
An Evolutionary Algorithm with Solution
Archive for the Generalized Minimum Spanning

Tree Problem

Bin Hu and Günther R. Raidl

Vienna University of Technology
Favoritenstraße 9–11/186-1

1040 Vienna, Austria
{hu|raidl}@ads.tuwien.ac.at

Abstract. We propose a concept of enhancing an evolutionary algo-
rithm (EA) with a complete solution archive that stores evaluated solu-
tions during the optimization in a trie in order to detect duplicates and
to efficiently convert them into yet unconsidered solutions. As an applica-
tion we consider the generalized minimum spanning tree problem where
we are given a graph with nodes partitioned into clusters and exactly one
node from each cluster must be connected. For this problem there exist
two compact solution representations that can be efficiently decoded, and
we use them jointly in our EA. The solution archive contains two tries
– each is based on one representation, respectively. We show that these
two tries complement each other well. Test results on TSPlib instances
document the strength of this concept and that it can match up with the
leading state-of-the-art metaheuristic approaches from the literature.

Keywords: evolutionary algorithm, solution archive, network design

1 Introduction

The evolutionary algorithm (EA) is a popular metaheuristic for solving difficult
combinatorial optimization problems (COPs). When adequately applied, EAs
are often able to find good approximate solutions within a huge search space in
relatively short computation times. However, a common drawback is that they
usually do not keep track of the search history, and already evaluated solutions
are often revisited. When the selection pressure is rather high, the population size
only moderate, or the mutation and recombination operators do not introduce
much innovation, the population’s diversity drops strongly and the EA gets stuck
by creating almost only duplicates of a small set of leading candidate solutions,
called “super-individuals”. In such a situation of premature convergence, the
heuristic search obviously does not perform well anymore, and something must
be changed in the setup.

Instead of attempting to re-configure the EA until it reaches the desired
performance, we propose a method for detecting already evaluated candidate

2 Bin Hu, Günther R. Raidl

generate a new solution

continue with the solution pass the solution back insert the solution into the archive

check whether the solution is in the
archive already

No

Yes

classical GA solution archive

forward solution to
the archive

transform the solution into
a yet unconsidered one

Fig. 1. Cooperation between GA and trie.

solutions and efficiently transforming them into similar but yet unvisited solu-
tions, i.e., performing an “intelligent mutation”. This is done by attaching a
complete solution archive to the EA that stores already considered solutions in
an appropriate data structure, allowing a fast detection of duplicates and an
efficient conversion into unvisited solutions. In this work we realize the archive
by a trie [2], an ordered tree data structure. Tries are typically used for effec-
tively storing and searching large amounts of strings, e.g., in language dictionary
applications. Main advantages are that the memory effort is rather low and that
the costs for insertion and search operators essentially only depend on the word
lengths, but not on the number of strings in the trie. Figure 1 illustrates the
cooperation between the GA and the archive.

This concept has already been successfully applied on two problems where
solutions are encoded as binary strings [10]. Similar methods exist where solu-
tions are cached by hash tables [7] or stored in binary trees [14]. However, these
approaches either do not support efficient conversion of duplicates or they are
applied to problems with rather simple solution representations.

Here we apply the archive-enhanced EA to the generalized minimum span-
ning tree problem (GMSTP) which is defined as follows: Given an undirected
weighted complete graph G = 〈V,E, c〉 with node set V partitioned into r pair-
wise disjoint clusters V1, . . . , Vr, edge set E and edge cost function c : E → R+,
a solution S = 〈P, T 〉 is defined as P = {p1, . . . , pr} ⊆ V containing exactly
one node from each cluster, i.e., pi ∈ Vi, i = 1, . . . , r, and T ⊆ E being a
spanning tree on the nodes in P . The costs of S are the total edge costs, i.e.,
C(T) =

∑
(u,v)∈T c(u, v) and the objective is to identify a solution with minimum

costs. The GMSTP was introduced in [8] and has been proven to be NP-hard.
In recent years, many successful metaheuristic approaches [3–6] were developed
for this problem.

