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Abstract

We consider the generalized minimum edge-biconnected network problem where the nodes of a graph

are partitioned into clusters and exactly one node from each cluster is required to be connected in an

edge-biconnected way. Instances of this problem appear, for example, in the design of survivable backbone

networks. We present different variants of a variable neighborhood search approach that utilize different

types of neighborhood structures, each of them addressing particular properties as spanned nodes and/or

the edges between them. For the more complex neighborhood structures, we apply efficient techniques

– such as a graph reduction – to essentially speed up the search process. For comparison purposes, we

use a mixed integer linear programming formulation based on multi-commodity flows to solve smaller

instances of this problem to proven optimality. Experiments on such instances indicate that the variable

neighborhood search is also able to identify optimal solutions in the majority of test runs, but within

substantially less time. Tests on larger Euclidean and random instances with up to 1280 nodes, which

could not be solved to optimality by mixed integer programming, further document the efficiency of the

variable neighborhood search. In particular, all proposed neighborhood structures are shown to contribute

significantly to the search process.
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1 Introduction

The Generalized Minimum Edge-Biconnected Network Problem (GMEBCNP) is defined as follows. We

consider a complete, undirected weighted graph G = 〈V,E, c〉 with node set V , edge set E, and edge cost

function c : E → R+. Node set V is partitioned into r pairwise disjoint clusters V1, V2, . . . , Vr,
⋃r

i=1 Vi =

V, Vi ∩ Vj = ∅ ∀i, j = 1, . . . , r, i 6= j.

A solution to the GMEBCNP defined on G is a subgraph S = 〈P, T 〉, P = {p1, . . . , pr} ⊆ V connecting

exactly one node from each cluster, i.e., pi ∈ Vi, ∀i = 1, . . . , r, and containing no bridges [4, 15, 17]; see

Figure 1. A bridge is an edge which does not lie on any cycle and thus its removal would disconnect the

graph. The cost of such an edge-biconnected network is its total edge cost, i.e., c(T ) =
∑

(u,v)∈T c(u, v), and

the objective is to identify a feasible solution with minimum cost. This problem is NP-hard since the task of

finding a minimum cost biconnected network spanning all nodes of a given graph is already NP-hard [4, 6],

which is the special case with |Vi| = 1, ∀i = 1, . . . , r.

V1 V2

V3
V4

V5

p1

p2

p3

p4

p5

V6

p6

Figure 1: Example for a solution to the GMEBCNP.

The GMEBCNP was introduced by Huygens [15] and it arises in the design of backbones in large com-

munication networks. For example, we can consider the possible access points of an existing local network

as nodes of a cluster when designing a backbone network connecting multiple LANs. Survivability by means

of a single link outage is covered via the considered edge redundancy [4].

In this paper, we propose variants of an improved Variable Neighborhood Search (VNS) approach for the

GMEBCNP. VNS, combined with Variable Neighborhood Descent (VND) as local improvement procedure, is

a metaheuristic which exploits systematically the idea of changing between different types of neighborhoods

to head for superior local optima as well as a mechanism called shaking for reaching under-explored areas

of the search space. For a more detailed description of VNS, see [10, 11]. We also propose a Mixed Integer

Programming (MIP) formulation based on multi-commodity flows for solving smaller instances of this problem

to provable optimality.
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The remainder of this article is organized as follows. In Section 2, we give an overview of research done

on the GMEBCNP and other related problems. Section 3 describes the components of our VNS approach

in detail and Section 4 introduces the MIP formulation. Section 5 describes the instances we used for our

computational experiments. Finally, we show the experimental results in Section 6 and conclude in Section

7.

2 Previous Work

Despite the importance of this problem in survivable network design, not much research has been done on

this particular problem until now. Huygens [15] studied the GMEBCNP and provided integer programming

formulations along with separation techniques, but no practical results on actual instances were published.

Though not identical, the GMEBCNP is related to the Generalized Minimum Spanning Tree Problem

(GMSTP) [18]. As a matter of course, some concepts can be adopted from there. Hu et al. [13] approached

the GMSTP from two different directions by utilizing dual representations and associated neighborhood

structures within a VNS. By fixing the spanned nodes of each cluster, optimal edges can be efficiently

computed via Kruskal’s MST algorithm. On the other hand, by fixing the connections between clusters, an

optimal choice of spanned nodes can be determined via dynamic programming in polynomial time. Though

these concepts are not directly applicable for the GMEBCNP due to higher complexity, some neighborhood

structures of the current work are also based on these ideas.

Another related problem is the Generalized Traveling Salesman Problem (GTSP) [12, 20, 21] that is also

NP-hard. Since every solution to the GTSP is obviously edge-biconnected and therefore also a solution to

the GMEBCNP, its solution value can be regarded as an upper bound to the current problem. However, the

GTSP is hard to handle as well, and especially on large graphs, these upper bounds become rather poor as

the overall costs of solutions to the GMEBCNP can be substantially lower. Therefore, we will not consider

the GTSP any further in this article.

The classical minimum edge-biconnected network problem has been shown to be NP-hard by a reduction

from the Hamiltonian cycle problem [6]. Khuller and Vishkin [16] proposed a factor two approximation

algorithm and showed that approximating the optimal solution to within some additive constant is impossible

in polynomial time unless P=NP. Czumaj and Lingas [2] presented more detailed results with respect to the

approximability of the classical problem and gave a polynomial-time approximation scheme for the case of

complete Euclidean graphs in Rd.
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3 Variable Neighborhood Search for the GMEBCNP

In this section, we will first describe the solution representation and the initialization procedure, then discuss

our neighborhood structures along with techniques to optimize the search process. Finally we assemble our

VND and VNS framework.

3.1 Terminology

For solution representation, graph reduction, and neighborhood structures, we use following terminology.

The global graph, denoted by Gg = 〈V g, Eg〉, consists of nodes corresponding to clusters in G, i.e.,

V g = {V1, V2, . . . , Vr}, and the complete edge set Eg = {(Vi, Vj) | Vi ∈ V g ∧ Vj ∈ V g}. Hereby, each global

connection (Vi, Vj) represents all edges {(u, v) ∈ E | u ∈ Vi ∧ v ∈ Vj} of graph G.

When given some feasible candidate solution S = 〈P, T 〉 to the GMEBCNP, its corresponding global

structure is defined as the induced global graph’s subgraph Sg = 〈V g, T g〉 with the global connections

T g = {(Vi, Vj) ∈ Eg | ∃(u, v) ∈ T ∧ u ∈ Vi ∧ v ∈ Vj}; see Figure 2.

V1
V2

V3
V4

V5

V6

Figure 2: Example for the global structure of the solution in Figure 1.

Redundant edges of a candidate solution S = 〈P, T 〉 are edges that can be removed without violating

the edge-biconnectivity property.

3.2 Solution Representation

For each solution, we store the spanned nodes P = {p1, . . . , pr} and the global connections T g. Spanned nodes

p1, . . . , pr alone are insufficient to represent a solution, as finding the cheapest edges for them corresponds to

the classical minimum edge-biconnected network problem which is NP-hard [4, 6]. Similarly, a representation

via global connections alone is also insufficient, since identifying a set of optimal nodes when restricted to a

given global structure is also NP-hard. Since the latter is not obvious, we prove it by a reduction from the

graph coloring problem; for more details see also [17].
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a) original graph with possible node colors b) corresponding GMEBCNP structure

c) possible edges d) optimal edges

0

e) solution to the coloring problem
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V3 V4
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V1 V2

V3 V4

0
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Figure 3: Transformation of the graph coloring problem into the problem of identifying an optimal node
selection w.r.t. a given global structure.

Theorem 1 Given an (edge-biconnected) global structure Sg = 〈V g, T g〉, T g ⊆ Eg, it is NP-hard to identify

an optimal selection of nodes P yielding a corresponding minimum cost GMEBCNP solution.

