
A Memetic Algorithm for the Generalized
Minimum Vertex-Biconnected Network Problem

Bin Hu
Vienna University of Technology

Favoritenstraße 9–11/1861
1040 Vienna, Austria
hu@ads.tuwien.ac.at

Günther R. Raidl
Vienna University of Technology

Favoritenstraße 9–11/1861
1040 Vienna, Austria
raidl@ads.tuwien.ac.at

Abstract—The generalized minimum vertex-biconnected net-
work problem plays an important role in the design of surviv-
able backbone networks that should be fault tolerant to single
component outage. When given a graph where the nodes are
partitioned into clusters, the goal is to find a subgraph of
minimum costs that connects exactly one node from each cluster
in a vertex-biconnected way. We present a memetic algorithm
that uses fast local improvement methods to produce high quality
solutions and an intelligent crossover operator which controls the
balance between diversity and intensity in the population. Tests
on Euclidean TSPlib instances with up to 442 nodes show that
this approach is highly efficient.

Index Terms—Network Design; Biconnectivity; Memetic Algo-
rithm;

I. INTRODUCTION

The Generalized Minimum Vertex-Biconnected Network
Problem (GMVBCNP) is defined as follows. We consider a
complete, undirected weighted graph G = 〈V,E, c〉 with node
set V , edge set E, and edge cost function c : E → R+.
Node set V is partitioned into r pairwise disjoint clusters
V1, V2, . . . , Vr,

⋃r
i=1 Vi = V, Vi ∩ Vj = ∅ ∀i, j =

1, . . . , r, i 6= j.
A solution to the GMVBCNP defined on G is a subgraph

S = 〈P, T 〉, P = {p1, . . . , pr} ⊆ V connecting exactly one
node from each cluster, i.e., pi ∈ Vi, ∀i = 1, . . . , r, and the
removal of any single node v ∈ P along with all its incident
edges would not disconnect S. An example is given in Figure
1. The costs of such an edge-biconnected network are its total
edge costs, i.e., c(T) =

∑
(u,v)∈T c(u, v), and the objective is

to identify a feasible solution with minimum costs.
In practice, when designing large communication networks,

devices belonging to the same local area network can be
modelled as nodes within the same cluster. A backbone is
required to connect one device per local network that can
be regarded as its supernode. When additionally requiring
fault tolerance by means of edge-biconnectivity, the network
is able to survive single connection outages. However, if a
supernode that is a so-called cut point fails, the network
still breaks into multiple disconnected components. With the
vertex-biconnectivity property, this issue is finally covered as
well.

For approaching the GMVBCNP, we suggest a Memetic
Algorithm (MA) [1] that uses problem specific variation opera-

V1 V2

V3
V4

V5

p1

p2

p3

p4

p5

V6

p6

Fig. 1. Example for a solution to the GMVBCNP.

tors and local improvement procedures in order to enhance the
solution quality. MAs can be seen as hybrid techniques that
combine the population concept of Evolutionary Algorithms
(EA) with intensification mechanisms that exploit the specific
knowledge on the actual problem. Therefore MAs show great
capabilities in inheriting the benefits of EAs while compen-
sating some of their weaknesses in order to find high quality
solutions to difficult optimization problems.

To the best of our knowledge, the GMVBCNP has not been
addressed in the literature yet. However, there are works that
study the strongly related Generalized Minimum Edge Bicon-
nected Network Problem (GMEBCNP) which only requires
edge-biconnectivity. The GMEBCNP has been introduced by
Huygens [2]. He proposed integer programming formulations,
but no practical results on actual instances were published.
Leitner et al. [3], [4] presented Variable Neighborhood Search
(VNS) approaches for the GMEBCNP based on several types
of neighborhood structures which augment each other well.
Some of these neighborhoods use enhanced techniques to
reduce the search space. They can be adapted and applied
on the current problem as well.

When neglecting the generalization, we get the classical
problem of finding a minimum-cost vertex-biconnected net-
work on a given graph which was introduced by Eswaran et al.
[5]. They showed that this problem is NP-hard and introduced
the so-called block-cut graph that allows efficient detection of
cut point. This method will be used in this work as well.

V1
V2

V3
V4

V5

V6

Fig. 2. Global structure corresponding to solution in Figure 1.

