
Computing Generalized Minimum Spanning Trees with Variable

Neighborhood Search

Bin Hu, Markus Leitner, Günther R. Raidl∗

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

{hu|raidl}@ads.tuwien.ac.at

Abstract

In the generalized version of the classical Minimum Spanning Tree problem, the nodes of a

graph are partitioned into clusters and exactly one node from each cluster must be connected. This

problem plays, for example, a role in the design of backbones in larger communication networks.

We present a Variable Neighborhood Search (VNS) approach for this problem which is based

on two different neighborhood types working in complementary ways to maximize the efficiency

gained from the VNS concept. Both types of neighborhoods are large in the sense that they

contain exponentially many candidate solutions, but efficient polynomial-time algorithms are used

to identify best neighbors. Tests on Euclidean and random instances indicate in particular on

instances with many nodes per cluster significant advantages of our VNS over previously published

metaheuristic approaches.

Keywords: Generalized Minimum Spanning Tree, Variable Neighborhood Search, Dynamic Pro-

gramming

1 Introduction

The Generalized Minimum Spanning Tree (GMST) problem is an extension of the classical Mini-

mum Spanning Tree (MST) problem and is defined as follows. We consider a weighted complete

∗This work is supported by the RTN ADONET under grant 504438 and the Austrian Science Fund (FWF) under

grant P16263-N04.

- 1 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

V1 V2

V3

V4

V5

p1

p2

p3 p4

p5

Figure 1: Example for a GMST solution

graph G = 〈V,E, c〉 with node set V , edge set E, and edge cost function c : E → R+. The node

set V is partitioned into r pairwise disjunct clusters V1, V2, . . . , Vr containing d1, d2, . . . , dr nodes,

respectively.

A spanning tree of a graph is a cycle-free subgraph connecting all nodes. A solution to the GMST

problem defined on G is a graph S = 〈P, T 〉 with P = {p1, p2, . . . , pr} ⊆ V containing exactly one

node from each cluster, i.e. pi ∈ Vi for all 1 ≤ i ≤ r, and T ⊆ P × P ⊆ E being a spanning tree,

see Figure 1. The costs of such a tree are its total edge costs, i.e. C(T) =
∑

(u,v)∈T

c(u, v), and the

objective is to identify a solution with minimum costs.

In case each cluster contains only one node, i.e. di = 1 for all 1 ≤ i ≤ r, the problem is reduced to

the simple MST problem, which can be efficiently solved in polynomial time. In general, however,

the GMST problem is NP-hard [8].

There are several real world applications of the GMST problem, e.g. in the design of backbones in

large communication networks. Devices belonging to the same local area network can be seen as a

cluster, and the global network connects one device per local network. For a more detailed overview

on the GMST problem, see [1, 2, 8].

In this paper, we present a general Variable Neighborhood Search (VNS) approach for solving this

problem. VNS is a metaheuristic which exploits the idea of local search in changing neighborhoods

in order to head for a global optimum [6, 7]. As local improvement within VNS, we use Variable

Neighborhood Descent (VND) utilizing two different types of exponentially large neighborhoods

which can be seen as dual to each other.

The remainder of this article is organized as follows. In Section 2, we give an overview on research

done for the GMST problem so far. In Section 3, we describe the neighborhoods used, as well as the

- 2 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

optimization techniques applied on them. After that, we present the details of our VNS algorithm in

Section 4. We show experimental results including a comparison to previous approaches in Section

5 and finally conclude in Section 6.

2 Previous Work

The GMST problem was introduced by Myung et al. [8]. They proved that this problem is NP-hard

and provided four different Integer Linear Programming (ILP) formulations. Feremans et al. [4]

added another four formulations and did some in-depth investigation on all eight ILPs. Most of

these approaches are based on subset analysis and therefore the number of constraints increases

exponentially. Pop [9] introduced another ILP formulation, which proved to be more efficient than

the others. Instances with up to 240 nodes divided into 30 clusters or 160 nodes divided into 40

clusters could be solved to optimality. Furthermore, Pop utilized the idea of his ILP formulation for

a Simulated Annealing approach in order to heuristically solve larger instances. His work is essential

for the design of the neighborhoods we present in this paper.

