
Effective Neighborhood Structures for the
Generalized Traveling Salesman Problem

Bin Hu and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9–11/1861, 1040 Vienna, Austria
{hu|raidl}@ads.tuwien.ac.at

Abstract. We consider the generalized traveling salesman problem in
which a graph with nodes partitioned into clusters is given. The goal is
to identify a minimum cost round trip visiting exactly one node from
each cluster. For solving difficult instances of this problem heuristically,
we present a new Variable Neighborhood Search (VNS) approach that
utilizes two complementary, large neighborhood structures. One of them
is the already known generalized 2-opt neighborhood for which we pro-
pose a new incremental evaluation technique to speed up the search
significantly. The second structure is based on node exchanges and the
application of the chained Lin-Kernighan heuristic. A comparison with
other recently published metaheuristics on TSPlib instances with geo-
graphical clustering indicates that our VNS, though requiring more time
than two genetic algorithms, is able to find substantially better solutions.

Key words: Network Design, Generalized Traveling Salesman Problem,
Variable Neighborhood Search

1 Introduction

The Generalized Traveling Salesman Problem (GTSP) extends the classical
Traveling Salesman Problem (TSP) and is defined as follows. We consider an
undirected weighted complete graph G = 〈V, E, c〉 with node set V , edge set E,
and edge cost function c : E → R+. Node set V is partitioned into r pairwise
disjoint clusters V1, V2, . . . , Vr,

⋃r
i=1 Vi = V, Vi ∩ Vj = ∅, i, j = 1, . . . , r, i 6= j.

V1 V2

V3

V4

V5

p1

p2

p4

p5
p3

Fig. 1. Example for a GTSP solution.

2 B. Hu, G. R. Raidl

A solution to the GTSP defined on G is a subgraph S = 〈P, T 〉 with P =
{p1, p2, . . . , pr} ⊆ V connecting exactly one node from each cluster, i.e. pi ∈ Vi

for all 1 ≤ i ≤ r, and T ⊆ E being a round trip, see Fig. 1. The costs of
such a round trip are its total edge costs, i.e. C(T) =

∑
(u,v)∈T c(u, v), and the

objective is to identify a solution with minimum costs. When edge costs satisfy
the triangle inequality, even if we allow more than one node per cluster to be
connected, an optimal solution of the GTSP always contains only one node from
each cluster [11]. Obviously, the GTSP is NP-hard since it contains the classical
TSP as the special case in which each cluster consists of a single node only.

The GTSP finds practical application particularly in many variants of routing
problems, e.g. when some good can be delivered to multiple alternative addresses
of customers. Occasionally, such applications can be directly modeled as the
GTSP, but more often the GTSP appears as a subproblem [9].

In this paper, we present a general Variable Neighborhood Search (VNS)
approach [6] for heuristically solving this problem. As local improvement within
VNS, we use Variable Neighborhood Descent (VND) based on two different types
of exponentially large neighborhoods, which can be seen as dual to each other.
One neighborhood structure is the generalized 2-opt, which has been introduced
in [19]; for it, we propose a new incremental evaluation scheme leading to a
substantial speed-up. As second neighborhood structure we investigate a new
approach: the nodes to be spanned from each cluster are fixed and TSP tours
are derived via the chained Lin-Kernighan algorithm.

Section 2 gives an overview on research done on the GTSP so far. In section
3, we describe the initialization procedures, followed by section 4 explaining
the neighborhood structures in detail. Section 5 shows the VNS settings, and
experimental results are discussed section 6. Finally, we conclude in section 7.

2 Previous Work

The GTSP was introduced independently by Henry-Labordere [7], Srivastava et
al. [22], and Saskena [20]. Laporte et al. [11, 10] provided integer programming
formulations for the symmetrical and asymmetrical GTSP, respectively. The for-
mulation for the symmetrical case was later enhanced by Fischetti et al. [4] who
proposed several classes of facet defining inequalities and corresponding separa-
tion procedures. Based on these, they developed a branch-and-cut algorithm [5]
which could solve instances with up to 442 nodes to optimality.

