Solving the Railway Traveling Salesman Problem via a Transformation into the
Classical Traveling Salesman Problem

Bin Hu Gunther R. Raidl
Vienna University of Technology
Favoritenstral3e 9-11/1861
1040 Vienna, Austria
{hul] rai dl }@ds. tuwi en. ac. at

Abstract The RTSP has been introduced by Hadjicharalambous et
al. [5] and they showed that it is NP-hard. Furthermore,
The Railway Traveling Salesman Problem (RTSP) is athey modeled the RTSP via a so-called time-expanded di-
practical extension of the classical traveling salesmasbpr ~ graph and provided a multi-commodity flow integer linear
lem considering a railway network and train schedules. We programming formulation to solve the problem to optimal-
are given a salesman who has to visit a number of citiesity. To increase the performance, they introduced a reduc-
to carry out some business. He starts and ends at a specition algorithm which decreases the size of the graph signif-
fied home city, and the required time for the overall journey, icantly. To handle larger instances, Pop et al. [7] preskente
including waiting times, shall be minimized. In this paper, an ant colony optimization algorithm to solve the problem
we present two transformation schemes to reformulate theheuristically.
RTSP as either a classical asymmetric or symmetric Travel- The RTSP is related to the Generalized TSP (GTSP) in
ing Salesman Problem (TSP). Using these transformations,which a clustered graph is given and a round trip of minimal
established algorithms for solving the TSP can be used tolength connecting exactly one node per cluster is desired.
attack the RTSP as well. Tests using the branch-and-cutThough the RTSP differs from GTSP primarily by the fact
TSP solver from the Concorde library show that this trans- that not all cities have to be visited, these two problems are
formation is efficient and, thus, is highly competitive com- similar. Thus, a transformation from RTSP to GTSP seems
pared to so far existing approaches for solving the RTSP reasonable, since there are many successful algorithms for
directly. solving GTSP, such as a branch-and-cut [4], genetic algo-
rithms [11, 10], other (meta)heuristics [8, 6], or even ap-
proaches that exploit transformations of the GTSP into a
TSP [3, 2].
We concentrate in this work on directly transforming the

. . _ RTSP into a TSP.
The Railway Traveling Salesman Problem (RTSP) is de-

fined as follows. We are given a number of cities and a

timetable specifying train connections between these<citi The time-expanded digraph: Hadjicharalambous et al.
A salesman starts his journey in a particular station, has to[5] proposed to model this problem via a time-expanded
visit a given subset of cities denoted By and finally hasto digraph [9]. This graph = (V, E), indicated by Fig-
return to the initial location. In each of the citiess B, he ure 1, is defined as follows. Vertex Sétis partitioned into

1. Introduction

has to spend a minimum amount of tiyeto complete his o1,...,0,, clusters, representing the train stations. The
errands. The goal is to minimize the overall time required railway timetable contains a list of train entries in ternfis o
for the journey. 5-tuplesT; = (z,04,0%,t(d),t(a)), each representing the

In contrast to the classical Traveling Salesman Problemcorresponding train I, departure stationd, arrival sta-
(TSP), it is allowed to visit cities or railway tracks more tion o, departure time(d) and arrival timet(a). For each
than once. This is due to practical reasons since it makess-tuple, a departure-nodewith time ¢(d) is added tor¢
no sense to limit the usage of some backbone stations an@nd a arrival-node with time ¢(a) is added tar®. Depar-
to enforce the salesman to take alternative, possibly slowe ture and arrival times are integers in the interjiéall 439
train connections. representing time in minutes after midnight.

station g; 5 station 0j travel-edges

—_—

arrival-edges

————————— ->
stay-edges
- .
busy-edges

Figure 1. Example for two stations in the time-expanded digraph, o; € Band o; ¢ B

