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Abstract. We consider the longest common subsequence (LCS) prob-
lem and propose a new method for obtaining tight upper bounds on the
solution length. Our method relies on the compilation of a relaxed multi-
valued decision diagram (MDD) in a special way that is based on the
principles of A∗ search. An extensive experimental evaluation on several
standard LCS benchmark instance sets shows that the novel construc-
tion algorithm clearly outperforms a traditional top-down construction
(TDC) of MDDs. We are able to obtain stronger and at the same time
more compact relaxed MDDs than TDC and this in shorter time. For
several groups of benchmark instances new best known upper bounds
are obtained. In comparison to existing simple upper bound procedures,
the obtained bounds are on average 14.8% better.

Keywords: Longest common subsequence problem · Multi-valued
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1 Introduction

In the last 10–15 years decision diagrams (DDs) have shown to be a powerful
tool in combinatorial optimization with which for a wide range of problems new
state-of-the-art approaches could be obtained [1,4,14]. This includes prominent
problems such as minimum independent set, set covering, maximum cut, maxi-
mum 2-satisfiability [3,5] as well as variants of the traveling salesman problem
and other sequencing and scheduling problems [14,24]. In particular can DD-
based methods be superior where traditional mixed integer linear programming
(MIP) or constraint programming (CP) approaches suffer, e.g., from weak dual
bounds?

In essence, DDs are data structures that provide graphical representations of
the solution space of a combinatorial optimization problem. Restricted DDs rep-
resent a subset of feasible solutions and can be used to obtain heuristic solutions
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and primal bounds [3,6] whereas relaxed DDs represent a superset of all feasible
solutions in a compact way and can therefore be seen as a discrete relaxation of
the problem. Relaxed DDs can be used to obtain dual bounds and provide, for
instance, promising new branching schemes [3]. The more general form of a DD
in which a node may have more than two outgoing arcs to successor nodes is
called multi-valued DD (MDD), and MDDs have proven particularly useful for
sequencing and scheduling problems.

Recently, a new A∗-based construction (A∗C) scheme was presented to com-
pile relaxed MDDs [21]. The authors demonstrate on a prize-collecting scheduling
problem that with A∗C it is possible to compile in shorter running times relaxed
MDDs that provide stronger bounds and are at the same time smaller than
relaxed MDDs constructed by traditional top-down or incremental refinement
methods. As the name A∗C suggests, this method is inspired by A∗ search [20]
and utilizes some fast but not necessarily that strong problem-specific bound-
ing procedure during the construction. However, the prize-collecting scheduling
problem from [21] is rather new. The goal of the current work therefore is to inves-
tigate the applicability of A∗C on the prominent longest common subsequence
(LCS) problem in order to see if this construction method has the potential to
lead to superior results also on this already deeply investigated kind of problem.
In our experimental evaluation we will compare the A∗C approach for the LCS
problem not only to a top-down MDD construction but also to several upper
bounding procedures for the LCS from the literature.

The goal of the LCS problem [27] is to find the longest string which is a
common subsequence of a set of m input strings S = {s1, s2, . . . , sm} over an
alphabet Σ. We denote the length of a string s by |s|, and let n be the maximum
length of the input strings, i.e., n = maxi=1,...,m |si|. A subsequence is a string
that can be derived from another string by deleting zero or more characters. A
common subsequence can be derived from all input strings. For instance, for the
input strings ABCDBA and ACBDBA, an LCS is ABDBA. Determining the length of
an LCS is a way to measure the similarity of strings and has a wide range of
applications, for example in computational biology where strings often represent
segments of RNA or DNA [23,30]. Other applications can be found in text edit-
ing, file comparison, data compression, and the production of circuits in field
programmable gate arrays, to just name a few [2,12,25]. If m is fixed then the
LCS problem can be solved by dynamic programming (DP) based algorithms in
polynomial time O(nm) [19]. For an arbitrary number of input strings, however,
the problem is known to be NP-hard [27].

In the literature plenty of exact approaches have been proposed for solving
the LCS problem. Besides the already mentioned DP based approaches, Blum
and Festa [10] investigated a MIP model, which is however not competitive and
cannot be practically applied to any of the commonly used benchmark sets in
the literature due to its excessive size. Further exact methods are for instance
based on dominant point approaches and/or parallelization [13,26,28,31] or on
a transformation to the max clique problem [9], but they are still not applicable
to practical instances with a large number of long input strings. Solving LCS
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instances of practical relevance to proven optimality is still a challenging task
in terms of computation time and memory consumption. Therefore, heuristic
approaches are used for larger m and n. Fast construction heuristics are, e.g.,
the expansion algorithm [11] or the best next heuristic [18,22]. Among the more
advanced search strategies, in particular beam search (BS) based approaches
have been frequently proposed differing in various details such as the heuris-
tic guidance and filtering. This culminated in a general BS-based framework
by Djukanovic at el. [15] which can express essentially all heuristic state-of-the-
art approaches from the literature by respective configuration settings. They
authors proposed also a novel heuristic guidance function, which approximates
the expected length of a LCS for random strings. The BS framework in com-
bination with this novel guidance dominates the other existing approaches on
most of the available benchmark instances. The same authors further described
novel A∗ based anytime algorithms by interleaving A∗ search with BS or anytime
column search, respectively [16]. Thereby the novel search guidance from before
plays again a crucial role.

