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Abstract

We consider the Intraday Particle Therapy Patient Scheduling Problem (I-PTPSP),
a patient scheduling problem that arises in facilities specialized on cancer treatment
with synchrotrons, a device for particle therapy treatments. This problem has a
time horizon of a single day and already assigned starting times for the pending
treatments from an earlier created weekly or monthly schedule. If unforeseen cir-
cumstances occur, these predefined schedules need to be adjusted to adapt to the
new situation. Finding these new schedules quickly is essential to limit any negative
impacts on the waiting times of the patients or the running costs of the facility. The
I-PTPSP models this situation.

A specialty of the I-PTPSP is the way how the treatments are processed. The
synchrotron can serve multiple treatment rooms alternatingly. The aim is to find
schedules of treatments that occupy the different treatment rooms in such a way
that avoids idle times of the synchrotron to increase the throughput of the facility.
Beside the synchrotron and the treatment rooms, other resources are relevant and
need to be considered.

In this work, we tackle the I-PTPSP with multiple variants of a greedy construc-
tion heuristic first. Then, we solve it with a Branch and Bound approach that
incorporates some of the ideas obtained during the development of the construction
heuristic. In addition, we examine and develop several traversal strategies of the
Branch and Bound node tree, as well as, different techniques to obtain lower bounds
for the partial solutions. Furthermore, a constraint programming (CP) model solved
by a state-of-the-art CP solver is developed. Finally, we compare our solution to
this reference implementation.

For that reason, we simulate different scenarios of various sizes that resemble real
world use cases like a delay in a treatment room or a suddenly needed maintenance
of a medical device. The so obtained problem instances are used to compare the
performance of our three approaches. While all three approaches perform almost
equally well on the smaller instances, the Branch and Bound approach clearly out-
performs the other two on the medium to larger problem inputs.
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Kurzfassung

In dieser Arbeit behandeln wir das Intraday Particle Therapy Patient Scheduling
Problem (I-PTPSP), ein Planungsproblem für Behandlungstermine von Patienten,
das in medizinischen Einrichtungen für Krebstherapien mit Synchrotrons, einem
speziellen Typ von Teilchenbeschleunigern für die Strahlentherapie, auftritt. Das
Problem beschreibt bevorstehende Behandlungen mit bereits zugewiesenen Termi-
nen auf einen Zeithorizont von maximal einem Tag. Die Problematik liegt darin, dass
durch unvorhergesehene Ereignisse diese Behandlungen nicht mehr zu den vorgese-
henen Zeitpunkten durchgeführt werden können und deshalb der bestehende Zeit-
plan an die neue Situation angepasst werden muss. Dieser neue Zeitplan muss
möglichst schnell erstellt werden, um negative Auswirkungen auf beispielsweise die
Wartezeiten und laufenden Kosten der Einrichtung zu begrenzen. Das I-PTPSP
modelliert diese Situation.

Eine Besonderheit des I-PTPSP liegt in der Art und Weise wie die Behandlungen
durchgeführt werden. Das Synchrotron kann mehrere Behandlungsräume abwech-
selnd hintereinander bedienen. Das Ziel besteht nun darin, solche Belegungspläne
zu finden, in denen Leerlaufzeiten des Beschleunigers möglichst vermieden werden.
Neben dem Strahl und den Behandlungsräumen gibt es weitere relevante Ressourcen,
die berücksichtigt werden müssen.

In dieser Arbeit betrachten wir zunächst verschiedene Varianten von Greedy Kon-
struktionsheuristiken, um erste Lösungen für das Problem zu erhalten. Die hierfür
verwendeten Ansätze nutzen wir anschließend, um ein Branch and Bound (BAB)
Verfahren zu entwickeln. Hierbei untersuchen wir sowohl verschiedene Auswahlstra-
tegien der Knoten aus dem BAB-Baum, als auch diverse Techniken um untere
Schranken für die Teillösungen zu berechnen. Weiters wird als Referenz ein Con-
straint Programming (CP) Modell erstellt und mithilfe eines CP Solvers gelöst.
Schlussendlich vergleichen wir die Ergebnisse unserer Verfahren mit denen dieser
Referenzimplementierung.

Hierfür erstellen wir verschiedene Szenarien unterschiedlicher Größe, welche reale
Anwendungsfälle, wie eine Verzögerung in einem Behandlungsraum oder eine drin-
gend benötigte Wartung eines medizinischen Gerätes, simulieren. Die so erstellten
Problem-Instanzen werden anschließend verwendet, um die Verfahren miteinander
zu vergleichen. Während alle drei Methoden ähnlich gute Ergebnisse bei Instanzen
kleinerer Größe liefern, zeigt sich, dass der Branch and Bound Algorithmus die an-
deren beiden Ansätzen bereits bei Problemen ab mittlerer Größe übertrifft.
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1. Introduction

Depending on the year, cancer is the first or second leading cause of death [79, 72].
There were 14.1 million new cancer cases, 8.2 million cancer deaths and 32.6 million
people living with cancer within 5 years of diagnosis (excluding non-melanoma skin
cancer) in 2012 worldwide [32]. The number of new cases per year is even expected
to rise a further 75% to almost 25 million until 2022 [72].

But not only is cancer an enormous burden and suffering for the people who are
affected and their relatives, it has also an enormous economic impact. The economic
worldwide costs of cancer were estimated to be 1.16 trillion US Dollar in 2010. This
is an equivalent of 2% of the total global gross domestic product. And that is only
a lower bound to the real costs as the substantial longer-term costs of families and
caregivers are not included [72, 9].

As a result, a huge amount of effort has been invested to find promising treatments
for cancer. One of these is the radiotherapy or radiation therapy where the cancer
cells are exposed to ionizing radiation to be damaged and destroyed. As there are
many different kinds of cancers in different body parts that all need to be treated
differently, there are also different particle accelerators that can be used for the
radiotherapy.

Figure 1.1.: A LINAC for can-
cer treatment at
the UKSH Campus
Kiel [75]

The classic devices for providing radiotherapy
are linear particle accelerators, or short LINACS.
As the name suggests, particles, mostly elec-
trons, are accelerated linearly when passing
through a long straight vacuum tube by elec-
trodes. They can be used either directly or
stopped abruptly to deliver supervoltage x-
rays [61, 70]. In comparison to the other types
of accelerators, these devices are smaller and
cheaper and available in many modern hospitals
that are specialized for cancer treatment. They
are coupled to a treatment room, meaning that
each device can be only used to treat a patient
in the same room it is located.

Apart from linear accelerators, there are also cyclic ones. These can be divided
into two types: cyclotrons and synchrotrons. They are mainly used for particle
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(a) A sketch of a particle being ac-
celerated and ejected in a cy-
clotron [33]

(b) Schematic diagram of a proton
synchrotron [65]

Figure 1.2.: Cyclic accelerators

therapy, or more correctly hadron therapy, where mainly protons or carbon ions are
used for cancer treatment. Both types of accelerators have lead to promising clinical
results. The choice of usage depends on treatment method, price, available space
and expertise [71, 35].

Cyclotrons are one of the most used accelerators for particle therapy with pro-
tons [71]. They overcome the length limitation of LINACS by accelerating the parti-
cle along a circular path resembling a spiral (compare to Figure 1.2a). Opposing to
cyclotrons, the path of particles in synchrotrons forms a closed loop (Figure 1.2b).
This allows to increase their speed with each revolution. Probably the most famous
synchrotron is the Large Hadron Collider at CERN in Genf1.

Cyclic accelerators can serve multiple treatments rooms alternatingly. Consider-
ing the multiple activities (e.g. stabilizing the patient) that need to be performed
before and after the actual treatment with the beam, scheduling the beam utilization
for each room in an efficient manner can increase the throughput of the facilities.

Planning, creating and managing such schedules is becoming increasingly impor-
tant. Considering these huge investments that are made to obtain such medical
devices, it is clear that on one hand a primary goal for medical facilities is to reduce
costs and on the other hand also increase number of treated patients as well as their
satisfactory levels. But constructing these schedules is complex due to the shortage
of resources as well as different opposing priorities of the involved stakeholders such
as facility owners, staff and the actual patients.

The aim of our work is to provide efficient algorithms that calculate such schedules.
Here, we focus in particular on the planning and scheduling of the treatments for the

1https://home.cern/topics/large-hadron-collider

15

https://home.cern/topics/large-hadron-collider


treatment center MedAustron in Wiener Neustadt, Austria2 that uses a synchrotron
that serves three treatment rooms. Scheduling treatments in such a facility can be
divided into problems of different granularity. While other works cover the Particle
Therapy Patient Scheduling Problem (PTPSP) that has a time horizon of several
months [57, 53, 56, 55], we target the Intraday Particle Therapy Patient Scheduling
Problem (I-PTPSP) with a time horizon of a single day in this thesis.

When scheduling treatments beforehand it is impossible to take all possible uncer-
tain conditions into account that could somehow affect the plan. Hence, a treatment
plan is produced with estimates of the actual required times. Then, during the day,
when the actual times are known, the original plan often needs to be adjusted to fit
the real scenario, especially if an unforeseen event occurs. Solving this problem in a
short time is inevitable to not only minimizing the negative impact of such an event
on the patients waiting times and the facility’s running costs but also to ensure that
there exists a treatment schedule that is feasible at all.