Regarding approximation algorithms, Myung et al. [8] have shown the inapproximability of the

GMST problem in the sense that no approximation algorithm with constant quality guarantee can

exist unless P = NP. However, there are better results for some special cases of the problem. Pop

et al. [10] described an approximation algorithm for the case when the cluster sizes are limited. If

|Vi| ≤ dmax for all 1 ≤ i ≤ r, the total costs of the resulting solution are at most 2dmax times

the optimal solution value. Feremans et al. [3] provided a Polynomial Time Approximation Scheme

(PTAS) for the GMST problem in case of grid clustering, in which all nodes are situated inside a

planar integer grid.

As for metaheuristics, Ghosh [5] implemented and compared a Tabu Search (TS) with recency based

memory, a TS with recency and frequency based memory, a Variable Neighborhood Descent Search,

a Reduced VNS, a VNS with Steepest Descent and a Variable Neighborhood Decomposition Search.

For all the VNS approaches, he used 1-swap and strict 2-swap neighborhoods, which exchange the

used nodes within clusters. This type of neighborhoods will be utilized by us as well, see Section 3.1.

Comparing these approaches on instances ranging from 100 nodes to 400 nodes, Ghosh concluded

that TS with recency and frequency based memory performs best for small to medium sized graphs.

For large instances, results are ambiguous.

- 3 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

3 Neighborhoods

In our VNS algorithm, we use two types of neighborhoods based on concepts from Ghosh [5] and Pop

[9]. Pop approaches the GMST problem from the global view by first deciding which clusters are

directly connected and then deriving the best suited nodes and edges for these “global” connections.

On the other hand, Ghosh starts from the opposed direction by first fixing the nodes from each

cluster and then connecting them in a best way.

3.1 Node Exchange Neighborhood (NEN)

In this neighborhood, which was originally proposed by Ghosh [5], a solution is represented by a

vector p = (p1, . . . , pr) where pi is the node to be connected from each cluster Vi, i = 1, . . . , r.

Knowing these nodes, there are still rr−2 possible spanning trees, but the best one can be efficiently

derived by computing a classical MST on the subgraph of G induced by the chosen nodes.

The Node Exchange Neighborhood (NEN) of a solution p consists of all node vectors (and corre-

sponding spanning trees) in which for precisely one cluster Vi the node pi is replaced by a different

node p′i of the same cluster. This neighborhood therefore consists of
r∑

i=1
(|Vi| − 1) = O(|V |) node

vectors representing O(|V | · rr−2) trees. Since a single MST can be computed in O(r2) time, e.g. by

Prim’s algorithm, a straight-forward generation and evaluation of the whole neighborhood in order

to find the best neighboring solution can be accomplished in O(|V | · r2) time.

Using an incremental evaluation scheme, we can reduce the computational effort significantly. The

goal is to derive a new minimum-cost tree S′ when node pi is replaced by node p′i. Removing pi

and all its incident edges from the initial tree S results in a graph consisting of k ≥ 1 connected

components T1, . . . , Tk where usually k ¿ r.

The new minimum-cost tree S′ will definitely not contain new edges within each component

T1, . . . , Tk, because they are connected in the cheapest way as they where optimal in S. New

edges are only necessary between nodes of different components and/or p′i. Furthermore, only the

shortest edges connecting any pair of components must be considered. So, the edges of S′ must be

a subset of

• edges of S after removing pi and its incident edges,

• all edges (p′i, pj) | j = 1, . . . , r ∧ j 6= i, and

• the shortest edges between any pair of the components T1, . . . , Tk.

- 4 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

To compute S′, we therefore have to calculate the MST of a graph with (r−k−1)+(r−1)+(k2−k)/2 =

O(r + k2) edges only. Unfortunately, this does not change the worst case total computation time,

because identifying the shortest edges between any pair of components may need O(r2) operations.