Proof Consider the classical NP-hard graph coloring problem [6] on an undirected graph H = 〈U,F 〉
(Figure 3a): To each node, one color of a restricted set of colors needs to be assigned in such a way that any

pair of adjacent nodes is differently colored. We consider the input graph H as the global structure Sg, and

the clustered graph G = 〈V,E〉 is derived by the following procedure: Each node i ∈ U becomes a cluster Vi

and for each possible color c of i, we introduce a node vc
i in cluster Vi (Figure 3b). For each edge (i, j) ∈ F ,

we create in the clustered graph edges (vc
i , v

d
j ) ∀ vc

i ∈ Vi, ∀ vd
j ∈ Vj (Figure 3c). An edge’s cost is 0 if c 6= d

and 1 otherwise.

If we are able to solve the problem of identifying the optimal nodes of the clusters in order to minimize

the GMEBCNP’s solution cost (Figure 3d), we also solve the original graph coloring problem on H: Suppose

vc
i is the selected node in cluster Vi, then c becomes the color of node i ∈ U (Figure 3e). The validity of the
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theorem thus follows from the NP-hardness of the graph coloring problem. �

So far we considered arbitrary global structures that may contain redundant edges. As in our VND, we

always only deal with edge-minimal global structures, i.e., global structures without redundant edges, we

further show that the NP-hardness even holds for this special case.

Theorem 2 Given an edge-minimal edge-biconnected global structure Sg = 〈V g, T g〉, T g ⊆ Eg, it is NP-

hard to identify an optimal selection of nodes P yielding a corresponding minimum cost GMEBCNP solution.

a) global structure Sg with one b) edge-minimal global structure Sg
min

c) possible connections and the optimal one

0

0

0

d) backward transformation

0

V1 V2

V3 V4

V1 V2

V3

V4

V e
3

V e
2

V2

V3

V e
3

V e
2

V2

V3

between V2 and V3 between V2 and V3

e

redundant edge e

Figure 4: Transformation of the graph coloring problem: Extension towards an edge-minimal global structure.

Proof If the global structure Sg, after the previous transformation, is not edge-minimal, T g contains at

least one redundant connection (Figure 4a). For each such redundant connection e = (Vi, Vj) ∈ T g, we add

new artificial clusters V e
i and V e

j , which are exact copies of Vi and Vj , respectively. The global connection

(Vi, Vj) gets replaced by (Vi, V
e
i ), (V e

i , V
e
j ), and (V e

j , Vj) (Figure 4b). Let Sg
min = 〈V g

min, T
g
min〉 denote the

resulting structure, which obviously is edge-minimal.

When adding the clusters V e
i and V e

j , we have to modify the edges E in the clustered graph G as well.

We replace each edge (u, v) ∈ E with u ∈ Vi ∧ v ∈ Vj by (ue, ve) with ue ∈ V e
i ∧ ve ∈ V e

j where ue and ve

are the new copies of u and v, respectively. Between Vi and V e
i , we add edges (u, ue) with costs 0 for all

u ∈ Vi. The same procedure is applied for Vj and V e
j (Figure 4c). Let G′ = 〈V ′, E′, c〉 denote the resulting

modified graph. By determining an optimal selection of nodes in G′ subject to the global structure T g
min, we
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get the optimal node set in G subject to the global structure T g by simply ignoring the artificial clusters

(Figure 4d). Thus, we also obtain the optimal solution to the original graph coloring problem on H by

choosing the corresponding colors.

The backward transformation is valid because only one node (hence one color) is chosen per cluster as we

solve the GMEBCNP containing exactly one node per cluster. Furthermore, the selected node of a cloned

cluster is always the clone of the selected node in the original cluster due to the zero cost edges. �

3.3 Creating an Initial Solution

Our strategy for determining an initial solution for the GMEBCNP is inspired by the Christofides heuristic

for the traveling salesman problem [1] and therefore is called the Adapted Christofides Heuristic (ACH). Its

pseudo-code is listed in Algorithms 1 and 2. We start with a solution to the Generalized Minimum Spanning

Tree Problem computed via the Improved Kruskal Heuristic (IKH) from Golden et al. [8]. This algorithm

considers edges in increasing cost-order and adds an edge to the solution iff it does not introduce a cycle and

does not connect a second node of any cluster. By fixing an initial node to be in the resulting generalized

spanning tree, different solutions can be obtained. Therefore, this process is carried out |V | times, once for

each node to be initially fixed, and the overall cheapest spanning tree is adopted.

To augment this spanning tree to become a valid solution for the GMEBCNP, we then determine the set

Vo of nodes with odd degree deg(v) and sort the edges induced by Vo and not contained in the spanning tree

with respect to increasing edge costs. Next, we derive a matching TM for the node set Vo by iterating through

these edges and adopting any edge incident to two yet uncovered nodes until all nodes in Vo are covered.

Note that this procedure, shown in Algorithm 2, does not necessarily generate a minimum cost matching.

Unfortunately, these steps still do not necessarily yield a solution completely satisfying the edge-

biconnectivity property. More precisely, ACH will fail to find a perfect matching if the last two uncovered

nodes u′ and v′ are adjacent in the spanning tree. However, it is easy to see that S0 = 〈P, T0∪TM〉 will consist

of at most two edge-biconnected components even if no perfect matching is found, as both eventually existing

components of 〈P, T0 ∪ TM \ {(u′, v′)}〉 are Eulerian in that case. Therefore Algorithm 1 adds the cheapest

edge not yet part of the solution between the eventually remaining two edge-biconnected components.

At the end, we remove redundant edges which might occur due to the previous step with regard to

decreasing edge costs. Ties that might appear due to edges having identical costs are broken at random.

The overall time complexity of ACH is O(|E| log |E|+ r3). The most expensive operations are generating

a solution to the GMSTP by IKH with complexity O(|E| log |E|) [8], and finding and removing the redundant

edges which can be done with complexity O(r3).

7



Algorithm 1: Adapted Christofides Heuristic
S0 = 〈P, T0〉 = feasible GMST computed via Improved Kruskal Heuristic
TM = compute matching (S0) // see Algorithm 2
S0 = 〈P, T0 ∪ TM〉
if S0 has two edge-biconnected components then

add cheapest edge ∈ E \ T0 between the two edge-biconnected components
remove redundant edges

Algorithm 2: compute matching (GMST S0 = 〈P, T0〉)
TM = ∅
Vo = {v ∈ P | deg(v) is odd}
Eo = {(u, v) ∈ E | u, v ∈ Vo ∧ (u, v) /∈ T0}
sort Eo according to increasing costs, i.e., c(e1) ≤ · · · ≤ c(e|Eo|)
i = 1
while Vo 6= ∅ ∧ i < |Eo| do

// current edge ei = (ui, vi)
if ui ∈ Vo ∧ vi ∈ Vo then

TM = TM ∪ {ei}
Vo = Vo \ {ui, vi}

i = i+ 1
return TM

3.4 Neighborhood Structures

We propose four different types of neighborhood structures, each of them focusing on different aspects of

solutions to the GMEBCNP. For two of them, there exist simple versions and advanced versions making use

of the following graph reduction technique.

Graph Reduction: Though it is generally not possible to derive an optimal set of spanned nodes in

polynomial time when a global structure Sg is given, this task becomes feasible once the spanned nodes in a

few specific clusters are fixed. The underlying concept, called graph reduction, is based on the observation that

good solutions to the GMEBCNP usually consist of only few clusters with spanned nodes of degree greater

than two (branching clusters) and long paths of clusters with spanned nodes of degree two connecting them

(path clusters). Once the spanned nodes within all branching clusters are fixed, it is possible to efficiently

determine for each cluster path the optimal selection of remaining nodes by computing the shortest path

between the two fixed branching cluster nodes in the subgraph of G represented by the cluster path.