Before we proceed let us define further notation. We denote the character
at position j in a string s by s[j], and s[j, j′], j ≤ j′, refers to the continuous
subsequence of s starting at position j and ending at position j′. For j > j′,
substring s[j, j′] is the empty string denoted by ε. Last but not least, let |s|a be
the number of occurrences of character a ∈ Σ in string s.

The next section gives a formal definition of MDDs for the LCS problem.
Section 3 reviews two known procedures to obtain upper bounds for the length
of an LCS and presents a new one that extends one of those. Section 4 explains
how relaxed MDDs are compiled for the LCS problem with A∗C. Results of
computational experiments are discussed in Sect. 5. Finally, Sect. 6 concludes
this work.

2 Multi-valued Decision Diagrams for the LCS Problem

In the context of the LCS problem a MDD is a directed acyclic multi-graph
M = (V,A) with one root node r. For classical layer-based MDDs, all nodes
are partitioned into at most n + 1 layers L1, . . . , Ln+1, where L1 is a singleton
containing only r and Li, i > 0 contains only nodes that are reachable from r
over exactly i − 1 arcs. An arc α = (u, v) ∈ A(M) in such a MDD is always
directed from a source node u in some layer Li to a target node v in a subsequent
layer Li+1. In this work we will also construct MDDs that do not follow this layer
structure. In all cases, each arc α is associated with a character c(α) ∈ Σ s.t.
any directed path originating from r identifies a sequence of characters and thus
a (partial) solution. The length of a path is defined as the number of its arcs
and corresponds to the number of characters of the represented sequence. For
non-layered MDDs, there is only one node that has no further outgoing arcs
which we denote by t.

An exact MDD encodes precisely the set of all feasible solutions, i.e., the
set of all feasible common subsequences, and a longest path encodes a longest
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common subsequence. Due to the NP-hardness of the LCS problem such exact
MDDs will in general have exponential size. Therefore we consider more compact
relaxed MDDs which encode supersets of all feasible solutions. In such a relaxed
MDD nodes of an exact MDD are superimposed (merged) s.t. new paths may
emerge representing sequences that are no feasible common subsequences. The
length of a longest path then represents an upper bound on the LCS length.
In contrast, restricted MDDs approximate exact MDDs by removing nodes and
arcs from the exact one s.t. a longest path represents a heuristic solution and its
length a lower bound on the LCS length. We remark that compiling a restricted
MDD to obtain a heuristic solution essentially corresponds to the well-known
beam search, and the leading heuristics for the LCS problem are diverse beam
search variants as already pointed out in the previous section.

Each node u ∈ V (M) is associated with a state which is a position vector
p(u), with pi(u) ∈ {1, . . . , |si|}, i = 1, . . . ,m. On the basis of this position vector
it is possible to define a subproblem S[p(u)] of S by considering the substrings
si[pi(u), |si|], i, . . . ,m. Thus, S[p(u)] consists of the right part of each string
from S starting from the position indicated in position vector p(u). The root
state represents the original problem S, indicated by S[p(r) = (1, . . . , 1)]. An
arc α = (u, v) ∈ A(M) represents the transition from state p(u) to state p(v) by
appending character c(α) to the sequences of characters encoded by the paths
from r to u. The transition function to obtain successor state p(v) by considering
character c(α) is defined as

τ(p(u), c(α)) =

{
(p1,c(α)(u) + 1, . . . , pm,c(α)(u) + 1) if c(α) ∈ Σnd(u)
(n + 1, . . . , n + 1) else ,

(1)

where pi,a(u), i = 1, . . . , m denotes for each character a ∈ Σ the position of the
first occurrence of a in si[pi(u), |si|] and set Σnd(u) ⊆ Σ contains all letters that
can be feasibly appended at state p(u), thus letters that occur at least once in
each string in S[p(u)], and are non-dominated. A character a ∈ Σ dominates
character b ∈ Σ iff pi,a(u) ≤ pi,b(u) for all i = 1, . . . ,m, and therefore it never
can be better to append a dominated letter next. States that have no further
feasible transition, i.e., where Σnd = ∅, are mapped to state (n + 1, . . . , n + 1)
of target node t.