II. MEMETIC ALGORITHM FOR THE GMVBCNP

In this section, we will first describe the solution repre-
sentation and the initialization procedure, the mutation and
crossover operators for the genetic algorithm, then discuss the
local improvement methods and the techniques to optimize the
search process. We use the general MA framework illustrated
in Algorithm 1. Note that we apply mutation before crossover
because our mutation operator potentially decreases the so-
lution quality, but the crossover operator will fix this issue
again. For selection, the standard tournament selection with
tournament size of two is used.

Algorithm 1: Memetic Algorithm for GMVBCNP
create random initial population S of feasible solutions
repeat

Select two parent solutions S1, S2 ∈ S
With probability pmut apply mutation on S1, S2

Apply crossover on S1, S2 to obtain Snew

With probability pimp locally improve Snew

until no new best solution is found for l iterations

A. Terminology

For solution representation, graph reduction, and neighbor-
hood structures, we use following terminology.

The global graph, denoted by Gg = 〈V g, Eg〉, con-
sists of nodes corresponding to clusters in G, i.e., V g =
{V1, V2, . . . , Vr}, and the complete edge set Eg = {(Vi, Vj) |
Vi, Vj ∈ V g, Vi 6= Vj}. Hereby, each global connection
(Vi, Vj) represents all edges {(u, v) ∈ E | u ∈ Vi ∧ v ∈ Vj}
of graph G.

When given some feasible candidate solution S = 〈P, T 〉 to
the GMVBCNP, its corresponding global structure is defined
as the induced global graph’s subgraph Sg = 〈V g, T g〉 with
the global connections T g = {(Vi, Vj) ∈ Eg | ∃(u, v) ∈
T ∧ u ∈ Vi ∧ v ∈ Vj}. Figure 2 illustrates a global structure
of the solution in Figure 1.

Redundant edges of a candidate solution are edges that can
be removed without violating the edge-biconnectivity prop-
erty. Redundant global connections are defined analogously

for global structures. Finally, an edge-minimal solution is a
solution that contains no redundant edges.

B. Solution Representation and Initialization

Each solution is characterized by the spanned nodes P =
{p1, . . . , pr}, stored in an vector of length r, and the global
connections T g, stored as an adjacent list that represents a
global structure such as the one shown in Figure 2.

The spanned nodes p1, . . . , pr alone are insufficient to rep-
resent a solution since finding the cheapest edges for them cor-
responds to the classical minimum vertex-biconnected network
problem. Similarly, a representation via global connections
alone is also insufficient since identifying a set of optimal
nodes when restricted to a given global structure is also NP-
hard. The latter is shown in [4] for the GMEBCNP. Because
vertex-biconnectivity implies edge-biconnectivity, this also
holds for the current problem.

The procedure of creating initial solutions is inspired by the
fact that simple Hamiltonian cycles represent feasible solutions
for the GMEBCNP and they can be generated quite fast.
In detail we first fix the set of spanned nodes by randomly
selecting pi ∈ Vi, ∀i = 1, . . . , r. Then all these nodes are
connected in a random order. Obviously the initial solutions
are not very good. However, in our experiments the quality
of initial solutions only has a low impact on the finally best
solutions found by the MA.

C. Mutation Operator

We use two simple mutation operators to recover possibly
lost features in the population:

1) Change the spanned node of a random cluster to a new
one.

2) Add a global connection to the current solution between
two random clusters.

Note that the second procedure generates solutions that are not
edge-minimal. However, the crossover operator that directly
follows afterwards removes redundant edges again. So this
mutation operator only creates an additional choice by means
of a new connection possibility. Each operator is applied with
a probability of pmut = 0.05.

D. Crossover Operator

The crossover operator generates a new solution Snew =
〈Pnew, Tnew〉 by inheriting the properties of two parent solu-
tions S1 = 〈P1, T1〉 and S2 = 〈P2, T2〉. For Pnew, we apply
classical uniform crossover, i.e., the spanned node of each
cluster is randomly chosen from either P1 or P2. For gener-
ating the global connections Tnew, we first merge all global
connections of both parent solutions, i.e., Tnew = T1 ∪ T2.
Because the spanned nodes Pnew are already fixed, each of
these global connections (Vi, Vj) ∈ Tnew consists of only one
edge (pi, pj) ∈ E, pi ∈ Vi ∧ pj ∈ Vj ∧ pi, pj ∈ Pnew.
Then we remove redundant edges until the new solution
is edge-minimal. Edges (pi, pj) ∈ Tnew where deg(pi) =
2∨deg(pj) = 2 need not to be considered during this process
where deg(v) denotes the degree of node v. Since we know

the actual costs of these edges, we put them into a particular
order according to
α: decreasing costs,
β: decreasing perturbed costs c′(pi, pj) = c(pi, pj)·ϕ where

