
Favoritenstraße 9-11 / E186, A-1040 Wien, Austria
Tel. +43 (1) 58801-18601, Fax +43 (1) 58801-18699
www.cg.tuwien.ac.at

Forschungsbericht / Technical Report

TECHNISCHE UNIVERSITÄT WIEN
Institut für Computergraphik und Algorithmen

Combining Variable Neighborhood
Search with Integer Linear

Programming for the Generalized
Minimum Spanning Tree Problem

Bin Hu and Markus Leitner and Günther R.
Raidl

TR–186–1–06–01

10. October 2006

Combining Variable Neighborhood Search with Integer Linear

Programming for the Generalized Minimum Spanning Tree

Problem

Bin Hu, Markus Leitner, Günther R. Raidl∗

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Favoritenstraße 9-11 / 1861

1040 Vienna, Austria

Phone: +431 58801 18611

Fax: +431 58801 18699

{hu|leitner|raidl}@ads.tuwien.ac.at

Abstract

We consider the generalized version of the classical Minimum Spanning Tree problem where

the nodes of a graph are partitioned into clusters and exactly one node from each cluster must be

connected. We present a Variable Neighborhood Search (VNS) approach which uses three different

neighborhood types. Two of them work in complementary ways in order to maximize search effec-

tivity. Both are large in the sense that they contain exponentially many candidate solutions, but

efficient polynomial-time algorithms are used to identify best neighbors. For the third neighbor-

hood type we apply Mixed Integer Programming to optimize local parts within candidate solution

trees. Tests on Euclidean and random instances with up to 1280 nodes indicate especially on in-

stances with many nodes per cluster significant advantages over previously published metaheuristic

approaches.

Keywords: Generalized Minimum Spanning Tree, Variable Neighborhood Search, Dynamic Pro-

gramming, Integer Linear Programming

∗This work is supported by the RTN ADONET under grant 504438.

- 1 -

The Generalized Minimum Spanning Tree (GMST) problem is an extension of the classical Minimum

Spanning Tree (MST) problem on a graph and is defined as follows. We consider an undirected

weighted complete graph G = 〈V, E, c〉 with node set V , edge set E, and edge cost function c : E →

R
+. Node set V is partitioned into r pairwise disjoint clusters V1, V2, . . . , Vr,

⋃

i=1,...,r

Vi = V, Vi∩Vj =

∅ ∀i, j = 1, . . . , r, i 6= j. We write di for the number of nodes in Vi, i = 1, . . . , r.

A spanning tree of a graph is a cycle-free subgraph connecting all nodes. A solution to the GMST

problem defined on G is a graph S = 〈P, T 〉 with P = {p1, p2, . . . , pr} ⊆ V containing exactly one

node from each cluster, i.e. pi ∈ Vi for all i = 1, . . . , r, and T ⊆ E being a tree spanning the nodes in

P , see Figure 1. The costs of such a tree are its total edge costs, i.e. C(T) =
∑

(u,v)∈T

c(u, v), and the

objective is to identify a solution with minimum costs. We only consider undirected graphs, thus

(u, v) is essentially {u, v}. For better readability, we use (u, v) throughout the article.

In case each cluster contains only one node, i.e. |Vi| = 1 for all i = 1, . . . , r, the problem reduces to

the simple MST problem, which can be efficiently solved in polynomial time. In general, however,

the GMST problem is strongly NP-hard (Myung, Lee, and Tcha, 1995).

There are several real world applications of the GMST problem, e.g. in the design of backbones in

large communication networks. Devices belonging to the same existing local area network correspond

to nodes within the same cluster, and the backbone is required to connect one device per local

network. For a more detailed overview on the GMST problem, see Myung, Lee, and Tcha (1995);

Feremans (2001); and Pop (2002).

A variant of the GMST problem is the less restrictive At-Least GMST (LGMST) problem where

more than one node is allowed to be connected from each cluster (Ihler, Reich, and Widmayer, 1999;

Dror, Haouari, and Chaouachi, 2000). The GMST problem, as well as the LGMST problem, can

further be considered as special cases of the Group Steiner Problem (GSP) introduced by Reich and

Widmayer (1989). In this more general problem, clusters are replaced by groups of nodes, which are

not required to be disjoint, nor do they have to cover all nodes. The objective is to find a subgraph

which spans at least one node of each group.

For solving the GSP, Duin, Volgenant, and Voss (2004) described a transformation to the classical

Steiner tree problem on graphs. An anonymous referee remarked that the GMST problem can also

be transformed into a (not further constrained) GSP, and therefore, we can solve the GMST problem

in principle by means of algorithms for the Steiner tree problem.

- 2 -

In this paper, we present a general Variable Neighborhood Search (VNS) approach for solving the

GMST problem. VNS is a metaheuristic which exploits the idea of local search in changing neigh-

borhoods in order to head for a global optimum (Hansen and Mladenovic, 1999, 2003). As local

improvement within VNS, we use Variable Neighborhood Descent (VND) utilizing three different

types of exponentially large neighborhoods. Two of them are based on complementary representa-

tions of candidate solutions. For the third neighborhood we make use of Mixed Integer Programming

(MIP) applying partial reoptimization, a metaheuristic technique also proposed in Taillard and Voss

(2001).

The remainder of this article is organized as follows. In Section 1, we give an overview on research

done on the GMST problem so far. In Section 2, we describe the components of our VNS approach

in detail. The instance types we used for testing are explained in Section 3. We show experimental

results including a comparison to previous approaches in Section 4 and conclude in Section 5.

1 Previous Work

The GMST problem was introduced by Myung, Lee, and Tcha (1995). They proved that this problem

is NP-hard and provided four different Integer Linear Programming (ILP) formulations. Feremans,

Labbe, and Laporte (2002) added another four formulations and performed an in-depth investigation

on all eight ILPs. Pop (2002) introduced the “Local-Global” MIP formulation. It proved in particular

to be more efficient in practice, especially in combination with a relaxation technique called “Rooting

Procedure”. Instances with up to 240 nodes divided into 30 clusters or 160 nodes divided into 40

clusters could be solved to optimality. Furthermore, Pop utilized the underlying idea of his MIP

formulation in a Simulated Annealing approach in order to heuristically solve larger instances. His

work also formed a basis for the design of one of the neighborhoods we present in this paper. A more

complex Branch-and-Cut algorithm which features new sophisticated cuts and detailed separation

procedures has been recently presented by Feremans, Labbe, and Laporte (2004). Nevertheless,

large instances can still not be solved to optimality in reasonable time.

Regarding approximation algorithms, Myung, Lee, and Tcha (1995) have shown the inapproxima-

bility of the GMST problem in the sense that no approximation algorithm with constant quality

guarantee can exist unless P = NP. However, there are better results for some special cases of the

problem. Pop, Still, and Kern (2005) described an approximation algorithm for the case when the

- 3 -

cluster size is constant. Moreover, Feremans and Grigoriev (2004) provided a Polynomial Time Ap-

proximation Scheme (PTAS) for the special case of the GMST problem with so-called grid-clustering.

To approach more general and larger GMST instances, various metaheuristics have been suggested.

Ghosh (2003) implemented and compared a Tabu Search with recency based memory (TS), a Tabu

Search with recency and frequency based memory (TS2), a Variable Neighborhood Descent Search,

a Reduced VNS, a VNS with steepest descent and a Variable Neighborhood Decomposition Search

(VNDS). For all the VNS approaches, he used 1-swap and 2-swap neighborhoods, which are based

on the exchange of the spanned nodes within clusters. Comparing these approaches on instances

ranging from 100 to 400 nodes partitioned into up to 100 clusters, Ghosh concluded that TS2 and

VNDS perform best on average. Golden, Raghavan, and Stanojevic (2005) presented lower and

upper bounding procedures, considering the graph G′ = 〈V ′, E′〉 with nodes v′i of V ′ being the

clusters Vi of G and with edge set E′ being complete. A lower bound arises when one determines an

MST on G′ with respect to edge costs c′(v′i, v
′
j) defined as min{c(a, b) | (a, b) ∈ E ∧ a ∈ Vi ∧ b ∈ Vj}.

Furthermore, the authors introduced construction heuristics by adapting Kruskal’s (Kruskal, 1956),

Prim’s (Prim, 1957), and Sollin’s algorithm for the classical MST problem, and described a Genetic

Algorithm (GA).

The current article extends the previous work (Hu, Leitner, and Raidl, 2005) by exploiting an

additional neighborhood type based on the optimization of small enough parts of a candidate solution

via MIP.

2 Variable Neighborhood Search for the GMST Problem

In this section, we describe the new VNS approach in detail. First, we consider two constructive

heuristics to produce initial solutions. In Section 2.2, we describe the neighborhoods and the search

techniques applied to them. Finally, Section 2.3.1 describes the shaking procedure, and Section 2.3.2

explains a memory function to substantially reduce the number of evaluations for the same solutions.

