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Abstract

The Railway Traveling Salesman Problem (RTSP) is a
practical extension of the classical traveling salesman prob-
lem considering a railway network and train schedules. We
are given a salesman who has to visit a number of cities
to carry out some business. He starts and ends at a speci-
fied home city, and the required time for the overall journey,
including waiting times, shall be minimized. In this paper,
we present two transformation schemes to reformulate the
RTSP as either a classical asymmetric or symmetric Travel-
ing Salesman Problem (TSP). Using these transformations,
established algorithms for solving the TSP can be used to
attack the RTSP as well. Tests using the branch-and-cut
TSP solver from the Concorde library show that this trans-
formation is efficient and, thus, is highly competitive com-
pared to so far existing approaches for solving the RTSP
directly.

1. Introduction

The Railway Traveling Salesman Problem (RTSP) is de-
fined as follows. We are given a number of cities and a
timetable specifying train connections between these cities.
A salesman starts his journey in a particular station, has to
visit a given subset of cities denoted byB, and finally has to
return to the initial location. In each of the citiesσ ∈ B, he
has to spend a minimum amount of timetσ to complete his
errands. The goal is to minimize the overall time required
for the journey.

In contrast to the classical Traveling Salesman Problem
(TSP), it is allowed to visit cities or railway tracks more
than once. This is due to practical reasons since it makes
no sense to limit the usage of some backbone stations and
to enforce the salesman to take alternative, possibly slower
train connections.

The RTSP has been introduced by Hadjicharalambous et
al. [5] and they showed that it is NP-hard. Furthermore,
they modeled the RTSP via a so-called time-expanded di-
graph and provided a multi-commodity flow integer linear
programming formulation to solve the problem to optimal-
ity. To increase the performance, they introduced a reduc-
tion algorithm which decreases the size of the graph signif-
icantly. To handle larger instances, Pop et al. [7] presented
an ant colony optimization algorithm to solve the problem
heuristically.

The RTSP is related to the Generalized TSP (GTSP) in
which a clustered graph is given and a round trip of minimal
length connecting exactly one node per cluster is desired.
Though the RTSP differs from GTSP primarily by the fact
that not all cities have to be visited, these two problems are
similar. Thus, a transformation from RTSP to GTSP seems
reasonable, since there are many successful algorithms for
solving GTSP, such as a branch-and-cut [4], genetic algo-
rithms [11, 10], other (meta)heuristics [8, 6], or even ap-
proaches that exploit transformations of the GTSP into a
TSP [3, 2].

We concentrate in this work on directly transforming the
RTSP into a TSP.

The time-expanded digraph: Hadjicharalambous et al.
[5] proposed to model this problem via a time-expanded
digraph [9]. This graphG = 〈V,E〉, indicated by Fig-
ure 1, is defined as follows. Vertex setV is partitioned into
σ1, . . . , σm clusters, representing the train stations. The
railway timetable contains a list of train entries in terms of
5-tuplesTi = (z, σd, σa, t(d), t(a)), each representing the
corresponding train IDz, departure stationσd, arrival sta-
tion σa, departure timet(d) and arrival timet(a). For each
5-tuple, a departure-noded with time t(d) is added toσd

and a arrival-nodea with time t(a) is added toσa. Depar-
ture and arrival times are integers in the interval[0, 1439]
representing time in minutes after midnight.
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Figure 1. Example for two stations in the time-expanded digraph, σi ∈ B and σj /∈ B

All departure-nodes of a station are ordered accord-
ing to their times. Letd1, . . . , dl be the departure-
nodes of σ in that order, then there are stay edges
(d1, d2), . . . , (dl−1, dl), (dl, d1) connecting them, meaning
that the salesman simply waits at the station. Among these
edges,(dl, d1) implies that he stays overnight to wait for
the first train on the next day. It is assumed that train sched-
ules do not change from day to day. If they do change, the
model has to be expanded so that each stationσ contains all
depart and arrival-nodes for the whole week (assuming that
schedules do not change from week to week). For practical
reasons, arrival-nodesa1, . . . , ak are also ordered according
to their times, but there are no edges among themselves.