ϕ is a uniformly distributed random value in [0.5 . . . 1.5],
or

γ: random order.
Obviously, strategy α generates offsprings of superior qual-

ities and thus emphasizes intensification whereas γ favors
diversification. Each time the crossover operator is used, we
select the sorting criterion for edge removal randomly with
probability (pα, pβ , pγ). Initially, they are set to (pα, pβ , pγ) =
(0.5, 0.3, 0.2). During the optimization process, these values
are adapted according to the diversity in the population: For
every 100 iterations, we count how many different spanned
nodes and how many different global connections appear in
all solutions in the current population. If the percentage of the
lost attributes exceed a certain limit, we increase the mutation
rate pmut by 0.02 and change the probabilities of the crossover
strategies to (pα, pβ , pγ) = (0.2, 0.2, 0.6). On the other hand,
when diversity reaches a certain limit, we set these parameters
back to the initial values.

E. Local Improvement

With probability of pimp = 0.2 we apply local improvement
on solutions generated by the crossover operator. The MA al-
ternates between two neighborhood structures until no further
improvements can be achieved. These neighborhood structures
are adapted from the previous work on the GMEBCNP [3],
[4]. For both of them, we use the so-called graph reduction
technique to optimize the search process in a particular neigh-
borhood.

a) Graph Reduction: The graph reduction technique has
been introduced and successfully applied to the GMEBCNP
in [3], [4]. The motivation is to reduce the search space for
some neighborhood structures on which the local improvement
procedures are based on.

As mentioned in Section II-B it is generally not possible to
derive an optimal selection of spanned nodes in polynomial
time when a global structure Sg is given. However, this task
becomes feasible once the spanned nodes in a few specific
clusters are fixed. Based on the global structure, we distinguish
between branching clusters that have a degree greater than
two, and path clusters that have a degree of two. Note that
there are no clusters with degree one, since this would violate
the biconnectivity constraint.

Once the spanned nodes within all branching clusters are
fixed, it is possible to efficiently determine optimal selection
of nodes for the path clusters: By computing the shortest path
between two nodes of branching clusters which are connected
by path clusters, optimal spanned nodes can be obtained.

Formally, for any global structure Sg = 〈V g, T g〉, we
define a reduced global structure Sg

red = 〈V g
red, T

g
red〉.

Vred denotes the set of branching clusters, i.e., V g
red =

{Vi ∈ V g | deg(Vi) ≥ 3}. T g
red consists of

edges which represent sequences of path clusters connect-
ing these branching clusters, i.e., T g

red = {(Va, Vb) |
(Va, Vk1), (Vk1 , Vk2), . . . , (Vkl−1 , Vkl

), (Vkl
, Vb) ∈ T g ∧

Va, Vb ∈ V g
red ∧ Vki

/∈ V g
red, ∀i = 1, . . . , l}. Note that Sg

red

is in general a multi-graph that can contain multiple edges
corresponding to multiple paths in Sg between two nodes.
Figure 3 shows an example for applying graph reduction on
the global structure Sg of Figure 2. V2 and V3 are branching
clusters while all others are path clusters.

V1
V2

V3
V4

V5

V6

V2

V3

Fig. 3. Example for applying graph reduction on a global structure.

Corresponding to the reduced global structure Sg
red =

〈V g
red, T

g
red〉 we can define a reduced graph Gred =

〈Vred, Ered〉 with the nodes representing all branching clusters
Vred = {v ∈ Vi | Vi ∈ V g

red} and edges between any pair
of nodes whose clusters are adjacent in the reduced global
structure, i.e., (i, j) ∈ Ered ⇔ (Vi, Vj) ∈ T g

red,∀i ∈ Vi, j ∈
Vj . Each such edge (i, j) corresponds to the shortest path
connecting i and j in the subgraph of G represented by the
reduced structure’s edge (Vi, Vj), and (i, j) therefore gets
assigned this shortest path’s costs.

When fixing the spanned nodes in V g
red we can determine the

costs of the corresponding solution S with optimally chosen
nodes in path clusters efficiently by using the precomputed
shortest path costs stored with the reduced graph’s edges.
Decoding the corresponding solution, i.e., making the opti-
mal spanned nodes within path clusters explicit, is done by
choosing all nodes lying at the shortest paths corresponding
to used edges from Ered.