2.1 Initialization

To compute an initial feasible solution for the GMST problem, either a specialized heuristic or an

adaption of a standard algorithm for the classical MST problem can be used. Golden, Raghavan,

- 4 -

and Stanojevic (2005) give a comparison between three simple and three improved adaptions of

Kruskal’s, Prim’s, and Sollin’s MST algorithms for the GMST problem. While all three improved

adaptions produce comparable results, the variant based on Sollin’s algorithm in general has the

highest computational effort. We therefore adopt the improved version based on Kruskal’s MST

heuristic and compare it to the rather simple minimum distance heuristic which was also used by

Ghosh (2003) to generate initial solutions.

2.1.1 Minimum Distance Heuristic

The Minimum Distance Heuristic (MDH) for computing a feasible initial solution for the GMST

problem is shown in Algorithm 1. For each cluster, the node with the lowest sum of edge costs to

all nodes in other clusters is determined, and a MST is calculated on these nodes. Using Kruskal’s

algorithm for computing the MST, the complexity of MDH is O(|V |2+r2 log r) where r is the number

of clusters.

Algorithm 1: Minimum distance heuristic

for i = 1, . . . , r do
choose pi ∈ Vi with minimal

∑

v∈V \Vi

c(pi, v) as the node to be spanned

determine MST T on the subgraph induced by node set P = {p1, . . . , pr}
return solution S = 〈P, T 〉

2.1.2 Improved Adaption of Kruskal’s MST Heuristic

Creating a feasible solution for the GMST by an adaption of Kruskal’s algorithm for the classical

MST problem is straightforward (Golden, Raghavan, and Stanojevic, 2005). The basic idea is to

consider edges in increasing cost-order. An edge is added to the solution iff it does not introduce a

cycle and does not connect a second node of any cluster. Obviously, this adaption does not change

the time complexity of Kruskal’s original algorithm, which is O(|V | + |E| log |E|).

By fixing an initial node to be in the resulting generalized spanning tree, different solutions can be

obtained. The Improved Adaption of Kruskal’s MST Heuristic (IKH), as it is called by Golden,

Raghavan, and Stanojevic (2005), is shown in Algorithm 2 and follows this idea by running the

simple version |V | times, once for each node to be initially fixed. Due to the fact that sorting of

edges needs to be done only once, the computational complexity is O(|V |2 + |E| log |E|).

- 5 -

Algorithm 2: Improved Kruskal heuristic

for v ∈ |V | do
fix v to be in the generalized spanning tree
compute generalized spanning tree with the adaption of Kruskal’s MST algorithm

return solution with minimal costs

2.2 Neighborhoods

Our VNS algorithm applies three types of neighborhoods. The first two are based on local search

concepts from Ghosh (2003) and Pop (2002). Ghosh represents solutions by the spanned nodes and

defines neighborhood structures on them. Optimal edges are derived for a given selection of nodes

by determining a classical MST. On the other hand, Pop approaches the GMST problem from an

alternative side by representing a solution via its “global connections” – the pairs of clusters which

are directly connected. The complete solution is obtained by a decoding function which identifies

the best suited nodes and associated edges for the given global connections. The neighborhood of a

solution contains all solutions obtained by replacing a global connection by another feasible one. For

our third neighborhood type we consider reasonably small parts of a candidate solution, each part

inducing a smaller GMST (on a subgraph of the whole instance). We solve these smaller GMST’s

independently to optimality by means of the MIP of Pop (2002). After reconnecting these solved

parts we obtain a neighbor of the candidate solution.

2.2.1 Node Exchange Neighborhood

In this neighborhood, which was originally proposed by Ghosh (2003), a solution is represented by

the set of spanned nodes P = {p1, . . . , pr} where pi is the node to be connected from each cluster

Vi, i = 1, . . . , r. Knowing these nodes, there are rr−2 possible spanning trees, but one with smallest

costs can be efficiently derived by computing a classical MST on the subgraph of G induced by the

chosen nodes.

The Node Exchange Neighborhood (NEN) of a solution P consists of all node vectors (and corre-

sponding spanning trees) in which for precisely one cluster Vi the node pi is replaced by a different

node p′i of the same cluster. This neighborhood therefore consists of
r

∑

i=1
(|Vi| − 1) = O(|V |) differ-

ent node vectors representing in total O(|V | · rr−2) trees. Since a single MST can be computed

in O(r2) time, e.g. by Prim’s algorithm, a straight-forward generation and evaluation of the whole

neighborhood in order to find the best neighboring solution can be accomplished in O(|V | · r2) time.

- 6 -

Using an incremental evaluation scheme, we can reduce the computational effort significantly. The

goal is to derive from a current minimum-cost tree S represented by P a new minimum-cost tree S′

when node pi is replaced by some node p′i. Removing pi and all its incident edges from the initial tree

S results in a graph consisting of k ≥ 1 connected components T1, . . . , Tk, where usually k ≪ r. The

new minimum-cost tree S′ will definitely not contain new edges within each component T1, . . . , Tk,

because they are connected in the cheapest way as they where optimal in S. New edges are only

necessary between nodes of different components and/or p′i. Furthermore, only the shortest edges

connecting any pair of components must be considered. So, the edges of S′ must be a subset of

• the edges of S after removing pi and its incident edges,

• all edges (p′i, pj) with j = 1, . . . , r ∧ j 6= i, and

• the shortest edges between any pair of the components T1, . . . , Tk.

To compute S′, we therefore have to calculate the MST of a graph with (r − k − 1) + (r − 1) +

(k2 − k)/2 = O(r + k2) edges only. Unfortunately, this optimization does not change the worst

case time complexity, because identifying the shortest edges between any pair of components may

require O(r2) operations. However, in most practical cases it is substantially faster to compute these

shortest edges and to apply Kruskal’s MST algorithm on the resulting thin graph. Especially when

replacing a leaf node of the initial tree S, we only get a single component plus the new node and

the incremental evaluation’s benefits are largest.

Exchanging More Than One Node

The above neighborhood can be easily generalized by simultaneously replacing t ≥ 2 nodes. The

computational complexity of a complete evaluation raises to O(|V |t · r2). While an incremental

computation is still possible in a similar way as described above, the complete evaluation of the

neighborhood becomes nevertheless impracticable for larger instances even when t = 2. We therefore

apply a Restricted Two Nodes Exchange Neighborhood (RNEN2) in which only pairs of clusters that

are adjacent in the current solution S are simultaneously considered. Supposing the clusters are of

similar size, the time complexity for a complete evaluation is then only O(|V | · r2).

Nevertheless, RNEN2 is in practice still a relatively expensive neighborhood. Since its complete

evaluation consumes too much time in case of large instances, we abort its exploration after a

certain time limit returning the best neighbor identified so far.

- 7 -

2.2.2 Global Edge Exchange Neighborhood

For a given selection of nodes, optimal edges can be determined by an MST algorithm. Pop (2002)

has shown that this process can also be reversed: starting from a spanning tree, i.e. a given selection

of connections of a so-called “global graph”, one can determine optimal vertices (one for each cluster)

by another efficient algorithm.

The global graph Gg = 〈V g, Eg〉 consists of nodes corresponding to clusters in G, i.e. V g =

{V1, V2, . . . , Vr}, and edge set Eg = {(Vi, Vj) | ∃(u, v) ∈ E ∧ u ∈ Vi ∧ v ∈ Vj}, see Figure 2.

We now consider a spanning tree Sg = 〈V g, T g〉 with T g ⊆ Eg on this global graph. This tree

represents the set of all feasible generalized spanning trees on G which contain for each edge (Va, Vb) ∈

T g a corresponding edge (u, v) ∈ E with u ∈ Va ∧ v ∈ Vb ∧ a 6= b. Such a set of trees on G that

a particular global spanning tree represents is in general exponentially large with respect to the

number of nodes. However, we can use dynamic programming to efficiently determine a minimum

cost solution from this set. We start by rooting the global spanning tree at an arbitrary cluster

Vroot ∈ V g and directing all edges towards the leafs. Then, we traverse this tree in a recursive

depth-first way calculating for each cluster Vk ∈ V g and each node v ∈ Vk the minimum costs for

the subtree rooted in Vk when v is the node to be connected from Vk. These minimum costs of a

subtree are determined by the following recursion:

C(T g, Vk, v) =

0 if Vk is a leaf of the global spanning tree

∑

Vl∈Succ(Vk)

min
u∈Vl

{c(v, u) + C(T g, Vl, u)} else,

where Succ(Vk) denotes the set of all successors of Vk in T g. After having determined the minimum

costs for the whole tree, the nodes to be used can be easily derived in a top-down fashion by fixing

for each cluster Vk ∈ V g the node pk ∈ Vk yielding minimum costs. This dynamic programming

algorithm requires in the worst case O(|V |2) time and is illustrated in Figure 3.