Formally, for any global structure Sg = 〈V g, T g〉, we can define a reduced global structure Sg
red =

〈V g
red, T

g
red〉. Vred denotes the branching clusters, i.e., V g

red = {Vi ∈ V g | deg(Vi) ≥ 3} with deg(Vi) be-

ing the degree of cluster Vi in Sg. T g
red consists of edges which represent strings of path clusters connecting

these branching clusters, i.e., T g
red = {(Va, Vb) | (Va, Vk1), (Vk1 , Vk2), . . . , (Vkl−1 , Vkl

), (Vkl
, Vb) ∈ T g ∧ Va, Vb ∈

V g
red ∧ Vki

/∈ V g
red, ∀i = 1, . . . , l}.
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Corresponding to the reduced global structure Sg
red = 〈V g

red, T
g
red〉 we can define a reduced graph Gred =

〈Vred, Ered〉 with all nodes of branching clusters Vred = {v ∈ Vi | Vi ∈ V g
red} and edges between any pair of

nodes whose clusters are adjacent in the reduced global structure, i.e., (i, j) ∈ Ered ⇔ (Vi, Vj) ∈ T g
red,∀i ∈

Vi, j ∈ Vj . Each such edge (i, j) corresponds to the shortest path connecting i and j in the subgraph of G

represented by the reduced structure’s edge (Vi, Vj), and (i, j) therefore gets assigned this shortest path’s

cost; see Figure 5.

e f

1
2

3

4 3

2

7

V3

c dV2

1

7 3
1

5 5

4 6

V4 g h

5V1

a b

V1

V4 hg

a b

Figure 5: Computing the shortest paths between all node pairs of two branching clusters V1 and V4.

When fixing the spanned nodes in V g
red we can determine the cost of the corresponding solution S with

optimally chosen nodes in path clusters efficiently by using the precomputed shortest path costs stored with

the reduced graph’s edges. Decoding the corresponding solution, i.e., making the optimal spanned nodes

within path clusters explicit, is done by choosing all nodes on the shortest paths corresponding to used edges

from Ered.

For details on how the graph reduction can be efficiently implemented, we refer to [17]. An edge-minimal

solution to the GMEBCNP, as it is obtained from our initialization procedure, may consist of O(r) edges

only. When computing the corresponding reduced global structure and reduced graph, each solution edge

is considered exactly once, and for each edge all combinations of nodes within three clusters need to be

considered. The overall worst case time complexity is thus O(r · d3
max), with dmax being the maximum

number of nodes within a single cluster.

Figure 6 shows an example of reducing the number of clusters to be further considered from nine to

two. Note that cyclic paths in T g, i.e., Va = Vb, will yield loops in T g
red, as is the case with (V6, V6) in our

example. Furthermore, multiple cluster paths may exist between two branching clusters, as for V1 and V6,

and they lead to multi-edges in the reduced graph. We can get rid of such multi-edges by replacing them

with corresponding simple edges and summing up the costs.
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V1

V5
V2

V4

V3 V6

V7 V9

V8

V1

V6

V1

V6

Figure 6: Example for graph reduction: V1 and V6 are branching clusters, while all others are path clusters.

3.4.1 Simple Node Optimization Neighborhood (SNON)

With this neighborhood structure we try to optimize a solution with respect to the spanned nodes within

clusters while keeping the global structure. SNON consists of all solutions S′ that differ from the current

solution S by exactly one spanned node. A move within SNON (see Figure 7) is accomplished by changing

pi ∈ Vi to p′i ∈ Vi, pi 6= p′i, for i ∈ {1, . . . , r}, removing all edges incident to pi and adding edges from p′i to

all nodes that were incident to pi in S; see Algorithm 3.

As the objective value can be updated in an incremental way, the time complexity of a complete search

in SNON is O(|V | · dmax).

V1 V2

V3
V4

V5

p1

p2

p3 p4

p5

V6

p6

V7

p7

V1 V2

V3
V4

V5

p1

p2

p3 p4

p5

V6

p′
6

V7

p7

Figure 7: A SNON move, changing the spanned node of V6 from p6 to p′6.
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Algorithm 3: Simple Node Optimization (solution S = 〈P, T 〉)
for i = 1, . . . , r do

forall v ∈ Vi \ pi do
change spanned node pi of cluster Vi to v
if current solution better than best then

save current solution as best
restore initial solution

restore and return best solution

3.4.2 Node Optimization Neighborhood (NON)

This neighborhood structure enhances SNON by utilizing the graph reduction technique. NON consists of

all solutions S′ that differ from S by at most two spanned nodes within branching clusters. Again, the global

structure of the solution remains unchanged. By means of the graph reduction technique, spanned nodes of

path clusters are selected in an optimal way once the best neighboring solution is identified on the reduced

graph; see Algorithm 4.

Carrying out graph reduction in advance adds O(r · d3
max) to the time complexity. Since updating the

objective value for a considered neighbor can be done in O(dmax) time and O(r2) neighbors are to be

considered, the overall time complexity of NON is O(r2 · d2
max + r · d3

max).

Algorithm 4: Node Optimization (solution S = 〈P, T 〉)
compute reduced structure Sg

red = 〈V g
red, T

g
red〉

forall Vi, Vj ∈ V g
red ∧ Vi 6= Vj do

forall u ∈ Vi 6= pi do
change used node pi of cluster Vi to u
forall v ∈ Vj do

change used node pj of cluster Vj to v
if current solution better than best then

save current solution as best
restore initial solution

restore best solution // fixes the spanned nodes in branching clusters
decode solution // by using precomputed shortest paths corresponding to used edges in Ered

return solution

3.4.3 Node Re-Arrangement Neighborhood (NRAN)

With this neighborhood structure we try to optimize a solution with respect to the arrangement of nodes.

A neighbor solution S′ in NRAN differs from S by exactly one swap move which exchanges for two nodes

a and b their sets of adjacent nodes Ia and Ib as shown in Figure 8. Set Ia, with respect to solution

S = 〈P, T 〉, is defined as Ia = {w ∈ P | (a,w) ∈ T}. After this swap move, S′ = 〈P, T ′〉 consists of

T ′ = T \ Ia \ Ib ∪ {(a, v) | v ∈ Ib} ∪ {(b, u) | u ∈ Ia}. The pseudocode for completely searching this

neighborhood is given in Algorithm 5.
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Updating the objective value for a single move means to subtract the costs of the original edges and to

add the costs of the new ones. Therefore, a complete evaluation of NRAN, which consists of all solutions S′

differing from S by exactly one swap move, can be done in time O(r2 · dmax).

V1 V2

V3
V4

V5

p1

p2

p3

p4

p5

V6

p6

V7

p7

V1 V2

V3
V4

V5

p1

p2

p3

p4

p5

V6

p6

V7

p7

Figure 8: A NRAN move, swapping p6 and p7.

Algorithm 5: Node Re-Arrangement Optimization (solution S = 〈P, T 〉)
for i = 1, . . . , r − 1 do

for j = i+ 1, . . . , r do
swap adjacency lists of nodes pi and pj

if current solution better than best then
save current solution as best

restore initial solution
restore and return best solution

3.4.4 Cluster Re-Arrangement Neighborhood (CRAN)

This neighborhood structure is an extension to NRAN which again makes use of the graph reduction tech-

nique. Moving from the current solution S to a neighbor solution S′ in CRAN means swapping two nodes in

an analogous way as for NRAN, then computing the reduced graph, and finally determining the best nodes

in all path clusters. Since applying the whole graph reduction after each move is relatively time-expensive,

only incremental updates of the reduced structure and associated information are carried out whenever two

nodes of path clusters are swapped, which is in practice most of the time the case. Whenever two nodes a

and b of degree two on the same reduced path are swapped, only this path has to be updated; if a and b

belong to different paths, only the corresponding two paths must be recomputed. However, if at least one of

these nodes belongs to a branching cluster, the graph reduction procedure must be completely re-applied as

the structure of the whole solution graph may change. The pseudocode is given in Algorithm 6.

The worst case time complexity of completely examining CRAN is O(r3 · d3
max) when graph reduction is

applied after every move. Since the complete evaluation might require too much time on larger instances, we
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abort the neighborhood exploration after a certain time limit is exceeded, returning the so-far best neighbor

instead of following a strict best neighbor strategy.