For details on how the graph reduction can be efficiently
implemented, we refer to [6]. As a matter of fact, all solutions
considered for local improvement are edge-minimal since they
are derived from the crossover operator. Hence they consist of
O(r) edges only. The overall time complexity is bounded by
O(r · d3

max), with dmax being the maximum number of nodes
within a single cluster.

Node Optimization Neighborhood: This neighborhood
structure emphasizes the selection of the spanned nodes in the
branching clusters while not modifying the global structure.
When Vred is the set of branching clusters in a current solution
S, the Node Optimization Neighborhood (NON) consists of all
solutions S′ that differ from S by exactly one spanned node of
a branching cluster. A move within NON is accomplished by
changing pi ∈ Vi ∈ Vred to p′i ∈ Vi, pi 6= p′i, i ∈ {1, . . . , r}.
By using the graph reduction technique, spanned nodes of path

clusters are computed in an optimal way. Algorithm 2 shows
NON in detail.

Algorithm 2: Node Optimization (solution S)
compute reduced structure Sg

red = 〈V g
red, T

g
red〉

forall Vi, Vj ∈ V g
red ∧ Vi 6= Vj do

forall u ∈ Vi 6= pi do
change used node pi of cluster Vi to u
forall v ∈ Vj do

change used node pj of cluster Vj to v
if current solution better than best then

save current solution as best
restore initial solution

restore and return best solution

Updating the objective value for a considered neighbor can
be done in O(dmax) and O(r) neighbors are to be considered.
However, Applying graph reduction in advance adds O(r ·
d3
max) to the time complexity. This is also the overall time

complexity of NON.
If Vred is empty, then the global structure is a round trip and

all spanned nodes can be determined by using the shortest path
calculation analogously to the generalized traveling salesman
problem [7], [8] and NON is not searched at all.

Cluster Re-Arrangement Neighborhood: With this neigh-
borhood structure we try to optimize a solution with respect
to the arrangement of the clusters. Given a solution S with its
global structure Sg = 〈V g, T g〉, let adj(Va) and adj(Vb) be
the sets of adjacent clusters of Va and Vb in Sg, respectively.
Moving from S to a neighbor solution S′ in the Cluster Re-
Arrangement Neighborhood (CRAN) means to swap these
sets of adjacent clusters, resulting in adj(V ′a) = adj(Vb) and
adj(V ′b) = adj(Va) with V ′a and V ′b being the clusters in S′

corresponding to Va and Vb in S, respectively. S′ can be
further improved by using the shortest path calculations to
rechoose the spanned nodes in the path clusters. Since doing
this after each move is relatively time-expensive, we use graph
reduction again to enhance the performance. Whenever the
arrangement of two path clusters is swapped, it is possible to
only apply incremental updates on the paths that contain them.
However, if at least one of these cluster is a branching cluster,
the graph reduction procedure must be completely re-applied
as the structure of the whole solution graph may change. The
pseudocode is given in Algorithm 3.

The worst case time complexity of completely examining
CRAN is O(r3 · d3

max) when graph reduction is applied after
every move. In practice however, there are much more path
clusters than branching cluster in an actual global structure,
so the evaluation time is significantly lower.

III. COMPUTATIONAL RESULTS

We tested our algorithms on Euclidean TSPlib1 instances
with geographical center clustering [9], [10]. They contain 137

1http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html

Algorithm 3: Cluster Re-Arrangement (solution S)
compute reduced structure Sg

red = 〈V g
red, T

g
red〉

for i = 1, . . . , r − 1 do
for j = i+ 1, . . . , r do

swap adjacency lists of nodes pi and pj
if Vi or Vj is a branching cluster then

recompute reduced solution
Sg

red = 〈V g
red, T

g
red〉

else
if
Vi and Vj belong to the same reduced path P
then

update P in Sg
red

else
update the path containing Vi in Sg

red

update the path containing Vj in Sg
red

if current solution better than best then
decode and save current solution as best

restore initial solution and Sg
red

restore and return best solution

to 442 nodes partitioned into 28 to 89 clusters. The number
of nodes per cluster varies.

All experiments have been performed on a Intel Core 2
Quad, 2.4 GHz PC with 4GB RAM. The program is written
in C++ and gcc version 4.1.3 is used. In order to compute
average values and standard deviations, 30 independent runs
have been performed for each instance. The population of the
MA consists of 100 solutions.

