
Decision Diagram Based Limited Discrepancy
Search for a Job Sequencing Problem?

Matthias Horn and Günther R. Raidl

Institute of Logic and Computation, TU Wien, Vienna, Austria
{horn|raidl}@ac.tuwien.ac.at

Abstract. We consider the Price-Collecting Job Sequencing with One
Common and Multiple Secondary Resources problem. The task is to fea-
sibly schedule a subset of jobs from a given larger set. Each job needs two
resources: a common resource for a part of the job’s execution time and
a secondary resource for the whole execution time. Furthermore each job
has one or more time windows and an associated prize. In addition to
previous work, we also consider precedence constraints on the jobs. We
aim to maximize the total prize over the actually scheduled jobs. To solve
large instances heuristically we propose a hybrid of limited discrepancy
search and beam search approach that utilize a relaxed decision diagram.
We could show that the use of a relaxed decision diagram substantially
speed-up the computation times of the search approach.

Keywords: sequencing problem, decision diagrams, limited discrepancy search

1 Introduction

The Price-Collecting Job Sequencing with One Common and Multiple Secondary
Resources (PC-JSOCMSR) problem without precedence constraints was first
introduced by [6, 7] and consists of a set of jobs, one common resource, and a
set of secondary resources. The common resource is shared by all jobs whereas
a secondary resource is shared only by a subset of jobs. Each job has at least
one time window and is associated with a prize. A feasible schedule requires
that there is no resource used by more than one job at the same time and each
job is scheduled within one of its time windows. Due to the time windows it
may not be possible to schedule all jobs. The task is to find a subset of jobs
that can be feasible scheduled and maximizes the total prize. There are at least
two applications [5]. The first is in the field of the daily scheduling of particle
therapies for cancer treatments. The second application can be found in the field
of hard real time scheduling of electronics within an aircraft, called avionics,
where the PC-JSOCMSR appears as a subproblem.

? This project is partially funded by the Doctoral Program Vienna Graduate School on
Computational Optimization, Austrian Science Foundation Project No. W1260-N35.

The PC-JSOCMSR was tackled on the exact side by Horn et al. [6], with an
A∗ based algorithm which is able to solve instances up to 40 jobs to proven op-
timality. On the heuristic side, Maschler and Raidl [7] applied decision diagrams
(DDs) to obtain lower and upper bounds for large problem instances with up to
300 jobs. DDs are rooted weighted directed acyclic graphs and provide graphical
representations of the solution spaces of combinatorial optimization problems.
In particular relaxed DDs represent a superset of the feasible set of solutions and
are therefore a discrete relaxation of the solution space, providing upper bounds
on the objective value. The counterparts are restricted DDs which represent sub-
sets of feasible solutions and therefore provide heuristic solutions. Both types of
DDs were investigated in [7] and were compiled with adapted standard methods
from the literature. For more details on DDs we refer to [1]. New state of the art
results for the PC-JSOCMSR could be obtained by Horn et al. [5] by applying a
beam search (BS) heuristic that uses a relaxed DD to speed up the search. The
relaxed DD is constructed by a novel A*-based construction algorithm.

In particular in the avionic system scenario it often appears that some jobs
need to be finished before other jobs may start. To address this aspect, we
consider in this work also precedence constraints. Thus, there are given relation-
ships between pairs of jobs as additional input such that one job can only be
scheduled if the other job is already completely scheduled earlier. These new
constraints require an adaption on the algorithmic side of [5] to incorporate the
new precedence constraints. The goal is to solve large problem instances of the
PC-JSOCMSR with precedence constraints heuristically. Our solution approach
builds upon the ideas from [5] but extended them to a limited discrepancy search
(LDS) combined with BS that exploits structural information contained in a re-
laxed DD. The usage of the relaxed DD is two-folded: (1) to reduce computation
time of the LDS and (2) to provide besides a heuristic solution also an upper
bound on the total prize objective.

