
An A* Algorithm for Solving a Prize-Collecting
Sequencing Problem with One Common and
Multiple Secondary Resources and Time Windows

Matthias Horn · Günther R. Raidl ·
Elina Rönnberg

Abstract In the considered sequencing problem, a subset of a given set of
jobs is to the be scheduled. A scheduled job has to execute without preemp-
tion and during this time, the job needs both a common resource for a part
of the execution as well as a secondary resource for the whole execution time.
The common resource is shared by all jobs while a secondary resource is shared
only by a subset of the jobs. Each job has one or more time windows and due
to these, it may not be possible to schedule all jobs. Instead, each job is as-
sociated with a prize and the task is to select a subset of jobs which yields
a feasible schedule with a maximum total sum of prizes. First, we argue that
the problem is NP-hard. Then, we present an exact A* algorithm and derive
different upper bounds for the total prize; these bounds are based on con-
straint and Lagrangian relaxations of a linear programming relaxation of a
multidimensional knapsack problem. For comparison, a compact mixed inte-
ger programming (MIP) model and a constraint programming model are also
presented. An extensive experimental evaluation on two types of problem in-
stances shows that the A* algorithm outperforms the other approaches and
is able to solve small to medium size instances with up to about 50 jobs to
proven optimality. In cases where A* does not prove that an optimal solution
is found, the obtained upper bounds are stronger than those of the MIP model.

Keywords Sequencing · A* algorithm · particle therapy patient scheduling

This project is partially funded by the Doctoral Program “Vienna Graduate School on
Computational Optimization”, Austrian Science Foundation (FWF) Project No. W1260-
N35. The work of Elina Rönnberg is supported by the Center for Industrial Information
Technology (CENIIT), Project-ID 16.05. We further thank Lukas Felician Krasel for his
help in the implementation and testing.

M. Horn and G. R. Raidl
Institute of Logic and Computation, TU Wien, Austria E-mail: {horn|raidl}@ac.tuwien.ac.at

E. Rönnberg
Department of Mathematics, Linköping University, Sweden
E-mail: elina.ronnberg@liu.se

235

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Matthias Horn et al.

1 Introduction

The Job Sequencing with One Common and Multiple Secondary Resources
(JSOCMSR) problem has been introduced in [6]. It considers the scenario of
scheduling a set of jobs where each job, for part of its execution, requires a
common resource and, for the whole processing time, requires a secondary
resource that is only shared with a subset of the other jobs. The goal of the
JSOCMSR is to find a feasible schedule minimizing the makespan.

Applications of this problem can be found, for example, in manufacturing
when the common resource corresponds to a machine on which the jobs are
to be processed and the processing of each job also requires a certain accom-
panying resource like a casting mold, template etc. The important aspect is
that there is a setup time (e.g. a preparation of the casting mold) at which the
secondary resource is needed before the job can be executed at the machine
and also a postprocessing time during which the secondary resource is needed
afterwards (e.g. because the produced goods must be cooled in the casting
mold). With job-dependent setup, processing and postprocessing times and a
limited number of shared secondary resources, the JSOCMSR has been shown
to be NP-hard [6].

A more specific application of this problem can be found in the daily
scheduling of cancer patients that are to receive particle therapy, [12]. There,
the common resource corresponds to a sophisticated particle accelerator, which
accelerates proton or carbon particles to almost the speed of light. This par-
ticle beam is directed into one of a small set of treatment rooms where one
patient can be radiated at a time. The treatment rooms are here the secondary
resources. During the setup time, a patient is positioned and possibly sedated
and after the actual radiation with the particle beam, typically some medical
examinations are to be done before the patient can leave the room and it be-
comes available for a next patient. In such particle therapy treatment centers,
there is usually only a single particle accelerator because of its huge cost and
about two to three treatment rooms. Since these treatment rooms are typically
individually equipped for handling different kinds of treatments, the assign-
ment of patients to rooms is pre-specified. Ideally, patients are scheduled in
such a way that the particle beam is directly switched from one room to an-
other so that patients are radiated without any significant breaks in-between.

However, the JSOCMSR is in most cases only a strongly simplified model
of real-world scenarios like the above patient scheduling. Most notably, the
jobs start times are in practice frequently constrained to certain time windows
arising from the availability of the underlying resources. Furthermore, in prac-
tice, it happens frequently that not all jobs can be scheduled due to these time
windows and instead, a best subset of jobs that can be feasibly scheduled must
be selected.

To also include such aspects is the focus of the current work: We extend
the JSOCMSR by considering job-specific time windows, and instead of mini-
mizing the makespan we aim at finding a feasible solution that maximizes the
total prize of all scheduled jobs. To this end, each job has an assigned prize,

236 Matthias Horn, Günther R. Raidl and Elina Rönnberg

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

An A* Algorithm for a Prize-Collecting Sequencing Problem

which can simply take the value one if we want to maximize the number of
scheduled jobs or it can take a value representing the priority of the job. One
possibility is that these prizes are correlated to the processing times of the
jobs to avoid scheduling only short jobs.

These new aspects have a substantial impact on the algorithmic side, and
existing methods for the JSOCMSR cannot easily be extended in efficient
ways. After a more formal problem definition in the next section and a survey
of related work in Section 3, the contribution of this paper is to suggest a new
solution approach designed for solving small to medium-sized instances of this
extended JSOCMSR variant to proven optimality. To this end, we propose
an effective A* algorithm in Section 4, which relies on a state strengthening
procedure and an upper bound calculation for partial solutions. We suggest
and investigate different ways, based on constraint and Lagrangian relaxations
of a linear programming relaxation of a multidimensional knapsack problem,
to perform these upper bound calculation. For comparison purposes, we fur-
ther consider, in Section 5, an order-based Mixed Integer Programming (MIP)
model solved by Gurobi Optimizer Version 7.5.1 and, in Section 6, a con-
straint programming model solved by MiniZinc, using three different backend
solvers. Experimental results for instances with up to 90 jobs are presented in
Section 7. They show that the proposed A* algorithm can solve substantially
larger instances to optimality in shorter times than the compared approached.
Section 8 concludes this work with an outline of promising future research
directions.

2 Problem Formulation

The Prize-Collecting Job Sequencing with One Common and Multiple Sec-
ondary Resources with Time Windows (PC-JSOCMSR) considers the sequenc-
ing of a set of jobs where each job needs to respect resource constraints and
time windows. The resource constraints refer both to a common resource that
is used by all jobs and a set of secondary resources of which each job uses
exactly one. It is assumed that it is usually not possible to find a feasible
schedule that includes all jobs; instead each job is associated with a prize and
the objective is to choose a subset of the jobs such that the sum of prizes of
the sequenced jobs is maximized.

Let the set of all jobs be denoted by J , with |J | = n, and let the prize of
job j be zj > 0, j ∈ J . The problem is to find a subset of jobs S ⊆ J that can
be feasibly scheduled so that the total prize of these jobs is maximized:

Z∗ = max
S⊆J

Z(S) = max
S⊆J

∑

j∈S
zj . (1)

The set of (renewable) resources is denoted by R0 = {0} ∪ R, with R =
{1, . . . ,m}. During its execution, job j uses resource 0, referred to as the
common resource, and one of the secondary resources qj ∈ R, j ∈ J . Let
pj > 0 be the processing time of job j, during which it fully requires the

An A* Algorithm for Solving a Prize-Collecting Sequencing Problem with One
Common and Multiple Secondary Resources and Time Windows 237

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Matthias Horn et al.

secondary resource qj , j ∈ J . Further, let Jr = {j ∈ J | qj = r} be the set of
jobs that require resource r, r ∈ R. For job j, j ∈ J , the use of the common
resource begins ppre

j ≥ 0 time units after the start of the job, has a duration

of p0
j , and ends ppost

j = pj − ppre
j − p0

j ≥ 0 time units before the end of the job.

If a job j is scheduled, it must be performed without preemption and
within one of its ωj time windows Wj =

⋃
w=0,...,ωj

[
W start

jw ,W end
jw

]
, where

W end
jw −W start

jw ≥ pj , w = 0, . . . , ωj , j ∈ J . We assume that each job has at least

one time window. For job j, let the release time be T rel
j = minw=0,...,ωj

W start
jw

and the deadline be T dead
j = maxw=0,...,ωj

W end
jw , j ∈ J . The overall time

interval to consider is then
[
Tmin, Tmax

]
with Tmin = minj∈J T rel

j and Tmax =

maxj∈J T dead
j . Note that the existence of unavailability periods of resources is

also covered by the above formulation since these can be translated into time
windows of the jobs.

To simplify the consideration of the time windows of a job, we define the
function earliest feasible time

eft(j, t) = min{Tmax, t′ ≥ t | [t′, t′ + pj] ⊆Wj} (2)

that yields the earliest time not smaller than the provided time t ≤ Tmax

at which job j can be scheduled according to the time windows Wj , j ∈ J .
Hereby, eft(j, t) = Tmax indicates that job j cannot be feasibly included in the
schedule anymore.

Since each job requires resource 0 and only one job can use this resource at
a time, a solution to PC-JSOCMSR implies a total ordering of the scheduled
jobs S. Vice versa, a permutation π = (πi)i=1,...,|S| of a subset of jobs S ⊆ J
that can be feasibly scheduled can be decoded into a feasible schedule in a
straight-forward greedy way by, in the order given by π, placing each job from
S at its earliest feasible time with respect to when the resources are available
after being used by all its preceding jobs. A schedule derived from a job per-
mutation π in this way is referred to as a normalized schedule. Note that if
this greedy approach is applied to a permutation of jobs and some job cannot
be feasibly scheduled in this way, this permutation does not correspond to a
feasible solution. Also, an optimal solution is either a normalized schedule or
the order of the jobs in this optimal solution can be used to derive a nor-
malized schedule with the same objective value. For this reason the notation
Z(π) is used for the total prize of the normalized solution given by the job
permutation π.