Algorithm 6: Cluster Re-Arrangement Optimization (solution S = 〈P, T 〉)
compute reduced structure Sg

red = 〈V g
red, T

g
red〉

for i = 1, . . . , r − 1 do
for j = i+ 1, . . . , r do

swap adjacency lists of nodes pi and pj

if Vi or Vj is a branching cluster then
recompute reduced solution Sg

red = 〈V g
red, T

g
red〉

else
if Vi and Vj belong to the same reduced path P then

update P in Sg
red

else
update the path containing Vi in Sg

red

update the path containing Vj in Sg
red

if current solution better than best then
decode and save current solution as best

restore initial solution and Sg
red

restore and return best solution

3.4.5 Edge Augmentation Neighborhood (EAN)

In this neighborhood structure, modifications on the edges are primarily considered. More precisely, EAN of

a solution S = 〈P, T 〉 consists of all solutions S′ reachable from S by including a single additional edge e /∈ T
and removing other, now redundant edges; see Figure 9 and Algorithm 7. Removing e itself is not allowed

since this would obviously lead to the original solution S. We do not have to consider edges e = (a, b) if

deg(a) = deg(b) = 2 and a and b are part of the same reduced path. In these cases, adding e would lead

to a graph where e is the only redundant edge. In practice, this restriction enables a large reduction of the

search space since good solutions usually consist of only few branching clusters and thus only few, but long

reduced paths.

Theoretically, EAN of a solution contains at most O(r2) possible moves and removing redundant edges

has time complexity O(r3). Hence the overall time complexity for evaluating EAN is O(r5).

3.4.6 Node Exchange Neighborhood (NEN)

This neighborhood structure addresses both aspects, changing the spanned nodes as well as the edges con-

necting them. A neighbor solution in NEN differs from the original solution by exactly one spanned node

and an arbitrary number of edges. A single move within NEN is accomplished by first changing pi ∈ Vi to

p′i ∈ Vi, pi 6= p′i, and removing all edges incident to pi. This leads to a graph consisting of at least two and no
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Figure 9: An EAN move, adding (p4, p5) and removing redundant edges (p2, p4) and (p3, p5).

Algorithm 7: Edge Augmentation Optimization (solution S = 〈P, T 〉)
for i = 1, . . . , r − 1 do

for j = i+ 1, . . . , r do
if (i, j) /∈ T then

if deg(i) 6= 2 ∨ deg(j) 6= 2 ∨ i and j are not part of the same reduced path then
add (i, j)
remove redundant edges
if current solution better than best then

save current solution as best
restore initial solution

restore and return best solution

more than deg(pi) + 1 components. We reconnect these parts by adding the cheapest edges between any pair

of these components. Once this step is completed, edge-biconnectivity is restored using the advanced bridge

covering strategy described below. Finally, redundant edges are removed; see Figure 10 and Algorithm 8.

The process of covering all bridges with additional edges can be expensive in practice. When disconnecting

a node in a sparse graph, many bridges may arise. Therefore, we first determine all nodes with degree one

and connect each of them with its cheapest partner. If only a single node with degree one exists, we connect

it with the first reachable node of degree greater than two. This strategy helps to cover many bridges

with only few edges. Remaining bridges are covered by simply adding the cheapest edges between pairs of

edge-biconnected components. Even with this advanced bridge covering strategy, examining NEN still needs

O(|V | · r3) time. Therefore, analogous to CRAN, we stop the search of NEN after a time limit is exceeded

and return the so-far best neighbor solution.

3.5 Variable Neighborhood Descent

We use the traditional general VNS scheme with VND as local improvement as described in [10, 11]. In

order to be able to investigate in particular the efficiency of the more complicated neighborhoods based on
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a) initial solution S = 〈P, T 〉. b) remove all edges incident to p4 and

c) add cheapest edges between all d) restore biconnectivity.

change spanned node of V4 to p′
4.

pairs of graph components.

Figure 10: A NEN move, changing the spanned node of V4, removing all adjacent edges, and re-augmenting
the graph.

Algorithm 8: Node Exchange Optimization (solution S = 〈P, T 〉)
for i = 1, . . . , r do

forall v ∈ Vi \ pi do
remove all edges incident to pi

change used node pi of cluster Vi to v
add cheapest edges between any two graph components
restore biconnectivity
remove redundant edges
if current solution better than best then

save current solution as best
restore initial solution

restore and return best solution

graph reduction (NON, CRAN), two variants of VND differing in the used neighborhoods are considered.

Furthermore, we examine the impact of using the more sophisticated Self-Adaptive Variable Neighborhood

Descent (SAVND) with dynamic neighborhood-ordering as proposed in [14].

The first VND variant, VND1, is shown in Algorithm 9; it only applies the simpler neighborhood structures

without graph reduction, i.e., SNON, NRAN, EAN, and NEN. This ordering has been determined taking
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both the computational complexity as well as preliminary test results into account.

Algorithm 9: VND1 (solution S = 〈P, T 〉)
l = 1
repeat

switch l do
case 1: // SNON

S′ =Simple Node Optimization (S) // see Algorithm 3
case 2: // NRAN

S′ =Node Re-Arrangement Optimization (S) // see Algorithm 5
case 3: // EAN

S′ =Edge Augmentation Optimization (S) // see Algorithm 7
case 4: // NEN

S′ =Node Exchange Optimization (S) // see Algorithm 8

if solution S′ is better than S then
S = S′

l = 1
else

l = l + 1
until l > 4
return solution S

The second VND variant, VND2, is shown in Algorithm 10 and alternates between NON, NRAN, CRAN,

EAN, and NEN. It therefore also uses the more sophisticated neighborhoods having higher computational

complexity due to the applied graph reduction. SNON is not considered since it is fully contained in NON

and preliminary experiments with both of them did not indicate advantages.

Algorithm 10: VND2 (solution S = 〈P, T 〉)
l = 1
repeat

switch l do
case 1: // NON

S′ =Node Optimization (S) // see Algorithm 4
case 2: // NRAN

S′ =Node Re-Arrangement Optimization (S) // see Algorithm 5
case 3: // CRAN

S′ =Cluster Re-Arrangement Optimization (S) // see Algorithm 6
case 4: // EAN

S′ =Edge Augmentation Optimization (S) // see Algorithm 7
case 5: // NEN

S′ =Node Exchange Optimization (S) // see Algorithm 8

if solution S′ is better than S then
S = S′

l = 1
else

l = l + 1
until l > 5
return solution S
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Finally, the self-adaptive variable neighborhood descent (SAVND) uses the same neighborhood structures

as VND2, but instead of a static order, the neighborhoods are rearranged automatically during the search

process. Each neighborhood structure has associated a rating which is updated according to success proba-

bilities and required times for evaluation. In this way, more effective neighborhood structures come to the

fore and will be applied more frequently. For a more detailed description, see [14].

3.6 Variable Neighborhood Search Framework

The pseudocode for the general VNS scheme is given in Algorithm 11 and follows the traditional concept

[10, 11].

Algorithm 11: VNS
create initial solution S
repeat

k = 0
repeat

S′ = S
if k > 0 then

// Shaking (S′, k):
add k randomly chosen edges from E \ T
remove redundant edges

VND1 (S′) // or VND2 (S′) or SAVND (S′)
if solution S′ is better than S then

S = S′

k = 1
else

k = k + 1
until k == kmax

until a termination criterion is met
return solution S

Most of our neighborhood structures used in VND concentrate more on the optimization of the spanned

nodes than on the global structure. In order to enhance diversity, our shaking procedure is therefore based

on EAN. It augments a current solution by k randomly chosen new edges followed by a removal of other, now

redundant edges. This process starts with k = 1 inserted edge, and as long as no improvement is achieved, k

is incremented by one up to kmax = b r
4c. In accordance to the used VND variant, we denote the three VNS

variants VNS1, VNS2, and SAVNS, respectively.