As Global Edge Exchange Neighborhood (GEEN) for a given global tree T g, we consider any feasible

spanning tree differing from T g by precisely one edge. There are O(r) edges which can be removed

and O(r2) feasible ways of reconnecting the resulting two components. If we determine the best

neighbor by evaluating all possibilities and naively perform the whole dynamic programming for

each global candidate tree, the total time complexity is O(|V |2 · r3).

- 8 -

Incremental Dynamic Programming: For a more efficient evaluation of all neighbors, we per-

form the whole dynamic programming only once at the beginning, keep all costs C(T g, Vk, v), ∀k =

1, . . . , r, v ∈ Vk, and incrementally update our data for each considered move. According to the

recursive definition of the dynamic programming approach, we only need to recalculate the values

of a cluster Vi if it gets a new child, loses a child, or the costs of a successor change.

Moving to a solution in this neighborhood means to exchange a single global connection (Va, Vb) by

a different connection (Vc, Vd) so that the resulting graph remains a valid tree, see Figure 4. By

removing (Va, Vb), the subtree rooted at Vb is disconnected, hence Va loses a child and Va, as well as

all its predecessors, must be updated. Before we add (Vc, Vd), we first need to consider the isolated

subtree. If Vd 6= Vb, we have to re-root the subtree at cluster Vd. Thereby, the old root Vb loses a

child. All other clusters which get new children or lose children are on the path from Vb up to Vd,

and they must be reevaluated. Otherwise, if Vd = Vb, nothing changes within the subtree. When

adding the connection (Vc, Vd), Vc gets a new successor and therefore must be updated together

with all its predecessors on the path up to the root. In conclusion, whenever we replace a global

connection (Va, Vb) by (Vc, Vd), it is enough to update the costs of Va, Vb, and all their predecessors

on the ways up to the root of the new global tree.

If the tree is not degenerated, its height is O(log r), and we only need to update O(log r) clusters

of Gg. Suppose each of them contains no more than dmax nodes and has at most smax successors,

the time complexity of updating the costs of a single cluster Vi is O(d2
max · smax), and the whole

process needs time that is bounded by O(d2
max · smax · log r). The incremental evaluation is therefore

much faster than the complete evaluation with its time complexity of O(|V |2) as long as the trees

are not degenerated. An additional improvement is to further avoid unnecessary update calculations

by checking if an update actually changes costs of a cluster. If this is not the case, we may skip the

update of the cluster’s predecessors as long as they are not affected in some other way.

To examine the whole neighborhood of a current solution by using the improved method described

above, it is a good idea to choose a processing order that further supports incremental evaluation.

Algorithm 3 shows how this is done in detail.

Removing an edge (Vi, Vj) splits our rooted tree into two components: Kg
1 containing Vi and Kg

2

containing Vj . The algorithm iterates through all clusters Vk ∈ Kg
1 and makes them root. Each of

these clusters is iteratively connected to every cluster of Kg
2 in the inner loop. The advantage of this

calculation order is that none of the clusters in Kg
1 except its root Vk has to be updated more than

- 9 -

Algorithm 3: Global Edge Exchange Neighborhood (solution S)

forall global edges (Vi, Vj) ∈ T g do
remove (Vi, Vj)
M1 = list of clusters in component Kg

1 containing Vi (traversed in preorder)
M2 = list of clusters in component Kg

2 containing Vj (traversed in preorder)
forall Vk ∈ M1 do

root Kg
1 at Vk

forall Vl ∈ M2 do

root Kg
2 at Vl

add (Vk, Vl)
use incremental dynamic programming to determine the complete solution

and the objective value
if current solution better than best then

save current solution as best
remove (Vk, Vl)

restore and return best solution

once, because global edges are only added between the roots of Kg
1 and Kg

2 . Processing clusters in

preorder has another additional benefit: Typically, most of the time very few clusters have to be

updated when re-rooting either Kg
1 or Kg

2 .

2.2.3 Global Subtree Optimization Neighborhood

This neighborhood follows the idea of selecting subproblems of reasonable size, solving them to

provable optimality via MIP and merging the results to an overall solution as well as possible. We

consider the current GMST S = 〈P, T 〉 with its corresponding global spanning tree Sg = 〈V g, T g〉

defined on the global graph Gg as described in Section 2.2.2, i.e. for each edge (u, v) ∈ T with

u ∈ Vi ∧ v ∈ Vj , there exists a global edge (Vi, Vj) ∈ T g. After rooting Sg at a randomly chosen

cluster Vroot, we perform a depth-first search to determine all subtrees Q1, . . . , Qk containing at least

Nmin and no more than Nmax clusters. Figure 5 shows an example for this selection mechanism with

Nmin = 3 and Nmax = 4 yielding subtrees Q1, . . . , Q4 rooted at V1, . . . , V4.

Moving to a solution in the Global Subtree Optimization Neighborhood (GSON) means to optimize

one subtree Qi as an independent GMST problem on the restricted graph induced by the clusters

and nodes of Qi. After solving this subproblem via MIP, we reconnect the new subtree to the

remainder of the current overall tree in the best possible way. This can be achieved by inspecting

all global edges connecting both components, which is similar as in GEEN. Algorithm 4 summarizes

the evaluation of this neighborhood in pseudo-code.

- 10 -

Algorithm 4: Global Subtree Optimization Neighborhood (solution S)

V1, . . . , Vk = roots of the subtrees Q1, . . . , Qk containing at least Nmin and
no more than Nmax clusters

forall i = 1, . . . , k do
remove the edge (parent of Vi, Vi) // separate subtree Qi from S
optimize Qi via MIP
reconnect Qi to S in a best possible way // as GEEN reconnection mechanism
if current solution better than best then

save current solution as best
restore initial solution

restore and return best solution

Whether or not to also consider contained subtrees as Q2 in addition to Q1 in Figure 5 was a difficult

question while designing GSON. In general, if Qi contains Qj , it is not guaranteed that optimizing

and reconnecting Qi would always yield a better result than optimizing and reconnecting only the

smaller subtree Qj . This is possible in particular if the connection between Qi’s root cluster Vi

and its predecessor is cheap, but Qj fits better at a different location. So we decided to include

contained subtrees. If Nmin and Nmax are close, the additional computational effort caused by

contained subtrees is relatively low.

The computational complexity of GSON is hard to determine due to the optimization procedure via

MIP. If we do not allow overlapping subtrees, the number of subtrees to be considered is bounded

below by 0 and above by ⌊ r
Nmin

⌋. In our case, we allow contained subtrees, and the number of

subtrees to be optimized can be as large as ⌊ r
Nmax

· (Nmax−Nmin +1)⌋. In our experiments, choosing

Nmin = 5 and Nmax = 6 yielded the best results.

Local-Global MIP Formulation

In order to solve the subproblems on restricted sets of clusters to optimality, GSON utilizes Pop’s

local-global MIP formulation (Pop, 2002), which turned out to be more efficient than other formu-

lations when using a general purpose MIP solver as CPLEX. This formulation is based on the fact

that for each cluster Vk, k = 1, . . . , r, there must be a directed global path from Vk to each other

cluster Vj , j 6= k. For each k, these paths together form a directed tree rooted at Vk. We use the

following binary variables.

- 11 -

yij =

1 if cluster Vi is connected to cluster Vj in the global graph

0 otherwise
∀i, j = 1, . . . , r, i 6= j

λkij =

1 if cluster Vj is the parent of cluster Vi when we root the

tree at cluster Vk

0 otherwise

∀i, j, k = 1, . . . , r,

i 6= j, i 6= k

xe =

1 if edge e ∈ E appears in the solution

0 otherwise
∀e ∈ E

zv =

1 if node v is connected in the solution

0 otherwise
∀v ∈ V

Pop proved that if the binary incidence matrix y describes a spanning tree of the global graph, then

the local solution is integral. Therefore it is sufficient to only force yij to be integral in the following

local-global MIP formulation.

minimize
∑

e∈E

cexe(1)

subject to
∑

v∈Vk

zv = 1 ∀k = 1, . . . , r(2)

∑

e∈E

xe = r − 1(3)

∑

e=(u,v)|u∈Vi,v∈Vj

xe = yij ∀i, j = 1, . . . , r, i 6= j(4)

∑

e=(u,v)|u∈Vi

xe ≤ zv ∀i = 1, . . . , r, ∀v ∈ V \Vi(5)

yij = λkij + λkji ∀i, j, k = 1, . . . , r, i 6= j, i 6= k(6)
∑

j∈{1,...,r}\{i}

λkij = 1 ∀i, k = 1, . . . , r, i 6= k(7)

λkkj = 0 ∀j, k = 1, . . . , r, j 6= k(8)

λkij ≥ 0 ∀i, j, k = 1, . . . , r, i 6= j, i 6= k(9)

xe, zv ≥ 0 ∀e ∈ E,∀v ∈ V(10)

ylr ∈ {0, 1}(11)

- 12 -

Constraints (2) guarantee that only one node is selected per cluster. Equality (3) forces the solution

to contain exactly r−1 edges, while constraints (4) allow them only between nodes of clusters which

are connected in the global graph. Inequalities (5) ensure that edges only connect nodes v for which

zv = 1. For each k = 1, . . . , r, constraints (6) and (8) force variables λkij to represent a spanning

tree directed out of Vk: Equalities (6) ensure the selection of a global edge (i, j) iff i is parent of j

or j is parent of i in a spanning tree directed out of Vk. Constraints (7) guarantee that each cluster

except root k has exactly one parent, while Equalities (8) makes sure that root k has no parents.