The I-PTPSP models this situation. We have given treatments with already
assigned starting times. Due to an occurrence, like a delay in a treatment room,
a no-show of a patient or a delay of a treatment device, the original plan is not
feasible any more and a new plan needs to be created. Hence, we need to find a
feasible schedule that reacts on the occurrence but remains as close as possible to
the original plan. To this end, we aim at minimizing the total working time of
the staff, the deviations to the original starting times and idle times on bottleneck
resources.

We tackle this problem by introducing a greedy construction heuristic first and
implementing different priority functions that will be used for guidance. Then, a
Branch and Bound approach is presented. Here, we implement and test various
branching tree traversal strategies. First, a depth first strategy based on the men-
tioned priority functions is designed. Second, a new traversal strategy based on
inversion numbers as a measure for the “distance” of solutions from the original one
is developed. Finally, we study a best first strategy that repeatedly “dives down”
the branching tree to obtain better upper bounds. Additionally, a technique to ob-
tain sharp lower bounds is introduced that is stepwise improved. To conclude, a
constraint programming (CP) model of this problem is created.

Finally, to test our approaches, we design several scenarios that resemble real
world use cases to obtain proper instances. These are then used to compare the
results of the different algorithms with each other. What is more, our Branch and
Bound program is tested against a state-of-the-art CP solver, namely Gecode, and
it is shown that the latter is only competitive for small problem instances.

In Chapter 2, we start with a detailed problem definition and a formal mathe-
matical description. Then, in Chapter 3, we give a brief overview of related work

2https://www.medaustron.at/en/center
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and problems, especially of former work on the particle therapy patient scheduling
problem. Afterwards, we present and describe our different approaches in Chapter 4.
The computational study of these can be found in Chapter 5. Last but not least,
the conclusion and outlook is provided in Chapter 6.
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2. Problem Definition

In this chapter, we define and formalize the Intraday Particle Therapy Patient
Scheduling Problem, or short, I-PTPSP. We start with a description of the assumed
input data such as the resources and tasks. Then, we define the structure of a
solution and which constraints need to be met to call it feasible. Afterwards, we
formalize the objective function that shall be minimized and that describes the
quality of such a solution. Lastly, a mathematical model that describes the problem
formally, is provided.

The I-PTPSP aims at adapting a general plan to current situations that occur
during its execution. Therefore, only the plan for the remaining day, starting from
the current moment, needs to be recreated.

Our fundamental assumptions are:

• The planning period begins at a given time point and stretches to the end of
the considered day.

• Solutions need to be computed within short computation times, i.e., in at most
five minutes on a regular personal computer.

• Feasible solutions have to exist.

The first assumption limits the scope of the problem to the regarded time horizon.
The second one comes for a simple practical reason. Unexpected occurrences happen
unexpectedly but the staff needs to react as soon as possible. The earlier a new
schedule is provided the better. The last assumption is needed to exclude cases
that do not allow to treat all scheduled patients any more. This would lead to a
new optimization problem where it needs to be decided which patients to treat and
which to postpone that is not covered in this work.

2.1. Assumed Input Data

In this section we document the input data that is needed to solve the problem.
While the first Section 2.1.1 is a rather technical one that depicts parameters that
set up the granularity and the domain of the problem, the other two Sections define
the considered resources and tasks.
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2.1.1. Time

Time is defined as descrete time points in an interval, with a resolution of Hunit

time units in an hour. The date τ = 0 may be interpreted as 0:00 and τ = 24 ·Hunit

as 24:00 of a specific day. Despite of the name of the problem, it is allowed to use
dates that are larger than 24 ·Hunit =̂ 24:00. This would be interpreted as the same
working day that exceeds midnight. Example given, with a resolution of Hunit = 60
(i.e. minutes), the date τ = 360 would be 6:00 AM in the morning, and τ = 1200
would correspond to 8:00 PM in the evening.

Using this parameter allows to adapt to the scheduling needs of different facili-
ties. Some may plan punctual to the minute, others may use only 5-minute slots.
Nevetheless, throughout this work, a resolution of Hunit = 60 will be used.

Furthermore, we define the fundamental opening time window W̃ = [W̃ start, W̃ end).
This is the time window in which anything must be scheduled at the considered day,
including extended times outside of the regular business hours. This is a rather
technical parameter that simply bounds the domain for all time variables.

2.1.2. Resources

In this Section, we define all possible properties regarding resources in our problem.
Resources R, implemented by R = {0, . . . , nR − 1}, are some kind of infrastructure
or staff that is needed to fulfill the treatments, like the particle beam, the treatment
rooms, the anaesthetist, and so on. Our resources are not depletable but they can
be used by only one task at the same time.

Furthermore, we introduce some time constraints on our resources to allow to
model different workshifts, individual breaks or simply unavailability due to main-
tenance or any unforeseen occurrence. Hence, each resource r ∈ R shall be available
only within an individually predefined timeframe.

We want to differentiate between ordinary service times and extended ones. The
ordinary service time windows are defined by Wr = [W start

r ,W end
r ) ⊆ W̃ where

W start
r ≤ W end

r are the start and end times, respectively. The extended service time
windows are given by Ŵr = [W start

r , Ŵ end
r ) ⊆ W̃ , where Ŵ end

r denotes the extended
end time and W start

r ≤ W end
r ≤ Ŵ end

r holds. For some resources the extended
service time window might be the same as the regular one. Therefore, we define
the subset R̂ ⊆ R of resources with actual extended service time windows, i.e.,
R̂ = {r ∈ R | W end

r < Ŵ end
r }. The time interval [W end

r , Ŵ end
r ] may be interpreted as

overtime. Scheduling tasks within these time windows shall be feasible but doing so
will increase the objective value of the schedule. Hence, we want to minimize the
usage of extended service times to reduce costs.
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In addition, each resource r ∈ R may have unavailability time periods W r =⋃
w=0,...,ωr−1W r,w with W r,w = [W start

r,w ,W
end
r,w ) ⊂ Ŵr, w = 0, . . . , ωr − 1, where W start

r,w

andW end
r,w denote the start and end times of the w-th unavailability period. All these

periods are non-overlapping, and sorted according to increasing time. Unavailability
periods are expected to not start directly at W start

r or end at Ŵ end
r since otherwise

the resources service time windows could be tightened accordingly.

Apart from minimizing extended service time, we also want to reduce idle times
on specific resources to avoid an unnecessarily scattered schedule. Therefore, a set
Rscatter ⊆ R is introduced that contains all these resources r ∈ Rscatter for which the
idle time between the uses of resource r is to be minimized according to a priority
ϕscatter
r .

2.1.3. Tasks

The patient treatments are the tasks we want to schedule and denoted by T =
{0, . . . , nT − 1}. Each task has a processing time pt ≥ 0 that describes the time
needed to perform the entire task.

Beside of its overall processing time, each task requires various resources Qt at
specific sub-intervals of its processing time. For each of these required resources
r ∈ Qt, the interval Pt,r = [P start

t,r , P end
t,r ) ⊆ [0, pt) denotes the time relative to the

task’s starting time in which resource r is needed. For instance, a task with a
processing time of 30 minutes could require the room resource for this entire span
but the beam resource only for 20 minutes, 5 minutes after the start of the overall
treatment. These 5 minutes at the beginning and the end of the task, the particle
beam is not needed because, e.g., the patient needs to be laid and fixed or otherwise
prepared in the beginning or the patient needs some time for additional imaging
and leave the room. We will see that it is convenient to also define the set Qr ⊆ T
or each resource r ∈ R that contains all tasks t that require the resource r, i.e.
Qr := {t ∈ T | r ∈ Qt}.

Furthermore, each task has an already predefined starting time Ŝt that comes
from the original schedule1. This starting time may not be preserved for some
reason and has to be adapted now. The time between the newly calculated starting
time and the original one represents additional waiting for the patient that we want
to minimize.

In addition, we want to define hard lower and upper bounds (SL
t and SU

t ) for
the new starting time to model the patients individual constraints. A patient’s
treatment cannot be scheduled if he or she has not arrived yet. On the other hand,
if the patient has another appointment scheduled, the treatment cannot be delayed
beyond a specific time point.

1In our test instances, these are extracted from the solutions of the PTPSP [55]
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2.2. Solutions, Feasibility and Objective Function

We describe a solution (or schedule) of a problem with a vector S = (S0, . . . , SnT−1)
that indicates the newly calculated starting times for all tasks in T . This solution
is feasible if it fulfills the following requirements:

• Each task t ∈ T has assigned a valid starting time St ∈ W̃ .

• For each task t, its required resources r ∈ Qt are available during the specified
time intervals Pt,r, i.e. St + Pt,r ⊆ Ŵr.

• Each resource is required by at most one task at the same time, i.e. the tasks
do not overlap.

Our objective is to find a feasible solution that

• minimizes the required extended time for each resource r,

• minimizes the lateness w.r.t. the planned starting times Ŝt,

• minimizes the scattering of the usage of resources in Rscatter

The individual optimization objectives are roughly prioritized according to the
order in which they are listed.

To aid modeling the objective function, we will further use the following vari-
ables:

• Slast
r denotes the last time resource r is needed.