Several approaches exist which transform the GTSP into the classical TSP.
They have been studied by Noon and Bean [16], Lien et al. [13], Dimitrijevic and
Saric [2], Laporte and Semet [12], and Behzad and Modarres [1]. Unfortunately,
many transformations substantially increase the numbers of nodes and edges and
are therefore of limited practical value. Furthermore, some transformations even
require additional constraints, thus making general algorithms for the classical
TSP inapplicable. Among the more efficient approaches, Dimitrijevic and Saric
[2] proposed a transformation of the GTSP into the TSP on a digraph containing
twice the number of nodes compared to the original graph. This technique was

Effective Neighborhood Structures for the GTSP 3

further improved by Behzad and Modarres [1] where the transformed graph has
the same number of nodes as the original graph. However, the transformation
increases edge costs significantly, what may lead to problems in some cases.

To approach larger GTSP instances, various metaheuristics have been sug-
gested. Renaud et al. [19] developed a complex composite heuristic whose com-
ponents can be used for other (meta-)heuristics as well. They introduced gen-
eralized k-opt heuristics which are derived from Lin’s classical 2-opt and 3-opt
local search for the TSP [14]. Snyder and Daskin [21] describe a Genetic Algo-
rithm (GA) that achieves relatively good results in short running times. It uses
random keys to encode solutions and a parameterized uniform crossover opera-
tor including local improvement based on the 2-opt heuristic to boost solution
quality. Wu et al. [23] also proposed a GA using a direct representation in which
the spanned nodes from each cluster and the sequence in which they are visited
in the tour are stored. This approach has further been enhanced by Huang et
al. [8] who apply a so-called hybrid chromosome encoding. However, reported
results are on average inferior when compared to those of the GA from [21].

3 Solution Representation and Initialization

In our VNS, we represent a solution S = 〈P, T 〉 in a direct way by storing the
spanned nodes of each cluster P = {p1, p2, . . . , pr} with pi ∈ Vi, i = 1, . . . , r,
and additionally the visiting order in the round trip as circular permutation
π = 〈π1, . . . , πr〉 of the cluster indices {1, . . . , r}.

Depending on the instance type we use two different procedures to compute
feasible initial solutions for the VNS. Both are extensions of well-known greedy
strategies for the classical TSP. The first algorithm is the (generalized) Nearest
Neighbor Heuristic (NNH), and it can in principle be applied to all kinds of
instances. The second procedure is specifically targeted to Euclidean instances
where the clustering is based on geographical proximity. It exploits Euclidean
coordinates of nodes and is called Generalized Insertion Heuristic (GIH). The
following paragraphs describe these algorithms in detail.

3.1 Nearest Neighbor Heuristic for the GTSP (NNH)

Noon [17] suggested this approach, which computes a feasible solution as follows.
We begin to construct a tour Sv from an arbitrarily chosen starting node v ∈ V .
Iteratively, the algorithm always continues to the closest node belonging to a
cluster that has not been visited yet and includes the corresponding edge. When
nodes of all clusters have been reached, the tour is closed by including a final
edge back to node v. This process is carried out once for each node in V as
starting node, and the best tour is retained. See also Algorithm 1.

3.2 Generalized Insertion Heuristic for the GTSP (GIH)

This heuristic is inspired by the composite heuristic GI3 from Renaud et al. [18].
In a first phase, it determines the set of spanned nodes P by calculating for

4 B. Hu, G. R. Raidl

Algorithm 1: Nearest Neighbor Heuristic

for v ∈ |V | do
Sv = ∅
W = V
add v to Sv

v′ = v
for i = 1, . . . , r − 1 do

remove from W all nodes belonging to the same cluster as v′

u = node in W nearest to v′

add u to the partial tour Sv

v′ = u

return tour S = Sv∗ with v∗ = argminv∈V C(Sv)

each cluster Vi the node pi having the lowest sum of distances to all other nodes
in other clusters. After fixing these nodes, the CLOCK heuristic from [19] is
performed to construct a tour containing many but not necessarily all nodes
of P .

Recall that GIH only works on Euclidean instances where the nodes’ coordi-
nates are given. The CLOCK heuristic begins a partial tour S at the northern-
most node from P . In case of a tie, the easternmost node among the northernmost
nodes is chosen. This initial insertion is followed by four loops: In the first loop
the procedure appends to S the northernmost node to the east of the last in-
serted node. In case of a tie, the easternmost node among these is chosen again.
The process is repeated until there are no nodes to the east of the last appended
node. The second, third, and forth loops work in the same way by appending to
S the easternmost node to the south, the southernmost node to the west, and
the westernmost node to the north of the last inserted node, respectively.