2.2.4 Alternative Neighborhoods

When designing GSON we considered several alternative large neighborhoods combining the concepts

of the global graph with an exact MIP. One variation of GSON is to first solve all subtrees of limited

size exactly and then iterate through a neighborhood structure in which we consider all possibilities

of reconnecting these parts. As there are exponentially many such possibilities, the exhaustive

exploration turned out to be too expensive in practice.

Another idea for enhancing GSON is to select the clusters inducing a subproblem to be solved exactly

not just from the subtrees connected via a single edge to the remaining tree, but from any connected

subcomponent of limited size. However, the number of such components is in general too large for

a complete enumeration. A practical possibility is to consider the restricted set formed by choosing

each cluster as root exactly once and adding Nmax − 1 further clusters identified via breadth first

search. Thus one considers components of the current global tree where the clusters are close to each

other. Unfortunately, experiments we performed indicated that the gain of this variant of GSON

could not cover its high computational costs.

2.3 Variable Neighborhood Search Framework

We use the general VNS scheme, as shown in Algorithm 5, with VND as local improvement (Hansen

and Mladenovic, 1999, 2003). In VND, we alternate between NEN, GEEN, RNEN2, and GSON

in this order, see Algorithm 6. This sequence has been determined according to the computational

complexity of evaluating the neighborhoods.

- 13 -

Algorithm 5: VNS

create initial solution S
repeat

k = 1
repeat

S′ = S
Shake(S′, k)
VND(S′)
if S′ better than S then

S = S′

k = 1

else
k = k + 1

until k == kmax

until a termination criterion is met
return S

Algorithm 6: VND (solution S = 〈P, T 〉)

l = 1
repeat

switch l do

case 1: // NEN
S′ = Node Exchange Neighborhood (S)

case 2: // GEEN
S′ = Global Edge Exchange Neighborhood (S) //see Algorithm 3

case 3: // RNEN2
S′ = Restricted Two Nodes Exchange Neighborhood (S)

case 4: // GSON
S′ = Global Subtree Optimization Neighborhood (S) //see Algorithm 4

if solution improved then

S = S′

l = 1
else

l = l + 1

until l > 4
return S

2.3.1 Shaking

It turned out that using a shaking function which puts more emphasis on diversity yields good

results for our approach, see Algorithm 7. This shaking process uses both, the NEN and the GEEN

structures. For NEN, the number of random moves for shaking starts at three because we have a

restricted 2-Opt NEN improvement already included in VND; thus, shaking in NEN with smaller

values would mostly lead to the same local optimum as reached before. Shaking in GEEN starts

- 14 -

with two random moves for a similar reason. The number k of random moves increases in steps of

two up to ⌊ r
2⌋.

Algorithm 7: Shake (solution S = 〈P, T 〉, size k)

for i = 1, . . . , k + 1 do
randomly change the spanned node pi of a random cluster Vi

determine the MST T and derive T g

for i = 1, . . . , k do

remove a randomly chosen global edge e ∈ T g yielding components Kg
1 and Kg

2

insert a randomly chosen global edge e′ connecting Kg
1 and Kg

2 with e′ 6= e
determine the spanned nodes p1, . . . , pr by dynamic programming

return S

2.3.2 Memory Function

There is a common situation where VNS unnecessarily spends much time on iterating through all

neighborhoods. A local optimum reached by VND is a dead end for all neighborhoods and VNS uses

shaking to escape from it. Sometimes, applying VND on the new solution soon leads to the same

local optimum. Nevertheless, VND iterates through all neighborhoods again, trying to improve the

solution with no success.

We use a hash memory to avoid such situations. For each deterministic neighborhood structure

Ni, we store a hash value hNi
of the best solution obtained by it. Before VND tries to improve

a solution within Ni, it compares the hash value of the current solution with the memorized hash

value hNi
. If they are equal, the evaluation of the neighborhood is skipped, as the current solution

cannot be improved by searching through Ni. Since only one hash value per neighborhood structure

is memorized at a time, it is not comparable with full-fledged Tabu Search. Nevertheless, this simple

concept turned out to save much time in practice.

3 Test Instances

We tested our algorithm on instances used by Ghosh (2003), some further large instances of the

same types but with more nodes per cluster created by ourself, and most of the large Euclidean

TSPlib1 instances with geographical clustering (Feremans, 2001).

1http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html

- 15 -

Ghosh (2003) created so called grouped Euclidean instances. In this type of instances, squares with

side length span are associated to clusters and are regularly laid out on a grid of size col × row as

shown in Figure 6. The nodes of each cluster are randomly distributed within the corresponding

square. By changing the ratio between cluster separation sep and cluster span span, it is possible

to generate instances with clusters that are overlapping or widely separated. The second type

of benchmark instances are so called random Euclidean where nodes of the same cluster are not

necessarily close to each other. Such instances are created by simply scattering nodes randomly

within a square of size 1000 × 1000 and making the cluster assignment independently at random.

Finally, Ghosh also generated non-Euclidean random instances by choosing all edge costs randomly

from the integer interval [0, 1000]. All graphs have a complete set of edges. His benchmark set

contains instances with up to 1280 nodes, 818560 edges, and 64 clusters; details are listed in Table 1.

For each type and size, we consider three different instances. Expanding this benchmark library, we

analogously generated further large instances with 600 nodes and 20 clusters, yielding 30 nodes per

cluster, using the same algorithms. The values in the columns denote names of the sets, numbers of

nodes, numbers of edges, numbers of clusters, and numbers of nodes per cluster. In case of grouped

Euclidean instances, numbers of columns and rows of the grid, as well as the cluster separation and

cluster span values are additionally given.

Applying geographical clustering (Fischetti, González, and Toth, 1997) on TSPlib instances is done

as follows. First, r center nodes are chosen to be located as far as possible from each other. This

is achieved by selecting the first center randomly, the second center as the farthest node from the

first center, the third center as the farthest node from the set of the first two centers, and so on.

Then, clustering is done by assigning each of the remaining nodes to its nearest center node. We

consider the largest of such TSPlib instances with up to 442 nodes, 97461 edges, and 89 clusters;

details are listed in Table 2. The values in the columns denote names of the instances, numbers of

nodes, numbers of edges, numbers of clusters, and the average, minimal, and maximal numbers of

nodes per cluster.

4 Experimental Results

In the following, we first present a summary for an experimental comparison of the two constructive

heuristics described in Section 2.1, which we consider for the creation of initial solutions for VNS.

Computational results of our VNS approach on the different test data sets follow in Section 4.2.

- 16 -

Finally, Section 4.3 analyses the individual contributions of the different neighborhoods within VND.

All experiments were performed on a Pentium 4, 2.8GHz PC with 2GB RAM, and we used CPLEX

9.03 to solve the MIP subproblems within GSON.

4.1 Comparison of Construction Heuristics

Table 3 summarizes the comparison of MDH and IKH on all considered input instances. It turned

out that IKH performs consistently better than MDH on the TSPlib based, grouped Euclidean, and

non-Euclidean instances. Only on random Euclidean instances, MDH could outperform IKH on

70% of the instances. Ratios IKH/MDH indicate the average factor between the objective values

of solutions generated by IKH and MDH. Interestingly, the two heuristics never obtained the same

solution or solutions of the same quality. As the required CPU-times of both heuristics are very

small (less than 80ms for our largest instances with 1280 nodes), we decided to run both, MDH and

IKH, and to choose the better result as initial solution for VNS.

4.2 Computational Results for VNS

We compare the results of our VNS to Tabu Search with recency and frequency based memory (TS2)

(Ghosh, 2003), Variable Neighborhood Decomposition Search (VNDS) (Ghosh, 2003), the Simulated

Annealing (SA) approach from Pop (2002), and, in case of TSPlib instances, also to the Genetic

Algorithm (GA) from Golden, Raghavan, and Stanojevic (2005). While TS2 is deterministic, we

provide average results over 30 runs for VNDS and VNS and over at least 10 runs for SA (due to its

long running times). For TS2, VNDS, and our VNS, runs were terminated when a certain CPU-time

limit had been reached. In contrast, SA was run with the same cooling schedule and termination

criterion as specified by Pop (2002), which led to significantly longer running times compared to

the other algorithms. The results for the GA are adopted from Golden, Raghavan, and Stanojevic

(2005).

