
Variable Neighborhood Descent with Self-Adaptive

Neighborhood-Ordering

Bin Hu and Günther R. Raidl
Institute of Computer Graphics and Algorithms

Vienna University of Technology
Favoritenstraße 9–11/1861, 1040 Vienna, Austria

{hu|raidl}@ads.tuwien.ac.at∗

Abstract
In Variable Neighborhood Descent (VND) it is often difficult to decide upon the ordering in
which a different types of neighborhoods are considered. This arrangement typically strongly
affects the quality of finally obtained solution as well as computation time. We present a
VND variant which orders the neighborhoods dynamically in a self-adaptive way during the
optimization process. Each neighborhood structure has associated a rating which is updated
according to observed success probabilities and required times for evaluation. In this way, more
effective neighborhood structures come to the fore and will be applied more frequently. An
experimental comparison to a classical VND with a static neighborhood ordering is performed
on the generalized edge biconnected network design problem. Results indicate that the self-
adaptive VND requires substantially less time for finding solutions of comparable quality.

Keywords: Variable Neighborhood Search, Self-Adaption, Network Design

1 Introduction

Variable Neighborhood Descend (VND) is an enhanced local improvement strategy which is com-
monly used as a subordinate in Variable Neighborhood Search (VNS) and other metaheuristics
[3]. The idea behind VND is to systematically switch between different neighborhood structures
N1, . . . , Nn. Starting with the first structure N1, VND performs local search until no further
improvements are possible. From this local optimum, it continues local search with neighborhood
structure N2. If an improved solution could be found with this structure, VND returns to using
N1 again; otherwise, it continues with N3, and so forth. If the last structure Nn has been applied
and no further improvements are possible, the solution represents a local optimum with respect
to all neighborhood structures and VND terminates.

Keeping this concept in mind, it is obvious that the application order of the neighborhood
structures is crucial for the performance of VND. The first neighborhood types are searched more
often than the ones at the end of the queue. If the times required for examining the neighborhoods
differ substantially, it is reasonable to order them according to increasing costs. However, this
criterion is not always applicable, in particular when the times for searching the neighborhoods
are similar, or they vary strongly. The latter is often the case when applying a next-improvement
strategy instead of best-improvement. In these situations, the best suited neighborhood ordering
may also depend on specific properties of the particular problem instance and current state
of the search. Research in the direction of controlling and dynamically adapting the ordering
of neighborhood structures is yet limited. For example, Puchinger and Raidl [6] presented an
approach in which relaxations of the neighborhoods are quickly evaluated in order to choose the
most promising neighborhood next. This method is effective, however, it requires the existence
of fast methods for solving relaxations of the neighborhoods. In this work, we propose a more
generally applicable self-adaptive strategy.

∗This work is supported by the RTN ADONET under grant 504438.

1

2 Self-Adaptive Variable Neighborhood Descend

In Self-Adaptive Variable Neighborhood Descent (SAVND) neighborhood structures are dynam-
ically rearranged according to their observed benefits in the past. An initial neighborhood order-
ing, i.e., a permutation λ = (λ1, . . . , λn) of {1, . . . , n} is chosen in some intuitive way (or even
at random). Each structure Ni, i = 1, . . . , n, gets assigned a rating wi > 0, which is initially set
to some constant value W being a rough estimation of the average time for evaluating a neigh-
borhood. During the search process, when a neighborhood Nλi(x) of a current solution x has
been investigated, rating wλi is updated in dependence of the success and the computation time
tλi required for the evaluation: If an improved solution has been found in Nλi(x), wλi becomes
halved and

tλi
α is added; α is a strategy parameter controlling the influence of the evaluation

time in this case. If the search of Nλi(x) was not able to identify a superior solution, we add
time tλi to wλi . Permutation λ is not immediately updated after processing a neighborhood in
order to avoid too rapid and strong adaptions in case of a temporarily limited extraordinary good
or bad behavior. Only when an updated rating w′λi

is smaller than the so far minimum rating
minj=1,...,n wj or larger than the maximum rating maxj=1,...,n wj , we redetermine permutation λ
by sorting the neighborhood structures according to increasing ratings. SAVND then continues
with the structure that would have also been chosen according to the old ordering. Algorithm 1
shows the whole procedure in detail.

3 The Generalized Edge Biconnected Network Design Problem

We will compare SAVND with classical VND using a static neighborhood ordering on the Gen-
eralized Edge Biconnected Network Design Problem (GMEBCNP) [1, 4]. Given an undirected
graph G = (V, E) where edges e ∈ E have associated costs ce > 0 and the node set V is parti-
tioned into disjoint clusters V1, . . . , Vr, the objective is to find a minimum cost edge-biconnected
subgraph GS = (VS , ES) that spans exactly one node of each cluster, see Figure 1.

We apply five types of neighborhoods, following different ideas of exchanging the spanned

Algorithm 1: SAVND(solution x)
w1 = w2 = . . . = wn = W
wmin = wmax = W
λ = (1, 2, . . . , n)
i = 1
repeat

find the best neighbor x′ ∈ Nλi(x), requiring time tλi

if x′ better than x then
x = x′

wλi =
wλi
2 +

tλi
α

i = 1
else

wλi = wλi + tλi

i = i + 1
if wλi < wmin ∨ wλi > wmax then

nextN = λi // store the neighborhood to be considered next
sort λ1, . . . , λn s.t. wλ1 ≤ wλ2 ≤ . . . ≤ wλn

wmin = wλ1

wmax = wλn

reset i s.t. λi = nextN
until i > n

2

V1 V2

V3

V4

V5

p1

p2

p3 p4

p5

V6

p6

Figure 1: Example for a solution to the GMEBCNP.

nodes as well as the used edges. Some of these neighborhoods follow the concept of very large
scale neighborhood search and utilize dynamic programming for an efficient evaluation. A detailed
description of the neighborhoods and their evaluation strategies, as well as used greedy heuristics
for creating initial solutions can be found in [5].