It is not difficult to see that the PC-JSOCMSR is NP-hard: The decision
variant of the JSOCMSR, which looks for a feasible schedule with a makespan
not exceeding a given M , has already been shown to be NP-hard in [6]. One
can reduce this decision problem to the PC-JSOCMSR in polynomial time by
setting all time windows to Wj = [0,M] and all prizes to zj = 1. A solution
to the JSOCMSR decision problem exists if and only if a solution to the PC-
JSOCMSR can be found that has all jobs scheduled.

238 Matthias Horn, Günther R. Raidl and Elina Rönnberg

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

An A* Algorithm for a Prize-Collecting Sequencing Problem

3 Related Work

The JSOCMSR was originally proposed by Horn, Raidl, and Blum in [6].
There, a greedy heuristic, an A* algorithm, and a position-based MIP model
are described. A particular contribution of that work is a method for calculat-
ing a relatively tight lower bound for the makespan, given a partial solution
and the still open jobs. Experimental results show that thanks to this strong
bound, already the greedy heuristic yields relatively good results by quickly
deriving solutions with optimality gaps of only a few percent. Further, the A*
search is capable of solving instances with up to 1000 jobs to proven optimal-
ity. In comparison, the presented MIP approach was not competitive and can
only solve instances with up to 20 jobs reasonably well and it then requires
substantially longer computation times. Unfortunately, the lower bound cal-
culation from this previous work is of no use for our PC-JSOCMSR due to
the difference in objective function, the fact that usually not all jobs can be
scheduled and the time windows. Note further that it is also not efficiently
possible or straightforward to adapt the position based MIP model from [6] to
the PC-JSOCMSR due to the time windows.

Concerning the PC-JSOCMSR, we point out that in parallel to the work
on exact solution approaches presented here, our research group also investi-
gated methods based on multivalued decision diagrams and general variable
neighborhood search for addressing larger problem instances that cannot be
solved to proven optimality; a corresponding article is concurrently submitted
to PATAT 2018 by Maschler and Raidl [10].

To the best of our knowledge, there are only a few further publications
dealing with other scenarios similar to the (PC-)JSOCMSR. Veen et al. [17]
considers a similar setup as JSOCMSR with jobs requiring one common re-
source and individual secondary resources. However, in their case, the postpro-
cessing times are negligible compared to the total processing times of the jobs.
This implies that the start time of each job only depends on its immediate
predecessor. This simplifies the situation substantially, since a job j requiring
a different resource than its predecessor j′ can always be started after a setup
time only depending on job j, while a job requiring the same resource can
always be started after a postprocessing time only depending on job j′. Due
to these properties, this problem can be interpreted as a Traveling Salesman
Problem (TSP) with a special cost structure. Veen et al. even show that their
problem can be solved efficiently in time O(n log n).

Somehow related to the JSOCMSR are no-wait flowshop problem variants,
see [1] for a survey. Each job needs to be processed on each of m machines in
the same order and the processing of the job on a successive machine always
has to take place immediately after its processing has finished on the preceding
machine. This problem can be solved in time O(n log n) for two machines via
a transformation to a specially structured TSP [2]. In contrast, for three and
more machines the problem is NP-hard, although it can still be transformed
into a specially structured TSP. Röck [15] proved that the problem is strongly
NP-hard for three machines by a reduction from the 3D-matching problem.

An A* Algorithm for Solving a Prize-Collecting Sequencing Problem with One
Common and Multiple Secondary Resources and Time Windows 239

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Matthias Horn et al.

Furthermore, the JSOCMSR problem can be modeled as a more general
Resource-Constrained Project Scheduling Problem with maximal time lags by
splitting each job according to the resource usage into three sub-jobs that must
be executed sequentially without any time lags; see [5] for a survey. Such an
indirect solution approach, however, is unlikely to yield promising results in
practice since problem-specific aspects are not exploited.

Concerning particle therapy patient scheduling, our PC-JSOCMSR is a
practically relevant improvement over the simpler JSOCMSR model, but it
still is a strongly simplified formulation addressing only certain properties
of the real-life problem. In the full practical scenario, many more aspects
must be considered such as large time horizons of several weeks, sequences
of therapies for patients to be treated, additionally needed resources including
medical staff and their availability time windows, and a combination of more
advanced objectives and diverse soft constraints. Maschler et al. [12] proposed
a greedy construction heuristic which is extended towards an Iterated Greedy
metaheuristic and a Greedy Randomized Adaptive Search Procedure (GRASP),
which consider more of these advanced aspects. These approaches treat the
whole problem as a bi-level optimization problem in which the upper level
is concerned with the assignment of treatments to days and the lower level
corresponds to the detailed scheduling of the treatments assigned at each day.
In [11,9], the Iterated Greedy metaheuristic was further refined by including
an improved makespan estimation for the daily scheduling problems and by
considering additional soft constraints for unwanted deviations of start times
of the individual treatments for each therapy.

Concerning A*, we point out that it is a well-known and prominent method
for finding shortest paths in possibly huge graphs and more generally an in-
formed search method for problem-solving, see [4,14].

4 An A* Algorithm for the PC-JSOCMSR

The A* algorithm is a classic search algorithm from the field of path plan-
ning on possibly huge graphs [4,14]. In this section, we describe our A* search
approach to solve the PC-JSOCMSR problem. The method either yields a
proven optimal solution or, in case of an early termination, a heuristic solu-
tion together with an upper bound to the optimal solution value. We start
by describing the state graph on which the search is performed, continue
with the framework of our A* algorithm, and focus in Sections 4.3 and 4.4
on the strengthening of obtained states and propose different possibilities to
determine upper bounds for the achievable total prizes of partial solutions,
respectively.

4.1 State Graph

We consider a weighted directed acyclic state graph G = (V,A) where each
node in V represents a unique state (P, t) consisting of

240 Matthias Horn, Günther R. Raidl and Elina Rönnberg

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

An A* Algorithm for a Prize-Collecting Sequencing Problem

– the set P ⊆ J of jobs that are still available to be scheduled in further
steps, and

– the vector t = (tr)r∈R0
of the earliest times from which each of the resources

are available for performing a next job.

The initial (root) state is r = (J, (Tmin, . . . , Tmin)) and represents the original
PC-JSOCMSR problem instance with no jobs scheduled or excluded yet.

An arc (u, v) ∈ A represents a transition from a state u = (P, t) to a state
v = (P ′, t′) that is achieved by scheduling a job j, j ∈ P , at its earliest possible
time w.r.t. vector t. More precisely, the start time of job j, j ∈ P , w.r.t. state
(P, t) is

s((P, t), j) = eft(j,max(t0 − ppre
j , tqj)). (3)

The transition function to obtain the successor state (P ′, t′) of state (P, t)
when scheduling job j, j ∈ P , next is

τ((P, t), j) =

{
(P \ {j}, t′), if s((P, t), j) < Tmax,

0̂, else,
(4)

with

t′0 = s((P, t), j) + ppre
j + p0

j , (5)

t′r = s((P, t), j) + pj , for r = qj , (6)

t′r = tr, for r ∈ R \ {qj}, (7)

where 0̂ represents the infeasible state. The price associated with a state tran-
sition is the prize zj of the scheduled job j. Thus, each path in this state graph
originating in the initial state r and ending in some other state than 0̂ cor-
responds to a feasible solution in which the jobs associated with the arcs are
greedily scheduled in the order in which they appear in the path. Note that
a feasible state (P, t) ∈ V may, in general, be reached via multiple different
paths, i.e., by including different sets of jobs S and/or by different orderings of
these jobs. Therefore, a feasible state does, in general, not represent a unique
solution. As we want to find a solution with maximum total prize, we are
primarily interested in a path from r to (P, t) with maximum total prize. Let
Z lp(P, t) be this maximum total prize to reach a feasible state (P, t). In order
to solve the PC-JSOCMSR we are looking for a feasible state with the maxi-
mum Z lp(P, t). To find such a state we perform the A* search detailed in the
following subsection.

Figure 1 shows an example of a state graph for an instance with 4 jobs
and 2 secondary resources. Each job has exactly one time window. On the
right side, the individual characteristics of each job are shown as well as the
optimal solution π = (2, 3, 4) with a total prize of Z(π) = 9. On the left side,
the corresponding state graph is shown. The path that represents the optimal
solution is highlighted. Note that for the shown state graph the strengthening
of states was already applied, which will be described in Section 4.3.

An A* Algorithm for Solving a Prize-Collecting Sequencing Problem with One
Common and Multiple Secondary Resources and Time Windows 241

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Matthias Horn et al.

r =({1,2,3,4},(1,0,3))

({2,3,4},(3,4,3)) ({1,3,4},(3,4,3))

({4},(13,18,12))

(∅,(18,18,18))

1 23

4
2

3

4

1

3

4

4

j pj p
pre
j

p0j qj zj Wj

1 4 1 2 1 2 [0, 8]
2 4 1 2 1 4 [0, 8]
3 4 0 3 2 3 [3, 8]
4 5 1 3 2 2 [8, 14]

time

res.

0 2 4 6 8 10 12 14

1

2 33 4

2

Instance:

Optimal Solution π: Z(π) = 9

Fig. 1 Example of a state graph for an instance with n = 4 jobs and m = 2 secondary
resources.

4.2 A* Algorithm Framework

In order to solve the PC-JSOCMSR we have to find a feasible state (P, t) with
maximum Z lp(P, t). Such a state cannot have any feasible successor, hence,
either P = ∅ or τ((P, t), j) = 0̂, j ∈ P , and otherwise Z lp(P, t) is not the
maximum achievable prize.