2 PC-JSOCMSR with Precedence Constraints

The PC-JSOCMSR with precedence constraints is formally defined as follows.
Given are a set of n jobs J = {1, . . . , n}, a common resource 0 and a set of
m secondary resources R = {1, . . . ,m}. Let R0 = {0} ∪ R be the complete
set of resources. Each job j ∈ J needs during its whole execution time pj > 0
one secondary resource qj ∈ R and, in addition, after some preprocessing time
pprej ≥ 0 also the common resource 0 for some time p0j > 0. Furthermore each

job has associated (1) ωj time windows Wj =
⋃

ω=1,...,ωj
[W start

jω ,W end
jω], where

W end
jω −W start

jω ≥ pj , ω = 1, . . . , ωj , (2) a set of preceding jobs Γj , which must
be scheduled before job j can be scheduled w.r.t. the common resource 0, and
(3) a prize zj > 0. The task is to find a subset of jobs S ⊆ J which can be
feasible scheduled such that the total prize of these jobs is maximized: Z∗ =
maxS⊆J Z(S), Z(S) =

∑
j∈S zj . A feasible schedule assigns each job in S a

starting time in such a way that all constraints are satisfied. Note that a unique
ordered sequence π = (π)i=1,...,|S| of jobs is implied by each feasible schedule of

jobs S ⊆ J , since the common resource is required by each job and only one job
can use this resource at a time. For each given sequence π of jobs S that can be
associated with a feasible schedule, a normalized schedule without unnecessary
waiting times can be computed greedily (see [6] for further details).

3 Exact/Relaxed Decision Diagrams and Filtering

In order to describe our approach in Section 4 we have to introduce some def-
inition and structures beforehand. In our context a DD for the PC-JSOCMSR
is a weighted directed acyclic graph M = (V,A) with one root node r ∈ V ,
corresponding to the empty schedule and one target node t ∈ V corresponding
to all feasible schedules that cannot be further extended by any job. Each arc
a = (u, v) ∈ A corresponds to adding a specific job, denoted by job(a) ∈ J , as
the next job after the ones already scheduled up to node u. The length of an arc
a ∈ A is associated width the prize zjob(a). Hence, each path from r to any node
u ∈ V corresponds to a specific sequence of jobs π and the length of the path is
equal to the sum of prizes of jobs in π.

In an exact DD each feasible normalized schedule S ⊆ J has a corresponding
path in the exact DD originating from r and vice versa. The length of such a path
corresponds exactly to the total prize Z(S). Therefore a longest path from r to
t corresponds to an optimal solution of the PC-JSOCMSR. Furthermore, each
node u ∈ V is associated to a state (P (u), t(u)), where set P (u) contains all jobs
that can be feasibly scheduled next, and vector t(u) = (tr(u))r∈R0

contains the
earliest times from which on each of the resources are available for performing
a next job. The transition function to obtain the successor state (P (v), t(v)) of
state (P (u), t(u)) when scheduling job j ∈ P (u) is

τ ((P (u), t(u)), j) =


(P (u) \ {j}, t(v)), if s((P (u), t(u)), j) < Tmax ∧

P (u) ∩ Γj 6= ∅,
0̂, else,

(1)

with

t0(v) = s((P (u), t(u)), j) + pprej + p0j , (2)

tr(v) = s((P (u), t(u)), j) + pj , for r = qj , (3)

tr(v) = tr(u), for r ∈ R \ {qj}, (4)

where 0̂ represents the infeasible state and s((P (u), t(u)), j) corresponds to the
earliest start time of job j w.r.t. to state (P (u), t(u)) and job j’s time windows.
If it is not possible to schedule job j feasible then function s(., .) will return
Tmax. States that are related to exact DDs will be denoted as exact states.