To create relaxed MDDs we have to define a state merger which computes
the state of merged nodes. Let U be a set of nodes that should be merged. An
appropriate state merger is

⊕ (U) =
(

min
u∈U

pi(u)
)

i=1,...,m

. (2)

Since we take always the minimum of each position, each feasible solution of any
subproblem S[p(u)], u ∈ U , will also be a feasible solution of the subproblem
S[p(⊕(U))]. Hence, no feasible solution will be lost in the relaxed MDD, but
new paths corresponding to infeasible solutions may emerge.
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3 Independent Upper Bounds

To compile MDDs based on A∗ search we need a fast-to-calculate independent
upper bound on the solution length of LCS subproblems to guide the construc-
tion mechanism. We use two well known upper bounds from the literature as
well as a third bound which is an adaption of one of the former. The first upper
bound from Fraser [18] was tightened by Blum et al. [8] and is based on the num-
ber of occurrences of each character. Given a node u and the associated position
vector p(u), this bound calculates the sum of the minimal number of occurrences
of each character over all the strings of the corresponding subproblem S[p(u)],
i.e.,

UB1(u) = UB1(p(u)) =
∑
a∈Σ

min
i=1,...,m

|si [pi(u), |si|]|a . (3)

By using a suitable data structure prepared in pre-processing, UB1 can be effi-
ciently computed in O(m |Σ|) time.

The second upper bound is based on DP and was introduced by Wang et
al. [31]. Since the LCS for two input strings can be efficiently computed, for each
pair {si, si+1} ⊆ S, i = 1, . . . , m − 1 a so-called scoring matrix M2

i is computed,
where an entry M2

i [p, q] with p = 1, . . . , |si| and q = 1, . . . , |si+1|, stores the
length of the LCS of strings si[p, |si|] and si+1[q, |si+1|]. The scoring matrices
are determined in a pre-processing step. Then

UB2(u) = UB2(p(u)) = min
i=1,...,m−1

M2
i [pi(u), pi+1(u)] (4)

is an upper bound for the subproblem S[p(u)] of a given node u and the associ-
ated position vector p(u).

The third upper bound we consider adapts the above one as follows. For UB2,
m−1 scoring matrices are computed, one for each pair of input strings {si, si+1},
i = 1, . . . ,m − 1. However, the pairs of input strings are just chosen according
to their natural order given by the instance specification. We are aiming now
to choose pairs of input strings in a more controlled and more promising way
by utilizing as guidance the version of the first upper bound function for two
strings, i.e., UB1(si, si′) = Σa∈Σ min(|si|a, |si′ |a), si, si′ ∈ S, si �= si′ . Pairs of
strings for which this value is small can be expected to typically also have shorter
LCSs, possibly leading to an overall tighter bound. The subset of pairs of input
strings for which we will compute corresponding scoring matrices, denoted by
P , is determined as follows. We iterate over all pairs of input strings {(si, si′) ∈
S × S | i < i′} sorted according to UB1(·, ·) in non-decreasing order and add
each string pair for which not both strings already appear in some string pair
earlier added to P . In this way it is ensured that each input string is used at
least once and |P | = O(m). The upper bound of a given node u is then

UB3(u) = UB3(p(u)) = min
(si,si′ )∈P

M3
si,si′ [pi(u), pi′(u)], (5)

where M3
i,i′ is the scoring matrix for string pair (si, si′) ∈ P .

Finally, let UB(u) = min{UB1(u),UB2(u),UB3(u)} be the strongest upper
bound we can obtain.
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4 A∗-Based Construction of MDDs

To construct relaxed MDDs we essentially follow the A*C approach from [21]
using the principles of A∗ search. We maintain an open list Q of nodes that need
to be (re-)expanded. This list is sorted according to a priority function

f(u) = Z lp(u) + UB(u), (6)

where Z lp(u) denotes the length of the so far best path from the root node r
to node u and UB(u) is the upper bound described in Sect. 3. To break ties, we
prefer the node with higher Z lp-value. Initially, Q contains the root node. At
each step, A∗ search and consequently A*C always take a node u ∈ Q from the
open list that maximizes f(u) and expands u by considering all feasible successor
states using transition function τ from Eq. (1). Newly created nodes are inserted
into Q; nodes that are reached in better ways via the expanded node are updated
and reinserted into Q. If Q finally gets empty then A∗C has compiled a com-
plete exact MDD, since all encountered nodes and arcs corresponding to feasible
transitions are stored. However, since UB never underestimates the length of the
LCS, the classical A∗ optimality condition can be applied by terminating early
as soon as the target node t gets selected for expansion the first time. In this
case we get in general an incomplete MDD, but due to the optimality condition
of A∗ search at least one optimal path is contained in the MDD.

4.1 Relaxed MDDs

To create a relaxed MDD we limit the size of Q by some threshold value φ. As
soon as the size of the open list |Q| exceeds φ the algorithm starts to merge
nodes from Q. If the MDD construction process is carried out until the open
list becomes empty a complete relaxed MDD is obtained. Alternatively, we may
again terminate as soon as t is the first time selected for expansion. Then we
obtain in general an incomplete relaxed MDDs where not all feasible solutions
may be contained, however, due to the optimality condition of A∗ search the
length of the longest path from r to t—that is Z lp(t)—is a valid upper bound
to the length of the LCS. We denote this upper bound by Zub

min. Note that this
bound cannot further be improved by continuing the MDD construction.