4 A Mixed Integer Programming Formulation for GMEBCNP

To obtain proven optimal solutions for small and medium sized GMEBCNP instances, we propose a multi-

commodity flow MIP formulation based on the local-global approach which was originally suggested for the

GMSTP [19]. We use following decision variables.
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xu,v =


1 if the edge (u, v) is included in the solution

0 otherwise
∀(u, v) ∈ E

zv =


1 if the node v is connected in the solution

0 otherwise
∀v ∈ V

yi,j =


1 if cluster Vi is connected to cluster Vj in the global structure

0 otherwise
∀(i, j) ∈ Eg

fk
i,j =


1 if a flow f of commodity k exists from cluster i to cluster j

0 otherwise

∀i, j = 1, . . . , r

∀k = 2, . . . , r

The MIP formulation consists of two parts: The multi-commodity flow part operates on the global

structure and is based on sending from cluster V1, which is defined to be the root, two units of flow f to

every other cluster using edge-disjoint routes. Flows dedicated to different clusters are distinguished by their

commodity k. The result is stored in the binary variables yi,j indicating the global connections. The local-

global part, originally introduced by Pop [19] for the GMSTP, relates the local variables xu,v and zv with

the global connections.

minimize
∑

(u,v)∈E

cu,v xu,v(1)

subject to
r∑

i=1

fk
i,j −

r∑
l=1

fk
j,l =


−2 if j = 1

2 if j = k

0 else

∀j = 1, . . . , r, ∀k = 2, . . . , r(2)

fk
i,j + fk

j,i ≤ 1 ∀i, j = 1, . . . , r, ∀k = 2, . . . , r(3) ∑
v∈Vk

zv = 1 ∀k = 1, . . . , r(4)

∑
u∈Vi,v∈Vj

xu,v = yi,j ∀(i, j) ∈ Eg(5)
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xu,v ≤ zu ∀i = 1, . . . , r, , ∀u ∈ Vi, ∀v ∈ V \ Vi(6)

yi,j ≥ fk
i,j ∀i, j = 1, . . . , r, i 6= j, ∀k = 2, . . . , r(7)

fk
i,j ≥ 0 ∀i, j = 1, . . . , r, ∀k = 2, . . . , r(8)

xu,v ∈ {0, 1} ∀(u, v) ∈ E(9)

yi,j ∈ {0, 1} ∀(i, j) ∈ Eg(10)

zv ∈ {0, 1} ∀v ∈ V(11)

Constraints (2) ensure that two commodities k of flow f are produced in V1, preserved by every cluster

they are not dedicated for, and consumed by cluster Vk. To achieve edge-biconnectivity, inequalities (3)

forbid the transportation of two commodities dedicated for the same cluster over the same connection. To

obtain a valid global structure, inequalities (7) ensure global connections to be included in the solution if a

flow variable is active on it. Constraints (4) guarantee that precisely one node is selected per cluster and

equations (5) only allow edges between nodes of clusters which are connected in the global structure. Finally,

inequalities (6) ensure that only edges incident to selected nodes are chosen.

5 Test Instances

We tested our algorithms on Euclidean TSPlib1 instances with geographical center clustering according to

[3, 5] and random instances originally introduced by Ghosh [7] for the GMSTP.

Geographical clustering on TSPlib instances is done as follows. First, r center nodes are chosen to be

located as far as possible from each other. This is achieved by selecting the first center randomly, the second

center as the farthest node from the first center, the third center as the farthest node from the set of the

first two centers, and so on. Then, clustering is done by assigning each of the remaining nodes to its nearest

center node. We consider the larger TSPlib instances with up to 442 nodes, 97461 edges, and 89 clusters;

details are listed in Table 1. The values in the columns denote names of the instances, numbers of nodes,

numbers of edges, numbers of clusters, and the average, minimal, and maximal numbers of nodes per cluster.

Ghosh [7] created so-called group Euclidean instances. For these instances, squares with side length span

are associated with clusters and are regularly laid out on a grid of size col × row as shown in Figure 11.

The nodes of each cluster are randomly distributed within the corresponding square. By changing the ratio

between cluster separation sep and cluster span span, it is possible to generate instances with clusters that are

overlapping or widely separated. The second type of benchmark instances is called random Euclidean; nodes

of the same cluster are not necessarily close to each other. Such instances are created by simply scattering
1http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html
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Table 1: TSPlib instances with geographical clustering [3, 5]. Numbers of nodes vary for each cluster.

Instance name |V | |E| r |V |/r dmin dmax

gr137 137 9316 28 4.89 1 12
kroa150 150 11175 30 5.00 1 10
krob200 200 19900 40 5.00 1 8
ts225 225 25200 45 5.00 1 9
gil262 262 34191 53 4.94 1 13
pr264 264 34716 54 4.89 1 12
pr299 299 44551 60 4.98 1 11
lin318 318 50403 64 4.97 1 14
rd400 400 79800 80 5.00 1 11
fl417 417 86736 84 4.96 1 22
gr431 431 92665 87 4.95 1 62
pr439 439 96141 88 4.99 1 17
pcb442 442 97461 89 4.97 1 10

nodes randomly within a square of size 1000 × 1000 and making the cluster assignment independently at

random. Finally, Ghosh also generated non-Euclidean random instances by choosing all edge costs randomly

from the integer interval [0, 1000]. All graphs have a complete set of edges. The benchmark set contains

instances with up to 1280 nodes, 818560 edges, and 64 clusters; details are listed in Table 2. For each type

and size, we consider three different instances. The values in the columns denote names of the sets, numbers

of nodes, numbers of edges, numbers of clusters, and numbers of nodes per cluster. In case of group Euclidean

instances, numbers of columns and rows of the grid, as well as the cluster separation and cluster span values

are additionally given.

cluster
separation

cl
us

te
r

sp
an

ro
w

s
=

3

columns = 4

Figure 11: Structure of group Euclidean instances.
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Table 2: Benchmark instance sets adopted from [7]. Each instance has constant number of nodes per cluster.

Instance set |V | |E| r |V |/r col row sep span
Group Eucl 125 125 7750 25 5 5 5 10 10
Group Eucl 500 500 124750 100 5 10 10 10 10
Group Eucl 600 600 179700 20 30 5 4 10 10
Group Eucl 1280 1280 818560 64 20 8 8 10 10
Random Eucl 250 250 31125 50 5 - - - -
Random Eucl 400 400 79800 20 20 - - - -
Random Eucl 600 600 179700 20 30 - - - -
Non-Eucl 200 200 19900 20 10 - - - -
Non-Eucl 500 500 124750 100 5 - - - -
Non-Eucl 600 600 179700 20 30 - - - -

The above test instances are too large to be practically solved to optimality by the proposed MIP ap-

proach. For comparison purposes, we therefore derived additional smaller instances by reducing some original

benchmark instances. Their properties are listed in Table 3.

Table 3: Small instances for comparison with the MIP approach.

Instance |V | |E| r |V |/r col row sep span
Group Eucl 40 40 780 8 5 4 2 10 10
Group Eucl 50 50 1225 10 5 5 2 10 10
Group Eucl 60 60 1770 12 5 6 2 10 10
Random Eucl 40 40 780 8 5 - - - -
Random Eucl 50 50 1225 10 5 - - - -
Random Eucl 60 60 1770 12 5 - - - -
Non-Eucl 40 40 780 8 5 - - - -
Non-Eucl 50 50 1225 10 5 - - - -
Non-Eucl 60 60 1770 12 5 - - - -

6 Computational Results

All experiments have been performed on a Pentium 4, 2.6 GHz PC with 1GB RAM. To test the performance

of the MIP formulation, we used the general purpose MIP solver CPLEX version 10.0.1. In order to compute

average values and standard deviations for the VNS, we performed for each algorithm variant and each

instance 30 independent runs.

For the two complex neighborhood structures CRAN and NEN, we set the time limit for each evaluation

to 5s; i.e., after 5s, if not all neighbors of the current solution could be evaluated, VND continues with the

so far-best neighbor.
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6.1 Results on Small Instances

We first consider the small instances derived in particular for testing the MIP approach. Table 4 shows the

corresponding results. For the MIP approach, the obtained optimal solution values C(T ∗) and the required

CPU times for identifying and proving them are listed. For the three VNS variants VNS1 (including only

simpler neighborhoods), VNS2 (including neighborhoods based on graph reduction), and SAVNS (VNS2 with

self-adaptive ordering of neighborhoods), the CPU time was limited to one second per run. Obtained average

solution values C(T ), corresponding standard deviations, and success rates of how often the optimal solution

was found are listed.