Because GMEBCNP and GMVBCNP are strongly related,
we compare the results of our MA with the results obtained by
the self-adapting VNS for the GMEBCNP [4] in Table I. For
the VNS, two different stopping criteria were tested, a long
run version with fixed CPU time limit and a short run version
with l = 30 iterations without improvement. Each run of MA
for the GMVBCNP was terminated after l = 200 iterations
without improvement. For each algorithm, the table shows the
objective values of the best solutions found during 30 runs
C(Tbest), the average values of the final solutions C(T), their
standard deviations, and the absolute CPU time limits of the
VNS or the average CPU times time required when the other
stopping criterion was used.

In order to get a better insight on the complexity of the
GMVBCNP, we also tested a Mixed Integer Programming
(MIP) model adapted from the GMEBCNP [4] by further
adding constraints to guarantee vertex-biconnectivity. Based
on this model, the general purpose MIP solver CPLEX in
version 11.2 was able to provide optimal solutions within
reasonable time for small instances with up to 80 nodes in
16 clusters. However, the limit was quickly reached when
the instances get larger. With a CPU time limit of one hour,
CPLEX was only able to provide integer feasible solutions for
instances gr137 and kroa150. Up to instance lin318, it could

TABLE I
RESULTS ON TSPLIB INSTANCES WITH GEOGRAPHICAL CLUSTERING.

Instance GMEBCNP, VNS with time limit GMEBCNP, VNS with l=30 GMVBCNP, MA with l=200
Name |V | r LP bound C(Tbest) C(T) std dev time C(Tbest) C(T) std dev time C(Tbest) C(T) std dev time
gr137 137 28 384.5 440.0 440.0 0.0 150s 444.0 464.0 14.7 0.9s 440.0 446.0 6.9 2.2s
kroa150 150 30 9830.2 11532.0 11532.0 0.0 150s 11532.0 11873.6 304.8 0.8s 11532.0 11677.2 157.0 3.5s
d198 198 40 8478.4 10573.0 10579.0 8.0 300s 10589.0 11080.3 388.9 10.0s 10781.0 10968.0 112.8 6.3s
krob200 200 40 10666.1 13177.0 13206.4 23.8 300s 13383.0 13688.9 199.8 6.1s 13336.0 13703.9 197.2 6.1s
gr202 202 41 295.7 318.0 321.0 1.6 300s 321.0 332.3 7.8 9.5s 318.0 322.3 3.5 5.9s
ts225 225 45 50452.6 68346.0 68563.7 166.3 300s 68583.0 71062.5 2181.2 5.2s 69932.0 71027.7 1091.6 7.6s
pr226 226 46 60402.4 64023.0 64069.2 252.9 300s 64023.0 66455.9 2414.3 7.8s 67048.0 67828.7 735.3 5.8s
gil262 262 53 811.1 1059.0 1070.8 10.1 300s 1074.0 1126.5 50.8 25.6s 1083.0 1122.6 25.9 11.3s
pr264 264 54 21731.5 29810.0 29879.3 56.0 300s 30096.0 31517.4 1319.3 24.1s 31220.0 32122.1 467.7 13.2s
pr299 299 60 14553.6 22644.0 22659.1 12.7 450s 22709.0 23228.1 410.8 28.4s 22793.0 23708.7 664.7 17.4s
lin318 318 64 12302.8 20795.0 21321.0 228.7 450s 21243.0 22046.0 564.3 49.0s 21181.0 21850.7 429.5 17.8s
rd400 400 80 - 6745.0 6833.2 42.0 600s 6801.0 6992.1 117.4 60.7s 6765.0 7034.2 148.4 37.2s
fl417 417 84 - 9708.0 9881.9 160.8 600s 9984.0 10506.1 302.3 28.1s 10147.0 10592.9 207.0 29.6s
gr431 431 87 - 1284.0 1312.3 18.0 600s 1286.0 1361.9 30.3 52.0s 1291.0 1307.8 11.8 36.4s
pr439 439 88 - 60642.0 62276.9 1710.7 600s 61067.0 66805.8 3461.8 59.1s 60815.0 63738.8 2170.8 38.0s
pcb442 442 89 - 22148.0 22612.6 325.9 600s 22665.0 23957.2 1058.8 88.0s 22321.0 23177.3 566.6 47.0s

compute lower bounds by means of LP-relaxations which are
also listed in Table I.