All departure-nodes of a station are ordered accord- equal the costs of the corresponding shortest path. Then, al
ing to their times. Letdy,...,d; be the departure- sink-nodes and their incoming edges are removed again, as
nodes of o in that order, then there are stay edges well as all stations not i along with their nodes. Arrival-
(d1,ds),...,(di—1,d;), (d;,dy) connecting them, meaning nodes which are not used by any of the shortest paths and
that the salesman simply waits at the station. Among theseall arrival-edges are removed, too.
edges,(d;, d;) implies that he stays overnight to wait for After the size reduction proceduré&; only consists of
the first train on the next day. It is assumed that train sched-stationss € B, their arrival and departure-nodes, the edges
ules do not change from day to day. If they do change, theconnecting them, and the newly added shortest path edges.
model has to be expanded so that each statioontains all
depart and arrival-nodes for the whole week (assuming that
schedules do not change from week to week). For practical
reasons, arrival-nodes, . . ., a; are also ordered according
to their times, but there are no edges among themselves. ~ We propose a scheme to transform the reduced RTSP

Arrival-edges connect each arrival-node with their im- INto an asymmetric TSP defined on a gragh= (V' E')
mediately next departure-node (w.r.t. their time values) PY @pplying similar ideas as Behzad et al. [2], who pre-
of the same station. Travel-edges connect depart-nodeéemed atrapsformaﬂ_on for the GTSP to TSP. For each sta-
with their corresponding arrival-nodes according to the on o € B in the original reduced graph, we apply the
timetable. Finally, for all stations € B which the sales- following procedure to obtain the new/ C V.

2. Transformation to asymmetric TSP

man has to visit, there are busy-edges which connectarrival L€t a1,...,a; € o be exact copies of arrival-
nodes with their next possible departure-nodes where he0des ai,...,ax € o, ordered according to their
could leaves after spending the required amount of time. times. We connect them to a cycle by zero cost edges
The cost for each edggu,v), (u,v) € E is the cycle- (@1,82),-.-, (@} _y,a}), (@}, ay). The same procedure is
difference(1440 + ¢(v) — t(u)) mod 1440. This assumes ~aPplied on the departure-nodéf, .. ., d;, which get con-
that a day-to-day model is used and no train requires morehected by zero cost edges,, d), ..., (d;_y, d}), (dy, dy).
than one day to get from one station to the next stop. Let pred(v) denote the cyclic predecessor of nadgccord-

ing to these cycles. We connect every arrival-nafle; =
1,...,k with every departure-nod@g, j=1,...,1. For
Graph sizereduction: Hadjicharalambous et al. [5] pre- the initial station,c(a;, d}) is simply set tot(d}) — t(d})
sented a preprocessing algorithm to reduce the size of thevhich does not depend offa;). The reason is that the
time-expanded graph. For each statiog B, a new sink- salesman has to end his tour at the initial station, but not
nodes, is added and all arrival-nodes inare connected at the initial time. So it only makes a difference when he
to s, with zero cost edges. Then, for all departure-nodes in starts the journey, thusa;, d;) = t(d’;)—t(d}) wheret(d)
d € o, shortest paths to sink-nodes in all other stations in is the earliest possible depart time from the initial statio
B are computed. For each path, an edge betwiesmd the For all other stations iB, the costs are set qa/, d;) =
last arrival-node of that path is added@o The edge costs (1440+t(d;)—t(pred(a}))—t,) mod 1440+¢,. Note that

ficiently large number, e.gy_ wv)EE c(u,v), to prevent
more than one travel-edge to be included in the optimal so-
lution.

Figure 2(b) illustrates this transformation procedure and
shows an example how a route is adapted in the new graph.
Unfortunately, the resulting graph is directed, thus th® TS
is asymmetric.

3. Transformation to symmetric TSP

Since the previous transformation results in an asym-
metric TSP, we propose an alternative procedure to gener-
ate a symmetric TSP defined on the gragh= (V' E’).