A Solution Archive for the GMSTP 3

2 Evolutionary Algorithm for the GMSTP

We use a classic steady state EA where the archive is consulted each time after a
new solution is generated by crossover and mutation. In the following we describe
the EA components.

2.1 Solution Encodings

The GMSTP has a dual-representation, i.e., two solution representations which
complement each other are used together. On the one hand, the Spanned Nodes
Representation (SNR) characterizes solutions by their set of spanned nodes P .
Decoding a solution means to find a classical minimum spanning tree on P
which can be done in polynomial time. On the other hand, the Global Struc-
ture Representation (GSR) characterizes solutions by the so-called global tree
structure T g where T g ⊆ V g × V g and V g = {V1, . . . , Vr}. It defines which clus-
ters are adjacent in the solution without specifying the actually spanned nodes.
For decoding, the optimal spanned node from each cluster can be obtained via
dynamic programming in polynomial time [9]. Since T g always describe a tree
structure between the clusters, we store for each cluster its predecessor in the
vector Π = {π2, . . . , πr} when rooting the tree at V1.

2.2 Genetic Operators

As selection we use tournament selection of size 2. Crossover and mutation op-
erators are implemented for both representations separately. For SNR, uniform
crossover and one-point-mutation are applied on P . For GSR, edge recombina-
tion for spanning trees [11] and mutation by exchanging single global connections
are implemented. Each time a new offspring is to be created, we decide randomly
which representation to use.

2.3 Solution Archives

The solution archive is implemented by two indexed tries [2], storing solutions for
each representation, respectively. Each trie is able to identify duplicate solutions
in its associated solution encoding.

Trie based on SNR: The trie TSNR is based on the vector of spanned nodes
P = {p1, . . . , pr} and has maximal height r. Each trie-node at level i = 1, . . . , r
corresponds to cluster Vi and contains entries next[j], j = 1, . . . , |Vi|. They
either contain references to trie-nodes on the next level, the complete-flag, or the
empty-flag. The empty-flag ‘/’ means that none of the solutions in the subtree
that would start at this point has been considered yet, while the complete-flag
‘C’ indicates that all solutions in the subtree have already been visited in the EA.
When inserting a solution, we follow in each level i the entry that corresponds to
the value of pi. In the trie-node of the last level, next[pr] is set to ‘C’, indicating

4 Bin Hu, Günther R. Raidl

V1 V2

V3

V4

V5

p1

p2

p3 p4

p5

S1

V1 /

/

root

/

/

/ /

//

/

/

/

/

41 2 3

V2

V3

V4

V5 //

/

C //

/

/

/

/

CSolution S1
C

Fig. 2. Example of how solution S1 is stored in trie TSNR containing three solutions.
The bold path marks the way of inserting or searching S1.

the presence of the solution at this point. Figure 2 shows an example of how the
solution S1 is stored in TSNR containing three solutions. Since we want to keep
the trie as compact as possible, subtries where all solutions have been visited
are pruned. This is done by removing trie-nodes that only contain C-flags and
changing the entry in the previous level that pointed towards it into a C-flag.

The central feature of the solution archive is to convert duplicates upon de-
tection. When the solution P = {p1, . . . , pr} would be revisited, it is efficiently
converted into a yet unconsidered candidate solution P ′. The basic idea of conver-
sion is to backtrack to a previous trie-node on the path to the root that contains
at least one yet unconsidered solution. In that trie-node on level i, i = 1, . . . , r
we randomly choose an alternative entry not marked as complete and go down
this subtrie following the remaining data {pi+1, . . . , pr} whenever possible, i.e.,
unless we encounter a C-flag in which case we choose again an alternative branch
that must contain at least one unconsidered solution.