When the CLOCK heuristic terminates, there are in general some nodes
from P left which are not yet included in the tour S. In contrast to the more
complex GI3 heuristic [18], we simply choose for each of these remaining nodes
pj ∈ P \ H greedily the “cheapest” insertion position k so that c(pπk−1 , pj) +
c(pj , pπk

)− c(pπk−1 , pπk
) ≤ c(pπi−1 , pj)+ c(pj , pπi)− c(pπi−1 , pπi) ∀i = 1, . . . , |H|

with π0 = π|H|.
As a final step, we try to improve the obtained feasible tour S by calling the

shortest path algorithm, which will be introduced in Sect. 4.1. This procedure
may replace nodes by other nodes of the same cluster, but it does not modify the
visiting order π anymore. See Algorithm 2 for more details of the whole GIH.

This construction heuristic is much faster than the original GI3, mainly be-
cause the latter uses a more sophisticated local improvement. Nevertheless, solu-
tions obtained by GIH are typically only slightly inferior, and it usually takes just
a few VNS iterations to catch up with or exceed the quality of GI3’s solutions.

While NNH has time complexity Θ(r ·|V |2), GIH can be implemented in time
Θ(|V |2) and usually finds significantly better solutions to Euclidean instances
with geographical clustering. However, GIH’s applicability is far more limited.

Effective Neighborhood Structures for the GTSP 5

Algorithm 2: Generalized Insertion Heuristic

for i = 1, . . . , r do
pi = node in Vi with the least sumof costs to all other nodes in other clusters

partial tour S = CLOCK heuristic({p1, . . . , pr})
for j = 1, . . . , r do

if pj 6∈ S then
k = minargi=1,...,|S| (c(pπi−1 , pj) + c(pj , pπi)− c(pπi−1 , pπi)), π0 = π|S|
insert pj at position k in S

apply shortest path algorithm on S
return S

4 Neighborhood Structures

In our VNS, we use two complementary neighborhood structures. On the one
hand, we approach the GTSP from the global view by first deciding in which
order the clusters are to be visited and then computing an optimal selection of
spanned nodes. On the other hand, we may start from the opposite direction
and define a set of nodes for which we derive an appropriate tour.

4.1 Generalized 2-opt Neighborhood (G2-opt)

Renaud et al. [18] introduced the generalized 2-opt heuristic, which is based on
the well known 2-opt heuristic for the classical TSP [14]. G2-opt is defined on a
circular permutation π = 〈π1, . . . , πr〉 indicating the visiting order of the clusters
〈Vπ1 , . . . , Vπr 〉, see Fig. 2(a). A particular permutation π thus represents the set
of all feasible round trips 〈pπ1 , pπ2 , . . . , pπr 〉 with pπi ∈ Vπi , i = 1, . . . , r, and
this set is in general exponentially large with respect to the number of nodes.
However, the minimum cost round trip can be determined via a shortest path
algorithm in polynomial time.

Given the visiting order of clusters, we can construct a graph containing edges
only between nodes of consecutive clusters and a clone of the starting cluster
attached to the last cluster, as it is shown in Fig. 2(b).

(a)
V2V1

V4

V5V3

(b)

V4 V5 V3 V1 V2
V

′

4

Calculation direction

π1 π2 π3 π4 π5
π
′

1
〈 〉

Fig. 2. (a) Visiting order of clusters characterized by permutation π = 〈4, 5, 3, 1, 2〉
and (b) corresponding graph on which the shortest path algorithm is applied, starting
at the first node of cluster V4 and ending at its clone in cluster V ′

4 .