Merging. If |Q| exceeds φ then nodes are selected in a pairwise fashion for
merging. This must be done carefully since we have to ensure that no cycles
emerge and that the open list gets empty after a finite number of expansions.
Furthermore we do not merge nodes which are already expanded since this would
require to update all successor states from the expanded node onward. Note
that, since nodes are selected from Q for merging, this approach is able to merge
nodes across layers, by introducing so called “long arcs” that skip certain layers.
Moreover, to compile relaxed MDDs with A∗C the recursive problem formulation
does not necessarily have to be based on layers at all.
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To do the selection for pairing, we label each node u ∈ V (M) by a labeling
function L(u) that maps the state p(u) to a simpler label of a restricted finite
domain DL. The idea is that nodes with the same label are considered similar
s.t. the merged state is still a reasonable representative for both nodes. Hence,
we only merge nodes with the same label. Moreover, labels are chosen in such
way that no cycles will emerge through merging and the open list gets empty in
a finite number of steps.

To efficiently select partner nodes for merging we use a global set of so-called
collector nodes V c which is realized as a dictionary indexed by the labels and
is initially empty. As long as Q is too large, nodes that are not yet expanded
are selected from it in increasing Z lp-order. If for a selected node already a
collector node V c with the same label exists then the two nodes get merged s.t.
all incoming arcs from the two nodes will be redirected to the new merged node.
The two original nodes are removed from Q and V c and the new merged node is
integrated into V (M) and becomes a new collector node in V c. Note that during
the whole construction process we never allow multiple nodes for the same state.
For more details we refer to [21].

Static Labeling Function. For the LCS problem we label all nodes u ∈ Q by

L1(u) = (pilcs1(u), pilcs2(u)) (7)

where ilcs1, ilcs2 are two specific indexes that refer to a pair of input strings
{silcs1 , silcs2} ∈ S with smallest M3

si,si′ [0, 0] over all (si, si′) ∈ P . Hence, we
merge only nodes whose states have the same positions in strings silcs1 and silcs2

and thus partially represent the same subproblems. Consequently, the longest
path in the relaxed MDD will never be worse than the upper bound obtained
from the corresponding scoring matrix and each path originating from r will be
a feasible common subsequence w.r.t. input strings {silcs1 , silcs2} ⊆ S. Since any
merged node will have the same values for pilcs1 and pilcs2 as the original nodes,
and each transition from a state to a corresponding successor state increases the
values from pilcs1 and pilcs2 , the values pilcs1 and pilcs2 strictly increase along each
path in the relaxed MDD. Consequently, no cycles can occur and the open list
gets empty within an finite number of iterations.

Dynamic Labeling Function. To derive stronger relaxed MDDs we investigate
further the static labeling function

L2(u) = (pilcs1(u), pilcs2(u), pilcs3(u), pilcs4(u)) (8)

where {silcs3 , silcs4} ∈ S is the additional pair of input strings with smallest
M3

si,si′ [0, 0] over all (si, si′) ∈ P \{(ilcs1, ilcs2)}. Note that the convergence speed
of A∗C depends on the size of the domain |DL| of the used labeling function L.
If the domain size is large then nodes can be grouped into many subgroups
and it may be harder to keep the open list size under the desired threshold
value φ since there are fewer possibilities to merge nodes. If the domain size is
small then nodes are merged more aggressively, which makes it easier to keep
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the open list size under φ. However, the finally compiled relaxed MDD will in
general be weaker than a relaxed MDD compiled with a labeling function of
a larger domain size. For L1 the domain size is |DL1 | =

∑
a∈Σ |silcs1 |a |silcs2 |a.

Preliminary results showed that the domain size of L2 is already too large to
let A∗C finish in reasonable time on our benchmark instances, but the obtained
relaxed MDDs have the potential to be stronger than relaxed MDDs compiled
with L1. Therefore we follow a different strategy: Instead of using a labeling
function that is static over the whole compilation process we use a function
that adapts its domain size depending on the current situation. We propose the
labeling function

L2,Δ(u) = (pilcs1(u), pilcs2(u), �pilcs3(u)/Δ	, �pilcs4(u)/Δ	) (9)

which discretizes the values for pilcs3 and pilcs4 by discretization factor Δ. A*C
starts with Δ = 1 and doubles this parameter after every k consecutive failures
of reducing the open list size below φ. If the open list size could be reduced to
size φ then Δ is reset to one. Each time Δ is adapted, the set of collector nodes
V c is cleared.

4.2 Further Details

Similar to [21], in we merge an already expanded node u ∈ V (M) and a not yet
expanded node v ∈ Q if p(v) ⊕p(u) = p(u), Z lp(v) ≤ Z lp(u), and L1(u) = L1(v)
holds since we do not need to update the state of node u. This is efficiently
done by indexing each expanded node by labeling function L1 and checking the
condition after each node expansion for each newly created node.

5 Experimental Results

To test our approaches we use six benchmark sets from the literature.

BL instance set from [10]: 450 instances grouped by different values for m,
n, and |Σ|. For each combination there are ten uniform random instances.

