 105.2 107.4 107.8 108.0 4.9 5.7 6.0 6.3 4.0 4.9 4.7 5.3
2 107.9 112.7 115.0 114.6 4.4 10.9 10.6 12.1 8.0 9.4 10.1 10.2
3 101.7 118.0 118.0 122.1 13.7 15.9 17.0 17.9 4.6 14.3 13.9 15.4
4 399.4 318.3 415.7 417.9 14.8 21.4 24.1 24.1 99.9 116.6 116.5 117.8
5 399.6 419.0 421.2 422.8 104.3 27.1 123.6 126.6 103.3 120.8 120.9 122.8
6 598.8 423.6 614.2 617.1 201.5 129.1 226.0 228.2 99.9 125.5 126.2 128.7
7 898.1 523.5 902.5 903.3 299.7 525.5 325.2 328.2 199.8 226.7 226.6 228.8
8 998.2 528.6 998.2 998.2 399.5 329.7 424.4 426.5 218.7 231.1 234.8 233.9
9 998.9 905.6 998.9 998.9 399.6 427.9 427.7 431.8 301.0 236.2 332.1 332.6
10 999.0 999.0 999.0 999.0 499.5 432.6 528.4 530.7 602.2 335.0 620.5 619.6
∑

5606.8 4455.7 5690.5 5701.9 1941.8 1725.8 2113.0 2132.4 1641.4 1420.8 1806.3 1815.1
% 98.33% 78.14% 99.79% 99.99% 91.06% 80.93% 99.09% 100.00% 90.34% 78.20% 99.42% 99.90%

approach the summed up average solution values (
∑

) and the percentage of
the best values reached (%) when considering for each line the best performing
approach.

As reported in [2], CPLEX was able to consistently solve all instances with
50 vertices to optimality. On larger instances, it was usually terminated after

34 B. Hu et al.

reaching the time limit. Especially instances with dense graph and a low number
of firefighters proved to be difficult. In these cases CPLEX is outperformed by
the metaheuristic approaches. We observe that our VNS performs slightly better
than the hybrid ACO. On the majority of the instance sets it is better and in
some cases it is worse by a small margin. Compared to the pure ACO approach
the VNS is consistently better. Overall, it seems that VNS performs better on
sparse graphs and on larger instances. The latter is due to the reduced search
complexity of the bitvector representation. On sparse graphs we suspect that it
is more convenient for the VND neighborhood structure to iterate through the
vertices since their degrees are lower and more diverse. Looking at the closeness
of the different approaches, we also think that being able to solve a considerable
part of the instances in this benchmark set optimally by CPLEX shows that they
are not very hard, thus the margin for improvement is rather slim. Therefore
more sophisticated approaches in the future should be tested on more complex
instances so that differences become more obvious.

5 Conclusions and Future Work

We proposed a variable neighborhood search approach for the firefighter problem
based on a bitvector solution representation. By storing for each vertex only its
protection status, it is more compact than a permutation based representation.
We also proposed an incremental evaluation technique to speed up the computa-
tion significantly. Although the VNS is not able to outperform the hybrid ACO
approach in a substantial way, it is typically at least as good when it comes to
solution quality and performs significantly better than the standard ACO.

In future work we want to investigate approaches that make use of both rep-
resentations and associate neighborhood structures since they can be considered
as complementary to each other: The bitvector representation stores the protec-
tion status but the actual order in which the vertices are protected is obtained
during evaluation. The permutation representation stores the order in which the
vertices are considered for protection but whether a vertex is protected or not
is determined during evaluation. It has been shown that solution methods on
combinatorial optimization problems can substantially benefit from using com-
plementary representations, e.g., in the case of generalized minimum spanning
tree problem as shown in [5,14]. Considering the FFP, using both representa-
tions either in a VNS fashion or infusing the ACO from [2] with a local search
method based on the new representation appears to be particularly promising.