6 B. Hu, G. R. Raidl

On this graph, we calculate shortest paths starting from each node of the
starting cluster and ending at its clone. To ensure that at most one node is
included from each cluster, we may simply assume the edges to be directed
according to π. The overall cheapest path represents the optimal tour for this
cluster order. Formally speaking, let Luv denote the length of the shortest path
from node u ∈ Vπk

to node v ∈ Vπl
, k < l. Let Lu be the length of the shortest

path containing r-edges, starting from u ∈ Vπ1 , and ending at its clone in V ′
π1

.
The length L of the overall shortest tour respecting visiting order π is:

L = minu∈Vπ1
Lu

Lu = minv∈Vπr
(Luv + c(v, u)) ∀u ∈ Vπ1

Luv = c(u, v) ∀u ∈ Vπ1 , ∀v ∈ Vπ2

Luv = minw∈Vπk−1
(Luw + c(w, v)) ∀u ∈ Vπ1 , ∀v ∈ Vπk

, k = 3, . . . , r

To reduce the computational effort, we exploit the fact that π is rotation-
invariant and choose Vπ1 so that it is a cluster of smallest cardinality. The com-
plexity of this dynamic programming algorithm is bounded by O(|Vπ1 | · n2/r).

Our generalized 2-opt neighborhood of a current solution S having cluster
ordering π can now be defined as the set of all feasible round trips induced by
any cluster ordering π′ that differs from π by precisely one inversion Iij , i.e.
π′ = 〈π1, . . . , πi−1, πj , . . . , πi, πj+1, . . . , πr〉, 1 ≤ i < j ≤ r.

Incremental bidirectional shortest path calculation. Instead of determin-
ing the shortest path L always from Vπ1 (a cluster with the smallest number of
nodes) to the cloned cluster V ′

π1
, we can partition this task into three parts:

1. Perform shortest path calculations in forward direction from u ∈ Vπ1 to each
node of a cluster Vπm where m may be chosen arbitrarily.

2. Perform shortest path calculations in backward direction starting from u′ ∈
V ′

π1
to each node of cluster Vπm+1 where u′ is the clone of node u.

3. Consider all edges in Em = {(a, b) ∈ E | a ∈ Vπm ∧ b ∈ Vπm+1} and the
corresponding complete paths from u to u′ including the above determined
shortest paths to nodes in Vπm and Vπm+1 , respectively. Take a (a∗, b∗) ∈ Em

yielding an overall shortest path, i.e. Lua∗+c(a∗, b∗)+Lb∗u′ ≤ Lua+c(a, b)+
Lbu′ ∀(a, b) ∈ Em.

This procedure, illustrated in Fig. 3, is in practice almost equally efficient
as the simple one-way dynamic programming algorithm. When considering that
we want to search the general 2-opt neighborhood, however, it provides the
advantage of allowing for a substantially faster incremental evaluation scheme:
If π′ differs from π by an inversion Iij with i ≤ m ≤ j, we do not have to
recalculate the distances and predecessors of the nodes in clusters Vπ1 , . . . , Vπi−1

and Vπj+1 , . . . , V
′
π1

, assuming we have stored these values in steps 1 and 2 before.
As a matter of course, m is always chosen to lie within the inversion interval.

Clusters from Vπi to Vπj are marked “invalid” for both calculation directions
after performing the inversion. Whenever we apply the shortest path algorithm

Effective Neighborhood Structures for the GTSP 7

V4 V5 V3 V1 V2
V

′

4

Calculation direction 1 Calculation direction 2

π1 π2 π3 π4 π5
π
′

1
〈 〉

Fig. 3. Example for a bidirectional shortest path calculation with m = 3.

in a particular direction, the evaluation is skipped for all clusters which are
still valid, and the actual computation starts at the first invalid cluster. When
processing these clusters, their “invalid” flags are removed.

To fully exploit this incremental evaluation, we further enumerate the possi-
ble inversions of π in a specific way: First, all inversions of pairs of two adjacent
clusters are considered from left to right, then the inversions of all triplets in the
reverse direction from right to left, next all 4-cluster inversions from left to right
again, etc. Hereby, π1 (and its clone in the corresponding graph for the shortest
path calculation) remain fixed. See also Fig. 4. This strategy allows the largest
data-reuse and minimizes the total number of clusters for which computations
are necessary. It is in particular advantageous when we use a next improvement
strategy in the local search, since we start with inversions of smallest size yielding
the largest time savings; see Algorithm 3.