Table 4: Results on small instances. Time limit for all VNS approaches is 1s per run.

MIP VNS1 VNS2 SAVNS
Instance, |V | C(T ∗) time C(T ) std dev Opt. C(T ) std dev Opt. C(T ) std dev Opt.
Group Eucl, 40 79.4 4.6s 79.4 0.00 30/30 79.4 0.00 30/30 79.4 0.00 30/30
Group Eucl, 50 82.1 31.2s 82.2 0.25 25/30 82.1 0.00 30/30 82.1 0.00 30/30
Group Eucl, 60 91.8 539.8s 91.9 0.40 27/30 91.8 0.00 30/30 91.8 0.00 30/30
Random Eucl, 40 989.0 6.3s 989.0 0.00 30/30 989.0 0.00 30/30 989.0 0.00 30/30
Random Eucl, 50 1310.2 762.0s 1311.1 4.75 29/30 1310.2 0.00 30/30 1310.2 0.00 30/30
Random Eucl, 60 1318.0 3370.6s 1374.5 121.21 17/30 1349.8 87.99 26/30 1318.6 3.36 29/30
Non-Eucl, 40 152.8 3.8s 176.0 34.96 17/30 164.4 21.50 20/30 160.6 9.77 18/30
Non-Eucl, 50 216.2 16.1s 269.1 59.28 13/30 249.7 47.16 18/30 242.8 41.84 20/30
Non-Eucl, 60 165.5 276.9s 221.7 52.16 9/30 201.6 46.08 15/30 195.5 36.56 16/30

We observe that the MIP approach was able so solve all instances with up to 60 nodes to proven optimality.

The required CPU times are, however, relatively large and substantially increase with the number of nodes,

especially for random Euclidean instances. For the three VNS variants, most of these small instances turned

out to be no real challenge: On group Euclidean and random Euclidean instances, optimal solutions could

often be found in fractions of a second. Non Euclidean instances proved to be significantly more difficult in

our experiments. VNS1 performed worse than VNS2 and SAVNS due to the absence of the more complex

neighborhood structures.

6.2 Results on Larger Instances

We now turn to the larger TSPlib instances and random instances from Ghosh. First of all, Table 5 shows

the results of the construction heuristic ACH. Though the solution quality is only moderate compared to the

final solutions obtained by the VNS variants, ACH only requires fractions of a second for small and medium

instances and never more than a few seconds for the largest instances.
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Table 5: Results of construction heuristic ACH

Random instance sets ACH
Instance |V | r |V |/r C(T ) time
gr137 137 28 4.89 562.0 0.01s
kroa150 150 30 5.00 17234.0 0.02s
krob200 200 40 5.00 17779.0 0.03s
ts225 225 45 5.00 83729.0 0.03s
gil262 262 53 4.94 1434.0 0.05s
pr264 264 54 4.89 39860.0 0.21s
pr299 299 60 4.98 28684.0 0.08s
lin318 318 64 4.97 28039.0 0.08s
rd400 400 80 5.00 9605.0 0.16s
fl417 417 84 4.96 12177.0 0.32s
gr431 431 87 4.95 1681.0 1.41s
pr439 439 88 4.99 86968.0 0.52s
pcb442 442 89 4.97 29573.0 0.17s
Random instance sets ACH
Instance |V | r |V |/r C(T ) time

125 25 5 227.1 0.01s
Group Eucl 125 125 25 5 209.5 0.01s

125 25 5 230.9 0.01s
500 100 5 939.6 0.23s

Group Eucl 500 500 100 5 993.6 0.24s
500 100 5 943.7 0.24s
600 20 30 172.6 1.41s

Group Eucl 600 600 20 30 151.0 1.28s
600 20 30 179.0 1.01s

1280 64 8 590.2 6.03s
Group Eucl 1280 1280 64 8 585.4 4.22s

1280 64 8 562.5 5.18s
250 50 5 4398.9 0.08s

Random Eucl 250 250 50 5 5110.0 0.12s
250 50 5 4975.1 0.12s
400 20 20 3237.8 0.49s

Random Eucl 400 400 20 20 2582.8 0.40s
400 20 20 2308.6 0.71s
600 20 30 2984.3 2.56s

Random Eucl 600 600 20 30 2964.1 1.87s
600 20 30 2550.8 1.62s
200 20 10 1569.7 0.02s

Non-Eucl 200 200 20 10 1223.9 0.02s
200 20 10 1465.6 0.02s
500 100 5 2045.9 0.13s

Non-Eucl 500 500 100 5 2073.6 0.11s
500 100 5 1565.0 0.11s
600 20 30 1469.6 0.41s

Non-Eucl 600 600 20 30 1754.6 0.41s
600 20 30 414.3 0.50s
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Long runs: Tables 6 and 7 show the results of the three VNS variants when using a fixed time limit as

the termination criterion. For TSPlib instances, the allowed CPU time roughly depends on the instance size

as indicated in Table 6 (between 150s and 600s), while for the random instance sets, each run is terminated

after 600s. These limits include the time required for finding the initial solutions. Depending on the instance

size and other properties such as type and/or number of clusters, a shorter time limit would be enough to

let VNS fully converge. As a result, the final best solutions might be found rather early for small instances

whereas they are obtained at the end of a run for large instances. The search process takes up all the time

nevertheless. By keeping track of when they are found during the runs, we are able to observe the convergence

behavior of the different VNS variants on the different types and sizes of the instances. This is the reason

why we decided to use the same time limit for all instances of the random sets.

We list the objective values of the best solutions found among 30 runs C(Tbest), the average values C(T ),

the standard deviations, and the average times tbest until the best solution of each run is found. The best

average values are printed bold. Columns γA,B list Type I error probabilities of one-sided Wilcoxon tests [22]

for the assumption that from VNS variants A and B, the one with the observed lower average solution value

is significantly better than the other variant.

For TSPlib instances in Table 6, we observe a consistent and obvious trend: Among all VNS variants,

SAVNS performs best. Results are more ambiguous for the random instances in Table 7. Though SAVNS

is still the best strategy on group Euclidean and non-Euclidean instances, its performance is significantly

worse than those of VNS2 on random Euclidean instances. By analyzing the log files, we suspect that this

is due to CRAN, which is very efficient on these instances, but also rather time consuming. In the test runs,

this neighborhood structure is moved to the front and therefore examined very often. This slowed down the

search process. Nevertheless, in almost all cases the variants utilizing the more sophisticated neighborhood

structures based on graph reduction outperformed the simpler VNS1.

In Table 8, we summarize the relative differences between all three VNS variants. Listed are the best

and average solution qualities with corresponding standard deviations and the average times until the best

solutions were found, expressed in relation to the results of VNS1 from Tables 6 and 7.
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Table 8: Comparison of the VNS variants: relative values for VNS2 over VNS1 and SAVNS over VNS1,
absolute time limits.