Rat, Virus, and Random instance set from [29]: Three benchmark sets
consisting of 20 instances each. The Rat and Virus benchmark sets have a
biological background whereas instances of the Random benchmark sets are
randomly generated.

ES instance set from [17]: 600 instances grouped by different values for m, n
and |Σ|, where each group includes 50 instances.

BB instance set from [7]: 800 instances that were artificially generated in a
way s.t. input strings have a large similarity to each other. There are ten
instances for each combination of m and |Σ|.

We used all of these instances for the experimental evaluation but report here
only some due to the lack of space. In particular, the main results table to come
in Sect. 5.3 omits data for sets Virus and Random since they are similar to those
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obtained for Rat, and from set BL only instances with n = 100 are considered
as also done in [16]. However, all instances from all mentioned benchmark sets
are considered in all the boxplots to come. Complete results over all bench-
mark instances are available from https://www.ac.tuwien.ac.at/files/resources/
results/LCS/cpaior21 mdds.zip. The algorithms were implemented using GNU
C++ 7.5.0, and all experiments were performed on a single core of an Intel Xeon
E5649 with 2.53 GHz and 32 GB RAM.

To evaluate the A∗C algorithm we use the standard top-down construction
(TDC) as baseline, which compiles a relaxed MDD layer by layer starting with
the root node r. All nodes of the current layer Li, i = 1, . . . , n, are expanded and
the newly created nodes are inserted into layer Li+1. The layer size is limited
by parameter β. If the size of Li+1 exceeds β then Li+1 is reduced, after all
nodes of Li are expanded, by sorting the nodes according to priority function f
in non-increasing order and replacing the last nodes with smallest f -values from
position β onward into a single merged node. Note that TDC in general yields an
MDD with be multiple target nodes at different layers. In this case the notation
Z lp(t) refers to the length of the longest path from r to any target node.

5.1 Comparison of Independent Upper Bounds

Fig. 1. Relative differences of upper bounds
UB2(r) and UB3(r).

We start with a comparison of the
upper bounds UB2(r) and UB3(r)
from Sect. 3. Figure 1 shows box-
plots for the relative differences 1 −
UB3(r)/UB2(r) over the different
benchmark sets. Over all instances,
tighter upper bounds can be obtained
from UB3(r) than from UB2(r) in
62.2% of the cases, and in these the
relative difference is on average 1.6%.
Both upper bounds are equal in 17.6%
of all instances. Overall, upper bound

UB3(r) has on average a relative difference to UB2(r) of 0.9%. However, differ-
ences vary significantly with the type of benchmarks as the figure shows. The
largest relative differences could be observed on benchmark sets Rat and Virus.
For randomly generated instances, the relative differences seems to be smaller in
general. Overall, we conclude that UB3 provides in general slightly tighter upper
bounds than UB2 but does not dominate it. As both bounding procedures are
relatively fast, we conclude that their joint application makes sense.

5.2 Impact of Parameters φ and β

Next we investigate the impact of parameter φ as well as the choice of the label-
ing function on the quality of the obtained relaxed MDDs. For this purpose we
compile MDDs for middle size instances from benchmark set BB with m = 100,
n = 1000, and |Σ| = 8. Figure 2 depicts aggregated characteristics of the relaxed

https://www.ac.tuwien.ac.at/files/resources/results/LCS/cpaior21_mdds.zip
https://www.ac.tuwien.ac.at/files/resources/results/LCS/cpaior21_mdds.zip
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Fig. 2. Relaxed MDDs obtained by A∗C and TDC for different settings of φ and β for
benchmark set BB, n = 1000, m = 100, |Σ| = 8

MDDs created by A∗C and TDC, respectively. The diagram to the left shows
obtained upper bounds, i.e., average lengths of longest r-t paths, for different
values of φ and β in the range of 1 to 104. The different solid lines represent
different choices of labeling functions for A∗C as well as results obtained from
TDC. The small tubes around the lines indicate corresponding standard devia-
tions. For A∗C we generally report the upper bound values Zub

min obtained when t
was selected the first time for expansion, and in case of labeling function L1 addi-
tionally the longest path lengths in the complete relaxed MDDs. The dashed line
indicates the combined bound UB(r) from Sect. 3. The diagrams in the middle
and to the right report the corresponding average computation times in seconds
and average numbers of nodes of the relaxed MDDs, respectively.

In general we can observe that tighter upper bounds can be obtained when
choosing larger values for φ or β. Naturally, this comes at the cost of larger
compilation times and lager relaxed MDDs. In comparison to TDC, A∗C pro-
vides consistently much better results in terms of tightness of obtained upper
bounds and for larger values of φ and β also in terms of compilation time and
compactness of obtained relaxed MDDs. A∗C with the dynamic labeling func-
tion L2,Δ yields stronger bounds than with L1, requires, however, more time
than L1. This is not surprising since domain DL2,Δ

is larger than DL1 and thus
leads less frequently to merges. The tightest upper bounds can be obtained with
function L2,Δ where the discretization factor Δ is doubled after every k = 104

consecutive failures of reducing Q below φ. Again this can be explained due to
less merges than with other parameter settings. For the same reason these set-
tings need in general more computation time and produce larger relaxed MDDs.
Note also that, even for small values of φ, upper bounds obtained from A∗C are
substantially smaller than UB(r).
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Fig. 3. Lower and upper bounds, respective compilation times, and sizes of obtained
relaxed MDDs for selected benchmark sets.