A* search belongs to the class of informed search strategies that make
use of a heuristic estimate for guidance in order to return a proven optimal
solution possibly faster than a more naive uninformed search like breadth- or
depth-first-search. Within our A*, each encountered feasible state (P, t) of the
state graph is evaluated by a priority function f(P, t) = Z lp(P, t)+Zub(P, t) in
which Z lp(P, t) corresponds to the prize of the so far best (i.e., longest) known
path from r to state (P, t) and the value of the function Zub(P, t) represents
an upper bound on the still achievable prize by extending the path from state
(P, t) onward. The value of the priority function f(P, t) is an upper bound on
the total prize that a solution may achieve by considering state (P, t). Different
options for how to compute this upper bound will be presented in Section 4.4.

Our A* search is shown in pseudo-code in Algorithm 1. It maintains the
set W of all so far encountered states, implemented by a hash table; for each
contained state (P, t), this data structure also stores the values Z lp(P, t) and
Zub(P, t) as well as a reference pred(P, t) to the predecessor state of a currently
longest path from r to (P, t), and the last scheduled job j(P, t). Furthermore,
the algorithm maintains the open list Q, which contains all states queued
for further expansion. It is realized by a priority queue data structure that
considers the states’ priority values f(P, t). Last but not least, our A* search
maintains a reference xmaxlp to the encountered state (P, t) with the so far
largest Z lp(P, t) value. Both W and Q, as well as xmaxlp, are initialized with
the initial state r.

At each major iteration, a state (P, t) with maximum priority value f(P, t)
is taken from Q. This state (P, t) is then expanded, which means that each job

242 Matthias Horn, Günther R. Raidl and Elina Rönnberg

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

An A* Algorithm for a Prize-Collecting Sequencing Problem

Algorithm 1: A* Algorithm for PC-JSOCMSR

1 Input: Initial state r;

2 set of encountered states W ← {r}, Zlp(r)← 0;

3 open list Q← {(r, f(r) = Zub(r))};
4 state with maximum Zlp so far xmaxlp ← r;
5 do
6 if Q = ∅ then
7 return opt. solution given by xmaxlp and its predecessor chain

8 (P, t)← pop state with maximum f(P, t) from Q;

9 if f(P, t) ≤ Zlp(xmaxlp) then
10 return opt. solution given by xmaxlp and its predecessor chain

11 // expand state (P, t):
12 foreach j ∈ P do
13 (P ′, t′)← τ((P, t), j); strengthen state (P ′, t′);
14 if (P ′, t′) = 0̂ ∨ (P ′, t′) ∈W ∧ Zlp(P, t) + zj ≤ Zlp(P ′, t′) then
15 // infeasible or existing state reached in no better way, skip
16 continue

17 if (P ′, t′) 6∈W then
18 // new state reached
19 W ←W ∪ {(P ′, t′)};
20 Zlp(P ′, t′)← Zlp(P, t) + zj , pred(P ′, t′)← (P, t), j(P ′, t′) = j ;

21 if Zub(P ′, t′) 6= 0 then
22 Q← Q ∪ ((P ′, t′), f(P ′, t′) = Z′ + Zub(P ′, t′))

23 if Zlp(xmaxlp) < Zlp(P ′, t′) then
24 xmaxlp ← (P ′, t′);

25 while time or memory limit not reached ;
26 // terminate early:
27 (P, t)← state with maximum f(P, t) from Q;
28 derive solution π from xmaxlp following predecessors;
29 π ← greedily augment π with jobs from P ;
30 return heuristic solution π and upper bound f(P, t);

in P is considered as next job to be scheduled by calculating the respective
successor state obtained by the transition (P ′, t′) = τ((P, t), j). If a job yields
the infeasible state 0̂, it is skipped. Similarly, if the obtained state has been
encountered before and the new path via state (P, t) is not longer than the
previously identified path to (P ′, t′), we skip job j. Otherwise, if a new feasible
state is reached, it is added to set W . Since a new longest path to state (P ′, t′)
via (P, t) has been found, line 20 sets Z lp(P ′, t′) = Z lp(P, t) + zj and stores
(P, t) as predecessor of (P ′, t′) and job j as the last scheduled job. The upper
bound Zub(P ′, t′) is then also calculated, and if there is potential for further
improvement, i.e., Zub(P ′, t′) > 0, state (P ′, t′) is added to the open list Q
for a possible future expansion. Finally, reference xmaxlp is updated if a new
overall longest path is obtained.

A special aspect of our A* search therefore is that we do not have a specific
target state that is known in advance, and we only add states that may yield
further successor states to the open list. Lines 6 to 10 makes sure that we

An A* Algorithm for Solving a Prize-Collecting Sequencing Problem with One
Common and Multiple Secondary Resources and Time Windows 243

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Matthias Horn et al.

nevertheless recognize when a proven optimal solution has been reached: This
is the case when either the open list Q becomes empty or the priority value
f(P, t) of Q’s top element (P, t) (i.e., the maximum priority value) is not larger
than the length Z lp(xmaxlp) of the so far longest identified path. Note that the
priority value of Q’s top element always is a valid overall upper bound for the
total achievable prize. This follows from the fact that Zub(P, t) is an admissible
heuristic according to [4], i.e., it never underestimates the real prize that can
still be achieved from (P, t) onward. Further, an optimal solution is derived
from state xmaxlp by following its chain of predecessor states and respectively
scheduled jobs, and the corresponding solution is returned.

A particular feature of our A* search is that it can also be terminated
early by providing a time or memory limit for the execution and it still yields
a heuristic solution together with an upper bound on the optimal solution value
in this case. This heuristic solution is derived from the so far best state xmaxlp

by following its chain of predecessors and additionally considering all remaining
jobs in P in their natural order (i.e., as given in the instance specification) for
further addition in a greedy way. The returned upper bound is the priority
value of Q’s top element.

4.3 Strengthening of States

Frequently, we can safely replace a state (P, t) by a strengthened state (P ′, t′),
with P ′ ⊆ P and t′r ≥ tr, r ∈ R0, where either P ′ ⊂ P or t′r > tr for one
or more r, r ∈ R0, without losing possible solutions. This state strengthening
is applied in Algorithm 1 at line 13 to any state that is obtained from the
transition function τ .

By considering the earliest start time s((P, t), j) for job j, j ∈ P , we can
first remove all jobs from P that actually cannot be scheduled anymore, i.e.,
P ′ = {j ∈ P | s((P, t), j) 6= Tmax}. Then, time t′r, r ∈ R0, is set to the earliest
possible time when resource r can be used considering all remaining jobs P ′,
i.e.,

t′0 = min
j∈P ′

(s((P, t), j) + ppre
j), (8)

t′r =

{
minj∈Jr∩P ′ s((P, t), j), if Jr ∩ P ′ 6= ∅,
Tmax, else,

r ∈ R. (9)

Here, t′r is set to Tmax if no job that requires resource r remains in P ′.

4.4 Upper Bounds for the Total Prize of Remaining Jobs

For a given state (P, t), an upper bound for the still achievable total prize for
the remaining jobs in P can be calculated by solving a linear programming

244 Matthias Horn, Günther R. Raidl and Elina Rönnberg

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

An A* Algorithm for a Prize-Collecting Sequencing Problem

(LP) relaxation of a multi-constrained 0–1 knapsack problem

Zub
KP(P, t) = max

∑

j∈P
zjxj (10)

s.t
∑

j∈P
p0
jxj ≤W0(P, t), (11)

∑

j∈P∩Jr

pjxj ≤Wr(P, t), r ∈ R, (12)

xj ∈ [0, 1] , j ∈ P, (13)

where xj is a continuous relaxation of a binary variable that indicates if job
j is included (=1) or not (=0), j ∈ P . The right-hand-sides of the knapsack
constraints

W0(P, t) =

∣∣∣∣∣∣∣∣∣

⋃

j∈P

⋃

w=1,...,ωj |
W end

jw −ppost
j ≥t0+p0

j

[
max

(
t0,W

start
jw + ppre

j

)
,W end

jw − ppost
j

]

∣∣∣∣∣∣∣∣∣
(14)

and

Wr(P, t) =

∣∣∣∣∣∣
⋃

j∈P∩Jr

⋃

w=1,...,ωj |W end
jw ≥tr+pj

[
max

(
tr,W

start
jw

)
,W end

jw

]
∣∣∣∣∣∣

(15)

represent the total amount of still available time for resource 0 and resource r,
r ∈ R, respectively, considering the current state and the time windows.

To solve this upper bound calculation problem for each state with an LP
solver is computationally too expensive. Instead we compute upper bounds by
solving two types of relaxations. The first one

Zub
0 (P, t) = max

∑

j∈P
zjxj (16)

s.t
∑

j∈P
p0
jxj ≤W0(P, t), (17)

xj ∈ [0, 1] , j ∈ P, (18)

is obtained by relaxing inequalities (12); the second one

hub(P, t, u) = max
∑

j∈P
zjxj + u


W0(P, t)−

∑

j∈P
p0
jxj


 (19)

s.t
∑

j∈P∩Jr

pjxj ≤Wr(P, t), r ∈ R, (20)

xj ∈ [0, 1] , j ∈ P, (21)

An A* Algorithm for Solving a Prize-Collecting Sequencing Problem with One
Common and Multiple Secondary Resources and Time Windows 245

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Matthias Horn et al.

is obtained by performing a Lagrangian relaxation of inequality (11), where
u ≥ 0 is the Lagrangian dual multiplier associated with inequality (11).