In Table 4 and 5 we show instance names, numbers of nodes, numbers of clusters, (average) numbers

of nodes per cluster, and (average) objective values of the final solutions obtained by the different

algorithms. Best values are printed bold. In case of SA and VNS, we also provide corresponding

standard deviations of objective values. VNDS produces very stable results as the standard devi-

ations are always zero, except for the second instance of set “Random Eucl 400” where it is 0.34.

- 17 -

For GA, we do not have any standard deviations as they are not listed by Golden, Raghavan, and

Stanojevic (2005).

In Table 4 we compare our VNS to TS2, VNDS, and SA on grouped Euclidean instances, random

Euclidean instances, and non-Euclidean instances. The time limit was set to 600s for TS2, VNDS,

and VNS. In fact, none of the tested algorithms practically needs that much time on smaller instances

to find the finally best solutions, but Ghosh (2003) used this time limit as termination criterion, so

we decided to retain it. SA required 150s for small instances with 125 nodes and up to about 40000s

for the largest instances with 1280 nodes.

When comparing our VNS with SA, we can observe that VNS consistently finds better solutions.

Wilcoxon rank sum tests yield error probabilities of less than 1% for the assumption that the mean

objective values from VNS are smaller. Also in comparison to VNDS, our VNS is the clear winner.

There are only two instances where VNS and VNDS obtained exactly the same mean results and

one instance (the second of set “Grouped Eucl 500”) on which VNDS performed better. In all

other cases, VNS’ solutions are superior with high statistical significance (error levels less than 1%).

Results of VNS and TS2 are ambiguous. While TS2 usually produces better results on instances

with few nodes per cluster, VNS is typically superior when the number of nodes per cluster is higher.

This can in particular be observed on instances with 30 nodes per cluster.

On grouped Euclidean instances, the objective values of the final solutions obtained by the considered

algorithms, especially those by TS2 and VNS, are relatively close. We assume that these instances are

easier to handle as the quality of the solutions are less affected by the differences of the approaches.

On random Euclidean instances, especially when the number of nodes per cluster is higher, VNS

produces substantially better results than TS2 and VNDS; e.g. for the third instance of set “Random

Eucl 600”, solutions obtained by VNS are on average 34.4% better than those of TS2. We also observe

that SA, which is usually worst, is able to outperform TS2 and VNDS on some of these instances.

We conclude that the neighborhood type GEEN, which is also the main component of SA, is very

effective on random Euclidean instances and on instances with higher number of nodes per cluster.

On non-Euclidean instances, TS2 mostly outperforms all other algorithms.

In Table 5 we compare our VNS to TS2, VNDS, SA, and also the GA on the TSPlib based instances.

Results for the GA are adopted from Golden, Raghavan, and Stanojevic (2005), where only smaller

instances up to pr226 have been considered. The listed CPU-times were the stopping criteria for

TS2, VNDS, and VNS. SA needed up to 10000s for large instances as pcb442. The test runs indicate

- 18 -

that our VNS outperforms VNDS and SA significantly. Wilcoxon rank sum tests again yield error

probabilities of less than 1% for the assumptions that the mean objective values from VNS are

smaller. Judging by the few results for GA, VNS finds solutions which are at least as good as

those of GA. Considering VNS and TS2, we cannot draw clear conclusions. Most of the time, these

two algorithms generate comparable results under the same conditions. We omitted smaller TSPlib

instances in Table 5 as the most capable algorithms TS2, GA, and VNS were all able to (almost)

always provide optimal solutions as found by the exact Branch-and-Cut algorithm from Feremans,

Labbe, and Laporte (2004). The latter could solve all instances with up to 200 nodes except d198

to provable optimality in up to 5254s CPU time.

In overall, VNS and TS2 are the most powerful algorithms among all considered approaches. Out

of 46 instances we have tested, VNS produces strictly better results in 20 cases, TS2 is better in 16

cases, and on 10 instances, they are equally good.

4.3 Contributions of Neighborhoods

In order to analyze how the different neighborhood structures of VNS contribute to the whole

optimization, we logged how often each one was able to improve on a current solution and their

absolute gains. Table 6 shows the ratios of successful improvements in contrast to how often each

neighborhood structure was evaluated. These values are grouped by the different types of input

instances. On the other hand, Table 7 shows their absolute gains, i.e. their contribution in percentage

to the difference between objective values of the starting and the final solutions.

In general, each neighborhood structure contributes substantially to the whole success. NEN and

RNEN2 are most effective in terms how often they improve on a solution, whereas the differences

in the objective values achieved by single improvements are significant larger in case of GEEN.

Considering that GSON operates on solutions which are already local optima with respect to all

other neighborhoods, both its improvement ratios and its absolute gains are remarkable. Regarding

the different instance sets, we also observe that the improvement ratio of GEEN generally increases

with the size of nodes per cluster.

In addition, Table 8 and 9 show tests on switching particular neighborhood structures off. We

compare results obtained by using all neighborhood structures, turning off NEN, turning off NEN as

well as RNEN2, turning off GEEN, and turning off GSON. Obviously, omitting NEN and RNEN2

- 19 -

performs worst. By switching off GEEN, we get comparable results on Group Euclidean instances

and Non-Euclidean instances, but significantly worse results on Random Euclidean instances. Data

on runs without GSON are taken from our previous paper (Hu, Leitner, and Raidl, 2005). These

results are generally inferior compared to the current results.

4.4 Adjusting the Size of the Global Subtree Optimization Neighborhood

The primary adjustment parameter for GSON is the size of the subtrees to be optimized via MIP.

These subtrees contain at least Nmin and at most Nmax clusters. In Table 10 and 11 we study the

influence of different values for these parameters. In general, results are ambiguous. On Random

Euclidean instances, a tendency towards smaller sizes yielding better results is noticeable. On some

other instances, the search process benefits from larger values as the neighborhood is searched more

extensively. We decided to set Nmin = 5 and Nmax = 6 as default behavior for a balanced behavior.

4.5 Using Different Starting Solutions

Table 12 and 13 show the importance of having good starting solutions for our VNS. We compare

the quality of the final solutions when using MDH/IKH as initialization heuristics in contrast to

starting with random solutions. The latter are constructed by choosing a random node for each

cluster and connecting them via Kruskal’s MST algorithm. Using MDH and IKH improves the

quality of final solutions in most cases. On smaller instances, starting with a random solution leads

to the same results as VNS is powerful enough and has enough time available. When facing more

difficult instances, time becomes more crucial and therefore starting with a superior solution proves

to be advantageous.

5 Summary and Conclusions

In this paper, we proposed a general Variable Neighborhood Search (VNS) approach for solving the

Generalized Minimum Spanning Tree problem. For initializing the solution, we use the Minimum

Distance Heuristic and the Improved Adaption of Kruskal’s MST Heuristic, which are both based

on Kruskal’s classical algorithms for determining a MST. Though their performance depends on the

instance type, the latter construction heuristic mostly yields better results.

- 20 -

Our Variable Neighborhood Descent combines three neighborhood types: For the Node Exchange

Neighborhood, solutions are represented by the spanned nodes and one node is replaced by another

of the same cluster. Optimal edges are derived by determining a classical MST on these nodes. The

Global Edge Exchange Neighborhood works in a complementary way by considering for a solution

primarily its global connections, i.e. pairs of clusters which are directly connected. Neighbors are

all solutions differing in exactly one global connection. Knowing this global structure for a solution,

dynamic programming is used to determine the best suited nodes and concrete edges. For both

of these neighborhoods, incremental evaluation schemes have been described, which speed up the

whole computation considerably. For the Global Subtree Optimization Neighborhood, we consider

subsets of clusters which are reorganized via Mixed Integer Programming and then reconnected to

the remainder as well as possible.

Tests were performed on TSPlib instances, grouped Euclidean instances, random Euclidean in-

stances, and non-Euclidean instances. Results show that the proposed VNS algorithm produces

with high probability solutions of equal or significantly better objective value, improving other

metaheuristics designed previously for the GMST.

This holds in particular for instances with large number of nodes per cluster. On grouped Euclidean

and TSPlib based instances, the differences between the objective values of the final solutions ob-

tained by our VNS and the other candidate algorithms are relatively low, which indicates that the

structure of these instances is simpler. Differences between the considered algorithms are largest

on random Euclidean instances. In this case, VNS produces substantially better results due to the

effectiveness of the Global Edge Exchange Neighborhood.

- 21 -

References

Dror, M., M. Haouari, and J. S. Chaouachi (2000). “Generalized spanning trees.” European Journal

of Operational Research 120, 583–592.

Duin, C. W., A. Volgenant, and S. Voss (2004). “Solving group Steiner problems as Steiner prob-

lems.” European Journal of Operational Research 154, issue 1, 323–329.

Feremans, C. (2001). Generalized Spanning Trees and Extensions. Ph.D. thesis, Universite Libre de

Bruxelles.

Feremans, C. and A. Grigoriev (2004). “An Approximation Scheme for the Generalized Geometric

Minimum Spanning Tree Problem with Grid Clustering.” Technical Report NEP-ALL-2004-09-30,

Maastricht: METEOR, Maastricht Research School of Economics of Technology and Organization.