However, in most cases it is faster to compute these shortest edges and to apply Kruskal’s MST

algorithm on the resulting thin graph. Especially when replacing a leaf node of the initial tree S, we

only get a single component plus the new node and the incremental evaluation is much faster than

the straight-forward approach.

Exchanging More Than One Node

The above neighborhood can be easily generalized by simultaneously replacing t ≥ 2 nodes. The

computational complexity of a complete evaluation raises to O(|V |t · r2). While an incremental

computation is still possible in a similar way as described above, the complete evaluation of the

neighborhood becomes nevertheless impracticable for larger instances even when t = 2. We therefore

use a Restricted Two Nodes Exchange Neighborhood (RNEN2) in which only pairs of clusters that

are adjacent in the current solution S are simultaneously considered. In this way, the time complexity

is reduced to O(|V | · r2).

RNEN2 is still the most expensive neighborhood. Since its complete evaluation consumes too much

time in case of large instances, we terminate its exploration after a certain time limit returning the

so-far best neighbor instead of following a strict best-neighbor strategy.

3.2 Global Edge Exchange Neighborhood (GEEN)

Derived from Pop’s local-global ILP and his Simulated Annealing approach [9], we use a second

neighborhood type which is defined on a so-called “global graph”. This graph Gg = 〈V g, Eg〉 consists

of nodes corresponding to the clusters in G, i.e. V g = {V1, V2, . . . , Vr}, and edge set Eg = V g × V g.

We now consider a spanning tree Sg = 〈V g, T g〉 with T g ⊆ Eg on this global graph. This tree

represents the set of all feasible generalized spanning trees on G which contain for each edge (Va, Vb) ∈
T g a corresponding edge (u, v) ∈ E | u ∈ Va∧v ∈ Vb, a 6= b. Such a set of trees on G that a particular

global spanning tree represents is in general exponentially large with respect to the number of nodes.

However, we can use dynamic programming to efficiently determine a minimum cost solution from

this set. In this process, we root the global spanning tree at an arbitrary cluster Vroot ∈ V g and

- 5 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

direct all edges towards the leafs. We traverse this tree in a recursive depth-first way calculating for

each cluster Vk ∈ V g and each node v ∈ Vk the minimum costs for the subtree rooted in Vk when

v is the node to be connected from Vk. These minimum costs of a subtree are determined by the

following recursion:

C(T g, Vk, v) =

0 if Vk is a leaf of the global spanning tree
∑

Vl∈Succ(Vk)

min
u∈Vl

{c(v, u) + C(T g, Vk, u)} else,

where Succ(Vk) denotes the set of all successors of Vk in T g. After having determined the minimum

costs for the whole tree, the selected nodes can be easily derived in a top-down fashion by fixing for

each cluster Vk ∈ V g the node pk ∈ Vk yielding the minimum costs. This dynamic programming

algorithm requires O(|V |2) time.

As neighborhood for a given global tree T g, we consider any other spanning tree differing from T g

by precisely one edge. If we determine the best neighbor by evaluating all possibilities of exchanging

a global edge and naively perform the whole dynamic programming for each global candidate tree,

the time complexity would be O(|V |2 · r2).

For a more efficient evaluation of the neighbors, we perform the whole dynamic programming only

once, keep all costs C(T g, Vk, v), and only evaluate an update. According to the recursive definition

of the dynamic programming approach, we only need to recalculate the values of a cluster Vi if it

gets a new child, loses a child, or the costs of a successor change.

Computing a solution in this neighborhood means to exchange a single global connection (Va, Vb)

by a different connection (Vc, Vd) so that the resulting graph remains a valid tree. By removing

(Va, Vb), the subtree rooted at Vb is disconnected, hence Va loses a child and Va, as well as all its

predecessors, must be updated. Before we add (Vc, Vd), we first need to consider the isolated subtree.