5.3 Main Comparison of A∗C and TDC

We start with a graphical comparison for a selected subset of instance classes
in Fig. 3. Shown are upper bounds obtained from relaxed MDDs compiled with
A∗C and TDC, respectively, corresponding compilation times, and the sizes of
the obtained MDDs. Each group of bars corresponds to a specific instance class
and shows average results, except for instance class Rat which contains only
one instance per instance class. The first two bars from the left to right always
correspond to relaxed MDDs obtained from A∗C with parameters {L1, φ = 1}
and {L2,Δ, φ = 5000, k = 103}, respectively. The first parameter setting is
the case where A∗C merges nodes most aggressively whereas the latter setting
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lets A∗C select nodes for merging more carefully, but still with a reasonable
total compilation time. The third bar corresponds to relaxed MDDs obtained
from TDC with β = 5000. The brighter parts of the bars indicate the results
for the in general incomplete relaxed MDDs obtained when A∗C terminates as
soon as t is selected for expansion whereas the darker parts show the results
for the completed relaxed MDDs. For instance, the brighter part of the bars
in the diagrams on the left side show average Zub

min values. Diamond markers
indicate the average lengths of the best known LCSs from the literature obtained
from [16]. The black dashed lines show the independent upper bounds UB(r).

We can see that if A∗C terminates as soon as t is selected for expansion then
we obtain in all considered cases MDDs yielding significantly tighter bounds than
the MDDs obtained from TDC. Moreover, compilation times are shorter and the
obtained MDDs are smaller in case of A∗C. Note that although these relaxed
MDDs are incomplete in the sense that not all feasible solutions are covered, they
can still be further used, e.g., for the DD-based branch-and-bound approach as
described by Bergman et al. [3]. It is still possible to derive an exact cut set
of nodes to branch on by considering nodes that are not expanded yet, too. If
we consider complete relaxed MDDs from A∗C then the obtained upper bounds
are still tighter or equal than those from relaxed MDDs obtained from TDC,
however the compilation with A∗C is not faster anymore. Note that TDC was
not able to compile relaxed MDDs with β = 5000 within the time limit of three
hours for instances from set ES with n = 5000. Also the A∗C approach could
not compile a complete relaxed MDD for instances of set Rat with m = 200,
|Σ| = 20, and n = 600 within the three hours time limit. However, with the
stopping condition of selecting t for expansion, A∗C terminated much earlier.
As the length of the longest path of the incomplete relaxed MDD when A∗C
aborts after three hours is also a feasible upper bound, we show these values in
these cases, too.

Finally, Table 1 presents more detailed main results of our computational
experiments. Here, A∗C is always terminated when t is selected for expansion.
Each row contains aggregated results of one instance class. The characteristics of
the instance classes can be seen in the first four columns whereas column UB(r)
shows the average independent upper bound. The next eight columns belong to
results obtained from relaxed MDDs compiled with A∗C and TDC, respectively.
Hereby, columns Zub

min and Z lp(t) state the average lengths of the longest paths
obtained from the compiled MDDs. Columns σ(·) report corresponding standard
deviations. Average compilation times in seconds are listed in columns t. Finally,
columns gap report the remaining optimality gaps (ub−obj)/ub·100% in relation
to the objective values of so far best known solutions obtained from [16] and listed
in column obj; value ub refers to the upper bound obtained from the considered
approach, i.e., Zub

min or Z lp. We remark that [16] shows experimental results
for two parameter settings, one tailored to obtain as good as possible heuristic
solutions, and one targeted towards smallest possible remaining optimality gaps.
While we use the better objective values from the former results, the gaps listed
in our table for [16] are those of the latter.
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Table 1. Main results for A∗C and TDC and comparison to the anytime A∗ search
from [16].

A∗C TDC lit. best [16]

n |Σ| m UB(r) Zub
min σ(Zub

min) t[s] gap[%] Zlp(t) σ(Zlp(t)) t[s] gap[%] obj gap[%]