In the worst case, when we have to evaluate the whole neighborhood, O(r2)
inversions must be considered. A naive complete enumeration would require time
O(r2 · |Vπ1 | · n2/r) = O(|Vπ1 | · n2 · r). To be more precise, we have (r − l + 1)
possibilities for inversions of length l, l = 2, . . . , r − 2. For each of them, the
classical shortest path algorithm would have to consider all r clusters. However,
with the incremental bidirectional shortest path calculation, we only have to
consider l + 1 clusters after the first iteration. Hence, the classical algorithm
evaluates

∑r−2
l=2 r · (r − l + 1) = r3−r2−6r

2 clusters while the incremental scheme

π1 π2 π3 π4 πr−2 πr−1 πr
〈 〉

. . .

. . .

. . .
. . .

2-node path inversions

3-node path inversions

π5 πr−3

Fig. 4. Enumeration order of the inversions on π for making best use of the incremental
bidirectional shortest path calculations.

8 B. Hu, G. R. Raidl

Algorithm 3: Search Generalized 2-opt Neighborhood (S)

for l = 2, . . . , r − 2 do
if l is even then

for i = 2, . . . , r − l + 1 do
π′ = 〈π1, . . . , πi−1, πi+l−1, . . . , πi, πi+l, . . . , πr〉
Apply incremental bidirectional shortest path calculation on π′

if obtained solution S′ is better than original solution S then
return solution S′

else
for i = r − l + 1, . . . , 2 do

π′ = 〈π1, . . . , πi−1, πi+l−1, . . . , πi, πi+l, . . . , πr〉
Apply incremental bidirectional shortest path calculation on π′

if obtained solution S′ is better than original solution S then
return solution S′

return: no better solution found, i.e. S is a local optimum w.r.t. G2-opt

only processes
∑r−2

l=2 (l + 1) · (r − l + 1) = r3+6r2−25r−6
6 clusters for the whole

neighborhood. Asymptotically, the latter is faster by factor 3.

4.2 Node Exchange Neighborhood (NEN)

With this new neighborhood structure, the search focuses on the set of spanned
nodes P = {p1, . . . , pr}. The node exchange neighborhood of a current solution
S with spanned nodes P includes all feasible tours S′ for each node set P ′ that
can be derived from P by replacing one spanned node pi ∈ Vi, i ∈ {1, . . . , r}, by
another node v of the same cluster Vi. This neighborhood therefore is induced
by

∑r
i=1(|Vi| − 1) = O(|V |) different node sets resulting in a total of O(|V | · r!)

round trips.
Unfortunately, determining the minimum cost round trip for a given node set

P ′ is NP-hard since this subproblem corresponds to the classical TSP. Hence,
instead of calculating the optimal round trip, we use the well known Chained
Lin-Kernighan (CLK) algorithm [15] implemented in the Concorde library1 to
find a good but not necessarily optimal tour S′ for a certain P ′.

Though the size of this TSP is relatively small (|P ′| = r), a complete eval-
uation of NEN is relatively time-demanding – even when using CLK – since
we have to solve O(|V |) different TSPs. To further speed up the neighborhood
search, we restrict CLK to consider edges of the k-nearest-neighbor graph in-
duced by P ′ only. For Euclidean instances and available point positions, this
k-nearest-neighbor graph is efficiently derived using a KD-tree data structure.
Tuning the parameter k, we can balance between speed and thoroughness of the
search process. For the actual tests, we set k to 10. Algorithm 4 summarizes the
steps of evaluating NEN.
1 www.tsp.gatech.edu/concorde.html

Effective Neighborhood Structures for the GTSP 9

Algorithm 4: Search Node Exchange Neighborhood (S)

for i = 1, . . . , r do
forall v ∈ Vi \ {pi} do

P ′ = P \ {pi} ∪ {v}
determine k-nearest-neighbor graph Gk induced by P ′

apply CLK on Gk to obtain round trip S’
if current solution S′ better than so far best then

save S′ as so far best

restore and return best solution found

5 Variable Neighborhood Search Framework

We use the general variable neighborhood search (VNS) scheme with embedded
variable neighborhood descent (VND) as proposed in [6].

Arrangement of the neighborhoods in VND: We alternate between G2-opt and
NEN in this order. G2-opt is always considered first since its evaluation has a
lower computational complexity.