Feremans, C., M. Labbe, and G. Laporte (2002). “A Comparative Analysis of Several Formulations

for the Generalized Minimum Spanning Tree Problem.” Networks 39(1), 29–34.

Feremans, C., M. Labbe, and G. Laporte (2004). “The Generalized Minimum Spanning Tree Prob-

lem: Polyhedral Analysis and Branch-and-Cut Algorithm.” Networks 43, issue 2, 71–86.

Fischetti, M., J. J. S. González, and P. Toth (1997). “A branch-and-cut algorithm for the symmetric

generalized traveling salesman problem.” Operations Research 45, 378–394.

Ghosh, D. (2003). “Solving Medium to Large Sized Euclidean Generalized Minimum Spanning Tree

Problems.” Technical Report NEP-CMP-2003-09-28, Indian Institute of Management, Research

and Publication Department, Ahmedabad, India.

Golden, B., S. Raghavan, and D. Stanojevic (2005). “Heuristic Search for the Generalized Minimum

Spanning Tree Problem.” INFORMS Journal on Computing 17(3), 290–304.

Hansen, P. and N. Mladenovic (1999). “An introduction to Variable Neighborhood Search.” In Meta-

heuristics, Advances and trends in local search paradigms for optimization, S. Voss, S. Martello,

I. H. Osman, and C. Roucairol, eds., Kluwer Academic Publishers. 433–458.

Hansen, P. and N. Mladenovic (2003). “A tutorial on Variable Neighborhood Search.” Technical

Report G-2003-46, Les Cahiers du GERAD, HEC Montreal and GERAD, Canada.

Hu, B., M. Leitner, and G. R. Raidl (2005). “Computing Generalized Minimum Spanning Trees

with Variable Neighborhood Search.” In Proceedings of the 18th Mini Euro Conference on Variable

- 22 -

Neighborhood Search, P. Hansen, N. Mladenović, J. A. M. Pérez, B. M. Batista, and J. M. Moreno-

Vega, eds. Tenerife, Spain.

Ihler, E., G. Reich, and P. Widmayer (1999). “Class Steiner Trees and VLSI-design.” Discrete

Applied Mathematics 90, 173–194.

Kruskal, J. B. (1956). “On the shortest spanning subtree and the traveling salesman problem.” In

Proceedings of the American Mathematical Society. volume 7, 48–50.

Myung, Y. S., C. H. Lee, and D. W. Tcha (1995). “On the Generalized Minimum Spanning Tree

Problem.” Networks 26, 231–241.

Pop, P. C. (2002). The Generalized Minimum Spanning Tree Problem. Ph.D. thesis, University of

Twente, The Netherlands.

Pop, P. C., G. Still, and W. Kern (2005). “An Approximation Algorithm for the Generalized

Minimum Spanning Tree Problem with Bounded Cluster Size.” In Algorithms and Complexity in

Durham 2005, Proceedings of the first ACiD Workshop, H. Broersma, M. Johnson, and S. Szeider,

eds. King’s College Publications, volume 4 of Texts in Algorithmics, 115–121.

Prim, R. C. (1957). “Shortest connection networks and some generalisations.” Bell System Technical

Journal 36, 1389–1401.

Reich, G. and P. Widmayer (1989). “Beyond Steiner’s Problem: A VLSI Oriented Generalization.”

In Graph-Theoretic Concepts in Computer Science WG89 . 196–210.

Taillard, E. and S. Voss (2001). “POPMUSIC: Partial optimization metaheuristic under special

intensification conditions.” In Essays and surveys in metaheuristics, C. Ribeiro and P. Hansen,

eds. 613–629.

- 23 -

V1 V2

V3

V4

V5

p1

p2

p3 p4

p5

Figure 1: Example for a GMST solution.

V1 V2

V3

V4

V5

Figure 2: A global graph Gg.

Vroot

a b c d

e f

g h

1

2

3
4

5
6

3 2

5

3

2 7

V3

V1 V2

C(T g, V1, a) = 0
C(T g, V1, b) = 0

C(T g, V2, c) = 0
C(T g, V2, d) = 0

C(T g, V3, e) = 4
C(T g, V3, f) = 5

C(T g, Vroot, g) = 8
C(T g, Vroot, h) = 6

Figure 3: Determining the minimum-cost values for each cluster and node. The tree’s total minimum

costs are C(T g, Vroot, h) = 6, and the finally selected nodes are printed bold.

- 24 -

Vroot

Va

VbVc

Vd

Vroot

Va

Vc

Vb

Vd

Figure 4: After removing (Va, Vb) and inserting (Vc, Vd), only the clusters on the paths from Va to

Vroot and Vb to Vroot must be reconsidered.

Vroot

V1

V2

V3

V4

Q1

Q2

Q3

Q4

Figure 5: Selection of subtrees to be optimized via MIP.

r
o
w

=
3

col = 4

sep

s
p
a
n

Figure 6: Creation of Grouped Euclidean Instances.

- 25 -

Table 1: Benchmark instance sets adopted from Ghosh (2003) and correspondingly created new sets
(marked by *). Each instance has a constant number of nodes per cluster.

Instance set |V | |E| r |V |
r

col row sep span

Grouped Eucl 125 125 7750 25 5 5 5 10 10
Grouped Eucl 500 500 124750 100 5 10 10 10 10
Grouped Eucl 600* 600 179700 20 30 5 4 10 10
Grouped Eucl 1280 1280 818560 64 20 8 8 10 10
Random Eucl 250 250 31125 50 5 - - - -
Random Eucl 400 400 79800 20 20 - - - -
Random Eucl 600* 600 179700 20 30 - - - -
Non-Eucl 200 200 19900 20 10 - - - -
Non-Eucl 500 500 124750 100 5 - - - -
Non-Eucl 600* 600 179700 20 30 - - - -

Table 2: TSPlib instances with geographical clustering (Feremans, 2001). Numbers of nodes vary
for each cluster.

Instance name |V | |E| r |V |
r

dmin dmax

gr137 137 9316 28 5 1 12
kroa150 150 11175 30 5 1 10
d198 198 19503 40 5 1 15
krob200 200 19900 40 5 1 8
gr202 202 20301 41 5 1 16
ts225 225 25200 45 5 1 9
pr226 226 25425 46 5 1 16
gil262 262 34191 53 5 1 13
pr264 264 34716 54 5 1 12
pr299 299 44551 60 5 1 11
lin318 318 50403 64 5 1 14
rd400 400 79800 80 5 1 11
fl417 417 86736 84 5 1 22
gr431 431 92665 87 5 1 62
pr439 439 96141 88 5 1 17
pcb442 442 97461 89 5 1 10

- 26 -

Table 3: Comparison of the construction heuristics MDH and IKH.

Instance Type MDH better % IKH better % IKH/MDH

TSBlib based 0 100 0.89
Grouped Euclidean 0 100 0.85
Random Euclidean 70 30 1.36
Non-Euclidean 0 100 0.16

Table 4: Results on instance sets from Ghosh (2003) and correspondingly created new sets, 600s
CPU-time (except SA). Three different instances are considered for each set.

Instances TS2 VNDS SA VNS

Set |V | r |V |/r C(T) C(T) C(T) std dev C(T) std dev

125 25 5 141.1 141.1 152.3 0.52 141.1 0.00
Grouped Eucl 125 125 25 5 133.8 133.8 150.9 0.74 133.8 0.00

125 25 5 143.9 145.4 156.8 0.00 141.4 0.00

500 100 5 566.7 577.6 642.3 0.00 567.4 0.57
Grouped Eucl 500 500 100 5 578.7 584.3 663.3 1.39 585.0 1.32

500 100 5 581.6 588.3 666.7 1.81 583.7 1.82

600 20 30 85.2 87.5 93.9 0.00 84.6 0.11
Grouped Eucl 600 600 20 30 87.9 90.3 99.5 0.28 87.9 0.00

600 20 30 88.6 89.4 99.2 0.17 88.5 0.00

1280 64 20 327.2 329.2 365.1 0.46 315.9 1.91
Grouped Eucl 1280 1280 64 20 322.2 322.5 364.4 0.00 318.3 1.78

1280 64 20 332.1 335.5 372.0 0.00 329.4 1.29

250 50 5 2285.1 2504.9 2584.3 23.82 2300.9 40.27
Random Eucl 250 250 50 5 2183.4 2343.3 2486.7 0.00 2201.8 23.30

250 50 5 2048.4 2263.7 2305.0 16.64 2057.6 31.58

400 20 20 557.4 725.9 665.1 3.94 615.3 10.8
Random Eucl 400 400 20 20 724.3 839.0 662.1 7.85 595.3 0.00

400 20 20 604.5 762.4 643.7 14.54 587.3 0.00

600 20 30 541.6 656.1 491.8 7.83 443.5 0.00
Random Eucl 600 600 20 30 540.3 634.0 542.8 25.75 537.0 10.2

600 20 30 627.4 636.5 469.5 2.75 469.0 11.9

200 20 10 71.6 94.7 76.9 0.21 71.6 0.00
Non-Eucl 200 200 20 10 41.0 76.6 41.1 0.02 41.0 0.00

200 20 10 52.8 75.3 86.9 5.38 52.8 0.00

500 100 5 143.7 203.2 200.3 4.44 152.5 3.69
Non-Eucl 500 500 100 5 132.7 187.3 194.3 1.20 148.6 4.27

500 100 5 162.3 197.4 205.6 0.00 166.1 2.89

600 20 30 14.5 59.4 22.7 1.49 15.6 1.62
Non-Eucl 600 600 20 30 17.7 23.7 22.0 0.82 16.1 1.24

600 20 30 15.1 29.5 22.1 0.44 16.0 1.66

- 27 -

Table 5: Results on TSPlib instances with geographical clustering, |V |
r

= 5, variable CPU-time.