During conversion, biasing can be a major problem: Since the solution vec-
tor is considered in a particular order to build up the trie, some positions are
subject to changes more frequently than others. Figure 3 shows an example of
two conversion strategies:

– Converting the solution at the lowest possible level saves memory since it is
possible to prune the trie due to completely searched subtries more often.
However, when modifications at lower levels happen at higher frequency,
biasing occurs.

– Converting at a random level introduces a substantially lower biasing. A
drawback, however, is that not only is pruning possible less frequently, but
the trie is often expanded during such an operation, resulting in a larger trie
that consumes more memory.

Searching, inserting and converting solutions requires O(r) time, thus the com-
plexity only depends on the length of the solution vector, but not on the number
of already stored solutions.

A Solution Archive for the GMSTP 5

level 1

level 2

level 3

/

/

/

/

S

level 4

level 5

root

/

/

/

/

S′ S

root

/

/

/

/

S

root

/

(a) (b)

/

/

/ /

/

/

/ /

/

/

/

/

/

/

/

/

/

S′′

(c)

C CC C C/ / /

Fig. 3. a) Duplicate P = {1, 3, 1, 1, 2} is detected. b) Conversion at the lowest level
yields P ′ = {1, 3, 1, 1, 1}. c) Conversion at a random level (here at level 2) yields
P ′′ = {1, 4, 1, 1, 2}.

Trie based on GSR: The trie TGSR is based on the predecessors vector Π =
{π2, . . . , πr} and has maximal height r−1. Each trie-node at level i = 1, . . . , r−1
corresponds to the predecessor πi+1 and contains entries next[j], j = 1, . . . , r.
Figure 4 shows an example of how the solution S1 is stored in TGSR containing
four solutions.

Inserting, searching and converting a solution in this trie follows the same
scheme as for TSNR. While the first two operators require O(r) time, the com-
plexity of conversion is O(r2). This is due to the difficulties when modifying
the predecessor vector. Changing one value of Π may result in an invalid tree
structure. Therefore an additional repair-mechanism based on depth-first-search
is required to ensure validity. Due to the larger trie-nodes, TGSR is in general
substantially larger than TSNR.

V1 V2

V3 V5

V4

/

/

root

/

/ /

//

51 2 3

/

/ /

/

4

// / /

Solution S1

C

S1

π2

π3

π4

π5 //

//

/ C

//

/C

/ / / /

C

Fig. 4. Example of how solution S1 is stored in trie TGSR containing four solutions.
The bold path marks the way of inserting or searching S1.

6 Bin Hu, Günther R. Raidl

Interaction between the tries: Since the archive consists of two tries, it is
possible that a new solution created by one trie becomes a duplicate in the other
trie. Therefore the conversion procedures are carried out in turn by the two tries
and the solution is re-checked in the opposite trie until the derived solution is
new to both tries.

3 Computational Results

We tested our approach on TSPlib1 instances with up to 442 nodes partitioned
into 89 clusters using geographical center clustering [1]. For each instance we
performed 30 independent runs and each run was terminated when a time limit
was reached. Standard settings and a population size of 100 were used. The EA
was tested in four variants: EA without archive, EA with SNR archive based on
trie TSNR, EA with GSR archive based on trie TGSR, and EA with full archive
using both tries.

First we show in Table 1 the results obtained when terminating the algo-
rithms after a fixed amount of time. The first two columns list the instance
names (the last three digits indicate the number of nodes) and the time limit.
For each EA variant we show the average final solution values C(T) and cor-
responding standard deviations (sd). Best results are marked bold. We observe
that the EA without archive performs worst in general. Among the two variants
where the archive only uses one representation, GSR is more often the better
choice. If we combine both of them, the EA performs best on all instances. This