If Vd 6= Vb, we have to re-root the subtree at cluster Vd. Thereby, the old root Vb loses a child. All

other clusters which get new children or lose children are on the path from Vb up to Vd, and they

must be reevaluated. Otherwise, if Vd = Vb, nothing changes within the subtree. When adding the

connection (Vc, Vd), Vc gets a new successor and therefore must be updated together with all its

predecessors on the path up to the root. In conclusion, whenever we replace a global connection

(Va, Vb) by (Vc, Vd), it is enough to update the costs of Va, Vb, and all their predecessors on the way

up to the root of the new global tree, see Figure 2.

If the tree is not degenerated, we only need to update O(log r) clusters of Gg. Suppose each of

- 6 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

Vroot

Va

VbVc

Vd

Vroot

Va

Vc

Vb

Vd

Figure 2: After removing (Va, Vb) and inserting (Vc, Vd), all clusters on the paths from Va and Vb up

to Vroot must be updated.

them contains no more than dmax nodes and has at most smax successors. The time complexity of

updating the costs of a single cluster Vi is O(d2
max · smax) and the whole process needs time that is

bounded by O(d2
max ·smax · log r). In total we obtain an upper bound for the computation time which

is, on not degenerated trees, much better than O(|V |2). An additional improvement is to further

avoid unnecessary update calculations by checking if an update actually changes costs of a cluster.

If this is not the case, we may omit the update of the cluster’s predecessors as long as they are not

affected in some other way.

Algorithm 1: global edge exchange(solution S)

forall global edges (Vi, Vj) ∈ Eg do
remove (Vi, Vj)
M1 = preorder list of clusters Vk in component Kg

1 containing Vi

M2 = preorder list of clusters Vl in component Kg
2 containing Vj

forall Vk ∈ M1 do
root Kg

1 at Vk

forall Vl ∈ M2 do
root Kg

2 at Vl

add (Vk, Vl)
use dynamic programming to retrieve the objective value
if current solution better than best then

save current solution as best
remove (Vk, Vl)

restore best solution

To examine the whole neighborhood of a current solution by using the improved method described

above, it is a good idea to choose a processing order that supports incremental evaluation as well as

possible. Algorithm 1 shows how this is done in detail. Removing an edge (Vi, Vj) splits our rooted

tree into two components: Kg
1 containing Vi and Kg

2 containing Vj . The algorithm iterates through

- 7 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

all clusters Vk ∈ Kg
1 and makes them root. Each of these clusters is iteratively connected to every

cluster of Kg
2 in the inner loop. The advantage of this calculation order is that none of the clusters

in Kg
1 except its root Vk has to be updated more than once, because global edges are only added

between the roots of Kg
1 and Kg

2 . Processing the clusters in preorder has another additional benefit:

Typically most of the time very few clusters have to be updated when re-rooting either Kg
1 or Kg

2 .

4 VNS for the GMST Problem

We use the general VNS scheme with VND as local improvement for our approach. In VND, we

alternate between NEN, GEEN, and RNEN2 in this order, see Algorithm 2. This sequence has been

determined according to the computational complexity of searching the neighborhoods.

Algorithm 2: Variable Neighborhood Descent(solution S = 〈P, T 〉)
l = 1
repeat

switch l do
case 1 // NEN

for i = 1, . . . , r do
forall v ∈ Vi \ pi do

change used node pi of cluster Vi to v
recalculate the MST T
if current solution better than best then

save current solution as best

restore best solution
case 2 // GEEN

global edge exchange() //see Algorithm 1
case 3 // RNEN2

forall clusters Vi and Vj adjacent in the current solution do
forall v ∈ Vi \ pi and u ∈ Vj \ pj do

change used node pi of cluster Vi to v
change used node pj of cluster Vj to u
recalculate the MST T
if current solution better than best then

save current solution as best

restore best solution

if solution improved then
l = 1

else
l = l + 1

until l > 3

- 8 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

Shaking It turned out that using a shaking function which puts more emphasis on diversity yields

good results for our approach, see Algorithm 3. This shaking process uses both, the NEN and the

GEEN structures. For NEN, the number of random moves for shaking starts at three because we

have a reduced 2-Opt NEN improvement; thus, shaking in NEN with smaller values would mostly

lead to the same local optimum as reached before. Shaking in GEEN starts with two random moves

for the same reason. The number k of random moves increases in steps of two up to b r
2c.