TSPlib Instances TS2 VNDS SA GA VNS

Name |V | r time C(T) C(T) C(T) std dev C(T) C(T) std dev

gr137 137 28 150s 329.0 330.0 352.0 0.00 329.0 329.0 0.00
kroa150 150 30 150s 9815.0 9815.0 10885.6 25.63 9815.0 9815.0 0.00
d198 198 40 300s 7062.0 7169.0 7468.73 0.83 7044.0 7044.0 0.00
krob200 200 40 300s 11245.0 11353.0 12532.0 0.00 11244.0 11244.0 0.00
gr202 202 41 300s 242.0 249.0 258.0 0.00 243.0 242.0 0.00
ts225 225 45 300s 62366.0 63139.0 67195.1 34.49 62315.0 62268.5 0.51
pr226 226 46 300s 55515.0 55515.0 56286.6 40.89 55515.0 55515.0 0.00
gil262 262 53 300s 942.0 979.0 1022.0 0.00 - 942.3 1.02
pr264 264 54 300s 21886.0 22115.0 23445.8 68.27 - 21886.5 1.78
pr299 299 60 450s 20339.0 20578.0 22989.4 11.58 - 20322.6 14.67
lin318 318 64 450s 18521.0 18533.0 20268.0 0.00 - 18506.8 11.58
rd400 400 80 600s 5943.0 6056.0 6440.8 3.40 - 5943.6 9.69
fl417 417 84 600s 7990.0 7984.0 8076.0 0.00 - 7982.0 0.00
gr431 431 87 600s 1034.0 1036.0 1080.5 0.51 - 1033.0 0.18
pr439 439 88 600s 51852.0 52104.0 55694.1 45.88 - 51847.9 40.92
pcb442 442 89 600s 19621.0 19961.0 21515.1 5.15 - 19702.8 52.11

Table 6: Individual improvement rates of NEN, GEEN, RNEN2, and GSON.

Instance Type |V | r |V |/r NEN GEEN RNEN2 GSON

TSBlib based n.a. n.a. 5 0.55 0.44 0.67 0.18

125 25 5 0.54 0.49 0.72 0.15
500 100 5 0.55 0.41 0.76 0.16Grouped Euclidean
600 20 30 0.58 0.54 0.74 0.23

1280 64 20 0.63 0.45 0.70 0.46

250 50 5 0.74 0.30 0.95 0.09
Random Euclidean 400 20 20 0.59 0.42 0.88 0.10

600 20 30 0.57 0.53 0.81 0.07

200 20 10 0.78 0.43 0.60 0.06
Non-Euclidean 500 100 5 0.80 0.16 0.68 0.24

600 20 30 0.79 0.49 0.56 0.09

- 28 -

Table 7: Individual absolute gains of NEN, GEEN, RNEN2, and GSON.

Instance Type |V | r |V |/r NEN GEEN RNEN2 GSON

TSBlib based n.a. n.a. 5 16.58% 60.71% 15.64% 7.07%

125 25 5 18.02% 63.40% 13.61% 4.96%
500 100 5 23.17% 45.19% 28.32% 3.31%Grouped Euclidean
600 20 30 13.60% 75.85% 7.29% 3.26%

1280 64 20 16.72% 40.08% 20.45% 22.76%

250 50 5 16.90% 48.52% 16.06% 18.52%
Random Euclidean 400 20 20 16.14% 66.75% 15.13% 1.98%

600 20 30 21.30% 63.43% 13.65% 1.62%

200 20 10 10.89% 48.07% 11.92% 29.13%
Non-Euclidean 500 100 5 11.74% 60.04% 24.75% 3.47%

600 20 30 11.78% 74.80% 10.65% 2.78%

- 29 -

Table 8: Results on Ghosh’ instance sets when switching off certain neighborhood structures.

Instances VNS w.o. NEN w.o. all NENs w.o. GEEN w.o. GSON

Set C(T) std dev C(T) std dev C(T) std dev C(T) std dev C(T) std dev

141.1 0.00 141.1 0.00 141.1 0.00 141.1 0.00 141.1 0.00
Grouped Eucl 125 133.8 0.00 133.8 0.00 133.8 0.00 133.8 0.00 133.8 0.00

141.4 0.00 141.4 0.00 141.4 0.00 141.4 0.00 141.4 0.00

567.4 0.57 569.9 2.84 589.6 5.56 567.7 0.48 568.6 0.59
Grouped Eucl 500 585.0 1.32 584.0 0.92 601.8 5.33 586.5 1.18 581.0 1.39

583.7 1.82 584.9 1.46 597.1 2.37 583.3 1.91 587.9 4.07

84.6 0.11 84.6 0.00 84.8 0.27 84.6 0.11 84.8 0.27
Grouped Eucl 600 87.9 0.00 87.9 0.00 88.3 0.24 87.9 0.02 87.9 0.05

88.5 0.00 88.5 0.00 88.7 0.12 88.5 0.00 88.5 0.00

315.9 1.91 316.8 2.54 327.1 4.30 314.6 1.10 321.8 2.41
Grouped Eucl 1280 318.3 1.78 319.8 1.54 326.4 3.01 317.8 0.79 316.3 0.83

329.4 1.29 330.7 0.94 339.9 3.87 329.6 2.16 334.3 2.13

2300.9 40.27 2354.5 48.14 2646.6 28.49 2320.0 43.08 2336.9 34.23
Random Eucl 250 2201.8 23.30 2235.6 37.99 2576.2 112.15 2199.7 21.94 2304.1 47.95

2057.6 31.58 2093.5 52.39 2460.6 131.82 2061.2 26.91 2049.8 15.29

615.3 10.8 622.3 14.82 703.4 53.40 621.9 14.20 625.4 14.59
Random Eucl 400 595.3 0.00 595.3 0.00 671.4 25.82 595.3 0.00 595.3 0.14

587.3 0.00 587.3 0.00 657.4 50.38 597.5 17.15 588.8 7.40

443.5 0.00 450.5 20.85 506.5 46.08 452.9 33.57 443.5 0.00
Random Eucl 600 537.0 10.2 539.9 11.17 685.0 21.40 545.1 18.05 535.2 12.20

469.0 11.9 474.5 20.57 643.4 63.68 493.8 35.76 479.9 26.55

71.6 0.00 71.6 0.05 97.3 14.23 71.6 0.00 71.6 0.02
Non-Eucl 200 41.0 0.00 41.0 0.00 58.5 11.18 41.0 0.00 41.0 0.00

52.8 0.00 52.8 0.00 56.8 0.69 52.8 0.00 52.8 0.00

152.5 3.69 159.3 3.41 203.3 0.00 155.4 3.94 173.4 8.40
Non-Eucl 500 148.6 4.27 162.2 5.97 237.9 1.28 151.2 5.41 154.6 6.55

166.1 2.89 176.0 4.72 282.5 0.00 167.5 4.36 180.1 3.67

15.6 1.62 18.9 3.22 47.5 9.40 15.3 1.35 15.9 2.07
Non-Eucl 600 16.1 1.24 18.9 2.16 36.0 3.67 16.3 1.24 17.6 1.75

16.0 1.66 18.8 2.29 42.0 5.87 16.2 1.97 15.1 0.22

- 30 -

Table 9: Results on TSPlib instances when switching off certain neighborhood structures.