• σt denotes the amount of time task t ∈ T is delayed from its planned starting
time Ŝt, i.e. σt = min(0, St − Ŝt)

2.3. Basic I-PTPSP Model

Now, we can formulate a mathematical model that covers all listed aspects using
the natural variables S, Slast

r and σt.
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min γextback 1
Hunit

∑
r∈R̂

max
(
Slast
r −W end

r , 0
)

+ (2.1)

γlateness 1
Hunit

∑
t∈T

σt+ (2.2)

γscatter 1
Hunit

∑
r∈Rscatter

ϕscatter
r

Slast
r −W start

r −
∑
t∈Qr

|Pt,r|

 (2.3)

s.t.

St + P end
t,r ≤ Slast

r ∀r ∈ R̂ ∪Rscatter,∀t ∈ Q
(2.4)

W start
r ≤ Slast

r ∀r ∈ R̂ ∪Rscatter (2.5)
Slast
r ≤ Ŵ end

r ∀r ∈ R̂ ∪Rscatter (2.6)
St − Ŝt ≤ σt ∀t ∈ T (2.7)

0 ≤ σt ∀t ∈ T (2.8)
SL
t ≤ St ∀t ∈ T (2.9)
St ≤ SU

t ∀t ∈ T (2.10)
W start
r ≤ St + P start

t,r ∀r ∈ R, ∀t ∈ T (2.11)
St + P end

t,r ≤ W end
r ∀r ∈ R \ R̂, ∀t ∈ T (2.12)

St + P end
t,r ≤ Ŵ end

r ∀r ∈ R̂, ∀t ∈ T (2.13)
St + [P start

t,r , P end
t,r ) ∩W r = ∅ ∀r ∈ R, ∀t ∈ T (2.14)

St + [P start
t,r , P end

t,r ) ∩ St′ + [P start
t′,r , P end

t′,r ) = ∅ ∀r ∈ R, ∀t, t′ ∈ T, t 6= t′

(2.15)
St, σt, S

last
r ∈ Z ∀r ∈ R, ∀t ∈ T

Our model contains an objective function that we want to minimize. It consists
of three parts:

1. Part 2.1 minimizes the use of the extended service time windows.

2. Part 2.2 minimizes the deviation from the planned starting time, or in other
words, it minimizes the lateness of the tasks.

3. Part 2.3 helps to avoid unnecessarily scattered schedules.

These three parts are all weighted individually with the parameters γextback, γlateness

and γscatter which are roughly ordered as follows:

γextback > γlateness � γscatter
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Exemplary values that are used in this thesis are:

• γextback = 10

• γlateness = 1

• γscatter = 0.01

Here, we describe the constraints we used to enforce only feasible solutions as
described in the previous sections:

• Inequalities 2.4, 2.5 and 2.6 define the range of Slast
r for all relevant resources.

The first one enforces it to be not smaller than the end time point of usage
for any task that requires the specified resource. The latter two enforce the
variable to be within the resource’s availability time windows.

• Restrictions 2.7 and 2.8 define σ, the time of delay to be the difference between
the actual starting time and the planned time, but not smaller than zero.

• Inequalities 2.9 and 2.10 enforce the starting time to be within its given bounds
SL and SU.

• Constraints 2.11, 2.12 and 2.13 demand that the task is processed only within
the resource’s service time. The equation 2.14 further excludes any usage
of resources during their unavailability periods. Here, we used the following
definition of adding an interval to a number: A+ [C,B] := [A+ C,A+B]

• Equality 2.15 enforces that each resource is occupied by only one task at the
same time.
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3. Related work and problems

In this chapter we give a brief overview of related work and problems that are similar
to our I-PTPSP.

3.1. Job shop scheduling

Job shop scheduling (JSP) is a vast field in scheduling research and is mainly known
to address many problems in the manufacturing industry. The problem can be
roughly (as there are lots of variations) defined as follows: There are m machines
and n jobs J1, J2, . . . , Jn given, each consisting of ni, i ∈ {1, . . . , n}, tasks which
need to be processed in a given order. These tasks have an individual processing
time and require a specific machine to be processed on. Each machine can process
only one task at once.

JSP is one of the well known and in practice one of the hardest scheduling problems
which is NP-hard [11]. There are many different solution approaches to solve this
problem. There are a vast amount of different approximation approaches, one of
the best known being the shifting bottleneck procedure [1], or using well known
metaheuristics, like the simulated annealing [3, 76], tabu search [64, 27], or other
methods like using neural networks [78, 67], genetic algorithms [18, 59], or even
hybrids of them [2]. You can find an extensive discussion on the hardness of job
shop scheduling problems in [58]. And of course there is lots of research on exact
approaches using dynamic programming [36], branch and bound [15, 5, 46, 52], or
again, hybrids [6].

The I-PTPSP resembles a JSP in many aspects. The machines of the JSP rep-
resent our resources, like the beam or the treatment rooms. The jobs of the JSP
are the treatments of the patients in our problem. But, in contrast to the JSP, our
“jobs” often require multiple “machines” at once (among other points).

3.2. Resource constraint project scheduling

A generalization of the job shop scheduling problem is the resource constrained
project scheduling (RCSP) problem. Again only a rough definition can be given, as
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there are many variations: There are n projects given each consisting of ni activi-
ties. These activities have precedence constraints, individual processing times, and
require one or more resources to be processed. A large discussion on variants and
extensions can be found in [38] and [14].

Similar to the JSP there is research on a large variety of approaches to solve
these problems. Metaheuristics include (among others) simulated annealing [12, 13],
tabu search [63, 7] and evolutionary algorithms [4, 74]. An extensive discussion on
different heuristics is found in [44]. Exact approaches include Branch and Bound
algorithms using different branching methods like Depth First [28, 29, 26]1, Breadth
First [62], Best First [73], or A-star tree search [10].

This problem definition meets the requirement of multiple machines per job. In
I-PTPSP the treatments of the patients are the projects of the RCSP which require
different activities with different processing times with one or multiple resources.
Our problem can be seen as a a highly specialized RCSP variant that introduces
further features, such as unavailability periods, special treatment of specific time
spans as overtime of resources, activities that require multiple resources with indi-
vidual processing times and a composite objective function.

3.3. Patient scheduling problems and appointment
scheduling problems

Patient scheduling problems are all kind of scheduling problems that occur in the
health care sector and deal with scheduling treatment procedures in some optimal
ways. These can often include probabilistic studies on different environmental pa-
rameters (like arrival time, no-shows of elective patients, uncertain service times,
etc.), examination of different scheduling policies with empirical data, and of course
classical solving of scheduling problems. The latter often involve dealing with the
mentioned environmental parameters as well as with different arrival processes of
out-patients and of course prefering individual treatments due to their urgency lev-
els.

The health care sector is huge and so is the literature on patient scheduling as
well as problem variations. Providing a detailed summary over the literature would
go beyond the scope of this work and is already covered elsewhere. A great overview
of the various challenges in different health care delivery systems is provided in [37,
17]. An overview of the literatur with focus on surgical scheduling can be found
in [60, 16, 31]. Despite the huge amount of literature in this field, we could not
find any that addresses a problem that resembles the I-PTPSP at least in the main
points.

1[26] covers an extension with min-max timelags
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3.4. Previous work on the particle therapy patient
scheduling problem

Previous work on the particle therapy patient scheduling problem (PTPSP)[57]
can be divided into two strands. One tackles the PTPSP [57], that has a time
horizon of several months, with different heuristics that are repeatedly enhanced.
The other one approaches the simplified intraday particle therapy patient scheduling
problem (SI-PTPSP) [66], that has a time horizon of a single day, with matheuristics.
Additionally, based on the SI-PTPSP, a even more abstract problem, the so called
job sequencing with one common and multiple secondary resources (JSOCMSR)
problem, was introduced and studied.

In this work, we tackle the I-PTPSP, which we formalized in Chapter 2. The
main difference to the SI-PTPSP is that in the simplified version the tasks can
be scheduled relatively freely and only the makespan of the entire plan is to be
minimized. In the I-PTPSP, on the other side, the tasks have already assigned
starting times. The aim is to schedule these such that (among others) their lateness
is minimized.

3.4.1. Tackling the midterm planning problem with heuristics

First, in [57], the midterm planning problem, which involves a time horizon of sev-
eral months, is tackled. The problem was formalized and solved via a MILP model,
yet this approach did not deliver acceptable results for use in practice. Therefore,
a construction heuristic was developed. This further lead to a Greedy Random-
ized Adaptive Search Procedure and an Iterated Greedy (IG) metaheuristic, which
performed quite well on instances of practically relevant size.

Then, in [53], the Iterated Greedy metaheuristic, which was first presented in [57],
is further enhanced by proposing a better construction operator, as well as, a superior
local search heuristic that replace former rather simple components.

The PTPSP can be decomposed into two sub problems. A day assignment (DA)
problem, in which daily treatments are assigned to their individual days and a
time assignment (TA) problem, in which good starting times need to be found for
the mentioned daily treatments at each day. Obviously, these two sub problems
depend on each other. In previous work [57] and [53] a quite trivial lower bound
for the TA problems was used that lead to avoidable overtime usages. In [56], a
better time estimation for the the makespan of the TA problem is proposed. Using
the Enhanced Iterated Greedy metaheuristic from [53] with these improved time
estimations improved the performance significantly.
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In [55] an extension of the PTPSP, that required that the individual treatments
of each therapy are provided at roughly the same time of day, was studied. This im-
plicates that the time assignment problems, as described in the previous paragraph,
cannot be addressed independently anymore. Hence, the IG needed to be extended
and refined. The resulting heuristic did not just provide promising results for the
extended PTPSP but also improved the ones for the original PTPSP.