Shaking in VNS: To perform shaking, we randomly exchange s spanned nodes
by other nodes of the corresponding clusters and apply s random swap moves
on the cluster ordering π. A swap move exchanges two positions in π. Parameter
s depends on the number of clusters in the input graph and varies from 1 to r

7 .
We obtained the best results with these settings for s during our tests.

6 Computational Results

We tested the VNS on TSPlib2 instances with geographical clustering which
is done as follows [3]. First, r center nodes are chosen to be located as far as
possible from each other. This is achieved by selecting the first center randomly,
the second center as the farthest node from the first center, the third center as
the farthest node from the set of the first two centers, and so on. Then, the
clustering is done by assigning each of the remaining nodes to its nearest center
node. We consider the largest of such TSPlib instances with up to 442 nodes,
97461 edges, and 89 clusters.

Our experiments were performed on a Pentium 4 2.6 GHz PC. In order
to compute average values and standard deviations, we performed 30 runs for
each instance. The VNS terminated after 10 consecutive outer iterations without
finding a new best solution.

Table 1 presents results of our VNS and compares them to those of Fischetti
et al’s exact branch-and-cut algorithm (B&C) [5], the GI3 heuristic [19], the
random key GA (rk-GA) [21], and the hybrid chromosome GA (hc-GA) [8].

2 http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html

10 B. Hu, G. R. Raidl

Listed are for each instance its name, the numbers of nodes and clusters, the
optimal solution value and run-time of B&C, and average percentage gaps of
the heuristics’ final objective values to the optimum solution value, as well as
corresponding CPU-times. Best results are printed bold.

Since the B&C algorithm ran on a HP 9000/720, the GI3 heuristic on a Sun
Sparc Station LX, the rk-GA on a Pentium 4, 3.2 GHz PC, and the hc-GA on
a 1.2 GHz PC, it is hard to compare the CPU-times directly. Nevertheless, it
is obvious that in particular the rk-GA is very fast and computes high quality
results within a few seconds. Comparing VNS with both GAs, VNS requires
significantly more time, but it is often able to find superior solutions.

Especially on the larger instances with ≥ 299 nodes, VNS benefits from the
sophisticated large neighborhood search and its average gaps of are consistently
substantially smaller than those of all other considered heuristics. For 18 out of
the 28 instances, VNS was even able to obtain optimal solutions in all of the 30
performed runs; its total average gap is only 0.05%, and no average gap exceeds

Table 1. Results on TSPlib instances with geographical clustering.