Both Zub
0 (P, t) and hub(P, t, u) are computed by solving LP-relaxations

of knapsack problems. In the latter case, this is possible since the problem
separates over the resources and for each resource, the resulting problem is an
LP-relaxation of a knapsack problem. An LP-relaxation of a knapsack problem
can be efficiently solved by a greedy algorithm that packs items in decreasing
prize/time-ratio order; the first item that does not completely fit is packed
partially so that the capacity is exploited as far as possible, see [7].

It follows from weak duality (see e.g. [13], Prop. 6.1) that hub(P, t, u) yields
an upper bound on Zub

KP(P, t) for all u ≥ 0, but the quality of this upper bound
depends on the choice of u. We have chosen to consider hub(P, t, u) for the
values u = 0 and u = zj̄/p

0
j̄
, where j̄ is the last, and typically partially, packed

item in an optimal solution to the problem solved to obtain Zub
0 (P, t). The

value u = zj̄/p
0
j̄

is chosen since it is an optimal LP dual solution associated

with inequality (17) and therefore has a chance to be a good estimate of a
value for u that gives a strong upper bound.

By solving the relaxations introduced above, the strongest bound on
Zub

KP(P, t) we can obtain is

Zub
∗ (P, t) = min

(
Zub

0 (P, t), hub(P, t, 0), hub(P, t, zj̄/p
0
j̄)
)
. (22)

In our experimental comparisons in Section 7, we will illustrate the practical
strengths of the bounds

Zub
0 (P, t), (23)

Zub
00 (P, t) = min

(
Zub

0 (P, t), hub(P, t, 0)
)
, and (24)

Zub
0j̄ (P, t) = min

(
Zub

0 (P, t), hub(P, t, zj̄/p
0
j̄)
)
, (25)

and study if the additional computational effort required to consider also
hub(P, t, 0) and/or hub(P, t, zj̄/p

0
j̄
) pays off in the context of our A* search.

5 A Mixed Integer Programming Model

We use the binary variable tj to indicate if job j, j ∈ J , is included in the
schedule (=1) or not (=0) and the binary variable tjw to indicate if job j is
assigned to time window w (=1) or not (=0), w = 1, . . . , ωj , j ∈ J . Let the
continuous variable sj be the start time of job j. Binary variable yjj′ is further
used to indicate if job j is scheduled before j′ w.r.t. the common resource (=1)
or not (=0), if both jobs are scheduled, j, j′ ∈ J, j 6= j′.

Let

δjj′ =

{
pj , if qj = qj′ ,

ppre
j + p0

j − ppre
j′ , if qj 6= qj′ ,

(26)

246 Matthias Horn, Günther R. Raidl and Elina Rönnberg

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

An A* Algorithm for a Prize-Collecting Sequencing Problem

be the minimum time between the start of job j and the start of job j′ if job j
is scheduled before job j′, which depends on whether both jobs use the same
resource or not.

A solution to PC-JSOCMSR can be obtained by solving the MIP model

max
∑

j∈J
zjtj (27)

s.t tj =
∑

w=1,...,ωj

tjw, j ∈ J, (28)

yjj′ + yj′j ≥ tj + tj′ − 1, j, j′ ∈ J, j 6= j′, (29)

sj′ ≥ sj + δjj′ − (T dead
j − pj − T rel

j′ + δjj′)(1− yjj′),
j, j′ ∈ J, j 6= j′ (30)

sj ≥ T rel
j +

∑

w=1,...,ωj

(
W start

jw − T rel
j

)
tjw, j ∈ J, (31)

sj ≤ T dead
j − pj +

∑

w=1,...,ωj

(W end
jw − T dead

j)tjw, j ∈ J, (32)

tj ∈ {0, 1}, j ∈ J, (33)

tjw ∈ {0, 1}, w = 1, . . . , ωj , j ∈ J, (34)

sj ∈ [T rel
j , T dead

j − pj], j ∈ J, (35)

yjj′ ∈ {0, 1}, j, j′ ∈ J, j 6= j′. (36)

Equations (28) state that each scheduled job must be assigned to a time win-
dow and inequalities (29) ensure that if two jobs j and j′ are scheduled, either
yjj′ or yj′j must be set to one, i.e., one of them needs to precede the other.
If a job is to precede another one, inequalities (30) ensure this w.r.t. the jobs’
start times. If a job is assigned to a time window, inequalities (31) and (32)
make its start time comply with this time window, and otherwise the job only
complies with its release time and deadline.

In the previous work [6], a MIP model with position based variables was
introduced for JSOCMSR since this model showed better computational per-
formance than a MIP model with order based variables. Such position based
model does, however, not extend well to the current setting with multiple time
windows since the time windows require explicit knowledge of the start time
of each job, and the position based model only has explicit times for the start
time of a certain position.

6 A Constraint Programming Model

We further propose the following Constraint Programming (CP) model for the
PC-JSOCMSR, which we implemented in the constraint modeling language
MiniZinc1. The model makes use of so-called option type variables. Such a

1 https://www.minizinc.org

An A* Algorithm for Solving a Prize-Collecting Sequencing Problem with One
Common and Multiple Secondary Resources and Time Windows 247

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Matthias Horn et al.

variable may either have a value of a certain domain assigned or set to the
special value > that indicates the absence of a value. For job j ∈ J we use
the option type variable sj for the job’s start time. An absent start time, i.e.,
sj = >, indicates that the job is not scheduled. The CP model is given by

max
∑

j∈J|occurs(sj)

zj (37)

disjunctive strict({(sj + ppre
j , p0

j) | j ∈ J}), (38)

disjunctive strict({(sj , pj) | j ∈ J ∧ qj = r}), r ∈ R, (39)

occurs(sj) =⇒


sj ∈

⋃

ω=1,...,ωj

[
W start

jω ,W end
jω − pj

]

 , j ∈ J, (40)

sj ∈ [T rel
j , . . . , T dead

j − pj] ∪ {>}, j ∈ J, (41)

where for job j ∈ J the predicate occurs(sj) yields true if the option type
variable sj is not absent, i.e., job j is scheduled. The strict disjunctive con-
straints (38) and (39) ensure that all scheduled jobs do not overlap w.r.t. their
usage of the common resource and the secondary resource r ∈ R, respectively.
Absent jobs are hereby ignored. Constraints (40) state that if job j ∈ J is
scheduled, it must be performed within one of the job’s time windows.

7 Experimental Results

The proposed A* algorithm from Section 4 was implemented in C++ using
GNU G++ 5.4.1 for compilation. The MIP model from Section 5 was solved
with Gurobi2 Optimizer Version 7.5.1. The CP model from Section 6 was
implemented with MiniZinc 2.1.7 and solved with three different backbone
solvers: (1) Gecode, (2) G12 LazyFD and (3) Chuffed. All tests were performed
on a cluster of machines with Intel Xeon E5-2640 v4 processors with 2.40 GHz
in single-threaded mode with a CPU time limit of 900 seconds and a memory
limit of 15GB per run.

We created two non-trivial benchmark instance sets in order to test our
solution approaches. These instances are, with respect to their basic character-
istics, inspired from the particle therapy patient scheduling application, c.f. [6],
and available online3. Each set consists of 30 instances for each combination of
n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90} jobs and m ∈ {2, 3} secondary resources.
The difference between these two sets lies in the distributions of the secondary
resources and each job’s pre-processing, post-processing and p0 times. The first
instance set B consists of instances in which all secondary resources are used
by the jobs equally likely and the distribution of processing times is balanced.
This was achieved by sampling for job j, j ∈ J : (1) the secondary resource qj
from the discrete uniform distribution U{1,m}, (2) the pre-processing times

2 http://www.gurobi.com
3 https://www.ac.tuwien.ac.at/research/problem-instances

248 Matthias Horn, Günther R. Raidl and Elina Rönnberg

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

An A* Algorithm for a Prize-Collecting Sequencing Problem

ppre
j and the post-processing times ppost

j from U{0, 8} and (3) the times p0
j

from the random variable p0
B ∼ U{1, 8}. In contrast, the second instance set S

exhibits a skewed workload such that the secondary resource m is chosen with
a probability of 0.5 and all remaining secondary resources with a probability of
1/(2m−2). Furthermore the time to claim the common resource 0 is more dom-
inant by sampling ppre

j and ppost
j from U{0, 5} and p0

j from the random variable

p0
S ∼ U{1, 13}. For both instance sets, the prize zj is determined in a way to

correlate to the usage of the common resource of job j by sampling it from
U{p0

j , 2p
0
j}, j ∈ J . The time windows are chosen such that, on average about,

30% of the jobs can be scheduled. For this purpose let Ti = b0.3nE(p0
i)c be the

expected maximum resource usage regarding instance type i, i ∈ {B,S}. First,
the number of time windows ωj of job j is sampled from U{1, 3}, i.e., a job can
have up to three time windows. Second, for time window w, w = 1, . . . , ωj , we
sample its start time W start

jw from U{0, Ti − pj} and its end time W end
jw from

W start
jw + max(pj ,U{b0.1Ti/ωjc, b0.4Ti/ωjc}) for instance type i, i ∈ {B, S}.

Overlapping time windows are merged, and all time windows of a job are
sorted according to increasing start times.

Note that since we only use integral time windows and processing times,
all start times can also safely be assumed to be integral, and we round down
any fractional upper bound to the closest integer value in our implementation.

7.1 Comparison of Upper Bound Functions

We start by experimentally evaluating the impact of the individual compo-
nents of our strongest upper bound function proposed in Section 4.1, which is
Zub
∗ (P, t) = min(Zub

0 (P, t), hub(P, t, 0), hub(P, t, zj̄/p
0
j̄
)). To this end, we per-

formed the A* search on all benchmark instances using Zub
∗ (P, t) to eval-

uate all states and count for the sub-functions Zub
0 (P, t), hub(P, t, 0), and

hub(P, t, zj̄/p
0
j̄
) how often each one of them yields the minimum, i.e., deter-

mines Zub
∗ (P, t). Figure 2 shows the obtained average success rates grouped

according to the instance type, the number of jobs n, and the number of sec-
ondary resources m for all three upper bounds.