TSPlib instances VNS2 over VNS1 SAVNS over VNS1
Instance C(Tbest) C(T ) std dev tbest C(Tbest) C(T ) std dev tbest

gr137 100.0% 99.8% 0.0% 495.3% 100.0% 99.8% 0.0% 253.1%
kroa150 100.0% 100.0% 166.7% 257.3% 100.0% 100.0% 0.0% 130.3%
krob200 100.0% 99.2% 27.8% 182.3% 100.0% 99.2% 29.8% 159.5%
ts225 100.0% 99.8% 69.4% 194.3% 100.0% 99.7% 54.4% 171.0%
gil262 98.2% 93.0% 29.0% 131.5% 98.2% 92.5% 18.4% 114.9%
pr264 99.5% 96.2% 50.1% 172.7% 99.5% 94.4% 3.9% 164.1%
pr299 99.1% 95.3% 27.2% 92.9% 99.1% 94.6% 1.6% 90.8%
lin318 97.8% 94.2% 52.9% 82.7% 96.7% 92.3% 27.2% 73.1%
rd400 98.7% 95.7% 43.4% 102.8% 98.5% 93.9% 17.6% 103.2%
fl417 98.5% 99.2% 81.7% 166.0% 94.9% 92.9% 56.1% 217.0%
gr431 97.5% 95.6% 53.1% 79.7% 96.0% 93.2% 35.4% 107.6%
pr439 92.6% 93.1% 85.6% 92.5% 92.1% 85.6% 44.4% 94.9%
pcb442 87.8% 91.7% 480.2% 65.2% 86.7% 86.8% 165.3% 82.1%
Random instance sets VNS2 over VNS1 SAVNS over VNS1
Instance C(Tbest) C(T ) std dev tbest C(Tbest) C(T ) std dev tbest

100.0% 100.0% – 312.4% 100.0% 100.0% – 128.2%
Group Eucl 125 100.0% 100.0% – 143.4% 100.0% 100.0% – 57.4%

100.0% 100.0% – 275.5% 100.0% 100.0% – 66.3%
93.6% 94.6% 69.0% 87.8% 92.0% 89.9% 35.3% 106.3%

Group Eucl 500 85.9% 87.5% 68.4% 86.7% 84.3% 83.1% 33.6% 104.3%
87.2% 91.1% 68.3% 146.1% 86.0% 86.1% 23.9% 152.0%

100.0% 100.4% – 702.2% 100.0% 100.0% – 90.6%
Group Eucl 600 100.0% 100.7% – 3723.4% 100.0% 100.0% – 77.6%

100.0% 100.0% – 1454.5% 100.0% 100.0% – 45.5%
91.4% 88.3% 30.1% 88.4% 85.8% 82.0% 31.5% 113.2%

Group Eucl 1280 94.2% 96.6% 61.7% 87.9% 91.8% 86.9% 25.9% 104.5%
99.5% 93.9% 48.9% 90.7% 94.3% 85.7% 22.9% 103.4%
83.9% 86.1% 94.9% 322.3% 90.6% 92.1% 118.3% 349.7%

Random Eucl 250 80.4% 81.1% 113.5% 314.7% 83.1% 90.1% 96.7% 352.5%
88.4% 84.9% 36.4% 394.1% 91.5% 91.4% 94.4% 441.4%
89.1% 90.2% 85.6% 402.3% 100.0% 100.1% 68.1% 60.0%

Random Eucl 400 100.0% 82.7% 41.1% 161.1% 100.0% 98.5% 78.8% 46.2%
97.5% 97.4% 98.3% 717.3% 100.0% 100.2% 68.6% 186.2%

100.0% 83.5% 7.3% 202.3% 100.0% 96.4% 87.8% 42.1%
Random Eucl 600 81.9% 92.5% 91.5% 189.1% 81.9% 98.7% 97.5% 66.8%

85.8% 86.6% 87.0% 156.0% 100.0% 95.5% 156.7% 34.5%
95.8% 91.7% 68.0% 96.3% 99.8% 89.4% 90.1% 71.4%

Non-Eucl 200 104.8% 91.5% 92.0% 132.6% 134.0% 99.6% 56.2% 73.7%
86.9% 106.0% 102.1% 217.9% 99.0% 97.7% 70.8% 78.8%
92.0% 88.9% 71.8% 117.9% 85.4% 85.6% 80.5% 188.2%

Non-Eucl 500 95.9% 100.8% 67.6% 131.7% 81.8% 91.4% 82.9% 194.5%
107.5% 96.6% 75.8% 77.0% 90.5% 90.6% 110.3% 158.0%
90.4% 93.7% 56.6% 95.3% 89.0% 90.2% 82.5% 91.0%

Non-Eucl 600 95.3% 98.6% 71.6% 120.0% 88.2% 89.8% 104.7% 99.4%
111.0% 111.5% 93.7% 134.7% 93.1% 95.0% 97.4% 77.4%
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Short runs: In a second set of experiments, we tested our algorithms by using an alternative termination

criterion. Tables 9 and 10 show results of the same VNS algorithms when the runs are terminated after 30

consecutive iterations without obtaining improvements. Compared to the results in Tables 6 and 7, where

absolute time limits were used, the runs of VNS2 and SAVNS terminate much earlier at the expense of

obtaining slightly inferior results. However, for some large instances like pcb442 or from the set Group Eucl

500, VNS1 takes longer to converge. In these cases, the advantage of the neighborhood structures based on

graph reduction that are used in VNS2 and SAVNS are more obvious. They keep the evaluation time low

and thus the overall convergence speed becomes more robust, even for large instances.

When using this termination criterion, the solution quality of VNS2 and SAVNS become more similar than

when using absolute time limits. This is understandable since both variants use the same set of neighborhood

structures, but potentially in a different order. As concluded in [14], by using a dynamic ordering of the

neighborhood structures, the solution quality cannot be expected to be increased in general. However, the

computational time can decrease since the more useful neighborhood structures are called more often. Hence

when using the same time limits as the termination criterion, SAVNS performs better overall. From another

point of view, in order to obtain solutions of equal quality, SAVNS requires less time overall.

Table 11 lists the relative differences between all three VNS variants for this set of experiments.

6.3 Contributions of Neighborhood Structures

In order to analyze the individual contributions of the different neighborhood structures to the whole success,

we logged how often each neighborhood structure was able to improve a current solution in Tables 6 and 7.

We then determined the ratios of successful improvements over how often each neighborhood structure was

evaluated and normalized these values over all neighborhood structures, yielding percentage values describing

their relative efficiencies. For VNS2 and all considered large test instances, these efficiencies are listed in

Tables 12 and 13. For SAVNS, these values are similar since the same neighborhood structures are used.

In general, each neighborhood structure contributes substantially to the whole success. In Table 12, we

observe that by increasing the size of the instances, the more complex neighborhood structures like EAN

and NEN become more efficient while the improvement rates of the simpler ones decrease. In Table 13, we

combined the data for each set of three identically parameterized instances for simplicity. The dependency on

the instance size is less obvious, but the neighborhoods’ relative efficiencies strongly depend on the structure

of the instance. In particular, NRAN is less successful on non-Euclidean instances but second best for

random Euclidean instances. All in all, CRAN is able to improve solutions most often. NON performs best

on instances with many nodes per cluster, while EAN performs best on instances containing many relatively

small clusters.
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Table 11: Comparison of the VNS variants: relative values for VNS2 over VNS1 and SAVNS over VNS1,
termination after 30 iterations without improvement.

TSPlib instances VNS2 over VNS1 SAVNS over VNS1
Instance C(Tbest) C(T ) std dev tbest C(Tbest) C(T ) std dev tbest

gr137 98.7% 99.9% 120.3% 41.2% 99.3% 99.0% 102.8% 52.9%
kroa150 100.0% 100.1% 68.4% 84.6% 100.0% 100.0% 76.7% 61.5%
krob200 99.2% 100.0% 77.6% 30.0% 100.3% 100.4% 84.4% 25.4%
ts225 99.8% 99.7% 80.9% 38.5% 99.4% 100.2% 109.7% 32.3%
gil262 99.8% 98.5% 101.2% 9.7% 101.2% 100.1% 102.2% 7.8%
pr264 99.4% 97.7% 79.9% 12.6% 100.1% 98.4% 92.5% 10.0%
pr299 99.1% 98.5% 83.6% 6.8% 99.4% 98.2% 74.1% 6.0%
lin318 98.7% 95.7% 59.2% 12.8% 98.4% 96.0% 59.9% 10.9%
rd400 99.7% 97.6% 47.4% 17.9% 99.9% 97.5% 51.4% 14.6%
fl417 98.9% 98.4% 114.8% 12.8% 100.9% 98.4% 100.4% 9.9%
gr431 97.2% 96.6% 56.5% 14.5% 95.2% 96.4% 53.8% 12.4%
pr439 96.6% 92.7% 76.3% 16.6% 96.1% 92.6% 75.5% 13.9%
pcb442 87.9% 92.3% 330.5% 13.7% 89.0% 92.6% 350.2% 11.0%
Random instance sets VNS2 over VNS1 SAVNS over VNS1
Instance C(Tbest) C(T ) std dev tbest C(Tbest) C(T ) std dev tbest