3.4.2. Approaching the simplified intraday planning problem
with matheuristics

In [66], a simplified version of the intra-day problem, that minimizes the makespan,
is addressed by a MIP model. The problem of such MIP approaches, when used
to solve complex scheduling problems, is that the performance of time-indexed (TI)
formulations decreases dramatically when the discrete time resolution is increased.
In this paper, a time-bucket (TB) relaxation is considered to deal with very fine-
grained TI models. These time-buckets refer to the subsets that are obtained when
partitioning the set of possible starting times. Solving this relaxation is usually
easier as it tends to be much smaller than the original problem. The solution of
the relaxation can then be used as a lower bound for the solution of the original TI
model. One the one hand, this concept is extended by iteratively subdividing some
time-buckets to obtain better bounds. The work presents and compares different
refinement strategies. One the other hand, the solutions of the relaxations are used
as promising starting points for a heuristic that deduces feasible solutions of the
original TI model. The concluded matheuristic clearly outperforms simple MILP
models, no matter if defined as a discrete-event or a time indexed formulation.

3.4.3. Studying the job sequencing with one common and
multiple secondary resources problem

In the work of Horn et al. [39], the job sequencing with one common and multiple
secondary resources (JSOCMSR) problem was introduced. The JSOCMSR is a
scheduling problem with, as the name implies, a common resource that is shared
by all jobs (e.g., in I-PTPSP the beam resource) and secondary resources that are
shared only by subsets of all jobs (e.g., in I-PTPSP the room resources). First, it
was shown that even this simplification is NP-hard. Then, a construction heuristic
and an A* algorithm in combination with a sharp lower bound calculation were
presented. Afterwards, the problem was also modeled in terms of a MILP and
the performance of the shown approaches were compared to the MILP formulation
which was outperformed on almost all except for very small problem instances.

Then, in [54] and in [40] a prize-collecting version of the JSOCMSR, including a
restriction that each job needs to be executed within individual time windows, was
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introduced. In [54], this problem is approached with the help of multivalued decision
diagrams (MDD), while in [40], the problem is addressed with an A* algorithm.
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4. Approach

This chapter is a collection of different concepts and algorithms for solving the I-
PTPSP as defined in Chapter 2. First, in Section 4.1 we describe our first greedy
approach to solve the problem. Afterwards, in Section 4.2, we present our more
sophisticated Branch and Bound approach with various approaches of enumerating
the branching tree as well as computing the lower bounds of the nodes of the tree.

4.1. Greedy Construction Heuristic

Our Greedy Construction Heuristic is based on the time assignment step of the Ther-
apy Wise Construction Heuristic introduced in Particle Therapy Patient Scheduling:
First Heuristic Approaches [57] due to the similarity of the problem. This heuristic
selects a not yet scheduled task based on some specified priorities and sets its start
time as early as possible respecting all constraints.

This procedure is shown in detail in Algorithm 1. First, Cr and G are initialized.
Cr represents the last time point when resource r is used by an already scheduled
task. G defines the set of not yet scheduled tasks. Then, as long as G is not empty,
a task t is chosen according to a priority function (this function will be discussed in
Section 4.1.1). Afterwards, the starting time St is set to the earliest possible time
point in such a way that all required resources are available when they are needed
by the task t (i.e. the task t does not use any resource r before Cr) and all other
constrains as defined in Chapter 2 are fulfilled. If this is not possible (e.g., because
of limited resource availability), the procedure will return without a feasible solution
S. At the end, all Cr values are updated and the scheduled task is removed from
G.
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Input: the given input instance
Output: a solution S for the I-PTPSP

1 Cr := W start
r ∀r ∈ R;

2 G := T ;
3 while G 6= ∅ do
4 t := arg maxi∈G priority_func(i);
5 St := compute_earliest_start_times(t, C);
6 Cr := max(Cr, St + P end

a,r ) ∀r ∈ Qa;
7 G := G \ {t};
8 end

Algorithm 1: Greedy Construction Heuristic

4.1.1. Priority function

The used priority function priority_func(task) in Algorithm 1 affects the perfor-
mance of this heuristic critically. Hence, we tested different functions1 for their
resulting performance gains:

1. Early planned tasks: task t has a higher priority than task t′ if Ŝt < Ŝt′ .

2. Tasks that require resources with their regular time window ending early: task
t has a higher priority than task t′ if t requires a resource r with a lower W end

r

than any of t′.

3. Tasks that minimize scattering of the beam resource: task t has higher priority
than task t′ if the idle time that emerges on the beam resource is lower if task
t is scheduled next rather than task t′.

4. Expensive tasks regarding their relative utilization time of the beam: task t
has higher priority than task t′ if the ratio of the occupied time of the beam
resource and the entire processing time (i.e.,

P end
t,rB−P

start
t,rB

pt
) of the task t is lower

than the one of task t’.

Note that most of these functions relate to different parts of the objective func-
tion of the I-PTPSP model introduced in Section 2.3. Function 1 prioritizes early
planned tasks according to their Ŝ values and therefore naturally targets to minimize
the second part of the objective function. Function 2 prioritizes tasks that require a
resource that ends earlier and hence tries to minimize the first part of the objective
function. The third function prioritizes tasks that lead to less scattering and there-
fore focuses on minimizing the third part of the objective function. Finally, the last
function, prioritizes tasks with a lower ratio of beam utilization to entire processing
time. These tasks are usually harder to interlock with each other. Scheduling them

1Some of these priority functions are based on their equivalents in [57]
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earlier leaves many other tasks available that could fit and, as a result, reduce the
scattering.

Ties are broken randomly. We also tried combinations of those functions in such
a way that if the comparison of two tasks by a priority function results in a tie a
different function is used to break it. We chose only combination with function 1 or
3 first as they performed best on our test data (refer to Section 5.3 for the results).

5. apply function 1 first, then 2

6. apply function 1 first, then 3

7. apply function 1 first, then 4

8. apply function 3 first, then 1

9. apply function 3 first, then 2

10. apply function 3 first, then 4

4.2. Branch and Bound

This algorithm is based on the branch and bound design paradigm which was first
introduced in [47]. We recommend readers who are not familiar with this concept
to refer to [20]. The algorithm operates on so called partial solutions Spartial. In our
context, partial solutions describe the assignment of starting times St to some (not
all) tasks t. These can then be gradually extended (by scheduling further tasks)
until they become a classic solution S which describes the starting times St of all
tasks.

Basically, the algorithm consists of two steps: branching and bounding. First,
during the branching step, a given partial solution Spartial is extended by scheduling
a new task t. This is done separately for each of these not yet scheduled tasks and
results in multiple new partial solutions Spartial

t . Second, during the bounding step,
lower bounds for the objective value of these partial solutions are calculated and only
partial solutions with promising lower bounds are further branched. Eventually, this
process will extend these partial solutions to complete ones of which the best one is
returned. Each time a better (complete) solution is found, we get an upper bound
for the global optimal objective value (i.e. the objective value of this solution, since
the optimal value cannot be larger than the objective value of any valid solution).
Partial Solutions (and their corresponding sub-trees) with lower bounds larger than
the current upper bound can be pruned/bounded and dont need to be examined
further.

If only partial solutions with lower bounds greater than the objective value of the
current best solution are discarded during the bounding step, an exact solution of
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the I-PTPSP can be obtained. Moreover, if one is working under time pressure, one
can stop this algorithm after a short time and still obtain quite good solutions.

Algorithms 2 and 3 show this process in detail.

Algorithm 2 is quite straightforward. First, the variables bestSolution and bestObj
are set to default values and a priority queue U is filled with an initial empty partial
solution. Second, as long as U is not empty, the first partial solution according to a
priority is removed from U and branched on if its lower bound is smaller than the
current best objective value.

Input: the given input instance
Output: a solution S for the I-PTPSP

1 bestSolution := None;
2 bestObj :=∞;
3 U := {Spartial

empty };
4 while U 6= ∅ do
5 Spartial := next(U);
6 if lowerBound(Spartial) < bestObj then
7 branch(Spartial);
8 end
9 end

Algorithm 2: Branch and Bound algorithm

The main part happens in Algorithm 3. First, a set G consisting of all not yet
scheduled tasks in a given partial solution Spartial is initialized. Then, step by step,
we remove elements from this set as long as it is not empty. During this loop, we
start by removing the task t with the lowest priority according to a priority function2

from the set G. Next, the method schedulenextS(t) returns a new partial solution
Spartial
t which is created by taking the original partial solution Spartial and scheduling

the chosen task t at the earliest feasible time. If this partial solution turns out to
be complete, i.e., all tasks are scheduled, it is checked if St (:= Spartial

t ) is a new best
solution and saved in that case. Otherwise, the partial solution is inserted into the
priority queue U if its lower bound is smaller than the current best objective value.
As already mentioned, this procedure is repeated for every t in G.

2We use the same function as described in Section 4.1.1
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Input: a partial solution Spartial that contains the starting times for already
scheduled tasks

Output: a set of partial solutions
{Spartial

t | t is not yet scheduled inSpartial}. Each of these Spartial
t

extends Spartial by the starting time of a previously not scheduled
task t.