This approach follows the same basic ideas for the previous
transformation. Unfortunately, the number of nodes needs
to be doubled during this process.

Let againa),...,a); € o' be exact copies of arrival-
nodesaq,...,ar € o. We duplicate them one more time,
obtainingaf, ...,a}. Then, we connect these nodes by
edgeqab, a), (as,af), ..., (a),a}_4), (a},a}) with zero
costs and edgdg!, a), i = 1,..., k with high costsM to
a cycle. High costs on edgés;, a!/) cause as few of them
to be present in the solution as possible. For example, in
Figure 2(c), when a travel-edge leadsatg there are two
possible routes to go throudh, ..., a5} U{al,..., a4},
one ending at4 and one ending at;. The latter one is
cheaper since edde’, a!') with high costs is spared.

The same procedure is applied to nodgs. .., d; and
their duplicatesiy, ..., d]. Then, we connect alt/, i =
L....,kwith all &, j = 1,...,l. The costs of edges
(ai,d}) are settq1440+t(d};) —t(a;') —t,) mod 1440+
t,. Like in the previous transformation, costs of original
stay edges are implicitly included in these edges.
¢) station ¢’ after TSP transformation Finally, for eaqh original travel-edgel;, v), we an 2

new edg€d;, v) with costsc(d’, v) = c(d;,v)+M'. Since
_ _) L M is already used by edggs;, a;) and(d};, d7) insidec’,
Figure 2. Transforming o into ¢’ in the b) we have to choose an even larger valuelfrto ensure that

asymmetric and c¢) symmetric TSP. The bold only one travel-edge is included in the solution@h We
path marks the travel route from d, to a, in setM’ = M - | B| for this matter.

the original o and in the transformed o’.

4. Computational Results

To test our TSP transformation schemes, we use in-
while all original stay edges are not present, their cos#s ar stances based on two railway timetables containing real-
included in these new edges. For example, in Figure 2(b).world data of train schedules in the Netherlands. They were
going froma, to ds means to take the busy-edge, ds) provided by the authors of [5, 7]. Instance 30B@ontains
and the stay-edgéds,dy). The costs aré(ds) — t(a1), 23 cities and represent trains of a local region. Instance
which equal the costs of the new edgs;, d}). ic_times contains 27 larger cities in the Netherlands which

Finally, we have to adapt the outgoing edges from are connected by Intercity trains. The requirements for the
d;, j = 1,...,1 as well. For each original travel-edge traveling salesman were generated by us at random, as the
(dj,v), we introduce an edg@red(d}),v). The costs are authors could not find theirs anymore. They are created by
c(pred(d}),v) = c(d;,v) + M where M must be a suf- letting the salesman either visit 5 or 10 cities, and stagsim

were chosen between 10 and 240 minutes at each location.
Since [5, 7] also used randomly generated data for the sales- Table 2. Results on timetable ic_times, con-

man with the same number of cities to be visited, the results
should be at least roughly comparable. Stay times were not

taining 27 cities and 1129 train entries.