100.0% 98.3% 82.1% 60.0% 99.8% 97.7% 83.3% 60.0%
Group Eucl 125 101.0% 99.4% 51.0% 33.3% 100.0% 99.8% 84.3% 50.0%

100.7% 98.5% 89.9% 66.7% 99.8% 97.5% 107.6% 100.0%
91.8% 92.7% 94.8% 10.9% 94.1% 93.6% 75.4% 10.0%

Group Eucl 500 92.7% 86.9% 59.9% 18.8% 91.3% 87.4% 70.2% 16.6%
94.9% 89.1% 59.6% 24.2% 94.9% 89.0% 46.4% 22.6%

100.0% 97.3% 85.7% 35.0% 100.0% 97.9% 104.3% 32.5%
Group Eucl 600 100.0% 99.6% 85.4% 40.5% 100.0% 99.3% 75.0% 35.1%

100.0% 100.0% 150.0% 34.5% 100.0% 100.0% 150.0% 31.0%
94.6% 89.0% 46.0% 18.9% 92.9% 88.8% 50.0% 23.8%

Group Eucl 1280 95.2% 89.5% 41.0% 33.4% 95.3% 89.6% 42.8% 32.6%
94.3% 89.2% 45.6% 28.9% 94.5% 88.6% 41.3% 21.3%
99.2% 99.6% 95.0% 11.8% 97.5% 99.1% 100.0% 14.6%

Random Eucl 250 100.4% 97.8% 78.2% 24.4% 95.0% 98.1% 100.0% 28.1%
104.3% 99.4% 85.3% 17.7% 102.6% 98.1% 101.8% 23.9%
99.2% 96.4% 74.0% 42.9% 96.2% 96.8% 79.3% 50.0%

Random Eucl 400 92.0% 96.4% 134.2% 50.0% 78.6% 93.4% 149.6% 59.1%
97.5% 93.9% 85.5% 46.4% 93.4% 94.4% 89.7% 50.0%
97.0% 91.2% 95.0% 34.9% 103.4% 83.8% 62.3% 34.9%

Random Eucl 600 122.3% 101.6% 110.7% 37.3% 112.1% 95.1% 83.4% 38.8%
104.2% 92.4% 68.6% 43.7% 99.9% 93.3% 106.5% 42.3%
109.8% 97.4% 84.9% 75.0% 110.5% 99.1% 84.1% 100.0%

Non-Eucl 200 69.9% 93.2% 119.8% 75.0% 69.6% 98.4% 165.9% 50.0%
95.1% 94.9% 65.6% 66.7% 120.5% 96.4% 50.4% 66.7%

105.0% 99.7% 126.0% 38.0% 117.2% 99.7% 81.5% 29.2%
Non-Eucl 500 74.6% 95.6% 158.8% 23.1% 86.3% 93.9% 119.1% 17.1%

88.3% 94.8% 95.2% 22.6% 91.4% 96.9% 109.7% 19.7%
89.9% 90.4% 111.5% 38.9% 93.8% 92.1% 124.7% 30.6%

Non-Eucl 600 94.4% 98.0% 102.5% 42.1% 75.3% 94.1% 146.7% 42.1%
87.5% 94.9% 115.9% 55.2% 98.3% 88.7% 91.3% 51.7%
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Table 12: Relative improvement rates of NON, NRAN, CRAN, EAN, and NEN for TSPlib instances.

Instance |V | r |V |/r NON NRAN CRAN EAN NEN
gr137 137 28 4.89 22.37% 20.50% 25.43% 22.29% 9.40%
kroa150 150 30 5.00 22.24% 17.75% 25.70% 21.94% 12.36%
krob200 200 40 5.00 17.87% 18.17% 23.97% 25.94% 14.05%
ts225 225 45 5.00 16.35% 19.82% 21.32% 25.68% 16.83%
gil262 262 53 4.94 15.03% 17.34% 21.56% 27.81% 18.26%
pr264 264 54 4.89 14.43% 20.27% 23.00% 26.49% 15.80%
pr299 299 60 4.98 15.07% 17.72% 21.75% 27.39% 18.08%
lin318 318 64 4.97 15.02% 18.42% 21.00% 27.62% 17.94%
rd400 400 80 5.00 13.92% 14.66% 18.40% 27.38% 25.64%
fl417 417 84 4.96 12.69% 21.43% 17.39% 29.69% 18.80%
gr431 431 87 4.95 11.39% 17.52% 19.79% 30.85% 20.45%
pr439 439 88 4.99 14.75% 16.52% 20.81% 27.54% 20.38%
pcb442 442 89 4.97 13.61% 15.21% 20.73% 28.02% 22.42%

Table 13: Relative improvement rates of NON, NRAN, CRAN, EAN, and NEN for random instances.

Instance |V | r |V |/r NON NRAN CRAN EAN NEN
Group Eucl 125 125 25 5 33.79% 13.56% 32.65% 12.43% 7.56%
Group Eucl 500 500 100 5 22.84% 12.92% 24.83% 20.36% 19.03%
Group Eucl 600 600 20 30 30.68% 6.40% 27.52% 4.75% 30.66%
Group Eucl 1280 1280 64 20 24.95% 10.92% 22.97% 14.09% 27.07%
Random Eucl 250 250 50 5 13.90% 24.94% 28.08% 22.04% 11.04%
Random Eucl 400 400 20 20 26.38% 24.94% 33.44% 8.11% 7.12%
Random Eucl 600 600 20 30 25.23% 27.24% 33.37% 8.13% 6.04%
Non-Eucl 200 200 20 10 31.76% 3.43% 35.99% 15.17% 13.65%
Non-Eucl 500 500 100 5 13.55% 5.10% 23.22% 33.95% 24.16%
Non-Eucl 600 600 20 30 35.83% 1.53% 45.57% 7.91% 9.16%
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7 Conclusions

In this article, we proposed three different Variable Neighborhood Search approaches for the Generalized

Minimum Edge-Biconnected Network Problem (GMEBCNP). They are based on four neighborhood struc-

tures addressing particular properties such as spanned nodes and/or edges between them. For two of them

there exist simple and more advanced variants. The latter utilize a graph reduction technique which allows us

to efficiently determine the optimal spanned nodes for the majority of clusters once the connections between

clusters are fixed.

Experiments were performed on TSPlib based instances with geographical clustering, Euclidean instances

with grid and random clustering, and non-Euclidean instances. We used a multi-commodity flow mixed inte-

ger programming formulation to solve smaller instances of the GMEBCNP with up to 60 nodes in reasonable

time to proven optimality. In comparison, the VNS variants are in most of their runs also able to identify

optimal solutions for those small instances, but in substantially shorter time (fractions of a second).

Comparing the results of our VNS variants for medium and large instances, we conclude that the used

neighborhood structures are effective and their combination within the VNS scales well to large instances. In

particular, we observed that the graph reduction technique applied in the more sophisticated neighborhood

structures of VNS2 and SAVNS is a major improvement. The self-adaptive ordering of neighborhoods, as it

is done in SAVNS, turned out to be helpful in the majority of the experiments.

8 Future Work

In the future, we want to consider further large neighborhood structures that are evaluated by means of

integer linear programming. The described multi-commodity flow formulation provides a basis for this.

Another plan is to extend the graph reduction technique by including further shrinking strategies.

Since all instances we used for testing were complete graphs, we did not implement special mechanisms

for handling incomplete graphs. Though it is easy to remove all unneeded variables from the MIP model, it

is less straightforward to adapt the neighborhood structures for the VNS adequately. We want to investigate

possibilities like narrowing the search space or repairing solutions due to non-existing edges in the future.

The At-least variant of the GMEBCNP, where at least one node of each cluster must be connected, is

also worth studying. Though related, many techniques in this paper, e.g., the graph reduction technique, are

not directly applicable to this variant. We would like to investigate this problem in the future and adapt our

proposed neighborhood structures and techniques for it. Furthermore, there are other related problems, such

as the prize-collecting variants [9], which are also important in practice, and for which our basic approach

also looks promising.
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