Instance B&C GI3 rk-GA hc-GA VNS

Name |V | r Copt time gap time gap time gap time gap σgap time

kroa100 100 20 9711 18.4s 0.00% 6.8s 0.00% 0.4s - - 0.00% 0.00 2.5s
krob100 100 20 10328 22.2s 0.00% 6.4s 0.00% 0.4s - - 0.00% 0.00 0.4s
rd100 100 20 3650 16.6s 0.00% 7.3s 0.00% 0.5s - - 0.00% 0.00 0.9s
eil101 101 21 249 25.6s 0.40% 5.2s 0.00% 0.4s - - 0.04% 0.12 16.3s
lin105 105 21 8213 16.4s 0.00% 14.4s 0.00% 0.5s - - 0.00% 0.00 0.6s
pr107 107 22 27898 7.4s 0.00% 8.7s 0.00% 0.4s - - 0.00% 0.00 0.5s
pr124 124 25 36605 25.9s 0.43% 12.2s 0.00% 0.6s - - 0.00% 0.00 26.6s
bier127 127 26 72418 23.6s 5.55% 36.1s 0.00% 0.4s - - 0.00% 0.00 1.4s
pr136 136 28 42570 43.0s 1.28% 12.5s 0.00% 0.5s - - 0.00% 0.00 48.1s
pr144 144 29 45886 8.2s 0.00% 16.3s 0.00% 1.0s - - 0.00% 0.00 4.0s
kroa150 150 30 11018 100.3s 0.00% 17.8s 0.00% 0.7s 0.00% 0.4s 0.00% 0.00 1.2s
krob150 150 30 12196 60.6s 0.00% 14.2s 0.00% 0.9s 0.00% 0.9s 0.00% 0.00 3.7s
pr152 152 31 51576 94.8s 0.47% 17.6s 0.00% 1.2s 0.00% 0.6s 0.00% 0.00 7.6s
u159 159 32 22664 146.4s 2.60% 18.5s 0.00% 0.8s 0.00% 1.0s 0.00% 0.00 22.6s
rat195 195 39 854 245.9s 0.00% 37.2s 0.00% 1.0s - - 0.01% 0.04 105.6s
d198 198 40 10557 763.1s 0.60% 60.4s 0.00% 1.6s - - 0.02% 0.05 141.3s
kroa200 200 40 13406 187.4s 0.00% 29.7s 0.00% 1.8s 0.01% 1.8s 0.00% 0.00 16.9s
krob200 200 40 13111 268.5s 0.00% 35.8s 0.00% 1.9s 0.06% 8.0s 0.00% 0.00 18.8s
ts225 225 45 68340 37875.9s 0.61% 89.0s 0.02% 2.1s 0.13% 19.0s 0.03% 0.07 274.4s
pr226 226 46 64007 106.9s 0.00% 25.5s 0.00% 1.5s 0.00% 0.6s 0.00% 0.00 1.7s
gil262 262 53 1013 6624.1s 5.03% 115.4s 0.79% 1.9s 0.00% 41.2s 0.05% 0.16 372.5s
pr264 264 53 29549 337.0s 0.36% 64.4s 0.00% 2.1s 0.00% 3.1s 0.01% 0.04 268.2s
pr299 299 60 22615 812.8s 2.23% 90.3s 0.11% 3.2s 0.10% 68.6s 0.00% 0.01 220.5s
lin318 318 64 20765 1671.9s 4.59% 206.8s 0.62% 3.5s 0.72% 18.3s 0.30% 0.61 320.1s
rd400 400 80 6361 7021.4s 1.23% 403.5s 1.18% 5.9s 2.15% 17.4s 0.74% 0.51 502.0s
fl417 417 84 9651 16719.4s 0.48% 427.1s 0.05% 5.3s 0.12% 19.4s 0.00% 0.00 92.4s
pr439 439 88 60099 5422.8s 3.52% 611.0s 0.26% 9.5s 0.76% 10.9s 0.12% 0.11 519.0s
pcb442 442 89 21657 58770.5s 5.91% 567.7s 1.70% 9.0s 0.94% 31.8s 0.08% 0.08 596.6s

Average gaps 1.26% 0.17% 0.30% 0.05%

Effective Neighborhood Structures for the GTSP 11

0.75%. From all considered heuristics, GI3 was the weakest, with worst average
results and running times in the same order of magnitude as our VNS.

In particular for the two large instances pr226 and fl417, already VND was
able to directly identify the optimal solutions, i.e. merely alternating between
G2-opt and NEN was sufficient to get to the global optima, and no VNS iter-
ations were required. This documents how well these neighborhood structures
complement each other.

7 Conclusions and Future Work

In this article, we proposed a variable neighborhood search approach for the gen-
eralized traveling salesman problem utilizing two large neighborhood structures.
They can be seen as dual to each other: While G2-opt predefines the possi-
ble cluster orderings and uses a relatively sophisticated but efficient procedure
for augmenting these partial solutions with appropriate selections of nodes, the
situation is vice versa in the newly proposed NEN.

Considering in particular G2-opt, the described incremental evaluation
scheme turned out to be a major speed-up factor in comparison to the pre-
viously used evaluation via independent standard shortest path calculations.

It further turned out that the VNS slightly benefits from a good starting
solution. Therefore, we described the more generally applicable nearest neighbor
heuristic and particularly for Euclidean instances with given point positions the
generalized insertion heuristic. Both are reasonably fast and provide solutions of
appropriate quality.

We tested the VNS on TSPlib instances with geographical clustering con-
sisting of up to 442 nodes. Compared to two recent genetic algorithms, the VNS
performs slower, but it is able to generate remarkably better solutions, in par-
ticular for larger instances.

Future work will in particular include tests on other types of instances, e.g.
with non-Euclidean distances and incomplete graphs. An incremental evaluation
scheme for NEN seems to be a challenging task but might further speed up the
algorithm. Promising is also the combination of these neighborhood structures
with others, and to investigate their application in other types of metaheuristics.