Arrival-edges connect each arrival-node with their im-
mediately next departure-node (w.r.t. their time values)
of the same station. Travel-edges connect depart-nodes
with their corresponding arrival-nodes according to the
timetable. Finally, for all stationsσ ∈ B which the sales-
man has to visit, there are busy-edges which connect arrival-
nodes with their next possible departure-nodes where he
could leaveσ after spending the required amount of time.
The cost for each edgec(u, v), (u, v) ∈ E is the cycle-
difference(1440 + t(v) − t(u)) mod 1440. This assumes
that a day-to-day model is used and no train requires more
than one day to get from one station to the next stop.

Graph size reduction: Hadjicharalambous et al. [5] pre-
sented a preprocessing algorithm to reduce the size of the
time-expanded graph. For each stationσ ∈ B, a new sink-
nodesσ is added and all arrival-nodes inσ are connected
to sσ with zero cost edges. Then, for all departure-nodes in
d ∈ σ, shortest paths to sink-nodes in all other stations in
B are computed. For each path, an edge betweend and the
last arrival-node of that path is added toG. The edge costs

equal the costs of the corresponding shortest path. Then, all
sink-nodes and their incoming edges are removed again, as
well as all stations not inB along with their nodes. Arrival-
nodes which are not used by any of the shortest paths and
all arrival-edges are removed, too.

After the size reduction procedure,G only consists of
stationsσ ∈ B, their arrival and departure-nodes, the edges
connecting them, and the newly added shortest path edges.

2. Transformation to asymmetric TSP

We propose a scheme to transform the reduced RTSP
into an asymmetric TSP defined on a graphG′ = 〈V ′, E′〉
by applying similar ideas as Behzad et al. [2], who pre-
sented a transformation for the GTSP to TSP. For each sta-
tion σ ∈ B in the original reduced graph, we apply the
following procedure to obtain the newσ′ ⊂ V ′.

Let a′

1, . . . , a
′

k ∈ σ′ be exact copies of arrival-
nodes a1, . . . , ak ∈ σ, ordered according to their
times. We connect them to a cycle by zero cost edges
(a′

1, a
′

2), . . . , (a
′

k−1, a
′

k), (a′

k, a′

1). The same procedure is
applied on the departure-nodesd′1, . . . , d

′

l, which get con-
nected by zero cost edges(d′1, d

′

2), . . . , (d
′

l−1, d
′

l), (d′l, d
′

1).
Let pred(v) denote the cyclic predecessor of nodev accord-
ing to these cycles. We connect every arrival-nodea′

i, i =
1, . . . , k with every departure-noded′j , j = 1, . . . , l. For
the initial station,c(a′

i, d
′

j) is simply set tot(d′j) − t(d′1)
which does not depend ont(a′

i). The reason is that the
salesman has to end his tour at the initial station, but not
at the initial time. So it only makes a difference when he
starts the journey, thusc(a′

i, d
′

j) = t(d′j)−t(d′1) wheret(d′1)
is the earliest possible depart time from the initial station.
For all other stations inB, the costs are set toc(a′

i, d
′

j) =
(1440+t(d′j)−t(pred(a′

i))−tσ) mod 1440+tσ. Note that
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′ after TSP transformation
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Figure 2. Transforming σ into σ′ in the b)
asymmetric and c) symmetric TSP. The bold
path marks the travel route from dx to ay in
the original σ and in the transformed σ′.

while all original stay edges are not present, their costs are
included in these new edges. For example, in Figure 2(b),
going froma1 to d4 means to take the busy-edge(a1, d3)
and the stay-edge(d3, d4). The costs aret(d4) − t(a1),
which equal the costs of the new edge(a′

3, d
′

4).

Finally, we have to adapt the outgoing edges from
d′j , j = 1, . . . , l as well. For each original travel-edge
(dj , v), we introduce an edge(pred(d′j), v). The costs are
c(pred(d′j), v) = c(dj , v) + M whereM must be a suf-

ficiently large number, e.g.
∑

(u,v)∈E c(u, v), to prevent
more than one travel-edge to be included in the optimal so-
lution.

Figure 2(b) illustrates this transformation procedure and
shows an example how a route is adapted in the new graph.
Unfortunately, the resulting graph is directed, thus the TSP
is asymmetric.