1 G := {t | t is not yet scheduled inSpartial};
2 while G 6= ∅ do
3 t := arg mini∈G priority_func(i);
4 G := G \ {t};
5 Spartial

t := schedulenextSpartial(t);
6 if violates constraint(Spartial

t ) then
7 continue;
8 end
9 if Spartial

t is complete then // i.e. all tasks are scheduled
// renaming just to emphasize that this is a complete

solution.
10 St := Spartial

t ;
11 if obj_val(St) < bestObj then
12 bestSolution := St;
13 bestObj := obj_val(St);
14 end
15 else if lowerBound(Spartial

t ) < bestObj then
16 U := U ∪ {Spartial

t };
17 end
18 end

Algorithm 3: Branch and Bound algorithm: branching

4.2.1. Implementing the priority queue

There are many strategies on how to implement a branch and bound algorithm and
often it cannot be said in advance which one will perform better. In this section, we
focus on different strategies on how to decide which partial solution to choose for
branching. More on branching strategies can be found in [20].

We will now introduce different variants of how to decide which node is the best
to choose next.

4.2.1.1. Depth First

One of the most common strategies is the depth first search. As the name implies,
this search prefers to process nodes “deeper” in the graph, or in our case, the tree.
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It starts at the root and looks at all direct child nodes. Then, it selects one of these
and selects a child of this one. This way, each time a node is selected, it is located
at a deeper level in the tree as the previous one - at least as long the selected node
has a child. When the search reaches a leave node (or in our context a complete
solution S), no child can be selected. In this case, the search tracks back the search
path until it finds a node with a child that has not been selected yet. If it finds one,
it starts selecting child nodes again. This search is also shown in Algorithm 4. For
simplicity, only an implementation for searches on trees is shown. The general case
of arbitrary graphs requires additional details of how to handle circles and so on that
are not necessary to get the idea of how the search works. For more information on
this search strategy on general graphs refer to [21].

Input: a tree T and its root node r
Output: a list D containing all nodes n ∈ T , sorted by the order of

discovery of this algorithm
1 c := r;
2 D := [r];
3 while true do
4 u := {n | n = child of c} \ asSet(D);
5 if u 6= ∅ then
6 c := select out of u;
7 D . append(c);
8 else if c 6= r then
9 c := parent of c;

10 else
11 break;
12 end
13 end

Algorithm 4: Depth First Search on a tree

The main advantage is that it constructs an upper bound (i.e., a feasible solution)
for the best objective value extremely fast. Hence, it can be stopped quite soon and
still provides a feasible solution. Additionally, the sooner an upper bound is found,
the sooner nodes with a poor lower bound can be dropped. Also, this approach
needs only limited amounts of memory as it produces only few open nodes.

We combine the Depth First Strategy with the idea of Section 4.1. We imple-
mented this strategy by simply using the priority queue like a stack. If you refer
to the branching Algorithm 3 line 3, you will realize that always the worst task
according to our priority function is chosen to be scheduled next. This is done to
make sure that always the most promising solution (with respect to the depth) is
put on the top of the stack (Figure 4.1). This way the first complete solution that
is found is identical to the one found with the Greedy Construction Heuristic and
we start with a hopefully quite good solution right on.
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This way we keep all advantages of a Depth First Strategy while introducing the
feature to choose the most promising of the to be opened nodes (according to our
priority function).

1. A B C D

2. A B D C

3. A C B D

4. A C D B

. . .

Figure 4.1.: Depth First enumeration strategy shown on an ex-
ample with 4 tasks. We assume that A,B,C,D is
the correct order according to the given priority
function and that no bounding of partial solutions
occurs. Then, the Branch and Bound with a Depth
First strategy would examine the shown solutions
in the described order.

The disadvantage of the above approach is that, regarding the order of the sched-
uled tasks, most of the time it permutes the tasks starting at the end of the day
while keeping the order of the early tasks. Considering that, in practice, disruptions
of the initial scheduled plans will occur more likely at the start of the plan, it seems
more advantageous to permute rather the first tasks than the later ones.

4.2.1.2. Low Inversion Number First

Studying the Greedy Construction Heuristic in Section 4.1 one could assume that the
solution obtained by applying said Greedy Construction Heuristic in combination
with a well working priority function is quite “near” to the optimal solution in the
solution space. Naturally, we describe a solution “near” to another if it resembles
it very closely. But first, we need to define the meaning of “near” more formal.
Finally, we will use this definition to find a way of how to iterate over the most
similar solutions first.

35



Permutations and Inversions Effectively we are looking for a way to easily iterate
over all possible permutations of the initial solution, starting from “near” to far away.
To be able to do this, we need some terminology regarding permutations.

A common notation for a permutation a of the set {1, 2, . . . , n} is

a :=
(

1 2 · · · n
a1 a2 · · · an

)

Often, only the second row is denoted as tuple a := (a1, a2, . . . , an), or even more
abbreviated a := a1a2 . . . an.

An important property of permutations are their inversions3. In this section we
will use the definitions and properties as depicted in [43].

Definition 4.2.1. If i < j and ai > aj, the pair (ai, aj) is called an inversion of
the permutation. In other words, each inversion is a pair of elements that are out
of sort.

Example given, the permutation 1 4 2 5 3 has three inversions: (4, 2), (4, 3) and
(5, 3).

Definition 4.2.2. The inversion table b1b2 . . . bn of the permutation a1a2 . . . an is
obtained by letting bj be the number of elements to the left of j that are greater
than j. In other words, bj is the number of inversions whose second component is j.

For example, the above permutation

1 4 2 5 3

has the inversion table
0 1 2 0 0

because no number is left to 1, 4 is left to 2, 4 and 5 are left to 3, and no greater
numbers are left to 4 and 5.

One important fact we will use is that the inversion table uniquely determines the
permutation, i.e. it is another way to distinctly describe a permutation.

Example given, to reconstruct the above permutation from the inversion table
0 1 2 0 0, write down the number 5, first. Then, place 4 left to the 5, because
b4 = 0. Afterwards, put 3 right to both of them, since b3 = 2. Similarly, 2 must be
placed between 4 and 5, due to b2 being only 1. Finally, 1 is written down left to all
numbers as b1 = 0.

3They were initially used by Cramer for his famous Cramer’s rule which can be used to solve
linear equations [22]
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The advantage of using the inversion table instead of the above notations is that
it is easier to enumerate all possible permutation since each bi is independent of the
other bj (while ais must be mutually distinct). They must simply satisfy

0 ≤ b1 ≤ n− 1, 0 ≤ b2, n− 2, . . . , 0 ≤ bn−1 ≤ 1, bn = 0

This helps, because, often, problems in terms of permutations can be easily solved
when described in terms of inversion tables. A very common problem where you
may have already used inversion tables instinctively is the question for the number
of possible permutations of {1,2, . . . , n}. Using the above constraints for bi one can
easily see that there are n choices for b1, n − 1 choices for b2 and so on, leading to
n(n− 1) . . . 1 = n! choices in all.

As already mentioned, inversions describe the pairs of elements that are out of
sort. And bj is the number of inversions whose second component is j. Therefore,
the sum over all bi is the number of all inversions. It is also often referred to as
inversion number [43].

Definition 4.2.3. The inversion number is defined as the sum ∑n
i=1 bi

Hence, the inversion number counts the number of inversion. In fact, the inversion
number is a common measure of the sortedness of a permutation [77] [49]. We will
use this property of permutations to measure how “near” a solution is to the initial
one.

Using the inversion number as a measure for sortedness The inversion table
seems promising to solve our problem of how to permute the initial solution such
that we start with the closest, i.e. as few inversions as possible, permutations and
end with the fartest ones. We can simply choose the inversion tables with the lowest
inversion number first and define some additional ordering among them and then
proceed by increasing the inversion number. But as described above, to reconstruct
the permutation from an inversion vector, we need to start with the complete in-
version vector and obtain the complete permutation which describes the complete
solution. This is not optimal since in a branch and bound tree we are working with
only partially described solutions of which we only know the beginning. Hence, we
need a similar concept to the inversion table which allows to reconstruct the first
part of a solution with only knowing the first part of the table/vector.

So let us rethink the problem. We represent our nodes in the Branch and Bound
tree as permutations of the first solution. This first solution is created by always
scheduling the most promising task4 next. We could obtain a very similar solution
by once choosing the second best task first and all the other times the best task
first. Depending on when we decide to choose the second best task to schedule

4according to the priority function as described in Section 4.1.1
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next, we could represent these solutions by vectors of the length nT − 1. Every
time we choose the best task to schedule next, we insert 0. If we chose the second
best task, we insert 1 and so on. This encoding can describe every possible solution
unambiguously.

It seems obvious, that if we choose the second best task to schedule next only
once (represented as e.g. 〈1, 0, . . . , 0〉), the obtained solution will resemble the initial
solution to a higher degree than if we chose to schedule the second best task next
more often (represented as, e.g., 〈1, 1, 0, . . . , 0〉), or to schedule even the third best
task (represented as, e.g., 〈2, 0, . . . , 0〉). Similarly to the inversion table, the lower
the sum of the elements of the vector, the more the initial solution is resembled by
the represented one.

In fact, the described vector is the so called Lehmer code [48], or sometimes re-
ferred to as right inversion count, which is another possible definition of the inversion
table (in our representation we always omitted the last number ln which is always
0).

Definition 4.2.4. The Lehmer code l := l1l2 . . . ln of a permutation a is defined as

li := |{k | k > j ∧ aj < ai}|.