Relaxed DDs merge exact states in order to get a more compact DD.
Thereby new paths will emerge which correspond to infeasible schedules, de-
noted as infeasible paths. Let merge two nodes u, v ∈ V . The merged state

is (P (u), t(u)) ⊕ (P (v), t(v)) = (P (u) ∪ P (v), (min(tr(u), tr(v)))r∈R0
). We com-

pile relaxed DDs with the A∗-based compilation (A∗C) method from [5] since
it could be shown that at least for the PC-JSOCMSR without precedence con-
straints A∗C can produce smaller relaxed DDs in shorter time that represent
stronger relaxations than relaxed DDs compiled with standard methods from
the literature. Note that we initially ignore the precedence constraints in this
compilation of a relaxed DD. Otherwise, we would need to extend the states
of the nodes with additional information in order to define a feasible merging
rule for two nodes. Preliminary experiments had shown that those larger states
cause substantially longer compilation times, which we want to avoid. However,
we consider the precedence constraint after the initial construction by apply-
ing a respective filtering on the compiled relaxed DD. We try to identify arcs
which belong only to infeasible paths. Those arcs can be safely removed from
the relaxed DD to reduce the number of infeasible paths without removing paths
that correspond to feasible schedules. To identify arcs that violate precedence
constraints we adopted the corresponding filter operation suggested by Cire and
van Hoeve [2]. Moreover, if we got already a primal solution then we can in ad-
dition filter arcs which only belong to paths corresponding to solutions that are
worse than this known primal solution. Hence, paths that encode sub-optimal
solutions will be removed from the relaxed DD. This cost-based filter operations
are adopted from [5].

4 Limited Discrepancy Search

Limited discrepancy search was originally proposed by Harvey and Ginsberg [4]
for heuristic binary searches where at each decision point a heuristic h(.) decides
between two possibilities to extend the current partial solution. If h(.) would be
a perfect heuristic than the algorithm would return the optimal solution as soon
as a complete solution is encountered during the search. However, in most cases
h(.) will fail at some point and only a non-optimal solution can be returned. To
overcome this, LDS allows in a systematic way discrepancies during the search.
A discrepancy means that at some decision point the algorithm decides against
h(.). Hence, if k discrepancies are allowed than LDS will encounter all paths in
the search tree where the algorithm exactly decides k times against h(.). To apply
LDS on the PC-JSOCMSR we have to consider in general multiple possibilities
at each decision point instead of just two, and we do this by counting i − 1
discrepancies if we take the i-th best decision according to h(.).

Algorithm 1 shows our LDS-based approach. The search is applied on the
exact states defined in Section 3. Note that we do not build an exact DD, but
we rather keep all not yet expanded nodes in memory and assign to each node
v′ the so far best encountered partial solution π(v′). Furthermore, we extend
LDS in similar ways as Furcy and Koening [3] by incorporating a BS like ap-
proach at each level into LDS. Instead of expanding always one node at each
step Algorithm 1 expands at each step β nodes and keeps the (k+ 1)β-best suc-
cessor nodes according to h(.). As heuristic decision function h(v′) for node v′

Algorithm 1: LDSprobe

Input: node set N ′, relaxed DD M = (V,A), allowed discrepancies k, beam
width β

Output: sequence of jobs π
1 if N ′ = ∅ then return empty sequence;
2 node set W ′ ← ∅; job sequence πbest ← ∅;
3 foreach u′ ∈ N ′ do
4 let u ∈ V be the node corresponding to u′ w.r.t. the path from the root;
5 foreach outgoing arc a = (u, v) of node u do
6 if |W ′| = (k + 1)β ∧ node v would be removed from W ′ ∪ {v} then
7 continue with next arc;

8 if τ((P (u′), t(u′), job(a)) = ∅ then continue with next arc;
9 add new node v′ to W ′ and set (P (v′), t(v′))← τ((P (u′), t(u′)), job(a));

10 if |W ′| > (k + 1)β then remove worst node from W ′ according to h(.);

11 if W ′ = ∅ then return arg maxπ(u′)|u′∈N′ Z(π(u′));

12 sort W ′ according to h(.) and split W ′ into k + 1 slices W ′[i], i = 0, . . . , k;
13 foreach i = k, . . . , 0 do
14 π = LDSprobe(W ′[i],M, k − i, β);
15 if Z(πbest) < Z(π) then πbest ← π;

16 return πbest;