Algorithm 3: shake(solution S = 〈P, T 〉, size k)

for i = 1, . . . , 2k do
randomly change the used node pi of a random cluster Vi

recalculate the MST T and derive T g

for i = 1, . . . , 2k + 1 do
remove a randomly chosen global edge e ∈ T g yielding components Kg

1 and Kg
2

insert a randomly chosen global edge e′ connecting Kg
1 and Kg

2 with e′ 6= e
recalculate the used nodes p1, . . . , pr by dynamic programming

Initialization We use Algorithm 4 to compute the initial solution. For each cluster, the node with

the lowest sum of edge costs to all nodes in other clusters is used and a MST is determined.

Algorithm 4: initialize()

for i = 1, . . . , r do
choose pi ∈ Vi with minimal

∑
v∈V \Vi

c(pi, v) as the used node

determine MST T on the used nodes p1, . . . , pr

return solution S = 〈P, T 〉

5 Computational results

We tested our algorithm on instances used by Ghosh [5] and some large TSPlib1 instances which

are geographically clustered as described in [2]. We extended Ghosh’s benchmark by generating new

instances with large number of nodes per cluster with the same algorithm as described in [5]. We

compare our results with Ghosh’s Tabu Search with recency and frequency based memory (TS2),

his Variable Neighborhood Decomposition Search (VNDS), and Pop’s Simulated Annealing (SA)

approach [9]. All experiments were performed on a Pentium 4 2.8GHz PC with 2GB RAM. While

TS2 is deterministic, we provide average results over 30 runs for VNDS and VNS, and over 10 runs

for SA. For TS2, VNDS, and our VNS, runs were terminated when a certain CPU-time limit (as