B
B

1
0
0
0

2
10 807.4 781.6 9.1 8.9 13.4 882.7 4.4 18.7 23.3 676.7 16.2

100 792.7 767.3 4.5 43.2 26.5 871.8 4.3 74.2 35.4 563.6 30.6

4
10 796.5 759.5 6.7 6.4 28.2 879.5 4.1 27.7 38.0 545.5 29.4

100 779.0 739.4 8.2 22.5 47.2 868.2 4.7 181.3 55.1 390.2 50.9

8
10 794.8 732.8 11.3 7.7 36.9 874.9 5.7 45.5 47.1 462.7 38.0

100 772.3 708.2 5.3 23.1 61.4 857.6 3.3 386.4 68.1 273.4 65.0

24
10 786.1 689.1 14.5 12.5 44.0 846.9 3.5 131.8 54.5 385.6 40.5

100 768.4 669.8 9.9 42.0 77.7 818.3 1.8 1261.4 81.7 149.5 79.5

R
a
t

6
0
0

4

10 345.0 319.0 – 4.8 35.4 570.0 – 27.7 63.9 206.0 38.0

15 347.0 331.0 – 5.2 42.9 564.0 – 20.6 66.5 189.0 44.5

20 293.0 277.0 – 9.4 37.2 494.0 – 34.4 64.8 174.0 39.5

25 344.0 327.0 – 5.4 47.1 557.0 – 44.1 68.9 173.0 47.4

40 315.0 300.0 – 10.6 48.7 455.0 – 26.2 66.2 154.0 48.1

60 343.0 323.0 – 5.1 52.3 548.0 – 62.5 71.9 154.0 53.1

80 281.0 261.0 – 12.6 44.8 466.0 – 36.6 69.1 144.0 47.6

100 279.0 263.0 – 5.5 47.1 497.0 – 118.5 72.0 139.0 49.6

150 222.0 222.0 – 13.2 41.0 443.0 – 142.3 70.4 131.0 40.2

200 231.0 228.0 – 40.3 44.7 436.0 – 223.7 71.1 126.0 44.9

20

10 191.0 167.0 – 19.6 56.9 493.0 – 101.3 85.4 72.0 58.7

15 198.0 169.0 – 45.1 62.7 467.0 – 268.2 86.5 63.0 62.9

20 190.0 159.0 – 101.7 65.4 456.0 – 278.2 87.9 55.0 65.2

25 173.0 145.0 – 18.5 64.1 417.0 – 158.6 87.5 52.0 68.1

40 176.0 143.0 – 53.0 65.0 421.0 – 379.6 88.1 50.0 70.3

60 195.0 161.0 – 439.7 70.8 431.0 – 284.2 89.1 47.0 70.3

80 180.0 145.0 – 518.7 69.7 376.0 – 269.5 88.3 44.0 69.1

100 173.0 138.0 – 103.5 71.0 359.0 – 545.3 88.9 40.0 71.8

150 172.0 145.0 – 128.0 73.8 323.0 – 609.6 88.2 38.0 71.5

200 170.0 133.0 – 195.7 73.7 324.0 – 897.6 89.2 35.0 70.2

E
S

1
0
0
0

2

10 795.3 783.6 4.3 5.6 21.0 987.5 1.3 19.7 37.3 618.9 21.2

50 791.0 779.4 3.0 12.8 30.6 982.7 1.2 40.8 45.0 540.9 30.6

100 788.7 777.3 3.0 18.4 32.8 980.8 0.9 77.6 46.8 522.1 32.9

10

10 477.6 462.2 2.9 4.9 55.6 951.8 2.7 138.4 78.5 205.0 54.9

50 473.7 455.7 1.8 15.4 69.8 928.7 2.1 339.4 85.2 137.5 69.1

100 472.2 454.0 2.0 28.9 72.7 919.5 2.1 591.8 86.5 124.1 71.9

2
5
0
0

25

10 820.1 800.1 2.4 11.5 70.4 2389.2 4.3 1453.7 90.1 236.6 70.1

50 816.5 791.0 1.7 39.1 82.3 2332.4 4.5 4367.0 94.0 140.4 81.9

100 814.4 788.3 1.4 74.2 84.3 2309.5 3.6 7514.3 94.7 123.4 84.0

5
0
0
0

100

10 888.3 853.9 2.6 62.7 82.9 – – – – 145.7 82.9

50 883.5 835.9 1.7 152.1 91.4 – – – – 72.0 91.3

100 882.3 829.5 1.6 373.3 92.7 – – – – 60.8 92.6

B
L

1
0
0

4

10 58.8 47.5 1.6 0.5 28.2 75.6 2.0 3.0 54.9 34.1 10.8

50 56.2 41.7 1.4 2.1 42.0 65.0 1.2 6.1 62.8 24.2 18.7

100 54.7 40.6 1.1 3.2 45.8 61.0 1.8 9.6 63.9 22.0 20.4

150 53.8 38.7 1.2 3.9 46.8 58.0 1.4 11.6 64.5 20.6 18.1

200 53.0 38.3 0.8 5.0 47.8 56.8 1.8 15.9 64.8 20.0 20.2

12

10 37.4 21.2 1.7 0.2 40.1 36.3 4.1 3.7 65.0 12.7 0.0

50 34.4 8.7 2.1 0.2 20.7 9.6 3.0 0.3 28.1 6.9 0.0

100 28.8 5.2 0.4 <0.1 0.0 5.2 0.4 <0.1 0.0 5.2 0.0

150 23.8 4.7 0.5 <0.1 0.0 4.7 0.5 <0.1 0.0 4.7 0.0

200 22.8 4.1 0.3 <0.1 0.0 4.1 0.3 <0.1 0.0 4.1 0.0

20

10 29.2 9.5 1.0 <0.1 16.8 10.5 2.2 0.3 24.8 7.9 0.0

50 17.5 3.0 0.0 <0.1 0.0 3.0 0.0 <0.1 0.0 3.0 0.0

100 12.1 2.1 0.3 <0.1 0.0 2.1 0.3 <0.1 0.0 2.1 0.0

150 7.2 1.9 0.3 <0.1 0.0 1.9 0.3 <0.1 0.0 1.9 0.0

200 6.8 1.1 0.3 <0.1 0.0 1.1 0.3 <0.1 0.0 1.1 0.0
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Fig. 4. Relative differences of upper bounds between Zub
min and UB(r) as well as between

Zub
min and Z lp(t).

For the compilation of MDDs we set β = 5000 for TDC and φ = 5000 for A∗C
with labeling function L2,Δ and k = 104 for all instance except for benchmark
set ES where k is set to 103.

We observe that in all considered cases the obtained upper bounds Zub
min are

tighter than UB(r) as well as the upper bounds obtained from relaxed MDDs
compiled with TDC. Only in one single case, for benchmark set Rat with |Σ| = 4,
m = 150, n = 600, the upper bound UB(r) is equal to Zub

min. We notice an average
relative difference between Zub

min and UB(r) of 14.8% over all instances. Consider-
ing Zub

min and Z lp(t) from relaxed MDDs compiled with TDC we get an average