3. Transformation to symmetric TSP

Since the previous transformation results in an asym-
metric TSP, we propose an alternative procedure to gener-
ate a symmetric TSP defined on the graphG′ = 〈V ′, E′〉.
This approach follows the same basic ideas for the previous
transformation. Unfortunately, the number of nodes needs
to be doubled during this process.

Let againa′

1, . . . , a
′

k ∈ σ′ be exact copies of arrival-
nodesa1, . . . , ak ∈ σ. We duplicate them one more time,
obtaininga′′

1 , . . . , a′′

k . Then, we connect these nodes by
edges(a′

2, a
′′

1), (a′

3, a
′′

2), . . . , (a′

k, a′′

k−1), (a′

1, a
′′

k) with zero
costs and edges(a′

i, a
′′

i ), i = 1, . . . , k with high costsM to
a cycle. High costs on edges(a′

i, a
′′

i ) cause as few of them
to be present in the solution as possible. For example, in
Figure 2(c), when a travel-edge leads toa1, there are two
possible routes to go through{a′

1, . . . , a
′

3} ∪ {a′′

1 , . . . , a′′

3},
one ending ata′′

3 and one ending ata′′

1 . The latter one is
cheaper since edge(a′

1, a
′′

1) with high costs is spared.
The same procedure is applied to nodesd′1, . . . , d

′

l and
their duplicatesd′′1 , . . . , d′′l . Then, we connect alla′′

i , i =
1, . . . , k with all d′j , j = 1, . . . , l. The costs of edges
(a′′

i , d′j) are set to(1440+t(d′j)−t(a′′

i )−tσ) mod 1440+
tσ. Like in the previous transformation, costs of original
stay edges are implicitly included in these edges.

Finally, for each original travel-edge(dj , v), we add a
new edge(d′′j , v) with costsc(d′′j , v) = c(dj , v)+M ′. Since
M is already used by edges(a′

i, a
′′

i ) and(d′j , d
′′

j ) insideσ′,
we have to choose an even larger value forM ′ to ensure that
only one travel-edge is included in the solution onG′. We
setM ′ = M · |B| for this matter.

4. Computational Results

To test our TSP transformation schemes, we use in-
stances based on two railway timetables containing real-
world data of train schedules in the Netherlands. They were
provided by the authors of [5, 7]. Instance 30003 contains
23 cities and represent trains of a local region. Instance
ic times contains 27 larger cities in the Netherlands which
are connected by Intercity trains. The requirements for the
traveling salesman were generated by us at random, as the
authors could not find theirs anymore. They are created by
letting the salesman either visit 5 or 10 cities, and stay times



were chosen between 10 and 240 minutes at each location.
Since [5, 7] also used randomly generated data for the sales-
man with the same number of cities to be visited, the results
should be at least roughly comparable. Stay times were not
mentioned though.

The time-expanded digraph based on both timetables
contain more than 2000 nodes and around 4000 edges
(which depends on the traveling person). After reducing the
graph, we carry out the transformation procedure to gener-
ate a symmetric TSP instance and solve it with the Branch-
and-Cut (B&C) algorithm of the Concorde library1. Our
experiments were performed on an Intel Core 2 Quad 2.4
GHz PC with 4GB memory and B&C uses ILOG CPLEX
9.0 as solver.

Table 1. Results on timetable 3000 3, contain-
ing 23 cities and 1095 train entries.

Index |B| nodes time std dev
1 5 348 1.14s 0.35
2 5 514 1.02s 0.12
3 5 514 0.98s 0.07
4 5 688 7.14s 3.42
5 5 852 2.65s 0.45
6 5 762 2.41s 0.34
7 5 1312 56.81s 22.89
8 5 782 4.03s 1.20
9 5 854 2.84s 0.73

10 5 456 0.84s 0.11
11 10 1786 15.48s 6.57
12 10 1562 8.67s 4.04
13 10 1960 36.29s 13.39
14 10 1260 5.17s 1.07
15 10 1410 7.89s 3.03
16 10 1478 219.67s 267.30
17 10 2276 52.95s 13.69
18 10 1748 24.64s 13.40
19 10 2252 20.77s 4.88
20 10 1342 6.20s 2.98

Table 1 and 2 show the performance of Concorde branch-
and-cut (B&C) on the transformed instances. We performed
30 runs for each instance, since B&C uses random seeds to
decide its branching order, thus resulting in variable run-
times. Listed are the instance’s indices, numbers of cities
the salesman must visit, numbers of nodes in the TSP after
graph reduction and transformation are applied, the average
run-times needed for B&C to find and prove the optimal
solutions, and standard deviations of run-times.