1http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html

- 9 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

Grouped Euclidean Instances TS2 VNDS SA VNS
Name |V | r |V |/r C(T) C(T) std dev C(T) std dev C(T) std dev
5 5 5 10 10 – 1 125 25 5 141.1 141.1 0.00 152.3 0.52 141.1 0.00
5 5 5 10 10 – 2 125 25 5 133.8 133.8 0.00 150.9 0.74 133.8 0.00
5 5 5 10 10 – 3 125 25 5 143.9 145.4 0.00 156.8 0.00 141.4 0.00
10 10 5 10 10 – 1 500 100 5 566.7 577.6 0.00 642.3 0.00 568.6 0.59
10 10 5 10 10 – 2 500 100 5 578.7 584.3 0.00 663.3 1.39 581.0 1.39
10 10 5 10 10 – 3 500 100 5 581.6 588.3 0.00 666.7 1.81 587.9 4.07
5 4 30 10 10 – 1 600 20 30 85.2 87.5 0.00 93.9 0.00 84.8 0.27
5 4 30 10 10 – 2 600 20 30 87.9 90.3 0.00 99.5 0.28 87.9 0.05
5 4 30 10 10 – 3 600 20 30 88.6 89.4 0.00 99.2 0.17 88.5 0.00
8 8 20 10 10 – 1 1280 64 20 327.2 329.2 0.00 365.1 0.46 321.8 2.41
8 8 20 10 10 – 2 1280 64 20 322.2 322.5 0.00 364.4 0.00 316.3 0.83
8 8 20 10 10 – 3 1280 64 20 332.1 335.5 0.00 372.0 0.00 334.3 2.13
General Euclidean Instances TS2 VNDS SA VNS
Name |V | r |V |/r C(T) C(T) std dev C(T) std dev C(T) std dev
50 5 1000 1000 – 1 250 50 5 2285.1 2504.9 0.00 2584.3 23.82 2336.9 34.23
50 5 1000 1000 – 2 250 50 5 2183.4 2343.3 0.00 2486.7 0.00 2304.1 47.95
50 5 1000 1000 – 3 250 50 5 2048.4 2263.7 0.00 2305.0 16.64 2049.8 15.29
20 20 1000 1000 – 1 400 20 20 557.4 725.9 0.00 665.1 3.94 625.4 14.59
20 20 1000 1000 – 2 400 20 20 724.3 839.0 0.34 662.1 7.85 595.3 0.14
20 20 1000 1000 – 3 400 20 20 604.5 762.4 0.00 643.7 14.54 588.8 7.40
20 30 1000 1000 – 1 600 20 30 541.6 656.1 0.00 491.8 7.83 443.5 0.00
20 30 1000 1000 – 2 600 20 30 540.3 634.0 0.00 542.8 25.75 535.2 12.2
20 30 1000 1000 – 3 600 20 30 633.3 636.5 0.00 469.5 2.75 479.9 26.55
Non-Euclidean Instances TS2 VNDS SA VNS
Name |V | r |V |/r C(T) C(T) std dev C(T) std dev C(T) std dev
20 10 1000 – 1 200 20 10 71.6 94.7 0.00 76.9 0.21 71.6 0.02
20 10 1000 – 2 200 20 10 41.0 76.6 0.00 41.1 0.02 41.0 0.00
20 10 1000 – 3 200 20 10 52.8 75.3 0.00 86.9 5.38 52.8 0.00
100 5 1000 – 1 500 100 5 143.7 203.2 0.00 200.3 4.44 173.4 8.40
100 5 1000 – 2 500 100 5 132.7 187.3 0.00 194.3 1.20 154.6 6.55
100 5 1000 – 3 500 100 5 162.3 197.4 0.00 205.6 0.00 180.1 3.67
20 30 1000 – 1 600 20 30 14.5 59.4 0.00 22.7 1.49 15.9 2.07
20 30 1000 – 2 600 20 30 17.7 23.7 0.00 22.0 0.82 17.6 1.75
20 30 1000 – 3 600 20 30 15.1 29.5 0.00 22.1 0.44 15.1 0.22

Table 1: Results on Ghosh [5] and newly created (|V | = 600) instances, 600s CPU-time (except SA).

indicated in the results tables) had been reached. In contrast, SA was run for a fixed number of

iterations as specified in [9], which leaded to a much longer running time compared to the others.

In Table 1 and 2 we show instance names, numbers of nodes, numbers of clusters, average numbers

of nodes per cluster, the (average) objective values and corresponding standard deviations of the

final solutions of TS2, VNDS, SA, and VNS. All instances of Table 1 containing 600 nodes are new.

The best values are printed in bold.

These results show that our VNS approach can compete well with Ghosh’s TS2 and most of the

- 10 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

TSPlib Instances TS2 VNDS SA VNS
Name |V | r |V |/r time C(T) C(T) std dev C(T) std dev C(T) std dev
gr137 137 28 5 150s 329.0 330.0 0.00 352.0 0.00 329.0 0.00
kroa150 150 30 5 150s 9815.0 9815.0 0.00 10885.6 25.63 9815.0 0.00
krob200 200 40 5 300s 11245.0 11353.0 0.00 12532.0 0.00 11244.0 0.00
ts225 225 45 5 300s 62366.0 63139.0 0.00 67195.1 34.49 62280.5 16.28
gil262 262 53 5 300s 942.0 979.0 0.00 1022.0 0.00 943.2 1.63
pr264 264 54 5 300s 21886.0 22115.0 0.00 23445.8 68.27 21890.8 5.92
pr299 299 60 5 450s 20339.0 20578.0 0.00 22989.4 11.58 20347.4 28.09
lin318 318 64 5 450s 18521.0 18533.0 0.00 20268.0 0.00 18511.2 9.70
rd400 400 80 5 600s 5943.0 6056.0 0.00 6440.8 3.40 5955.0 7.57
fl417 417 84 5 600s 7990.0 7984.0 0.00 8076.0 0.00 7982.0 0.00
gr431 431 87 5 600s 1034.0 1036.0 0.00 1080.5 0.51 1033.0 0.25
pr439 439 88 5 600s 51852.0 52104.0 0.00 55694.1 45.88 51849.7 39.30
pcb442 442 89 5 600s 19621.0 19961.0 0.00 21516.0 5.15 19729.3 50.90