Algorithm 2: LDS+BS

Output: sequence of jobs π
1 compile relaxed DD M = (V,A) by A∗C, ignoring precedence constraints;
2 πbest ← LDSprobe(r,M, 0, 10);
3 for k ← 0; k ≤ kmax ∧ time limit not exceeded; k ← k + 1 do
4 apply filtering on M ;
5 π ← LDSprobe(r,M, k, β);
6 if Z(πbest) < Z(π) then πbest ← π;

7 return πbest;

we use the ratio Z(π(v′))/t0(v′). In order to quickly identify those (k+ 1)β-best
successor nodes we use the structural information contained in the relaxed DD
M = (V,A) similar as in [5]. For node u′ ∈ N a corresponding node u ∈ V from
M can be determined by following the job sequence π(u′) from r in M . We do
not consider transitions to successor nodes of u′ where the corresponding arcs
were removed from the relaxed DD during the filtering step. Furthermore we can
estimate h(.) without creating the successor nodes of u′ by using the correspond-
ing nodes in the relaxed DD. Based on these estimation we can decide quickly
if a successor node is a candidate to be one of the β-best successor nodes or
not. Note that for simplification reasons Algorithm 1 shows a recursive version
of LDS, our implementation however, is implemented in an iterative way.

Algorithm 2 gives an overview of the overall approach to tackle the PC-
JSOCMSR. First a relaxed DDM is compiled with A∗C with the same parameter
settings as in [5] and by ignoring the precedence constraints. In order to get
quickly an initial primal solution for filtering, Algorithm 1 is applied with the
small beam with β = 10 and no allowed discrepancies. In the main loop we apply
first the filtering for sup-optimal paths according to our current best primal
solution and precedence constraints violations. Then we apply Algorithm 1 with
beam width β and the number of current maximum allowed discrepancies k.
After updating the incumbent solution πbest, k is increased by one. The algorithm
terminates if the maximum allowed discrepancies kmax is reached or a certain
time limit is exceeded.

5 Computational Study

The LDS-based algorithm for the PC-JSOCMSR with precedence constraints
was implemented in C++ using GNU g++ 5.4.1. All tests were performed on
a cluster of machines with Intel Xeon E5-2640 v4 processors with 2.40 GHz in
single-threaded mode with a memory limit of 16 GB per run. We extended the
two sets of benchmark instances for the particle therapy application scenario
(denoted as P) and for the avionic system scheduling scenario (denoted as A)
from [5] by adding randomly precedence constraints between n pairs of jobs such
that circular dependencies between jobs are voided. The instance sets contain 30
instances for each combination of different values of n and m. For further details
on the benchmark characteristics we refer to [5].

Figure 1 compares the obtained average total prizes and median compu-
tation times between LDS+BS and a standalone variant of LDS+BS without
using a relaxed DD dependent on different values of beam width β and differ-
ent maximum allowed discrepancies kmax. The diagrams on the top visualize
the obtained average total prizes. There are two main observations regarding
the solution quality: First, as expected the solution quality tends to increase
with increasing β and/or kmax; second, similar results could be obtained from
both LDS+BS variants. However, regarding computation times, the LDS+BS
approach using the relaxed DD is in almost all cases except for kmax = 0 and
smaller β substantially faster. Note that we do not show the obtained results
from standalone LDS+BS for kmax = 2, since the approach exceeded in most
cases the time limit of two hours.

Figure 2 compares the LDS+BS approach against a mixed linear integer
programing (MIP) approach and a constrained programming (CP) approach.
The MIP formulation as well as the CP formulation from [5] were adapted to
additionally consider the precedence constraints and are solved with Gurbi Op-
timizer 7.5.1 and MiniZinc 2.1.7 with backbone solver Chuffed, respectively. All
tested approaches use a time limit of 900 seconds. For LDS+BS the maximum
allowed discrepancies kmax are set to infinity and β is set to 1000 and 10000
for instance set of type P and A, respectively. The first bar of each group of
bars show the obtained average longest path length of the compiled relaxed DD

101 102 103
500

520

540

560

580

600

620

640

pr
im

al
 b

ou
nd

P, n = 250, m = 2

LDS+BS, kmax = 0 LDS+BS, kmax = 1 LDS+BS, kmax = 2 stand. LDS+BS, kmax = 0 stand. LDS+BS, kmax = 1