1 http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html

Table 1. Results of different EA variants

no archive SNR archive GSR archive full archive

Instance time C(T) sd C(T) sd C(T) sd C(T) sd

gr137 150s 329.4 0.5 329.3 0.5 329.0 0.0 329.0 0.0
kroa150 150s 9830.6 31.4 9831.3 30.1 9815.0 0.0 9815.0 0.0
d198 300s 7055.1 8.7 7059.6 9.0 7044.6 2.3 7044.0 0.0
krob200 300s 11275.0 45.6 11248.9 7.5 11244.0 0.0 11244.0 0.0
gr202 300s 242.1 0.3 242.2 0.4 242.0 0.2 242.0 0.0
ts225 300s 62290.8 40.4 62299.1 50.9 62268.6 0.5 62268.4 0.5
pr226 300s 55515.0 0.0 55515.0 0.0 55515.0 0.0 55515.0 0.0
gil262 450s 945.5 4.0 945.0 3.7 942.4 2.0 942.0 0.0
pr264 450s 21893.2 7.7 21898.4 20.9 21886.0 0.0 21886.0 0.0
pr299 450s 20352.1 37.4 20349.7 24.9 20318.5 11.3 20318.1 11.3
lin318 600s 18545.9 29.2 18547.3 25.6 18525.8 12.4 18511.0 10.8
rd400 600s 5953.0 15.4 5959.4 20.2 5946.4 10.8 5940.2 6.5
fl417 600s 7982.0 0.0 7982.0 0.0 7982.0 0.0 7982.0 0.0
gr431 600s 1034.1 1.4 1033.4 0.9 1033.3 0.7 1033.0 0.0
pr439 600s 51921.4 60.7 51888.5 56.3 51810.5 26.5 51791.0 0.0
pcb442 600s 19717.0 59.5 19708.1 70.2 19632.6 21.1 19623.7 15.9

A Solution Archive for the GMSTP 7

clearly indicates that the solution archive has a positive effect on the perfor-
mance of the EA. The time overhead caused by the archive is taken into account
in these results since the same time limit is used for each EA variant. The mem-
ory overhead depends on the size of the instance and ranges from around 14MB
to 43MB for the SNR archive, 140MB to 480MB for the GSR archive, and 320MB
to 820MB for the full archive. Note that the full archive requires substantially
more memory due to the interaction between both tries.

In Table 2 we compare our EA using the full archive with several leading
state-of-the-art approaches from literature consisting of a tabu search approach
by Ghosh [3], a hybrid variable neighborhood search approach by Hu et al. [5],
and an algorithm based on dynamic candidates sets by Jiang and Chen [6]. We
observe that the proposed EA with solution archive can compete well with the
other approaches. Especially on larger instances, it performs considerably well.

Table 2. Comparison with other state-of-the-art approaches

TS VNS DCS EA + archive

Instance time C(T) C(T) sd C(T) sd C(T) sd

gr137 150s 329.0 329.0 0.00 329.0 0.00 329.0 0.0
kroa150 150s 9815.0 9815.0 0.00 9815.0 0.00 9815.0 0.0
d198 300s 7062.0 7044.0 0.00 7044.0 0.00 7044.0 0.0
krob200 300s 11245.0 11244.0 0.00 11244.0 0.00 11244.0 0.0
gr202 300s 242.0 242.0 0.00 242.0 0.00 242.0 0.0
ts225 300s 62366.0 62268.5 0.51 62268.3 0.48 62268.4 0.5
pr226 300s 55515.0 55515.0 0.00 55515.0 0.00 55515.0 0.0
gil262 450s 942.0 942.3 1.02 942.0 0.00 942.0 0.0
pr264 450s 21886.0 21886.5 1.78 21886.0 0.00 21886.0 0.0
pr299 450s 20339.0 20322.6 14.67 20317.4 1.52 20318.1 11.3
lin318 600s 18521.0 18506.8 11.58 18513.6 7.82 18511.0 10.8
rd400 600s 5943.0 5943.6 9.69 5941.5 9.91 5940.2 6.5
fl417 600s 7990.0 7982.0 0.00 7982.7 0.47 7982.0 0.0
gr431 600s 1034.0 1033.0 0.18 1033.0 0.00 1033.0 0.0
pr439 600s 51852.0 51847.9 40.92 51833.8 36.07 51791.0 0.0
pcb442 600s 19621.0 19702.8 52.11 19662.5 39.79 19623.7 15.9

4 Conclusions and Future Work

In this paper we proposed for the GMSTP an EA with solution archive based
on a dual-representation. The results clearly indicate that the archive improves
the search performance of the EA. Considering both solution representations is
also a crucial step towards overall success.