Table 2: Results on TSPlib instances with geographical clustering, variable CPU-time.

time outperforms VNDS and Pop’s SA. Compared to TS2, our algorithm provides significantly

better results on random Euclidean instances in the case when clusters contain many nodes. On

Ghosh-instances with five nodes per cluster, TS2 generally yields better results. In all other cases

and on TSPlib instances, both algorithms provide comparable results.

6 Conclusion and Future Work

In this paper, we proposed a powerful VNS approach for solving the Generalized Minimum Spanning

Tree problem by combining two complementary types of large neighborhoods. They can be seen as

dual to each other. Results show that this concept outperforms previous metaheuristic approaches

in particular on instances with a large number of nodes per cluster. This is due to the strength of

the dynamic programming process of the Global Edge Exchange Neighborhood for computing the

optimal node selection for a given global spanning tree.

In future work, we plan to consider further, more sophisticated neighborhoods for the VND. For

example, they can be based on the existing ILP formulations and various ILP techniques can be

used for finding the best neighbors.

- 11 -

MEC-VNS: 18th Mini Euro Conference on VNS, 2005

References

[1] M. Dror, M. Haouari, and J. Chaouachi. Generalized spanning trees. European Journal of

Operational Research, 120:583–592, 2000.

[2] C. Feremans. Generalized Spanning Trees and Extensions. PhD thesis, Universite Libre de

Bruxelles, 2001.

[3] C. Feremans and A. Grigoriev. An approximation scheme for the generalized geometric min-

imum spanning tree problem with grid clustering. Technical Report NEP-ALL-2004-09-30,

Maastricht: METEOR, Maastricht Research School of Economics of Technology and Organiza-

tion, 2004.

[4] C. Feremans, M. Labbe, and G. Laporte. A comparative analysis of several formulations for

the generalized minimum spanning tree problem. Networks, 39(1):29–34, 2002.

[5] D. Ghosh. Solving medium to large sized Euclidean generalized minimum spanning tree prob-

lems. Technical Report NEP-CMP-2003-09-28, Indian Institute of Management, Research and

Publication Department, Ahmedabad, India, 2003.

[6] P. Hansen and N. Mladenovic. An introduction to variable neighborhood search. In S. Voss,

S. Martello, I. H. Osman, and C. Roucairol, editors, Meta-heuristics, Advances and trends in

local search paradigms for optimization, pages 433–458. Kluwer Academic Publishers, 1999.

[7] P. Hansen and N. Mladenovic. A tutorial on variable neighborhood search. Technical Report

G-2003-46, Les Cahiers du GERAD, HEC Montreal and GERAD, Canada, 2003.

[8] Y. S. Myung, C. H. Lee, and D. W. Tcha. On the generalized minimum spanning tree problem.

Networks, 26:231–241, 1995.

[9] P. C. Pop. The Generalized Minimum Spanning Tree Problem. PhD thesis, University of Twente,

The Netherlands, 2002.

[10] P. C. Pop, G. Still, and W. Kern. An approximation algorithm for the generalized minimum

spanning tree problem with bounded cluster size. In H. Broersma, M. Johnson, and S. Szeider,

editors, Algorithms and Complexity in Durham 2005, Proceedings of the first ACiD Workshop,

volume 4 of Texts in Algorithmics, pages 115–121. King’s College Publications, 2005.

- 12 -