101 102 103
500

520

540

560

580

600

620

640

P, n = 250, m = 3

102 103 104
980

1000

1020

1040

1060

1080
A, n = 250, m = 3

102 103 104
980

1000

1020

1040

1060

1080
A, n = 250, m = 4

101 102 103
10 1

100

101

102

103

104

co
m

pu
ta

tio
n

tim
es

 [s
]

101 102 103
10 1

100

101

102

103

104

102 103 104

100

101

102

103

102 103 104

100

101

102

103

Fig. 1. Comparison between LDS+BS and standalone LDS+BS for middle sized in-
stances with 250 jobs.

50 100 150 200 250 300 350 400 450 500
n

0

500

1000

1500

2000

2500

to
ta

l p
riz

e

Instances of type P, m = 2

50 100 150 200 250 300 350 400 450 500
n

0

500

1000

1500

2000

2500

to
ta

l p
riz

e

Instances of type P, m = 3

50 100 150 200 250 300 350 400 450 500
n

0

1000

2000

3000

4000

5000

6000

to
ta

l p
riz

e

Instances of type A, m = 3

50 100 150 200 250 300 350 400 450 500
n

0

1000

2000

3000

4000

5000

6000

to
ta

l p
riz

e

Instances of type A, m = 4

LDS+BS MIP CP

Fig. 2. Primal and Dual Bounds obtainded from LDS+BS, MIP and CP.

during the LDS+BS approach and the block at the bottom show the obtained
average primal bounds. In the same manner, the second bar shows the obtained
upper- and primal bounds from the MIP approach. The third bar shows the ob-

tained average primal bounds obtained from the CP approach. On average the
LDS+BS approach finds in all considered cases better or equally good solutions
than the MIP or the CP solvers. Moreover, LDS+BS is able to return in most
cases on average stronger upper bounds than the MIP solver.

6 Conclusion

Exploiting the structural information of relaxed DDs within LDS has following
advantages: (1) a substantial speed up of the heuristic search allows to scan larger
regions of the search space compared to a standalone LDS approach and (2) a
dual bound can be obtained from the relaxed DD. Although we demonstrate this
advantages specifically for the PC-JSOCMSR, the general approach also appears
promising for other combinatorial optimization problems. Next steps would be
to incorporate other filtering techniques to further strengthen the relaxed DD
by removing more arcs to speed-up the computation times even more. Another
promising research direction would be to apply the general idea of using the
structural information of relaxed DDs on further search heuristics and meta-
heuristics.

References

1. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for
Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, Springer
(2016)

2. Cire, A.A., van Hoeve, W.: Multivalued decision diagrams for sequencing problems.
Operations Research 61(6), 1411–1428 (2013)

3. Furcy, D., Koenig, S.: Limited discrepancy beam search. In: Proceedings of the
19th International Joint Conference on Artifical Intelligence. pp. 125–131. IJCAI’05,
Morgan-Kaufmann (2005)

4. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Mellish, C.S. (ed.)
Proceedings of the 14th International Joint Conference on Artificial Intelligence. pp.
607–615. Morgan-Kaufmann, Montreal, Que Canada (1995)

5. Horn, M., Maschler, J., Raidl, G., Rönnberg, E.: A*-based construction of deci-
sion diagrams for a prize-collecting scheduling problem. Tech. Rep. AC-TR-18-011,
Algorithms and Complexity Group, TU Wien (2018), submitted

6. Horn, M., Raidl, G.R., Rönnberg, E.: An A∗ algorithm for solving a prize-collecting
sequencing problem with one common and multiple secondary resources and time
windows. In: Proceedings of PATAT 2018 – The 12th International Conference of
the Practice and Theory of Automated Timetabling. pp. 235–256. Vienna, Austria
(2018)

7. Maschler, J., Raidl, G.R.: Multivalued decision diagrams for a prize-collecting se-
quencing problem. In: Proceedings of PATAT 2018 – Proceedings of the 12th In-
ternational Conference of the Practice and Theory of Automated Timetabling. pp.
375–397. Vienna, Austria (2018)