4 Experimental Results

For SAVND, strategy parameters were set to W = 1
10 and α = 10. The initial neighborhood

ordering, as well as the one used for VND, is based on increasing computational complexity [5].
Table 1 shows results on randomly generated instances of the following types: Euclidean

instances with grid clustering, Euclidean instances with random clustering, and Non-Euclidean
instances; see [5] for further details. Listed are for each instance category the total number
of nodes |V |, number of clusters r, and for both, VND and SAVND, objective values obj of
final solutions and total CPU-times t. Each category consists of three instances and average
values are given. All graphs are complete, i.e., |E| = |V |·(|V |−1)

2 . Table 2 shows further results on
TSPlib1 instances with geographical center clustering [2]. As some of the neighborhood evaluation
strategies contain stochastic components, average objective values and average times over 30 runs
are provided.

When we compare the final objective values of VND and SAVND, differences exist. However,
they are relatively small, and over all instances, no strategy yields statistically significantly better
solutions than the other. Comparing running times, the advantages of SAVND become very clear:
It consistently requires significantly less time.

Table 1: Results on random instances, three instances per category.

Random Instances VND SAVND
Category |V | r obj t [s] obj t [s]
Grouped Eucl. 125 125 25 178.36 5.90 180.65 3.31
Grouped Eucl. 500 500 100 766.11 161.41 762.85 95.69
Grouped Eucl. 600 600 20 115.49 63.34 116.26 48.10
Grouped Eucl. 1280 1280 64 467.70 221.28 476.15 184.61
Random Eucl. 250 250 50 4143.14 54.28 4049.57 30.67
Random Eucl. 400 400 20 1132.70 51.51 1211.81 38.73
Random Eucl. 600 600 20 948.83 107.85 1088.40 82.44
Non-Eucl. 200 200 20 486.11 6.68 492.44 3.83
Non-Eucl. 400 500 100 1141.04 66.96 1175.01 31.63
Non-Eucl. 600 600 20 266.03 34.63 253.47 25.96

1http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html

3

Table 2: Results on TSPlib instances with geographical clustering.

TSPlib Instances VND SAVND
Name |V | r obj t [s] obj t [s]
gr137 137 28 505.60 10.33 490.23 5.30
kroa150 150 30 12470.77 9.32 12562.13 6.36
d198 198 40 12330.90 37.7 12435.03 17.55
krob200 200 40 13906.47 29.49 14010.97 14.43
gr202 202 41 344.53 30.84 341.13 22.67
ts225 225 45 77418.33 18.63 77691.67 13.77
gil262 262 53 1186.63 66.71 1173.23 21.30
pr264 264 54 34691.27 70.87 35506.70 28.90
pr299 299 60 24887.30 46.73 24839.63 32.66
lin318 318 64 26285.40 41.47 26535.23 22.64
rd400 400 80 7891.80 92.65 7532.13 53.47
fl417 417 84 11042.77 89.44 11003.57 53.29
gr431 431 87 1557.83 78.95 1520.57 72.27
pr439 439 88 77427.03 116.65 78338.93 66.65
pcb442 442 89 26669.00 83.05 26881.70 43.79

5 Conclusions

We proposed a technique to speed up Variable Neighborhood Descend by allowing the order in
which neighborhoods are searched to self-adapt dynamically during the search process. As criteria
for controlling self-adaption, we used measured times required for evaluating the neighborhoods
and the the success of neighborhood structures in terms of how likely they lead to improved
solutions. Experimental results on the generalized edge biconnected network design problem
consistently document the advantages of the approach with respect to running time.

References

[1] C. Feremans, M. Labbe, and G. Laporte. Generalized network design problems. European
Journal of Operational Research, 148(1):1–13, 2003.

[2] M. Fischetti, J. J. Salazar, and P. Toth. A branch-and-cut algorithm for the symmetric
generalized traveling salesman problem. Operations Research, 45:378–394, 1997.

[3] P. Hansen and N. Mladenovic. An introduction to variable neighborhood search. In S. Voss,
S. Martello, I. H. Osman, and C. Roucairol, editors, Meta-heuristics, advances and trends in
local search paradigms for optimization, pages 433–458. Kluwer Academic Publishers, 1999.

[4] D. Hyugens. Version generalisee du probleme de conception de reseau 2-arete-connexe. Mas-
ter’s thesis, Universite Libre de Bruxelles, Brussels, Belgium, 2002.

[5] M. Leitner. Solving two generalized network design problems with exact and heuristic meth-
ods. Master’s thesis, Vienna University of Technology, Vienna, Austria, 2006.

[6] J. Puchinger and G. R. Raidl. Relaxation guided variable neighborhood search. In P. Hansen
et al., editors, Proceedings of the 18th Mini EURO Conference on Variable Neighborhood
Search, Tenerife, Spain, 2005.

4