Most importantly we can see that not a single sub-function is dominating,
i.e., it makes sense to calculate all three functions and to combine their results
by taking the minimum in order to get a generally tighter bound. More specif-
ically, the success of each sub-function obviously also depends on the specific
characteristics of the problem instances. For instances of type B with two sec-
ondary resources, hub(P, t, 0) is for each instance class on average more than
50% of the times the strongest upper bound. In all other cases hub(P, t, zj̄/p

0
j̄
)

is on average most successful, and for the instances of type S it is clear that
both the bounds hub(P, t, zj̄/p

0
j̄
) and Zub

0 (P, t) are of importance.

The strongest upper bound function, however, does not necessarily yield
the best performing A* search, since the time for calculating the bound also
plays a major role. As already stated in Section 4.1, we consider the upper

An A* Algorithm for Solving a Prize-Collecting Sequencing Problem with One
Common and Multiple Secondary Resources and Time Windows 249

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Matthias Horn et al.

#
[%

]

#
[%

]

#
[%

]

#
[%

]

nn

nn

#-Zub
0

(P, t) #-hub(P, t, 0) #-hub(P, t, zj̄/p
0
j̄
)

1010

1010

20

20

20

20

20

20

20

20

3030

3030

40

40

40

40

40

40

40

40

5050

5050

60

60

60

60

60

60

60

60

7070

7070

80

80

80

80

80

80

80

80

9090

9090

00

00

Instance set B, m = 2 Instance set B, m = 3

Instance set S, m = 2 Instance set S, m = 3

3

Fig. 2 Success rates of upper bound subfunctions Zub
0 (P, t), hub(P, t, 0) and hub(P, t, zj̄/p

0
j̄
)

to yield the smallest value, i.e., to determine Zub
∗ (P, t).

bound functions Zub
0 (P, t), Zub

00 (P, t), Zub
0j̄

(P, t), and Zub
∗ (P, t) that make use

of the above sub-functions in different ways, see Eqs. (22)–(25).

Table 1 presents the aggregated results for each combination of instance
type, numbers of jobs, and secondary resources for our A* search using these
different upper bound calculations. Columns %-opt show the percentage of
instances which could be solved to proven optimality. Columns Zub state the
average final upper bounds and columns %-gap list the average optimality gaps
which are calculated by 100% · (Zub−Z(π))/Zub, where π is the final solution
and Zub the final upper bound. Columns t[s] list the median computation times
in seconds, whereas columns |W | state the average number of encountered
states during the A* search.

In almost all cases our strongest bound Zub
∗ (P, t) provides the tightest

bounds. There are only four exceptions where Zub
00 (P, t) or Zub

0j̄
(P, t) yield

tighter bounds on average, but Zub
∗ (P, t) is not far behind. Using just Zub

0 (P, t)
yields in all cases worse upper bounds than using Zub

00 (P, t), Zub
0j̄

(P, t) or

Zub
∗ (P, t). However, in cases where not all instances could be solved to op-

timality, the A* algorithm with Zub
0 (P, t) was able to provide the smallest

average optimality gaps in almost all cases. We conclude that Zub
0 (P, t) might

be a slightly better guidance for our simple greedy heuristic used to find solu-
tions when terminating early. Only for instances of type B with two secondary

250 Matthias Horn, Günther R. Raidl and Elina Rönnberg

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

An A* Algorithm for a Prize-Collecting Sequencing Problem

Table 1 Average results of A* search for different upper bound functions.

Z
u
b

0
(P
,t

)
Z

u
b

0
0

(P
,t

)
Z

u
b

0
j̄

(P
,t

)
Z

u
b ∗
(P
,t

)

t y
p

e
n

m
%

-o
p

t
Z

u
b

%
-g

a
p

t[
s]

|W
|

%
-o

p
t

Z
u
b

%
-g

a
p

t[
s]

|W
|

%
-o

p
t

Z
u
b

%
-g

a
p

t[
s]

|W
|

%
-o

p
t

Z
u
b

%
-g

a
p

t[
s]