In other words, li is the number of elements in a right to ai which are smaller than
ai

While the inversion table bj counts the inversions (i, j) with fixed j, the Lehmer
code li counts the inversions (i, j) with fixed i. Therefore, again, the sum of all li
is equal to the inversion number. Similarly to the inversion table, the Lehmer code
also satisfies the constraint

0 ≤ l1 ≤ n− 1, 0 ≤ l2, n− 2, . . . , 0 ≤ ln−1 ≤ 1, ln = 0.

Functions that fulfill this property are also called subexceedant functions. More in-
formation about these and their connections to permutations can be found in [50].

We will show an example how to reconstruct the original permutation from a given
Lehmer code. Note that you only need to know the first k numbers of the code to
reconstruct the first k numbers of the represented permutation and as a result the
first k tasks of the represented solution.

Let us assume we are given the following Lehmer code

0 2 0 1 0.

To reconstruct the represented permutation, we write down 1 first, as l1 is 0, meaning
that right to this element zero elements are smaller (or in our context, zero tasks
are better). Next, we need to pick 4, because l2 = 2 is telling us that two elements
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following this one must be smaller, i.e. 2 and 3. Now, the smallest remaining number
needs to be placed; i.e. 2. Afterwards, l4 = 1 tells us to write down the 5. Finally,
we have only the 3 left and we obtain the original permutation

1 4 2 5 3.

After finding a representation of the permutations as we need it, we can program
our priority queue to prefer the nodes with a lower inversion number and among
them the node that is represented by a vector with a higher number at a lower index
(which permutes the earlier tasks more than the later ones).

An example is given in Figure 4.2. Note, that we do not interpret the Lehmer
code as the inversion of positions of the originally ordered tasks but as inversions
of choosing the best task next according to the priority function. As the priority
function is calculated based on dynamic information the best task can be a different
one depending on tasks scheduled so far and other properties of the current partial
solution (refer to Section 4.1.1 for how the priority function is computed).

4.2.1.3. Most Promising First

The most promising first or best first strategy is besides the depth first one one of
the most common enumeration strategies. In every iteration it selects the partial
solution with the lowest lower bound of all open nodes, i.e. the most promising node.
Normally this leads to a very large node tree (and, as a result, to a large memory
consumption) because nodes at a lower depth in the search tree tend to have weaker
lower bounds than the ones found at a greater depth and, therefore, are selected and
branched first. On the other hand, compared to other strategies, much less nodes
need to be examined which generally leads to finding an optimal solution faster.

To successfully use this strategy it is crucial to find a way to keep the amount of
open nodes as small as possible. Otherwise, the algorithm will run out of memory
very quickly. Consequently, we must bound as many nodes as possible. To accom-
plish this, we need a good global upper bound on the one side and sharp lower
bounds on the other side.

As already mentioned, a best first approach, tends to mostly select and branch
nodes at lower depths. This means, that complete solutions are found very late which
also means that upper bounds are found very late. As a result, many nodes cannot
be branched at an early stage of the computation due to the lack of an upper bound.
To solve this issue, we implemented so called “dives”. In a predefined interval the
algorithm stops branching the best node but instead completes the current partial
solution similar to the Greedy Construction Heuristic to obtain an upper bound.

On the other hand, we need sharp lower bounds to be able to bound nodes as
early as possible. This leads us to the next section.
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〈0, 0, 0〉 A B C D

〈1, 0, 0〉 B A C D

〈0, 1, 0〉 A C B D

〈0, 0, 1〉 A B D C

〈2, 0, 0〉 C A B D

〈1, 1, 0〉 B C A D

. . .

Figure 4.2.: Low Inversion Number First ordering of 4 tasks,
assuming that A,B,C,D is the order according to
the given priority function. The rows are labeled
with the corresponding Lehmer code.
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4.2.2. Calculating the lower bound of a partial solution

The calculation of a good lower bound is essential for the performance of a branch
and bound algorithm. On the one hand, too many possibilities are evaluated if it is
not sharp enough. On the other hand, calculating the lower bound should not take
too much time as this will also slow down the overall performance dramatically.

In our problem, we need a lower bound for the value of the objective function as
defined in Section 2.3. For easier reference it is provided here again:

min γextback 1
Hunit

∑
r∈R̂

max
(
Slast
r −W end

r , 0
)

+ (4.1)

γlateness 1
Hunit

∑
t∈T

σt+ (4.2)

γscatter 1
Hunit

∑
r∈Rscatter

ϕscatter
r

Slast
r − Sfirst

r −
∑
t∈T :
r∈Qt

|Pt,r|

 (4.3)

with γextback > γlateness � γscatter (4.4)

We obtain the lower bound as follows. First, the objective value for a given
partial solution is calculated as if it were complete. Afterwards, separate lower
bounds lbextback and lblateness for the terms (4.1) and (4.2) of the objective function
are computed and added to the objective value. Note, that these bounds aim only for
the remaining part of the final objective value that will be added when scheduling
the remaining tasks. The term (4.3) is skipped (i.e., we set its associated lower
bound to 0) because of its relatively small weight (as stated by line 4.4). Summing
up, the lower bound we work with is lb := obj_val(Spartial) +lbextback+lblateness, where
obj_val(Spartial) denotes the objective value of Spartial.

When calculating lower bounds for a problem A, it is often useful to ignore some
of the constraints and try to solve the resulting “easier” problem B. Relaxing
constraints enlarges the solution space S such that each Solution SA ∈ SA to the
problem A is also a solution to the problem B, but a solution SB ∈ SB to the
problem B may not be a solution to A because it could violate one of the ignored
constraints. In other words: SA ⊆ SB. Hence, if we find an optimal solution S∗B for
the easier problem B, we also find a lower bound for the original problem A, i.e. the
objective value obj_val(S*

B):

Theorem 4.2.1. If the solution spaces SA and SB for two minimization (maximiza-
tion) problems A and B fulfill SA ⊆ SB, then the objective value an optimal solution
S∗B of B is a lower (upper) bound for the problem A.

Moreover, a lower (upper) bound for B is also a lower (upper) bound for A.
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Proof.

obj_val(S*
B) ≤ obj_val(SB) ∀SB ∈ SB ⇒ obj_val(S*

B) ≤ obj_val(SA) ∀SA ∈ SA
⇒ obj_val(S*

B) ≤ obj_val(S*
A)

The first inequality is simply the definition for an optimal solution. The second
inequality is true because of SA ⊆ SB. And because of S∗A ∈ SA, we obtain the last
one. For a maximization problem, simply replace the inequality symbol ≤ with ≥.

The last statement of the theorem follows from lb(B)≤obj_val(S*
B)≤obj_val(S*

A).

4.2.2.1. Sharper release dates for the sub tasks

In the next sections we are going to relax our problem by splitting the original tasks
t into several subtasks tr according to the used resources such that each subtasks
operates on one resource only. The release date ρ for each of this subtask tr is
calculated by ρtr := max(SL

t + P start
t,r , Cr).

Splitting the tasks into the described subtasks without any constraints is a huge
relaxation. This allows solutions with subtasks of the same original tasks being
scheduled at completely unrelated parts of the day (e.g., one in the morning, one
in the evening). Fortunately, we can use structural information about our tasks to
sharpen the release dates of their subtasks.

For two resources, e.g., r0 and r1, we can calculate δr0,r1
t := P start

t,r1 − P
start
t,r0 , i.e. the

duration after which resource r1 is required, calculated from the first time point at
which r0 is occupied by task t. Now, we can use this δr0,r1

t to define a sharper release
date for the subtask tr1 : ρtr1

:= max(SL
t + P start

t,r1 , Cr0 + δr0,r1
t ) where Cr0 describes

the last time point at which resource r0 stops being occupied in our partial solution
Spartial. Refer to Figure 4.3 for a visual depiction of this procedure.

Obviously, the described approach to sharpen the release dates of subtasks is not
bound to only the resources r0 and r1. We apply it to all resources of the selected
resource set as described in the Section 4.2.2.6.

4.2.2.2. Calculating lbextback

To calculate the lower bound lbextback, we take the last times Cr a resource r is used
by an already scheduled task t and simply add up the durations P end

t′,r − P start
t′,r for

all the still unscheduled tasks and the lengths of the relevant unavailability periods.
Afterwards, we subtract W end

r −Cr to get the penalties for extending regular service
windows. We usedW end

r −Cr instead ofW end
r because we need to ignore the parts of
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r0

r1

r2

C0

C1

C2

tr0

tr1

(a) Subtasks tr0 and tr1 of task t as they would be scheduled without sharpening of their
release dates.

r0

r1

r2

C0

C1

C2

tr0

tr1

δr0,r1t

(b) Subtasks tr0 and tr1 of task t as they are scheduled with sharpening of their release
dates. In this case the subtask tr1 is scheduled later because of its modified release
date ρtr1

:= Cr0 + δr0,r1
t

Figure 4.3.: Scheduling the subtasks tr0 and tr1 of task t with
and without sharpening of their release dates

the penalties that are already included in the objective value for the partial solution
Spartial.

The computation is shown in more detail in Algorithm 5. First, Cr and Corig
r are

initialized to the last time the resource r is used. Then, W ′
r is set to the maximum

of W end
r and Cr. We will use this variable instead of the original W end to exclude

any penalty that is already included in the calculated objective value for this Spartial.
Additionally, UT is defined as the set of all unscheduled tasks.