For instances 12, 14, and 18 in Table 2, all 30 runs were

1www.tsp.gatech.edu/concorde.html

Table 2. Results on timetable ic times, con-
taining 27 cities and 1129 train entries.

Index |B| nodes time std dev
1 5 422 3.35s 1.35
2 5 542 5.50s 1.93
3 5 712 6.19s 1.36
4 5 364 0.52s 0.04
5 5 1178 30.26s 9.38
6 5 450 0.77s 0.06
7 5 516 3.47s 1.09
8 5 1140 10.16s 3.57
9 5 324 29.68s 16.17

10 5 568 8.50s 3.29
11 10 1786 1907.47s 990.37
12 10 1562 10000.00s 0.00
13 10 1960 45.68s 27.39
14 10 1260 10000.00s 0.00
15 10 1410 71.29s 48.41
16 10 1478 1471.14s 781.79
17 10 2276 239.52s 72.94
18 10 1748 10000.00s 0.00
19 10 2252 1071.12s 377.63
20 10 1342 346.39s 134.51

terminated after 10000s where B&C still could not prove
optimality. In all these cases, however, the remaining gap is
less than 0.1%.

Analyzing the results, we observe large differences in
run-times between the instances. Among instances with the
same size forB, trips can contain quite different number of
nodes. This is due to the random selection for stations in
B. Looking at data from the railway timetables, some only
contain a few arrival and departure-nodes while others have
a full lineup. This imbalance appears to a greater extent
for timetable “ic times”, in which some stations contain as
few as 2 nodes and others are as large as 254 nodes. This
could be the reason why these instances seems to be harder
to solve for Concorde B&C.

Table 3. Reported results using ILP [5] and
ACO [7]

Instance |B| time ILP time ACO
30003 5 319.00s 18.68s
30003 10 9111.90s 677.36s

ic times 5 29.10s 16.60s
ic times 10 6942.60s 374.28s



Table 3 shows the performance of direct approaches for
the RTSP: The multi-commodity flow Integer Linear Pro-
gramming (ILP) formulation solved via GLPSOL (GNU
Linear Programming Kit LP/MIP Solver) version 4.6 re-
ported in [5] and the Ant Colony Optimization (ACO) ap-
proach [7]. While the ILP operated on reduced graphs,
ACO used original graphs.

Comparing these results with those obtained by Con-
corde B&C, the latter seems to perform better. However, we
have to keep in mind that different data were generated for
the salesman, different integer linear programming solvers
and different hardware were used.

5. Conclusions and Future Work

In this article, we proposed two transformation schemes
for the Railway Traveling Salesman Problem (RTSP), re-
sulting in the asymmetric TSP and the symmetric TSP.
Though the number of nodes has to be doubled in the sym-
metric TSP transformation, the branch-and-cut algorithm
of the Concorde library could solve most of the tested in-
stances to provable optimality in very reasonable time.

For larger RTSP instances, the transformation to the
asymmetric or symmetric TSP is still meaningful when
using a faster state-of-the-art TSP heuristic, such as the
chained Lin-Kernighan algorithm [1].

In future work, we will evaluate the approach on more
and in particular larger instances and also test the perfor-
mance of the direct integer linear programming formula-
tion for RTSP using ILOG CPLEX for a fairer comparison.
Other direct (meta)heuristic approaches also seem appeal-
ing, especially when the number of cities which the sales-
man has to visit becomes too high for exact approaches.

For the symmetric TSP transformation, we still have
some implementation-dependent problems with the bigM
andM ′ added to the edges costs. Trying to solve instances
where the salesman visits 15 cities results in integer over-
flows and the branch-and-cut algorithm can only operate
with integer values. Therefore, we would like to enhance
the transformation procedure to overcome this difficulty.

We also have not made practical experiments exploiting
the transformation to the asymmetric TSP yet. Since the
number of nodes is only half of the symmetric case and only
one bigM is required for the transformation, this seems to
be a very reasonable alternative.
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