|W
|

B
1
0

2
1
0
0

3
0
.9
3

0
.0
0

<
0
.1

2
.4

8
·1

0
1

1
0
0

3
0
.9
3

0
.0
0

<
0
.1

2
.1

5
·1

0
1

1
0
0

3
0
.9
3

0
.0
0

<
0
.1

2
.3

2
·1

0
1

1
0
0

3
0
.9
3

0
.0
0

<
0
.1

2
.1

5
·1

0
1

B
2
0

2
1
0
0

5
0
.3
7

0
.0
0

<
0
.1

2
.6

2
·1

0
2

1
0
0

5
0
.3
7

0
.0
0

<
0
.1

1
.9

6
·1

0
2

1
0
0

5
0
.3
7

0
.0
0

<
0
.1

2
.5

0
·1

0
2

1
0
0

5
0
.3
7

0
.0
0

<
0
.1

1
.9

6
·1

0
2

B
3
0

2
1
0
0

7
5
.3
3

0
.0
0

<
0
.1

1
.6

4
·1

0
3

1
0
0

7
5
.3
3

0
.0
0

<
0
.1

1
.3

3
·1

0
3

1
0
0

7
5
.3
3

0
.0
0

<
0
.1

1
.5

9
·1

0
3

1
0
0

7
5
.3
3

0
.0
0

<
0
.1

1
.3

2
·1

0
3

B
4
0

2
1
0
0

9
8
.9
3

0
.0
0

0
.2

1
.6

4
·1

0
4

1
0
0

9
8
.9
3

0
.0
0

0
.1

1
.1

5
·1

0
4

1
0
0

9
8
.9
3

0
.0
0

0
.1

1
.5

7
·1

0
4

1
0
0

9
8
.9
3

0
.0
0

0
.1

1
.1

4
·1

0
4

B
5
0

2
1
0
0

1
2
3
.2
7

0
.0
0

2
.7

2
.1

8
·1

0
5

1
0
0

1
2
3
.2
7

0
.0
0

2
.1

1
.6

2
·1

0
5

1
0
0

1
2
3
.2
7

0
.0
0

2
.4

2
.0

9
·1

0
5

1
0
0

1
2
3
.2
7

0
.0
0

1
.8

1
.6

1
·1

0
5

B
6
0

2
1
0
0

1
4
6
.8
0

0
.0
0

4
2
.0

2
.7

9
·1

0
6

1
0
0

1
4
6
.8
0

0
.0
0

2
6
.1

1
.6

6
·1

0
6

1
0
0

1
4
6
.8
0

0
.0
0

4
6
.0

2
.6

3
·1

0
6

1
0
0

1
4
6
.8
0

0
.0
0

2
6
.8

1
.6

5
·1

0
6

B
7
0

2
5
0

1
7
9
.6

0
6
.0

6
7
2
4
.3

1
.4

6
·1

0
7

7
7

1
7
4
.1
7

2
.3
6

3
7
9
.4

1
.1

4
·1

0
7

4
7

1
7
9
.3

7
6
.2

0
6
9
8
.1

1
.4

1
·1

0
7

7
0

1
7
4
.5

0
2
.7

8
3
8
0
.3

1
.1

1
·1

0
7

B
8
0

2
3

2
1
7
.2

7
1
4
.5

5
6
8
3
.1

2
.0

5
·1

0
7

7
2
0
9
.5

7
1
0
.2
3

7
0
0
.0

1
.9

8
·1

0
7

3
2
1
6
.2

3
1
4
.2

5
6
9
8
.5

2
.0

1
·1

0
7

7
2
0
9
.5
3

1
0
.2

5
7
6
2
.4

1
.9

5
·1

0
7

B
9
0

2
0

2
5
8
.3

7
2
0
.5

5
5
9
4
.8

1
.9

6
·1

0
7

0
2
5
0
.2

0
1
8
.5

2
6
3
8
.6

1
.9

4
·1

0
7

0
2
5
6
.9

0
2
0
.4

4
6
5
3
.4

1
.9

5
·1

0
7

3
2
4
9
.8
3

1
8
.1
9

6
8
7
.2

1
.9

4
·1

0
7

B
1
0

3
1
0
0

3
6
.1
7

0
.0
0

<
0
.1

3
.0

9
·1

0
1

1
0
0

3
6
.1
7

0
.0
0

<
0
.1

2
.8

7
·1

0
1

1
0
0

3
6
.1
7

0
.0
0

<
0
.1

3
.0

6
·1

0
1

1
0
0

3
6
.1
7

0
.0
0

<
0
.1

2
.8

6
·1

0
1

B
2
0

3
1
0
0

5
9
.2
7

0
.0
0

<
0
.1

2
.9

2
·1

0
2

1
0
0

5
9
.2
7

0
.0
0

<
0
.1

2
.7

4
·1

0
2

1
0
0

5
9
.2
7

0
.0
0

<
0
.1

2
.8

1
·1

0
2

1
0
0

5
9
.2
7

0
.0
0

<
0
.1

2
.6

8
·1

0
2

B
3
0

3
1
0
0

8
6
.3
0

0
.0
0

<
0
.1

3
.5

0
·1

0
3

1
0
0

8
6
.3
0

0
.0
0

<
0
.1

3
.2

8
·1

0
3

1
0
0

8
6
.3
0

0
.0
0

<
0
.1

3
.2

4
·1

0
3

1
0
0

8
6
.3
0

0
.0
0

<
0
.1

3
.0

9
·1

0
3

B
4
0

3
1
0
0

1
1
2
.0
0

0
.0
0

0
.2

3
.6

7
·1

0
4

1
0
0

1
1
2
.0
0

0
.0
0

0
.2

3
.4

6
·1

0
4

1
0
0

1
1
2
.0
0

0
.0
0

0
.2

3
.5

2
·1

0
4

1
0
0

1
1
2
.0
0

0
.0
0

0
.2

3
.3

5
·1

0
4

B
5
0

3
1
0
0

1
4
0
.3
3

0
.0
0

5
.6

4
.9

3
·1

0
5

1
0
0

1
4
0
.3
3

0
.0
0

5
.9

4
.8

3
·1

0
5

1
0
0

1
4
0
.3
3

0
.0
0

6
.0

4
.8

0
·1

0
5

1
0
0

1
4
0
.3
3

0
.0
0

5
.1

4
.6

4
·1

0
5

B
6
0

3
9
7

1
6
5
.6

0
0
.2
8

7
4
.5

4
.5

4
·1

0
6

9
7

1
6
5
.6

7
0
.3

3
7
4
.3

4
.4

1
·1

0
6

9
7

1
6
5
.5
7

0
.2
8

6
8
.4

4
.2

6
·1

0
6

9
7

1
6
5
.6

3
0
.3

2
6
6
.1

4
.1

3
·1

0
6

B
7
0

3
4
0

2
0
2
.0

7
6
.1
8

5
4
1
.6

1
.5

8
·1

0
7

4
0

2
0
1
.8

0
7
.3

2
5
4
8
.3

1
.5

8
·1

0
7

4
3

2
0
1
.7

7
6
.5

1
6
0
8
.4

1
.5

5
·1

0
7

4
0

2
0
1
.6
3

7
.3

7
5
8
8
.0

1
.5

4
·1

0
7

B
8
0

3
1
7

2
4
7
.1

3
1
3
.6
3

5
4
8
.8

1
.9

7
·1

0
7

1
7

2
4
7
.1

7
1
5
.1

8
5
4
1
.4

1
.9

5
·1

0
7

1
7

2
4
6
.4
7

1
3
.8

8
5
6
7
.8

1
.9

5
·1

0
7

1
7

2
4
6
.5

0
1
4
.6

6
5
5
8
.7

1
.9

4
·1

0
7

B
9
0

3
0

2
8
2
.5

3
1
7
.3
5

5
0
5
.1

2
.0

7
·1

0
7

0
2
8
2
.5

0
1
8
.1

0
5
0
4
.3

2
.0

7
·1

0
7

0
2
8
2
.1
3

1
7
.8

8
5
0
8
.7

2
.0

7
·1

0
7

0
2
8
2
.1
3

1
8
.3

5
5
6
7
.2

2
.0

7
·1

0
7

S
1
0

2
1
0
0

5
0
.9
3

0
.0
0

<
0
.1

2
.3

9
·1

0
1

1
0
0

5
0
.9
3

0
.0
0

<
0
.1

2
.3

3
·1

0
1

1
0
0

5
0
.9
3

0
.0
0

<
0
.1

2
.3

8
·1

0
1

1
0
0

5
0
.9
3

0
.0
0

<
0
.1

2
.3

3
·1

0
1

S
2
0

2
1
0
0

8
9
.9
3

0
.0
0

<
0
.1

3
.3

3
·1

0
2

1
0
0

8
9
.9
3

0
.0
0

<
0
.1

3
.1

7
·1

0
2

1
0
0

8
9
.9
3

0
.0
0

<
0
.1

3
.2

7
·1

0
2

1
0
0

8
9
.9
3

0
.0
0

<
0
.1

3
.1

5
·1

0
2

S
3
0

2
1
0
0

1
3
1
.3
7

0
.0
0

<
0
.1

3
.8

7
·1

0
3

1
0
0

1
3
1
.3
7

0
.0
0

<
0
.1

3
.8

0
·1

0
3

1
0
0

1
3
1
.3
7

0
.0
0

<
0
.1

3
.6

8
·1

0
3

1
0
0

1
3
1
.3
7

0
.0
0

<
0
.1

3
.6

3
·1

0
3

S
4
0

2
1
0
0

1
8
0
.0
7

0
.0
0

0
.5

8
.0

4
·1

0
4

1
0
0

1
8
0
.0
7

0
.0
0

0
.5

7
.8

5
·1

0
4

1
0
0

1
8
0
.0
7

0
.0
0

0
.6

7
.9

2
·1

0
4

1
0
0

1
8
0
.0
7

0
.0
0

0
.5

7
.7

9
·1

0
4

S
5
0

2
1
0
0

2
2
5
.6
7

0
.0
0

8
.3

9
.8

3
·1

0
5

1
0
0

2
2
5
.6
7

0
.0
0

8
.2

9
.6

2
·1

0
5

1
0
0

2
2
5
.6
7

0
.0
0

8
.4

9
.5

9
·1

0
5

1
0
0

2
2
5
.6
7

0
.0
0

8
.2

9
.4

7
·1

0
5

S
6
0

2
5
3

2
8
5
.9

0
4
.4
7

6
7
8
.1

1
.3

8
·1

0
7

5
3

2
8
5
.3
3

4
.8

1
5
8
9
.6

1
.3

8
·1

0
7

5
3

2
8
5
.8

7
4
.7

7
6
0
6
.7

1
.3

7
·1

0
7

5
0

2
8
5
.8

7
4
.9

5
5
5
3
.8

1
.3

6
·1

0
7

S
7
0

2
3

3
4
6
.9

7
1
1
.0
7

5
0
7
.1

2
.1

9
·1

0
7

3
3
4
7
.0

3
1
1
.5

8
5
3
9
.9

2
.1

8
·1

0
7

3
3
4
6
.8
0

1
1
.4

0
5
0
3
.1

2
.1

9
·1

0
7

3
3
4
6
.8
0

1
1
.5

8
5
6
2
.4

2
.1

9
·1

0
7

S
8
0

2
7

3
9
4
.9

3
1
1
.6
8

4
5
4
.0

2
.1

0
·1

0
7

7
3
9
4
.9

3
1
1
.8

0
4
9
1
.5

2
.1

0
·1

0
7

7
3
9
4
.7
7

1
2
.0

5
4
8
3
.5

2
.0

9
·1

0
7

7
3
9
4
.7
7

1
2
.1

1
5
2
5
.1

2
.0

9
·1

0
7

S
9
0

2
0

4
6
0
.3

7
1
6
.3
3

4
0
9
.8

2
.1

3
·1

0
7

0
4
6
0
.3

7
1
6
.4

5
3
9
0
.6

2
.1

3
·1

0
7

0
4
6
0
.2
0

1
7
.2

3
4
3
3
.4

2
.1

2
·1

0
7

0
4
6
0
.2
0

1
7
.3

0
4
4
5
.9

2
.1

2
·1

0
7

S
1
0

3
1
0
0

5
1
.9
7

0
.0
0

<
0
.1

2
.6

2
·1

0
1

1
0
0

5
1
.9
7

0
.0
0

<
0
.1

2
.4

7
·1

0
1

1
0
0

5
1
.9
7

0
.0
0

<
0
.1

2
.4

7
·1

0
1

1
0
0

5
1
.9
7

0
.0
0

<
0
.1

2
.4

4
·1

0
1

S
2
0

3
1
0
0

9
6
.4
7

0
.0
0

<
0
.1

2
.9

6
·1

0
2

1
0
0

9
6
.4
7

0
.0
0

<
0
.1

2
.9

2
·1

0
2

1
0
0

9
6
.4
7

0
.0
0

<
0
.1

2
.9

4
·1

0
2

1
0
0

9
6
.4
7

0
.0
0

<
0
.1

2
.9

0
·1

0
2

S
3
0

3
1
0
0

1
3
5
.9
0

0
.0
0

<
0
.1

3
.5

4
·1

0
3

1
0
0

1
3
5
.9
0

0
.0
0

<
0
.1

3
.5

4
·1

0
3

1
0
0

1
3
5
.9
0

0
.0
0

<
0
.1

3
.5

2
·1

0
3

1
0
0

1
3
5
.9
0

0
.0
0

<
0
.1

3
.5

2
·1

0
3

S
4
0

3
1
0
0

1
8
5
.4
3

0
.0
0

0
.8

1
.6

4
·1

0
5

1
0
0

1
8
5
.4
3

0
.0
0

0
.8

1
.5

6
·1

0
5

1
0
0

1
8
5
.4
3

0
.0
0

0
.9

1
.5

5
·1

0
5

1
0
0

1
8
5
.4
3

0
.0
0

0
.9

1
.5

1
·1

0
5

S
5
0

3
9
7

2
3
4
.5
0

0
.1
1

1
8
.7

2
.4

6
·1

0
6

9
7

2
3
4
.5
0

0
.1
1

1
9
.3

2
.4

4
·1

0
6

9
7

2
3
4
.5
0

0
.1
1

1
9
.3

2
.4

1
·1

0
6

9
7

2
3
4
.5
0

0
.1
1

1
9
.5

2
.4

1
·1

0
6

S
6
0

3
4
7

2
9
5
.6

0
5
.1
3

5
0
8
.0

1
.5

8
·1

0
7

4
7

2
9
5
.5

7
5
.1

8
4
7
5
.9

1
.5

8
·1

0
7

4
7

2
9
5
.4
3

5
.5

0
4
6
7
.6

1
.5

7
·1

0
7

4
7

2
9
5
.4
3

5
.4

1
5
0
1
.2

1
.5

7
·1

0
7

S
7
0

3
1
3

3
5
2
.6

0