mentioned though. Index | |B| | nodes time | std dev
The time-expanded digraph based on both timetables 1 5 422 3.35s 1.35
contain more than 2000 nodes and around 4000 edges 2 S 542 5.50s 1.93
(which depends on the traveling person). After reducing the 3 S 712 6.19s 1.36
graph, we carry out the transformation procedure to gener- 4 S 364 0.52s 0.04
ate a symmetric TSP instance and solve it with the Branch- S 5| 1178 30.26s 9.38
and-Cut (B&C) algorithm of the Concorde library Our 6 S 450 0.77s 0.06
experiments were performed on an Intel Core 2 Quad 2.4 7 5 516 3.47s 1.09
GHz PC with 4GB memory and B&C uses ILOG CPLEX 8| 5] 1140 10.16s| 3.57
9.0 as solver. 9 5 324 29.68s| 16.17
10 5 568 8.50s 3.29
11| 10| 1786| 1907.47s| 990.37
Table 1. Results on timetable 3000_3, contain- 12| 10| 1562| 10000.00s| 0.00
ing 23 cities and 1095 train entries. 13| 10| 1960 45.68s| 27.39
14| 10| 1260| 10000.00s| 0.00
Index | |B| | nodes time | std dev 15| 10| 1410 71.29s| 48.41
1 5 348 1.14s 0.35 16 | 10| 1478| 1471.14s| 781.79
2 5 514 1.02s 0.12 17| 10| 2276 239.52s| 72.94
3 5 514 0.98s 0.07 18| 10| 1748| 10000.00s| 0.00
4 5 688 7.14s 3.42 19| 10| 2252| 1071.12s| 377.63
5 5 852 2.65s 0.45 20| 10| 1342 346.39s| 134.51
6 5 762 2.41s 0.34
7 5] 1312| 56.81s| 22.89
8 5 782 4.03s 1.20
9 5| 84 2.84s| 073 terminated after 10000s where B&C still could not prove
10 S 456 0.84s 0.11 optimality. In all these cases, however, the remaining gap i
11| 10| 1786| 15.48s| 6.57 less than 0.1%.
12| 10| 1562 8.67s 4.04 . . .
13| 10! 1960| 36.29s| 1339 Ar_lalyzmg the result_s, we observe Iarge d|fferenc¢s in
12| 10| 1260 5175 1.07 run—tlmt_as betweep the mstancgs. A'mon_g instances with the
15| 10! 1410 7 895 303 same size foB, trips can contain quite dlffgrent numb_er of_
16| 10| 1478 219.67s| 267.30 nodes. Th|s is due to the ran(_jom s_electlon for stations in
17| 10| 2276| 52.955| 13.69 B. Lo_okmg at da_ta from the railway tlmetable_s, some only
18| 10| 1748| 24.64s| 13.40 contaln afew arrlya! and departure-nodes while others have
19| 10! 2252| 20.77s 4.88 a fu!l lineup. .Th'|s mbglancc_e appears to a greater gxtent
20| 10| 1342 6.20s 208 for timetable “ictimes”, in which some stations contain as

few as 2 nodes and others are as large as 254 nodes. This
could be the reason why these instances seems to be harder
to solve for Concorde B&C.

Table 1 and 2 show the performance of Concorde branch-

and-cut (B&C) on the transformed instances. We performed
30 runs for each instance, since B&C uses random seeds to
decide its branching order, thus resulting in variable run-
times. Listed are the instance’s indices, numbers of cities
the salesman must visit, numbers of nodes in the TSP after
graph reduction and transformation are applied, the agerag
run-times needed for B&C to find and prove the optimal
solutions, and standard deviations of run-times.

For instances 12, 14, and 18 in Table 2, all 30 runs were

Iwww.tsp.gatech.edu/concorde.html

Table 3. Reported results using ILP [5] and
ACO [7]

Instance| |B| | time ILP | time ACO
30003 5| 319.00s 18.68s
30003 | 10| 9111.90s| 677.36s

ic_times 5 29.10s 16.60s

ic.times| 10| 6942.60s| 374.28s

Table 3 shows the performance of direct approaches for
the RTSP: The multi-commodity flow Integer Linear Pro-
gramming (ILP) formulation solved via GLPSOL (GNU
Linear Programming Kit LP/MIP Solver) version 4.6 re-
ported in [5] and the Ant Colony Optimization (ACO) ap-
proach [7]. While the ILP operated on reduced graphs,
ACO used original graphs.

Comparing these results with those obtained by Con-
corde B&C, the latter seems to perform better. However, we
have to keep in mind that different data were generated for
the salesman, different integer linear programming sslver
and different hardware were used.