For future work, we want to investigate bounding strategies for detecting
trie-branches with inferior solutions by estimating lower bounds for incomplete
solutions. These branches can be pruned in order to focus the search on more

8 Bin Hu, Günther R. Raidl

promising regions and to limit the memory overhead. We believe that the con-
cept of solution archives is a powerful addition to EAs when it is implemented
adequately for appropriate combinatorial optimization problems. Hence we want
to further pursue this concept for other problems.

Acknowledgements

We thank Markus Wolf and Mika Sonnleitner, who helped in the implementation
of the described concepts and did the testing as part of their master thesis [13,
12]. This work is further supported by the Austrian Science Fund (FWF) under
contract nr. P20342-N13.

References

1. C. Feremans. Generalized Spanning Trees and Extensions. PhD thesis, Universite
Libre de Bruxelles, 2001.

2. E. Fredkin. Trie memory. Communications of the ACM, 3:490–499, 1960.
3. D. Ghosh. Solving medium to large sized Euclidean generalized minimum span-

ning tree problems. Technical Report NEP-CMP-2003-09-28, Indian Institute of
Management, Research and Publication Department, Ahmedabad, India, 2003.

4. B. Golden, S. Raghavan, and D. Stanojevic. Heuristic search for the generalized
minimum spanning tree problem. INFORMS Journal on Computing, 17(3):290–
304, 2005.

5. B. Hu, M. Leitner, and G. R. Raidl. Combining variable neighborhood search with
integer linear programming for the generalized minimum spanning tree problem.
Journal of Heuristics, 14(5):473–499, 2008.

6. H. Jiang and Y. Chen. An efficient algorithm for generalized minimum spanning
tree problem. In GECCO ’10: Proceedings of the 12th annual conference on Genetic
and evolutionary computation, pages 217–224, New York, NY, USA, 2010. ACM.

7. J. Kratica. Improving performances of the genetic algorithm by caching. Computers
and Artificial Intelligence, 18(3):271–283, 1999.

8. Y. S. Myung, C. H. Lee, and D. W. Tcha. On the generalized minimum spanning
tree problem. Networks, 26:231–241, 1995.

9. P. C. Pop. The Generalized Minimum Spanning Tree Problem. PhD thesis, Uni-
versity of Twente, The Netherlands, 2002.

10. G. R. Raidl and B. Hu. Enhancing genetic algorithms by a trie-based complete
solution archive. In Evolutionary Computation in Combinatorial Optimisation –
EvoCOP 2010, volume 6022 of LNCS, pages 239–251. Springer, 2010.

11. G. R. Raidl and B. A. Julstrom. Edge-sets: An effective evolutionary coding of
spanning trees. IEEE Transactions on Evolutionary Computation, 7(3), 2003.

12. M. Sonnleitner. Ein neues Lösungsarchiv für das Generalized Minimum Span-
ning Tree-Problem. Master’s thesis, Vienna University of Technology, Institute of
Computer Graphics and Algorithms, 2010.

13. M. Wolf. Ein Lösungsarchiv-unterstützter evolutionärer Algorithmus für das Gen-
eralized Minimum Spanning Tree-Problem. Master’s thesis, Vienna University of
Technology, Institute of Computer Graphics and Algorithms, 2009.

14. S. Y. Yuen and C. K. Chow. A non-revisiting genetic algorithm. In IEEE Congress
on Evolutionary Computation (CEC 2007), pages 4583–4590. IEEE Press, 2007.