1
1
.7
2

4
4
5
.5

2
.1

2
·1

0
7

1
3

3
5
2
.6

0
1
2
.1

0
4
8
7
.2

2
.1

2
·1

0
7

1
3

3
5
2
.2
3

1
1
.7

3
5
5
2
.6

2
.1

0
·1

0
7

1
3

3
5
2
.2
3

1
1
.8

9
4
9
9
.2

2
.1

1
·1

0
7

S
8
0

3
0

4
1
3
.1

0
1
4
.9
2

4
6
6
.3

2
.1

8
·1

0
7

0
4
1
3
.1

0
1
4
.9

4
4
7
3
.6

2
.1

8
·1

0
7

0
4
1
3
.0
7

1
4
.9
2

4
9
4
.8

2
.1

8
·1

0
7

0
4
1
3
.0
7

1
4
.9

8
5
3
5
.3

2
.1

8
·1

0
7

S
9
0

3
0

4
6
4
.3

3
1
9
.7
1

4
1
9
.7

2
.1

2
·1

0
7

0
4
6
4
.3

3
1
9
.7
1

4
3
2
.3

2
.1

2
·1

0
7

0
4
6
4
.2
0

2
0
.0

0
4
4
3
.1

2
.1

2
·1

0
7

0
4
6
4
.2
0

2
0
.0

0
4
5
4
.3

2
.1

2
·1

0
7

An A* Algorithm for Solving a Prize-Collecting Sequencing Problem with One
Common and Multiple Secondary Resources and Time Windows 251

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Matthias Horn et al.

resources, the bound Zub
0 (P, t) is not able to provide the smallest average op-

timality gaps. This observation is in accordance with our previous observation
concerning Fig. 2, where hub(P, t, 0) provides more often the strongest upper
bound.

Considering only instance classes where all instances could be solved to
optimality, the A* algorithm with upper bound function Zub

∗ (P, t) encounters
less states than the A* with one of the other functions Zub

00 (P, t), Zub
0j̄

(P, t),

or Zub
∗ (P, t), respectively. This is not surprising since Zub

∗ (P, t) dominates the
other bounds.

Last but not least, we point out that the memory limit of 16GB was the
termination reason in several runs for the largest instances. Thus, memory
consumption plays a significant role in our A* algorithm. One way to save
memory would be to adopt the technique applied in [6]: States with the same
P are stored in an aggregated fashion by storing P only once and the individual
vectors t and further information in an attached list of so-called non-dominated
time records.

7.2 Evaluation of the CP Model with Different Backbone Solvers

The CP model from Section 6 was tested with the MiniZinc 2.1.7 backbone
solvers Gecode, G12 LazyFD, and Chuffed. Aggregated results for each com-
bination of instance type, number of jobs, and number of secondary resources
are shown in Table 2. Columns %-opt state the percentage of instances that
could be solved to proven optimality, columns Z lp the obtained average total
prizes, and columns t[s] median computation times.

The results give a rather clear picture: Gecode is clearly outperformed by
the two lazy clause based solvers G12 LazyFD and Chuffed. Obviously, the
SAT propagation technologies behind the latter two here give a substantial
advantage. Among these two solvers, Chuffed performed significantly better
and was able to consistently solve all instances with up to 40 jobs and some
instances with up to 60 jobs. Furthermore, Chuffed is typically also faster on
those instances for which both solvers could prove optimality of their solutions.

7.3 Comparison of A*, MIP, and CP

We finally compare our A* search using the dominating upper bound function
Zub
∗ (P, t) to solving the MIP model from Section 5 using Gurobi and the CP

model from Section 6 using Chuffed. Table 3 shows the aggregated results.
Regarding the number of instances that could be solved to proven optimality,
the A* consistently outperforms Gurobi and Chuffed. A* could solve all in-
stances with up to 50 jobs to proven optimality, except one skewed instance
with three secondary resources. The largest instance which A* could solve
to proven optimality consists of 90 jobs, whereas the largest instances that

252 Matthias Horn, Günther R. Raidl and Elina Rönnberg

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

An A* Algorithm for a Prize-Collecting Sequencing Problem

Table 2 Average results of MiniZinc with different backbone solvers.

Gecode G12 LazyFD Chuffed

type n m %-opt Zlp t[s] %-opt Zlp t[s] %-opt Zlp t[s]

B 10 2 100 30.93 0.8 100 30.93 0.8 100 30.93 0.8
B 20 2 33 48.27 900.0 100 50.37 0.6 100 50.37 0.4
B 30 2 0 64.23 900.0 100 75.33 2.5 100 75.33 0.6
B 40 2 0 74.67 900.0 100 98.93 181.5 100 98.93 3.0
B 50 2 0 83.70 900.0 0 117.07 900.0 100 123.27 56.3
B 60 2 0 92.27 900.0 0 131.40 900.0 13 142.23 900.0
B 70 2 0 108.77 900.0 0 141.50 900.0 0 154.93 900.0
B 80 2 0 120.73 900.0 0 157.10 900.0 0 171.70 900.0
B 90 2 0 142.27 900.0 0 177.13 900.0 0 188.53 900.0

B 10 3 100 36.17 0.4 100 36.17 0.4 100 36.17 0.6
B 20 3 43 55.50 900.0 100 59.27 0.7 100 59.27 0.5
B 30 3 0 71.73 900.0 100 86.30 2.5 100 86.30 0.5
B 40 3 0 84.83 900.0 80 111.87 272.7 100 112.00 4.0
B 50 3 0 90.40 900.0 0 131.17 900.0 93 140.20 116.9
B 60 3 0 103.37 900.0 0 149.00 900.0 13 160.43 900.0
B 70 3 0 120.17 900.0 0 166.57 900.0 0 179.60 900.0
B 80 3 0 138.10 900.0 0 185.10 900.0 0 202.17 900.0
B 90 3 0 154.57 900.0 0 206.17 900.0 0 220.80 900.0

S 10 2 100 50.93 0.4 100 50.93 0.5 100 50.93 0.5
S 20 2 23 85.23 900.0 100 89.93 0.5 100 89.93 0.3
S 30 2 0 108.97 900.0 100 131.37 5.7 100 131.37 0.8
S 40 2 0 129.53 900.0 43 178.70 900.0 100 180.07 10.9
S 50 2 0 156.20 900.0 0 205.87 900.0 46 222.23 900.0
S 60 2 0 179.66 900.0 0 242.87 900.0 0 254.83 900.0
S 70 2 0 210.63 900.0 0 272.07 900.0 0 289.53 900.0
S 80 2 0 258.70 900.0 0 312.87 900.0 0 318.50 900.0
S 90 2 0 288.13 900.0 0 344.60 900.0 0 349.60 900.0

S 10 3 100 51.97 0.3 100 51.97 0.4 100 51.97 0.4
S 20 3 10 87.60 900.0 100 96.47 0.5 100 96.47 0.3
S 30 3 0 109.87 900.0 100 135.90 5.1 100 135.90 0.9
S 40 3 0 136.17 900.0 30 183.20 900.0 100 185.43 20.4
S 50 3 0 160.57 900.0 0 217.63 900.0 13 228.33 900.0
S 60 3 0 191.67 900.0 0 253.97 900.0 0 262.93 900.0
S 70 3 0 224.27 900.0 0 287.07 900.0 0 292.00 900.0
S 80 3 0 276.03 900.0 0 326.63 900.0 0 324.80 900.0
S 90 3 0 308.43 900.0 0 359.73 900.0 0 355.30 900.0

Gurobi and Chuffed could solve to proven optimality have 50 and 60 jobs, re-
spectively. Gurobi could solve all balanced instances with up to 40 jobs and all
skewed instances with up to 30 jobs to proven optimality. Computation times
for those are, however, significantly larger than for A*. In particular for small
instances with up to n = 30 jobs, A* only required median computation times
of no more than 0.1 seconds. The CP solver Chuffed could solve all instances
up to n = 40 jobs to optimality. The A* algorithm was able to provide equally
good or better final solutions than Gurobi and Chuffed in almost all cases.
Exceptions occurred only for some of the largest instances with 90 jobs, where
Gurobi’s heuristic performance proved to be superior. Note, however, that the
derivation of heuristic solutions for large instances that cannot be solved to
optimality is not in the foreground of our research here. Concerning obtained
upper bounds, the A* search again clearly outperforms the MIP approach by a

An A* Algorithm for Solving a Prize-Collecting Sequencing Problem with One
Common and Multiple Secondary Resources and Time Windows 253

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Matthias Horn et al.

Table 3 Average results of A*, MIP, and CP.