The loop at line 4 adds the processing times of each not yet scheduled task to Cr
for each resource.
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Finally, in the loop at line 10 we include the times for the relevant unavailability
periods and then sum up the lengths of times a resource is beeing used in its extended
time window.

Input: the partial solution Spartial to calculate a lower bound for
Output: a lower bound lbextback for the term 4.1 of the objective function

1 Cr := Corig
r := last time the resource r is used in Spartial ∀r ∈ R̂;

2 W ′
r := max(W end

r , Cr) ∀r ∈ R̂;
3 UT :=list of all unscheduled tasks;
4 foreach t ∈ UT do
5 foreach r ∈ Qt do
6 Cr += P end

t,r − P start
t,r ;

7 end
8 end
9 sum := 0;

10 foreach r ∈ R̂ do
11 w := min({w′ | Corig

r ≤ W
start
r,w′ });

12 while ∃W r,w ∧W
start
r,w ≤ Cr do

13 Cr += |W r,w|;
14 w += +1;
15 end
16 sum += max(0, Cr −W ′

r);
17 end
18 return γextback · 1

Hunit · sum;
Algorithm 5: Calculating the lower bound lbextback

4.2.2.3. Calculating lblateness

Calculating the lower bound lblateness turns out to be much harder as it seems to
be on the first sight. First, let us summarize, what we are trying to do. We have
tasks that require different resources which can be used by only one task at the same
moment and we need to schedule these tasks in a way such that they start being
processed before a specified timepoint. In our case, this timepoint is Ŝt. Scheduling
tasks later than this specified timepoint is allowed but not wanted. Scheduling
them earlier does not improve the quality of the solution. We can formalize this by
max(s− tp, 0) where s denotes the tasks scheduled starting time and tp the formerly
described specified timepoint and call this function the task’s tardiness. The quality
of a solution is measured by it’s total tardiness which is the sum over the tardinesses
of each task.

Moreover, we have lower bounds SL for their starting times that need to be re-
spected. These lower bounds are also called release dates in scheduling theory.
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Furthermore, these tasks can be only processed in one block, i.e. they cannot be
interrupted. In scheduling theory this sort of tasks are also called non-preemptive.
Hence, it does not matter whether we demand the tasks starting at a specified
timepoint a or ending at a timepoint b := a + p where p denotes their processing
time because the difference between a and b is constant in case of non-preemptive
tasks. These timepoints b are also referred to as due dates.

Tasks require different resources at different timepoints with different processing
times. To reduce complexity, we split the tasks into different subtasks for each
resource that is required. Each of these subtasks is assigned a due date that we
compute by Ŝt + P end

t,r . Now, we can decouple these subtasks and try to solve this
scheduling problem for each resource on its own. Since every solution to the original
problem is also a solution to this one, we can apply Theorem 4.2.1 and consequently
focus on solving (or at least obtaining a lower bound to) this “easier” problem.

To sum up, we are trying to schedule non-preemptive tasks which must not over-
lap. These tasks t have a release date ri, a due date di and a processing time pi and
we want to find a solution S that minimizes the total tardiness

TT (S) :=
∑
t

max(ci − di, 0)

where ci denotes the task’s completion time and each task’s starting time must be
greater or equal to it’s release date ri.

In scheduling theory this is a well studied problem and (the simplified version with-
out release dates) is called the Single Machine Total Tardiness Scheduling Problem
or simply SMTTSP.

Although, we have already simplified the original problem quite a lot, the current
problem is still NP-hard [30]. A very common practice, when trying to simplify a
scheduling problem, is to relax the non-preemptiveness. This means that we allow
to process the tasks partwise. This way we are able to fill any open “gaps” with
pieces of still unprocessed tasks which generally leads to better solutions. But still,
even this problem is NP-hard [19].

Nevertheless, as already mentioned, it is a well studied problem, so we can learn
from many different approaches to solve this problem. Most of the Branch and
Bound approaches used a lower bound based on Chu’s lower bound [19] [45]. We
even found a similar method being used to solve this problem in 1974 [8].

4.2.2.4. Chu’s lower bound

Chu’s lower bound [19] requires the Shortest Remaining Processing Time (SRPT)
rule. Therefore, we will explore this one first:
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Scheduling tasks by the SRPT rule is quite simple: We start at the timepoint 0
and increase the current time by one with each step. At each timepoint we schedule
a part of length 1 of the task with the shortest remaining processing time of all
tasks that can be currently scheduled (i.e. tasks with release dates smaller or equal
to the current timepoint). Consequently, the remaining processing time of this task
is reduced by one. We are done, when the remaining processing times of all tasks is
0. It is clear that as soon as the task with the shortest remaining processing time
is found it surely keeps this property until it finishes (i.e. its remaining processing
time becomes 0) or a new task becomes available (i.e. we reach it’s release date).
Therefore, it suffices to only consider times when a task ends or becomes available.

So let us consider a given non-preemptive problem Π with n tasks and it’s opti-
mal total tardiness TT ∗(Π) and construct a schedule S according to the currently
explained SRPT rule. Next, we order the completion times ci of the tasks i in S and
their due dates di separately in non-decreasing order. We denote these new ordered
series by (c′1, c′2, . . . , c′n) and (d′1, d′2, . . . , d′n), respectively. Chu has proven that the
following relation holds [19]:

n∑
i=1

max(c′i − d′i, 0) ≤ TT ∗(Π) (4.5)

In other words, Chu’s lower bound compares the i-th completion time with the
i-th due date and states that a such computed tardiness is surely not greater than
the real one.

We have not mentioned any unavailability periods ([W start
,W

end]) yet. They
are no part of the definition of the SMTTSP but they can be easily integrated
in our problem if we just transform them into regular tasks by setting its release
date to r := W

start, due date to d := W
end and processing time to p := W

end −
W

start. Obviously, treating unavailability periods as delayable tasks instead of rigid
unavailability periods will relax our problem even more.

4.2.2.5. Modified Chu’s lower bound

Until now, we treated unavailability periods like schedulable tasks to be able to use
algorithms and results developed for problems without such unavailability periods.
In this section we will show how this can affect the sharpness of the calculated lower
bounds and how just little adaptions to the original algorithms allow us to treat
unavailability periods exactly as such.

Consider the following simple problem. We need to schedule a task t with rt = 0,
dt = 2 and pt = 2 and an unavailability period up in the time interval [1, 4]. Clearly,
the optimal solution is to schedule the task to start at timepoint 4 yielding a total
tardiness of 4. If we apply Chu’s lower bound as defined in Section 4.2.2.4, task t is
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scheduled from 0 to 2 and the unavailability period up (treated as a task) from 2 to
5 resulting in a lower bound of only 1. Obviously we could improve the sharpness
of our lower bound if we treated unavailability periods as such (see Figure 4.4).

But to do this, we need to prove that the relation 4.5 still holds. We will see, that
the needed proofs are almost equal to the original ones.

up t

ctrt dtupa upb

(a) Optimal Solution: TT (S) = 4

up

cup

t

ct

rt dtrup dup

(b) Chu’s lower bound: lb(S) = 1

upt t

ctrt dtupa upb

(c) Adapted Chu’s lower bound lba(S) = 3

Figure 4.4.: Comparing lower bounds

When proving the mentioned relation, Chu made use of the fact that the SRPT
rule minimizes the current number not completed jobs at any given time point.
Hence, we need to adapt the SRPT rule to respect unavailability periods and prove
that the adapted version keeps this property. Here we will adapt the proof of
Schrage [68] (in the original version this was proved for a continuous timeline. We
are using a discrete one, so additionally to introducing unavailability periods, we
will proof a discrete version).

Definition 4.2.5. The adapted SRPT rule (ASRPT) shall be defined as follows:
Start at timepoint 0 and increase it by 1 with each step. If the current timepoint is
included within a given unavailability period, do nothing. No task is allowed to be
processed. If, on the other hand, the current timepoint is outside of an unavailability
period, simply apply the normal SRPT rule as defined in Section 4.2.2.4.

Theorem 4.2.2 (Optimality of ASRPT). Consider a scheduling problem with n
preemptive tasks, release dates ri and processing times pi on one machine that can
process only one task at the same time and assume that the problem starts at time
0. Additionally, unavailability periods, i.e., time intervals [aq, bq], are given, during
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which no task can be processed. Then the current number of not completed tasks at
any timepoint is minimized by a schedule fulfilling the ASRPT rule.

Proof. We will show that any schedule S not following the ASRPT rule can be
improved by performing said rule. Therefore, no schedule not following the ASRPT
rule can be optimal.

