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1 Introduction

Attaching a solution archive to a metaheuristic for a combinatorial optimization
problem in order to completely avoid evaluating duplicate solutions is a rela-
tively novel approach [7]. When using a classical Evolutionary Algorithm (EA),
for example, frequent re-evaluation of duplicate solutions cannot be avoided.
This wastes valuable computation time which could have been spent in a more
meaningful way otherwise. The solution archive takes advantage of this obser-
vation and stores already considered solutions in an appropriate data structure,
allowing a fast detection of duplicates and efficient conversion of them into sim-
ilar yet unvisited solutions.

This concept has been successfully applied on two problems where solutions
are encoded as binary strings [7]. Similar methods exist where solutions are
cached by hash tables [4] or stored in k-d trees [9]. However, these approaches
either do not support efficient conversion of duplicates or they are applied to
problems with rather simple solution representations.

In this paper we describe an archive-enhanced EA for the Generalized Min-
imum Spanning Tree Problem (GMSTP) which is defined as follows: Given an
undirected weighted complete graph G = 〈V,E, c〉 with node set V partitioned
into r pairwise disjoint clusters V1, V2, . . . , Vr, edge set E and edge cost func-
tion c : E → R+, a solution S = 〈P, T 〉 is defined as P = {p1, p2, . . . , pr} ⊆ V
containing exactly one node from each cluster, i.e. pi ∈ Vi, i = 1, . . . , r, and
T ⊆ E being a tree spanning the nodes in P . The costs of S are the total edge
costs, i.e. C(T ) =

∑
(u,v)∈T c(u, v) and the objective is to identify a solution

with minimum costs. The GMSTP was introduced in [5] and has been proven
to be NP-hard. In recent years, many successful metaheuristic approaches [1–3]
were developed for this problem.

2 Evolutionary Algorithm for the GMSTP

We use a classic steady state EA where the archive is consulted each time after a
new solution is generated by crossover and mutation. In the following we briefly
describe the EA components.
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Solution encoding: We consider two dual encodings which can be seen as comple-
mentary. First, the Spanned Nodes Representation (SNR) characterizes solutions
by their set of spanning nodes P . Decoding a solution means to find a classical
minimum spanning tree on P . On the other hand, the Global Structure Rep-
resentation (GSR) characterizes solutions by their so-called global connections,
defining which clusters are adjacent in the solution. Since they always describe
a tree structure on the cluster level, we store for each cluster Vi, i = 2, . . . , r,
its predecessor pred(Vi) when we root the tree at V1. For decoding, the optimal
spanned node in each cluster can be obtained via dynamic programming [6].

Genetic operators: As selection we use tournament selection of size 2. Crossover
and mutation operators are implemented for both representations separately.
For SNR, uniform crossover and one-point-mutation are applied on P . For GSR,
edge recombination for spanning trees [8] and mutation by exchanging global
connections are implemented. Each time a genetic operator is carried out, we
decide randomly which representation to use.

Solution Archive: The solution archive is implemented by two tries, storing solu-
tions for each representation, respectively. Each trie is able to identify duplicate
solutions in its associated solution encoding. If a duplicate is found, it is con-
verted by the corresponding trie by applying randomized, systematic changes
until it becomes a yet unvisited solution. However, since there are two tries,
it is possible that the new solution created by one trie becomes a duplicate
in the other trie. Hence for each conversion we alternately modify the solution
and perform a re-check in the opposite trie until the derivated solution is new
in both tries. Randomization is particularly important during this conversion
process in order to avoid biasing (i.e., certain areas of the solution space being
over-searched). The complexity of the trie-operators is relatively low. Search-
ing and inserting new solutions can be done in O(r) time. Depending on the
representation, modifying duplicates requires O(r) in SNR and O(r2) in GSR.

3 Preliminary Results and Conclusions

We tested our approach on TSPlib instances with up to 442 nodes partitioned
into 89 clusters using geographical center clustering. For each instance we per-
formed 30 independent runs and each run was terminated when a time limit
was reached. The EA was tested in four variants: EA without archive, EA with
archive based on SNR, EA with archive based on GSR, and EA with full archive
using both representations. The instances (last three digits indicate the number
of nodes) and their time limits are listed in Table 1. For each EA variant we
show the average final solution values C(T ) and the corresponding standard de-
viations. Best results are marked bold. We observe that the EA without archive
performs worst in general. Among the two variants where the archive only uses
one representation, GSR is the better choice. However, if we combine both of
them, the EA performs best on all instances. The results clearly indicate that the
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archive improves the search performance of the EA. Considering both solution
representations is also a crucial step towards overall success.

Table 1. Results of different EA variants

no archive SNR archive GSR archive full archive

Instance time C(T ) std dev C(T ) std dev C(T ) std dev C(T ) std dev

gr137 150s 329.4 0.5 329.3 0.5 329.0 0.0 329.0 0.0
kroa150 150s 9830.6 31.4 9831.3 30.1 9815.0 0.0 9815.0 0.0
d198 300s 7055.1 8.7 7059.6 9.0 7044.6 2.3 7044.0 0.0
krob200 300s 11275.0 45.6 11248.9 7.5 11244.0 0.0 11244.0 0.0
gr202 300s 242.1 0.3 242.2 0.4 242.0 0.2 242.0 0.0
ts225 300s 62290.8 40.4 62299.1 50.9 62268.6 0.5 62268.4 0.5
gil262 450s 945.5 4.0 945.0 3.7 942.4 2.0 942.0 0.0
pr264 450s 21893.2 7.7 21898.4 20.9 21886.0 0.0 21886.0 0.0
pr299 450s 20352.1 37.4 20349.7 24.9 20318.5 11.3 20318.1 11.3
lin318 600s 18545.9 29.2 18547.3 25.6 18525.8 12.4 18511.0 10.8
rd400 600s 5953.0 15.4 5959.4 20.2 5946.4 10.8 5940.2 6.5
fl417 600s 7982.0 0.0 7982.0 0.0 7982.0 0.0 7982.0 0.0
gr431 600s 1034.1 1.4 1033.4 0.9 1033.3 0.7 1033.0 0.0
pr439 600s 51921.4 60.7 51888.5 56.3 51810.5 26.5 51791.0 0.0
pcb442 600s 19717.0 59.5 19708.1 70.2 19632.6 21.1 19623.7 15.9
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