While comparing the results of MA and VNS, we have
to keep in mind that solutions generated by the latter are
edge-biconnected, but not necessarily vertex-biconnected. On
the other hand, every solution generated by the MA for the
GMVBCNP is also a valid solution for the GMEBCNP per
se.

We observe that the results obtained by VNS for the
GMEBCNP using long runs have lowest costs, but the run
times are very high as well. When comparing VNS with MA
using short runs, we see that MA not only produces better
and more robust results in general, but it requires also less
time, especially on larger instances. The robustness is mainly
due to the fact that MA uses a population containing multiple
solutions whereas VNS is dependant on a single solution and
its development during the search.

In other experiments, we tested the MA without local im-
provement. Those results were worse by about 3% on smaller
instances and more than 10% on larger instances. Further
increasing the probability of applying local improvement, did
not yield significantly better results, but only led to longer
running times.

IV. CONCLUSIONS AND FUTURE WORK

In this article, we proposed a Memetic Algorithm (MA)
for the Generalized Minimum Vertex Biconnected Network
Problem (GMVBCNP). It uses two local improvement meth-
ods to increase the solution qualities in the population. The
graph reduction technique is applied in order to decrease the
search space and to search the neighborhoods more efficiently.
The crossover operator adapts its strategy according to the
actual status of the population during the search process, either
favoring intensification or diversification. The MA was tested
on TSPlib instances consisting of 137 to 442 nodes with
geographical center clustering. Results show that this approach

is highly efficient and robust for solving this problem. For
obtaining high quality solutions, the algorithm required for
none of the instances more than one minute CPU time on
average.

In future work, we intend to test the behavior of the MA
on other types of instances, such as Euclidean instances with
random clustering or non-Euclidean instances. They proved to
be harder to handle than TSPlib instances with geographical
center clustering at least for the GMEBCNP [3], [4]. There
are also many possibilities for further improving the mutation
and crossover operators along with their parameter settings.
We would also like to investigate other ways of measuring the
diversity in the population and other mechanisms for adapting
the crossover strategy during the search process. Last but not
least we are working on more powerful MIP models in order
to obtain better bounds and/or to solve larger instances to
provable optimality.

REFERENCES

[1] P. Moscato, “Memetic algorithms: A short introduction,” in New Ideas in
Optimization, D. Corne et al., Eds. McGraw Hill, 1999, pp. 219–234.

[2] D. Huygens, “Version generalisee du probleme de conception de reseau
2-arete-connexe,” Master’s thesis, Universite Libre de Bruxelles, 2002.

[3] M. Leitner, B. Hu, and G. R. Raidl, “Variable neighborhood search
for the generalized minimum edge biconnected network problem,”
in Proceedings of the International Network Optimization Conference
2007, B. Fortz, Ed., Spa, Belgium, 2007, pp. 69/1–6.

[4] B. Hu, M. Leitner, and G. R. Raidl, “The generalized minimum edge
biconnected network problem: Efficient neighborhood structures for
variable neighborhood search,” accepted for Networks.

[5] K. P. Eswaran and R. E. Tarjan, “Augmentation problems,” SIAM Journal
on Computing, vol. 5, no. 4, pp. 653–665, 1976.

[6] M. Leitner, “Solving two generalized network design problems with
exact and heuristic methods,” Master’s thesis, Vienna University of
Technology, Vienna, Austria, 2006.

[7] J. Renaud, F. F. Boctor, and G. Laporte, “A fast composite heuristic
for the symmetric traveling salesman problem,” INFORMS Journal on
Computing, vol. 8, issue 2, pp. 134–143, 1996.

[8] B. Hu and G. R. Raidl, “Effective neighborhood structures for the
generalized traveling salesman problem,” in Evolutionary Computation
in Combinatorial Optimisation – EvoCOP 2008, ser. LNCS, J. van

Hemert and C. Cotta, Eds., vol. 4972. Naples, Italy: Springer, 2008,
pp. 36–47.

[9] C. Feremans, “Generalized spanning trees and extensions,” Ph.D. dis-
sertation, Universite Libre de Bruxelles, Brussels, Belgium, 2001.

[10] M. Fischetti, J. J. Salazar, and P. Toth, “A branch-and-cut algorithm
for the symmetric generalized traveling salesman problem,” Operations
Research, vol. 45, pp. 378–394, 1997.