A*, Zub
∗ (P, t) MIP CP, Chuffed

type n m %-opt Zlp Zub %-gap t[s] %-opt Zlp Zub %-gap t[s] %-opt Zlp t[s]

B 10 2 100 30.93 30.93 0.00 <0.1 100 30.93 30.93 0.00 <0.1 100 30.93 0.8
B 20 2 100 50.37 50.37 0.00 <0.1 100 50.37 50.37 0.00 0.1 100 50.37 0.4
B 30 2 100 75.33 75.33 0.00 <0.1 100 75.33 75.33 0.00 4.4 100 75.33 0.6
B 40 2 100 98.93 98.93 0.00 0.1 100 98.93 98.93 0.00 69.0 100 98.93 3.0
B 50 2 100 123.27 123.27 0.00 1.8 30 122.73 144.60 14.13 900.3 100 123.27 56.3
B 60 2 100 146.80 146.80 0.00 26.8 0 143.73 218.37 33.91 900.2 13 142.23 900.0
B 70 2 70 169.57 174.50 2.78 380.3 0 165.33 308.00 46.12 900.1 0 154.93 900.0
B 80 2 7 187.80 209.53 10.25 762.4 0 189.27 370.97 48.95 900.4 0 171.70 900.0
B 90 2 3 203.60 249.83 18.19 687.2 0 215.27 457.10 52.80 900.2 0 188.53 900.0

B 10 3 100 36.17 36.17 0.00 <0.1 100 36.17 36.17 0.00 <0.1 100 36.17 0.6
B 20 3 100 59.27 59.27 0.00 <0.1 100 59.27 59.27 0.00 0.1 100 59.27 0.5
B 30 3 100 86.30 86.30 0.00 <0.1 100 86.30 86.30 0.00 4.6 100 86.30 0.5
B 40 3 100 112.00 112.00 0.00 0.2 100 112.00 112.00 0.00 92.2 100 112.00 4.0
B 50 3 100 140.33 140.33 0.00 5.1 10 138.70 175.73 20.02 900.5 93 140.20 116.9
B 60 3 97 165.07 165.63 0.32 66.1 0 161.97 235.63 30.87 900.6 13 160.43 900.0
B 70 3 40 185.87 201.63 7.37 588.0 0 187.20 319.23 41.22 900.1 0 179.60 900.0
B 80 3 17 209.63 246.50 14.66 558.7 0 215.97 388.50 44.21 900.0 0 202.17 900.0
B 90 3 0 229.57 282.13 18.35 567.2 0 240.67 469.97 48.70 900.0 0 220.80 900.0

S 10 2 100 50.93 50.93 0.00 <0.1 100 50.93 50.93 0.00 <0.1 100 50.93 0.5
S 20 2 100 89.93 89.93 0.00 <0.1 100 89.93 89.93 0.00 0.3 100 89.93 0.3
S 30 2 100 131.37 131.37 0.00 <0.1 100 131.37 131.37 0.00 17.8 100 131.37 0.8
S 40 2 100 180.07 180.07 0.00 0.5 60 179.87 192.80 5.92 671.4 100 180.07 10.9
S 50 2 100 225.67 225.67 0.00 8.2 0 219.97 343.97 35.61 900.7 46 222.23 900.0
S 60 2 50 271.13 285.87 4.95 553.8 0 265.73 476.83 44.06 900.4 0 254.83 900.0
S 70 2 3 305.63 346.80 11.58 562.4 0 304.40 600.70 49.19 900.3 0 289.53 900.0
S 80 2 7 346.30 394.77 12.11 525.1 0 346.23 715.73 51.51 900.3 0 318.50 900.0
S 90 2 0 379.47 460.20 17.30 445.9 0 382.87 844.50 54.55 900.1 0 349.60 900.0

S 10 3 100 51.97 51.97 0.00 <0.1 100 51.97 51.97 0.00 <0.1 100 51.97 0.4
S 20 3 100 96.47 96.47 0.00 <0.1 100 96.47 96.47 0.00 0.4 100 96.47 0.3
S 30 3 100 135.90 135.90 0.00 <0.1 100 135.90 135.90 0.00 14.7 100 135.90 0.9
S 40 3 100 185.43 185.43 0.00 0.9 33 185.03 209.70 10.85 900.3 100 185.43 20.4
S 50 3 97 234.27 234.50 0.11 19.5 0 230.07 364.60 36.47 900.1 13 228.33 900.0
S 60 3 47 278.93 295.43 5.41 501.2 0 276.50 491.83 43.60 900.1 0 262.93 900.0
S 70 3 13 308.90 352.23 11.89 499.2 0 313.13 604.00 48.04 900.1 0 292.00 900.0
S 80 3 0 350.40 413.07 14.98 535.3 0 357.93 734.10 51.14 900.3 0 324.80 900.0
S 90 3 0 370.37 464.20 20.00 454.3 0 394.27 836.17 52.66 900.0 0 355.30 900.0

large margin, especially on the largest instances. Chuffed is not able to return
any upper bounds.

8 Conclusions and Future Work

We introduced the PC-JSOCMSR as a practically relevant extension of the for-
merly considered JSOCMSR [6]. The essential differences are the additionally
considered time windows, the aspect that usually not all jobs can be feasibly
scheduled anymore, and the replacement of the minimization of the makespan
by the maximization of the prizes of scheduled jobs. These differences make
the problem in practice much more challenging to solve.

Nevertheless, we showed that small to medium sized instances of up to
about 50 jobs can relatively consistently be solved to proven optimality by
our A* search. For comparison, we considered an order-based MIP model as
well as a MiniZinc formulation that was solved with different backend solvers.
These approaches, however, are clearly inferior concerning the computation
times for proven optimal solutions or obtained upper bounds (actually, the
CP approaches are not able to provide any upper bounds in case of early
termination).

Within the A* search, the procedure to obtain upper bounds for the still
achievable prizes of states plays a crucial role. To this end, we considered a

254 Matthias Horn, Günther R. Raidl and Elina Rönnberg

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

An A* Algorithm for a Prize-Collecting Sequencing Problem

relaxation of the PC-JSOCMSR that corresponds to an LP relaxation of a mul-
tidimensional knapsack problem. Further simplifications based on constraint
and Lagrangian relaxation, respectively, yielded the generally fast-to-calculate
upper bound functions Zub

0 (P, t), Zub
00 (P, t), Zub

0j̄
(P, t) and Zub

∗ (P, t). While

Zub
∗ (P, t) is strongest, Zub

0 (P, t) is fastest. In our experiments in the context
of the A* search, using the strongest bound Zub

∗ (P, t) turned out to pay off
by usually being the best choice. It yields proven optimal solutions a bit more
frequently within the allowed time and memory limits and requires less states
to be considered. In cases where the limits have been reached, slightly better
final upper bounds are frequently achieved.

Our clear focus in this work was on solving the problem to proven optimal-
ity. For larger instances, where this goal cannot be achieved within reasonable
time, our A* search nevertheless yields a heuristic solution together with the
best obtained upper bound. The derivation of this heuristic solution, however,
is done in a rather simple way and leaves room for further improvement. For
example, local search and other (meta-)heuristic search methods may be easily
applied in addition.

Another promising direction for future work would be to turn the A* algo-
rithm into an anytime A* search that deviates from the pure best-first-search
strategy by also producing promising complete solutions on a more regular
basis from the beginning on; see, for example, the Anytime Weighted A* al-
gorithm [3], the Anytime Repairing A* [8], Anytime Pack Search [16], or the
A*/Beam Search hybrid described for the JSOCMSR in [6].

References

1. Allahverdi, A.: A survey of scheduling problems with no-wait in process. European
Journal of Operational Research 255(3), 665–686 (2016)

2. Gilmore, P.C., Gomory, R.E.: Sequencing a one-state variable machine: A solvable case
of the traveling salesman problem. Operations Research 12(5), 655–679 (1964)

3. Hansen, E.A., Zhou, R.: Anytime heuristic search. Journal of Artificial Intelligence
Research 28, 267–297 (2007)

4. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2),
100–107 (1968)

5. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of Operational Research
(207), 1–14 (2010)

6. Horn, M., Raidl, G., Blum, C.: Job sequencing with one common and multiple sec-
ondary resources: A problem motivated from particle therapy for cancer treatment. In:
G. Giuffrida, G. Nicosia, P. Pardalos, R. Umeton (eds.) MOD 2017: Machine Learning,
Optimization, and Big Data – Third International Conference, LNCS, vol. 10710, pp.
506–518. Springer (2017)

7. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
8. Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: Anytime A* with provable bounds on

sub-optimality. In: Advances in Neural Information Processing Systems 16: Proceedings
of the 2003 Conference (NIPS-03), pp. 767–774. MIT Press (2004)

9. Maschler, J., Hackl, T., Riedler, M., Raidl, G.R.: An enhanced iterated greedy meta-
heuristic for the particle therapy patient scheduling problem. In: Proceedings of the
12th Metaheuristics International Conference, pp. 465–474 (2017)

An A* Algorithm for Solving a Prize-Collecting Sequencing Problem with One
Common and Multiple Secondary Resources and Time Windows 255

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Matthias Horn et al.

10. Maschler, J., Raidl, G.: Multivalued decision diagrams for a prize-collecting sequencing
problem. Tech. rep., TU Wien, Austria (2018). Submitted to PATAT 2018

11. Maschler, J., Riedler, M., Raidl, G.R.: Particle therapy patient scheduling: Time esti-
mation for scheduling sets of treatments. In: R. Moreno-Dı́az, F. Pichler, A. Quesada-
Arencibia (eds.) Computer Aided Systems Theory – EUROCAST 2017, LNCS. Springer
(to appear)

12. Maschler, J., Riedler, M., Stock, M., Raidl, G.R.: Particle therapy patient scheduling:
First heuristic approaches. In: PATAT 2016: Proceedings of the 11th International
Conference of the Practice and Theory of Automated Timetabling, pp. 223–244. Udine,
Italy (2016)

13. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons (1988)

14. Rios, L.H.O., Chaimowicz, L.: A Survey and Classification of A* Based Best-First
Heuristic Search Algorithms, pp. 253–262. Springer (2010). DOI 10.1007/978-3-642-
16138-4 26

15. Röck, H.: The three-machine no-wait flow shop is NP-complete. Journal of the ACM
31(2), 336–345 (1984)

16. Vadlamudi, S.G., Aine, S., Chakrabarti, P.P.: Anytime pack search. Natural Computing
15(3), 395–414 (2016)

17. Van der Veen, J.A.A., Wöginger, G.J., Zhang, S.: Sequencing jobs that require common
resources on a single machine: A solvable case of the TSP. Mathematical Programming
82(1-2), 235–254 (1998)

256 Matthias Horn, Günther R. Raidl and Elina Rönnberg

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