References

1. Bazgan, C., Chopin, M., Ries, B.: The firefighter problem with more than one
firefighter on trees. Discrete Appl. Math. 161(7–8), 899–908 (2013)

2. Blum, C., Blesa, M.J., Garćıa-Mart́ınez, C., Rodŕıguez, F.J., Lozano, M.: The
firefighter problem: application of hybrid ant colony optimization algorithms.
In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 218–229.
Springer, Heidelberg (2014)

A New Solution Representation for the Firefighter Problem 35

3. Cai, L., Verbin, E., Yang, L.: Firefighting on trees: (1 − 1/e)–approximation,
fixed parameter tractability and a subexponential algorithm. In: Hong, S.-H.,
Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 258–269.
Springer, Heidelberg (2008)

4. Comellas, F., Mitjana, M., Peters, J.G.: Broadcasting in small-world communica-
tion networks. In: Proceedings of the 9th International Colloquium on Structural
Information and Communication Complexity, pp. 73–85 (2002)

5. Corus, D., Lehre, P.K., Neumann, F.: The generalized minimum spanning tree
problem: A parameterized complexity analysis of bi-level optimisation. In: Pro-
ceedings of the 15th Annual Conference on Genetic and Evolutionary Computation
(GECCO), pp. 519–526. ACM (2013)

6. Costa, V., Dantas, S., Dourado, M., Penso, L., Rautenbach, D.: More fires and
more fighters. Discrete Appl. Math. 161(16–17), 2410–2419 (2013)

7. Develin, M., Hartke, S.: Fire containment in grids of dimension three and higher.
Discrete Appl. Math. 155(17), 2257–2268 (2007)

8. Finbow, S., Science, C., Scotia, N., MacGillivray, G.: The firefighter problem: a
survey of results directions and questions. Aust. J. Comb. 43, 57–77 (2009)

9. Finbow, S., King, A., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs
of maximum degree three. Discrete Math. 307(16), 2094–2105 (2007)

10. Fogarty, P.: Catching the fire on grids. Master’s thesis, University of Vermont, USA
(2003)

11. Hartke, S.: Attempting to narrow the integrality gap for the firefighter problem
on trees. In: DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pp. 225–231 (2006)

12. Hartnell, B.: Firefighter! An application of domination. In: 20th Conference on
Numerical Mathematics and Computing, pp. 218–229 (1995)

13. Hartnell, B., Li, Q.: Firefighting on trees: How bad is the greedy algorithm? In:
Proceedings of the Thirty-first Southeastern International Conference on Combi-
natorics, Graph Theory and Computing, pp. 187–192 (2000)

14. Hu, B., Leitner, M., Raidl, G.R.: Combining variable neighborhood search with
integer linear programming for the generalized minimum spanning tree problem.
J. Heuristics 14(5), 473–499 (2008)

15. Iwaikawa, Y., Kamiyama, N., Matsui, T.: Improved approximation algorithms for
firefighter problem on trees. IEICE Trans. E94.D(2), 196–199 (2011)

16. King, A., MacGillivray, G.: The firefighter problem for cubic graphs. Discrete Math.
310(3), 614–621 (2010)

17. MacGillivray, G., Wang, P.: On the firefighter problem. J. Comb. Math. Comb.
Comput. 47, 83–96 (2003)

18. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

19. Moeller, S., Wang, P.: Fire control on graphs. J. Comb. Math. Comb. Comput. 41,
19–34 (2002)

20. Newman, M.J.: A measure of betweenness centrality based on random walks. Soc.
Netw. 27(1), 39–54 (2005)

	A New Solution Representation for the Firefighter Problem
	1 Introduction
	2 Previous Work
	3 Proposed Algorithm
	3.1 Solution Representation
	3.2 Initial Solution
	3.3 Variable Neighborhood Descent
	3.4 Variable Neighborhood Search

	4 Computational Results
	5 Conclusions and Future Work
	References