5. Conclusions and Future Work

In this article, we proposed two transformation schemes
for the Railway Traveling Salesman Problem (RTSP), re-
sulting in the asymmetric TSP and the symmetric TSP.
Though the number of nodes has to be doubled in the sym-
metric TSP transformation, the branch-and-cut algorithm
of the Concorde library could solve most of the tested in-
stances to provable optimality in very reasonable time.

For larger RTSP instances, the transformation to the
asymmetric or symmetric TSP is still meaningful when
using a faster state-of-the-art TSP heuristic, such as the
chained Lin-Kernighan algorithm [1].

In future work, we will evaluate the approach on more
and in particular larger instances and also test the perfor-
mance of the direct integer linear programming formula-
tion for RTSP using ILOG CPLEX for a fairer comparison.

Other direct (meta)heuristic approaches also seem appeal-

ing, especially when the number of cities which the sales-
man has to visit becomes too high for exact approaches.

For the symmetric TSP transformation, we still have
some implementation-dependent problems with theMig
and M’ added to the edges costs. Trying to solve instances
where the salesman visits 15 cities results in integer over-
flows and the branch-and-cut algorithm can only operate
with integer values. Therefore, we would like to enhance
the transformation procedure to overcome this difficulty.

We also have not made practical experiments exploiting
the transformation to the asymmetric TSP yet. Since the
number of nodes is only half of the symmetric case and only
one bigM is required for the transformation, this seems to
be a very reasonable alternative.

[11]

References

[1] D. Applegate, W. Cook, and A. Rohe. Chained lin-
kernighan for large traveling salesman problerii¢-
FORMS Journal on Computingl5, issue 1:82-92,
2003.

[10

[2] A. Behzad and M. Modarres. A new efficient trans-
formation of the generalized traveling salesman prob-
lem into traveling salesman problem. Rroceedings
of the 15th International Conference of Systems Engi-
neering pages 6-8, 2002.

[3] V. Dimitrijevic and Z. Saric. An efficient transfor-
mation of the generalized traveling salesman problem
into the traveling salesman problem on digraphs.
formation Sciencel02(1-4):105-110, 1997.

M. Fischetti, J. J. Salazar, and P. Toth. A branch-and-
cut algorithm for the symmetric generalized traveling
salesman problen®perations Researcd5:378—-394,
1997.

[4]

[5] G. Hadjicharalambous, P. Pop, E. Pyrga, G. Tsag-
gouris, and C. Zaroliagis. The railway traveling sales-
man problemAlgorithmic Methods for Railway Opti-

mization 4359:264-275, 2007.

[6] B. Hu and G. R. Raidl. Effective neighborhood struc-
tures for the generalized traveling salesman problem.
In J. van Hemert and C. Cotta, editoiSyolution-
ary Computation in Combinatorial Optimisation —
EvoCOP 2008volume 4972 olLNCS pages 36—47,

Naples, Italy, 2008. Springer.

[7] P. C. Pop, C.-M. Pintea, and C. P. Sitar. An ant-
based heuristic for the railway traveling salesman
problem. InEvoWorkshopssolume 4448, pages 702—

711. Springer, 2007.

[8] J. Renaud, F. F. Boctor, and G. Laporte. A fast com-
posite heuristic for the symmetric traveling salesman
problem. INFORMS Journal on Computing, issue
2:134-143, 1996.

[9] F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s al-
gorithm on-line: An empirical case study from public
railroad transport ACM Journal of Experimental Al-

gorithmics 5(12):571-584, 2000.

] J. Silberholz and B. Golden. The generalized trav-
eling salesman problem: A new genetic algorithm
approach. Extending the Horizons: Advances in
Computing, Optimization, and Decision Technologies
37(4):165-181, 2005.

L. V. Snyder and M. S. Daskin. A random-key genetic

algorithm for the generalized traveling salesman prob-
lem. Technical Report 04T-018, Dept. of Industrial

and Systems Engineering, Lehigh University, Bethle-
hem, PA, USA, 2004.