References

1. A. Behzad and M. Modarres. A new efficient transformation of the generalized
traveling salesman problem into traveling salesman problem. In Proceedings of the
15th International Conference of Systems Engineering, pages 6–8, 2002.

2. V. Dimitrijevic and Z. Saric. An efficient transformation of the generalized traveling
salesman problem into the traveling salesman problem on digraphs. Information
Science, 102(1-4):105–110, 1997.

3. C. Feremans. Generalized Spanning Trees and Extensions. PhD thesis, Universite
Libre de Bruxelles, 2001.

4. M. Fischetti, J. J. Salazar, and P. Toth. The symmetric generalized traveling
salesman polytope. Networks, 26:113–123, 1995.

12 B. Hu, G. R. Raidl

5. M. Fischetti, J. J. Salazar, and P. Toth. A branch-and-cut algorithm for the
symmetric generalized traveling salesman problem. Operations Research, 45:378–
394, 1997.

6. P. Hansen and N. Mladenovic. An introduction to variable neighborhood search.
In S. Voss et al., editors, Meta-heuristics, Advances and trends in local search
paradigms for optimization, pages 433–458. Kluwer Academic Publishers, 1999.

7. Henry-Labordere. The record balancing problem: A dynamic programming solu-
tion of a generalized traveling salesman problem. RAIRO Operations Research,
B2:43–49, 1969.

8. H. Huang, X. Yang, Z. Hao, C. Wu, Y. Liang, and X. Zhao. Hybrid chromosome
genetic algorithm for generalized traveling salesman problems. Advances in Natural
Computation, 3612/2005:137–140, 2005.

9. G. Laporte, A. Asef-Vaziri, and C. Sriskandarajah. Some applications of the gen-
eralized travelling salesman problem. Journal of the Operational Research Society,
47(12):1461–1467, 1996.

10. G. Laporte, H. Mercure, and Y. Nobert. Generalized traveling salesman problem
through n sets of nodes: The asymmetric case. Discrete Applied Mathematics,
18:185–197, 1987.

11. G. Laporte and Y. Nobert. Generalized traveling salesman problem through n sets
of nodes: An integer programming approach. INFOR, 21, issue 1:61–75, 1983.

12. G. Laporte and F. Semet. Computational evaluation of a transformation procedure
for the symmetric generalized traveling salesman problem. INFOR, 37(2):114–120,
1999.

13. Y. N. Lien, E. Ma, and B. W. S. Wah. Transformation of the generalized travel-
ing salesman problem into the standard traveling salesman problem. Information
Sciences, 74(1–2):177–189, 1993.

14. S. Lin. Computer solutions of the traveling salesman problem. Bell Systems Com-
puter Journal, 44:2245–2269, 1965.

15. O. Martin, S. W. Otto, and E. W. Felten. Large-step Markov chains for the
traveling salesman problem. Complex Systems, 5:299–326, 1991.

16. C. Noon and J. C. Bean. An efficient transformation of the generalized traveling
salesman problem. INFOR, 31(1):39–44, 1993.

17. C. E. Noon. The Generalized Traveling Salesman Problem. PhD thesis, University
of Michigan, 1988.

18. J. Renaud and F. F. Boctor. An efficient composite heuristic for the symmetric
generalized traveling salesman problem. European Journal of Operational Research,
108:571–584, 1998.

19. J. Renaud, F. F. Boctor, and G. Laporte. A fast composite heuristic for the
symmetric traveling salesman problem. INFORMS Journal on Computing, 8, issue
2:134–143, 1996.

20. J. P. Saskena. Mathematical model of scheduling clients through welfare agencies.
Journal of the Canadian Operational Research Society, 8:185–200, 1970.

21. L. V. Snyder and M. S. Daskin. A random-key genetic algorithm for the generalized
traveling salesman problem. Technical Report 04T-018, Dept. of Industrial and
Systems Engineering, Lehigh University, Bethlehem, PA, USA, 2004.

22. Srivastava, S. S. S. Kumar, R. C. Garg, and P. Sen. Generalized traveling salesman
problem through n sets of nodes. CORS Journal, 7:97–101, 1969.

23. C. Wu, Y. Liang, H. P. Lee, and C. Lu. Generalized chromosome genetic algorithm
for generalized traveling salesman problems and its applications for machining.
Physical Review E, 70, issue 1, 2004.