Instances VNS w.o. NEN w.o. all NENs w.o. GEEN w.o. GSON

Name C(T) std dev C(T) std dev C(T) std dev C(T) std dev C(T) std dev

gr137 329.0 0.00 329.0 0.00 329.0 0.00 329.0 0.00 329.0 0.00
kroa150 9815.0 0.00 9815.0 0.00 9815.0 0.00 9815.0 0.00 9815.0 0.00
d198 7044.0 0.00 7044.0 0.00 7044.6 2.28 7044.3 1.64 7044.0 0.00
krob200 11244.0 0.00 11244.0 0.00 11264.0 22.6 11244.0 0.00 11244.0 0.00
gr202 242.0 0.00 242.0 0.00 242.2 0.48 242.1 0.25 242.0 0.00
ts225 62268.5 0.51 62268.5 0.51 62270.7 6.35 62269.9 4.58 62280.5 16.28
pr226 55515.0 0.00 55515.0 0.00 55515.0 0.00 55515.0 0.00 55515.0 0.00
gil262 942.3 1.02 943.3 1.69 947.0 3.63 942.9 1.36 943.2 1.63
pr264 21886.5 1.78 21890.4 5.78 21913.0 17.1 21890.5 5.84 21890.8 5.92
pr299 20322.6 14.67 20322.6 14.79 20422.2 44.85 20330.7 21.67 20347.4 28.09
lin318 18506.8 11.58 18514.4 13.68 18596.1 36.9 18521.5 15.96 18511.2 9.70
rd400 5943.6 9.69 5981.8 23.27 6067.8 48.1 5976.3 16.74 5955.0 7.57
fl417 7982.0 0.00 7982.0 0.00 7982.3 0.47 7982.0 0.00 7982.0 0.00
gr431 1033.0 0.18 1033.2 0.43 1037.2 1.64 1033.1 0.25 1033.0 0.25
pr439 51847.9 40.92 51850.5 36.46 52184.0 127.55 51893.5 65.6 51849.7 39.30
pcb442 19702.8 52.11 19793.9 44.91 20079.2 42.39 19796.7 35.51 19729.3 50.90

- 31 -

Table 10: Results on Ghosh’ instance sets when tweaking the ILP size of GSON.

Instances ILP size 3 – 4 ILP size 5 – 6 ILP size 7 – 8 ILP size 3 – 8

Set C(T) std dev C(T) std dev C(T) std dev C(T) std dev

141.1 0.00 141.1 0.00 141.1 0.00 141.1 0.00
Grouped Eucl 125 133.8 0.00 133.8 0.00 133.8 0.00 133.8 0.00

141.4 0.00 141.4 0.00 141.4 0.00 141.4 0.00

567.4 0.65 567.4 0.57 567.5 0.49 567.5 0.76
Grouped Eucl 500 585.3 1.01 585.0 1.32 584.4 1.50 584.8 1.32

584.2 1.76 583.7 1.82 583.7 1.43 584.0 1.73

84.6 0.00 84.6 0.11 84.7 0.24 84.6 0.11
Grouped Eucl 600 87.9 0.00 87.9 0.00 88.4 0.39 87.9 0.00

88.5 0.00 88.5 0.00 88.5 0.00 88.5 0.00

315.9 1.75 315.9 1.91 316.9 2.59 317.7 2.36
Grouped Eucl 1280 318.4 1.58 318.3 1.78 319.5 1.51 319.6 1.97

329.9 1.68 329.4 1.29 330.8 1.37 329.5 1.05

2308.6 47.04 2300.9 40.27 2308.0 42.85 2320.8 50.63 3
Random Eucl 250 2208.6 31.66 2201.8 23.30 2198.6 20.56 2212.3 33.31 1

2055.5 34.74 2057.6 31.58 2057.2 33.67 2050.7 15.97

611.5 5.20 615.3 10.8 658.8 36.55 687.6 49.36
Random Eucl 400 595.3 0.00 595.3 0.00 618.3 24.62 621.6 25.02

587.3 0.00 587.3 0.00 598.7 23.75 623.1 36.00

443.5 0.00 443.5 0.00 657.7 0.00 657.7 0.00
Random Eucl 600 530.5 7.53 537.0 10.2 579.7 42.90 562.2 20.79

466.8 0.00 469.0 11.9 560.7 63.25 551.9 65.76

71.6 0.00 71.6 0.00 71.6 0.00 71.6 0.00
Non-Eucl 200 41.0 0.00 41.0 0.00 41.0 0.00 41.0 0.00

52.8 0.00 52.8 0.00 52.8 0.00 52.8 0.00

153.2 2.82 152.5 3.69 152.1 4.19 153.9 3.64
Non-Eucl 500 149.1 6.54 148.6 4.27 148.4 6.28 148.5 3.84

167.6 3.29 166.1 2.89 167.5 2.81 166.2 2.82

16.0 1.97 15.6 1.62 16.1 1.65 16.2 1.97
Non-Eucl 600 16.7 1.42 16.1 1.24 16.3 1.42 17.0 1.66

15.2 0.51 16.0 1.66 16.1 1.78 15.8 1.46

- 32 -

Table 11: Results on TSPlib instances when tweaking the ILP size of GSON.

Instances ILP size 3 – 4 ILP size 5 – 6 ILP size 7 – 8 ILP size 3 – 8

Set C(T) std dev C(T) std dev C(T) std dev C(T) std dev

gr137 329.0 0.00 329.0 0.00 329.0 0.00 329.0 0.00
kroa150 9815.0 0.00 9815.0 0.00 9815.0 0.00 9815.0 0.00
d198 7044.0 0.00 7044.0 0.00 7044.0 0.00 7044.0 0.00
krob200 11244.0 0.00 11244.0 0.00 11244.0 0.00 11244.0 0.00
gr202 242.0 0.00 242.0 0.00 242.0 0.18 242.0 0.00
ts225 62268.2 0.38 62268.5 0.51 62269.4 4.68 62268.3 0.47
pr226 55515.0 0.00 55515.0 0.00 55515.0 0.00 55515.0 0.00
gil262 942.1 0.57 942.3 1.02 942.0 0.00 942.1 0.57
pr264 21886.2 1.28 21886.5 1.78 21887.1 3.09 21887.6 4.23
pr299 20320.9 12.98 20322.6 14.67 20316.1 0.55 20316.8 2.07
lin318 18504.4 7.25 18506.8 11.58 18508.0 8.99 18506.0 8.01
rd400 5947.8 10.25 5943.6 9.69 5943.9 9.99 5945.8 10.57
fl417 7982.0 0.00 7982.0 0.00 7982.0 0.00 7982.0 0.00
gr431 1033.0 0.00 1033.0 0.18 1033.0 0.00 1033.0 0.18
pr439 51837.0 31.71 51847.9 40.92 51847.4 43.77 51841.4 41.27
pcb442 19693.1 49.05 19702.8 52.11 19712.4 53.58 19699.6 53.78

- 33 -

Table 12: Results on Ghosh’ instance sets when using different starting solutions.

Instances MDH and IKH random init

Set C(T) std dev C(T) std dev

141.1 0.00 141.1 0.00
Grouped Eucl 125 133.8 0.00 133.8 0.00

141.4 0.00 141.4 0.00

567.4 0.57 577.2 3.85
Grouped Eucl 500 585.0 1.32 585.4 2.63

583.7 1.82 585.0 3.51

84.6 0.11 84.7 0.25
Grouped Eucl 600 87.9 0.00 88.0 0.16

88.5 0.00 88.5 0.06

315.9 1.91 320.7 3.7
Grouped Eucl 1280 318.3 1.78 320.9 4.48

329.4 1.29 333.2 2.58

2300.9 40.27 2363.3 40.33
Random Eucl 250 2201.8 23.30 2306.1 48.63

2057.6 31.58 2153.1 92.65

615.3 10.8 626.9 17.72
Random Eucl 400 595.3 0.00 595.3 0.00

587.3 0.00 587.3 0.00

443.5 0.00 443.5 0.00
Random Eucl 600 537.0 10.2 541.4 14.06

469.0 11.9 470.7 12.36

71.6 0.00 71.6 0.00
Non-Eucl 200 41.0 0.00 41.0 0.00

52.8 0.00 52.8 0.00

152.5 3.69 177.3 16.54
Non-Eucl 500 148.6 4.27 166.0 9.06

166.1 2.89 187.5 10.11

15.6 1.62 17.8 2.93
Non-Eucl 600 16.1 1.24 18.4 1.81

16.0 1.66 16.7 2.34

- 34 -

Table 13: Results on TSPlib instances when using different starting solutions.

Instances MDH and IKH random init

Set C(T) std dev C(T) std dev

gr137 329.0 0.00 329.0 0.00
kroa150 9815.0 0.00 9815.0 0.00
d198 7044.0 0.00 7044.0 0.00
krob200 11244.0 0.00 11246.0 6.32
gr202 242.0 0.00 242.0 0.00
ts225 62268.5 0.51 62268.8 0.42
pr226 55515.0 0.00 55515.0 0.00
gil262 942.3 1.02 943.3 1.49
pr264 21886.5 1.78 21890.0 5.54
pr299 20322.6 14.67 20341.6 27.26
lin318 18506.8 11.58 18517.2 14.57
rd400 5943.6 9.69 5969.0 26.52
fl417 7982.0 0.00 7982.0 0.00
gr431 1033.0 0.18 1034.4 1.84
pr439 51847.9 40.92 51855.3 63.74
pcb442 19702.8 52.11 19735.0 56.57

- 35 -