relative difference of 43.7%. The boxplots shown in Fig. 4 give deeper insight
on the relative differences between Zub

min and UB(r) as well as the differences
between Zub

min and Z lp(t). The largest relative difference between upper bounds
obtained from relaxed MDDs compiled by A∗C and TDC occurs for instance
sets Rat, Virus, Random, and ES. For these benchmark sets the median of the
obtained relative differences is about 50%. Regarding instances of the BB bench-
mark set, substantially smaller relative differences are obtained. The fact that
BB instances are created in a way s.t. input strings have a large similarity to
each other seems to be an explanation for this discrepancy. The median of the
relative differences between upper bounds Zub

min and UB(r) is about 10% for all
benchmark sets. Only results from benchmark set ES exhibit a median relative
difference of about 4%, which can be explained by the longer input strings of
ES instances, e.g., n = 5000. Finally, BL instances exhibit some outliers, e.g.,
instances with a relative difference between Zub

min and UB(r) of 80% and dif-
ferences between Zub

min and Z lp(t) (TDC) of 0%. This is not surprising, since
benchmark set BL contains small instances that could be solved to proven opti-
mality by exact methods, and both construction methods, A∗C as well as TDC,
are able to compile relaxed MDDs that yield the optimal solution values as upper
bounds. This is also documented in Table 1 for instance classes of set BL with
n = 100 and |Σ| ∈ {12, 20} where the average optimality gap is 0%. In compar-
ison to [16], we can observe that A∗C is able to obtain even smaller optimality
gaps in 315 cases and equal optimality gaps in 73 cases. Most of the gaps from
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[16] were only obtained after a time limit of 15 min, while A∗C created the MDDs
in much shorter time.

6 Conclusions

In this work we compiled relaxed MDDs for the LCS problem to obtain upper
bounds. The proposed construction algorithm A∗C is not layer-oriented such as
TDC and utilizes fast independent upper bounds on subproblems for guidance in
the spirit of A∗ search. As independent upper bound we suggested using a com-
bination of two fast-to-calculate bounds from the literature and the new variant
UB3 that is approximately equally fast to compute but occasionally stronger
than the former bounds. To control the size of the relaxed MDD, A∗C merges
nodes when the list of open nodes exceeds a certain size. To determine suit-
able partner nodes for merging, we investigated different LCS-specific labeling
functions. The better performing dynamic labeling function adapts the domain
dynamically during the compilation process s.t. depending on the current situ-
ation nodes are merged more or less aggressively. When rigorously comparing
A∗C with a classical TDC on several benchmark instance sets from the literature,
we observed that A∗C is able to provide more compact relaxed MDDs that are
significantly stronger than relaxed MDDs obtained from TDC in shorter time.
For several instance classes relaxed MDDs compiled with A∗C yielded stronger
bounds than the best known upper bounds from the literature.

For future work it seems promising to embed the compilation of relaxed
MDDs into a branch-and-bound approach that branches over exact nodes of
the relaxed MDD, as already done in the literature for other kinds of problems,
where, however, the classical TDC was used instead of A∗C to compile relaxed
MDDs. To obtain also high quality heuristic solutions for subproblems within
such a branch-and-bound approach, ideas from the leading beam search methods
can further be adopted. Further interesting research directions will be to inves-
tigate different strategies for the novel dynamic labeling functions mechanism
and to perform more detailed analysis of the ability of A∗C to reduce the size
of relaxed MDDs, e.g. comparing for small instances the size of exact reduced
MDDs with relaxed MDDs compiled with A∗C.
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