But first, we need to introduce some additional notation: δi(t) determines whether
a task i is being processed at timepoint t

δi(t) :=

1 if the machine is processing task i at timepoint t
0 else

Due to the restrictions of the problem, we know that ∀t : (∑n
i=1 δi(t) ≤ 1) and for

any unavailability period q that ∀t ∈ [aq, bq] : (∑n
i=1 δi(t) = 0)

pi(t) denotes the processing time remaining for task i before timepoint t.

pi(t) :=

pi if t = 0
pi −

∑t−1
k=0 δi(k)

furthermore θ(t) refers to the set of tasks which are available at timepoint t

θ(t) := {i | ri ≤ t}

and finally ci which describes the completion time of task i, i.e. the timepoint t after
which the task will be completed.

ci := min{t | pi(t+ 1) = 0}

We know for any t′ < t that

pi(t) = pi −
t−1∑
k=0

δi(k) = pi −
t′−1∑
k=0

δi(k)−
t−1∑
k=t′

δi(k) = pi(t′)−
t−1∑
k=t′

δi(k)

This implies for any t′ ≤ min{t | pi(t+ 1) = 0} that

ci = min
{
t | pi(t′)−

t∑
k=t′

δi(k) = 0
}

= min
{
t | pi(t′) =

t∑
k=t′

δi(k)
}

(4.6)

Furthermore, we need the fact that minimizing the current number of not com-
pleted tasks at any timepoint is equal to minimizing ∑n

i=0 ci. This is simply because
reducing number of not completed tasks at t is equivalent to reducing the completion
time of a task i which does not end before t (i.e. ci >= t) such that it ends before t
(i.e. ci < t).
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Now, we have everything we need to proof said theorem. We will use the notation
with an “o” as superscript (poi (t), coi , . . .) for variables of the original non-ASRPT
schedule S, an “n” as superscript (pni (t), cni , . . .) for the new ASRPT schedule Sn we
want to construct from S and the normal notation without any superscript if these
variables are equal for both Schedules S and Sn.

Assuming S does not respect the ASRPT rule implies that there exists a timepoint
t∗ /∈ [aq, bq] for any unavailability period q such that

∃i, j ∈ θo(t∗) : (poi (t∗) < poj(t∗) ∧ δoi (t∗) = 0)

and one of the following cases:

(a) ∀k ∈ θo(t∗) : (δok(t∗) = 0)

or
(b) ∃!j ∈ θo(t∗) : (δoj (t∗) = 1)

In the first case, the machine is idle, and coi can be reduced by setting δni (t∗) = 1
(and δni (coi ) = 0, see also Figure 4.5a on page 51) without altering the value of any
cj∀j 6= i . Hence, the objective value has improved and S was not optimal.

Suppose the second case is true. We define the set ω := {t | t ≥ t∗∧δoi (t)+δoj (t) =
1}, i.e., the set of all timepoints t when either task i or task j are processed. We
will now construct a rearrangement of δoi (t) and δoj (t) for t ∈ ω to construct a better
schedule Sn.

Obviously ci+cj = min(ci, cj)+max(ci, cj). Due to the equation 4.6, we can show

max(coi , coj) = min

t | pi(t∗) + pj(t∗) =
t+1∑

k=t∗+1
δoi (k) + δoj (k)


= min

t | pi(t∗) + pj(t∗) =
t+1∑

k=t∗+1
δni (k) + δnj (k)

 = max(cni , cnj )

regardless of how we interchange the processing times of these two tasks during ω.

From the facts that poi (t∗) < poj(t∗) and δoi (t∗) = 0 ∧ δoj (t∗) = 1, it is easy to see
that if we follow the ASRPT rule and interchange the processing of i and j at t∗
and coi (i.e., setting δni (t∗) = 1 ∧ δnj (t∗) = 0 and δni (coi ) = 0 ∧ δnj (coi ) = 1, see also
Figure 4.5b on page 51), the function

min
{
t | pl(t∗) =

t∑
k=t∗

δl(k)
}

is minimized by setting l = i.
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This implies that
min(cni , cnj ) < min(coi , coj)

We know now, that

• col = cnl for any l 6= i, j

• max(coi , coj) = max(cni , cnj )

• min(coi , coj) > min(coi , coj)

Hence, ∑n
l=0 c

o
i >

∑n
i=0 c

n
i which shows that S could be improved by following the

ASRPT rule. Therefore the number of not completed jobs at any timepoint in an
ASRPT schedule is always less than for any non-ASRPT schedule.

From now on we also need the following notation.

Definition 4.2.6. Consider a series (a1, a2, . . . , an). Then a[i] denotes the i-th ele-
ment in the non-decreasingly ordered series (aπ(1), aπ(2), . . . , aπ(n)).

We also need the following Lemma. We already used a similar one at the end of
the previous proof. Chu also used it (Lemma 3 in [19]). We will provide it here and
adapt the notation for easier readability. Chu did not provide a proof, so we do it
now.

Lemma 4.2.1 (Chu’s Lemma 3). If there exist two jobs i and j for the Schedules
S and S ′ of our problem Π such that each of the following holds

(a) min(c′i, c′j) ≤ min(ci, cj)

(b) max(c′i, c′j) ≤ max(ci, cj)

(c) c′k = ck ∀k 6= i ∧ k 6= j

then
c′[l] ≤ c[l] ∀l

Proof. Let π be a permutation of {1, . . . , n} such that the series (cπ(1), cπ(2), . . . , cπ(n))
is in non-decreasing order and, therefore, cπ(l) = c[l].

Because of equation (c) we know that c′π(l) ≤ cπ(l) ∀π(l) 6= i, j.
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k up i

coi

idle

t∗

k upi i

cnit∗

(a) Case 1: idle time during which no task is processed

k up i

coi

j j

coj

non-ASRPT task

t∗

k upi i

coi

j

cojt∗

(b) Case 2: task j with a larger remaining processing time than task i is beeing processed
at t∗.

Figure 4.5.: The two cases mentionend in the proof of Theo-
rem 4.2.2.

W.l.o.g. we can assume that ci = min(ci, cj) (otherwise interchange i and j in the
following proof). Let a := π−1(i) and b := π−1(j). Now, we define a new permutation
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π′ as follows

π′ :=



π′(k) = π(k) if k 6= a, b

π′(a) =

π(a) if c′π(a) = min(c′i, c′j)
π(b) if c′π(b) = min(c′i, c′j)

π′(b) =

π(b) if c′π(b) = max(c′i, c′j)
π(a) if c′π(a) = max(c′i, c′j).

We defined π′ such that c′π′(l) ≤ cπ(l) holds for all l = 1, . . . , n.

If the order did not change (or only c′π′(a) and c′π′(b) switched places), we have

c′[l] = c′π′(l) ≤ cπ(l) = c[l] ∀l

and are done.

Otherwise, c′π′(a) (or c′π′(b) or both of them) need to switch places with some c′π′(k)
with k 6= a (or k 6= b, respectively) to form a non-decreasingly ordered series.
Other cases are not possible, because of the definition of π and because at most two
variables changed their values.

We will only show that the above equation holds for the first case. The other
cases are done analogous:

So, let us assume that c′π′(a) needs to switch place with some c′π′(k) to form an
ordered series. Because of

c′π′(a) = min(c′i, c′j) ≤ min(ci, cj) = cπ(a)

we know that c′π′(a) can become only smaller and therefore can only change with a
previous entry in the series, i.e. k < a.

But, because of π is forming an ordered series, we can deduce an even stronger
inequality as shown above:

c′π′(p) ≤ cπ(p) ≤ cπ(l) ∀l ∀p ≤ l (4.7)

Let σ be the ordering of (c′i) (in non-decreasing order).

We get
c′σ(k) = c′π′(a) ≤ c′π′(k) ≤ cπ(k).

The first inequality is true, because if not, they would not had to change places to
form a non-decreasing order.

And
c′σ(a) = c′π′(k) ≤ cπ(a).

The inequality is true because of k < a and inequality 4.7.
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As already explained above, all other c′s stay at the same place and we obtain

c′[l] = c′σ(l) ≤ cπ(l) = c[l] ∀l.

We also need Chu’s Lemma 1 in [19] (refer to it for the proof):

Lemma 4.2.2 (Chu’s Lemma 1). Let two series of numbers (x1, x2, . . . , xn) and
(y1, y2, . . . , yn) and an ordered series (x′1, x′2, . . . , x′n) be so that x′1 ≤ x′2 ≤ . . . ≤
x′n and x′i ≤ xi ∀i. If (y′1, y′2, . . . , y′n) is the series obtained by sorting the series
(y1, y2, . . . , yn) in non-decreasing order, the following relation holds:

n∑
i=1

max(x′i − y′i, 0) ≤
n∑
i=1

max(xi − yi, 0)

Now, we have everything we need for

Theorem 4.2.3. Adapted Chu’s lower bound: Consider a SMTTSP problem Π with
n tasks, different release dates and unavailability periods. If the problem is relaxed
to allow preemptive tasks and a schedule Σ is constructed with the ASRPT rule (see
Definition 4.2.5), then the following relation holds

n∑
i=1

max(c[i] − d[i], 0) ≤ TT ∗(Π)

where (c1, c2, . . . , cn) are the completion times of the tasks in Σ, (d1, d2, . . . , dn) their
due dates, and TT ∗(Π) the optimal total tardiness of the problem.

Proof. This proof is very similar to the one published by Chu [19] for the problem
without unavailability periods.

If we can show that for any Solution S of the relaxed problem the inequality

cΣ
[i] ≤ cS[i] ∀i (4.8)

holds, we can use the Lemma 4.2.2 to obtain, we can use the Lemma 4.2.2 to obtain
n∑
i=0

max(cΣ
[i] − d[i], 0) ≤

n∑
i=0

max(cS[i] − d[i], 0).

This inequality holds especially for the optimal solution S∗ of the relaxed problem.
And because of TT (S∗) ≤ TT ∗(Π), all we need is to prove the inequality 4.8 for all
S of the relaxed problem.

53



Let us assume such an Solution S. If it obeys the ASRPT rule, we can simply
use the Theorem 4.2.2 to follow that the inequality 4.8 holds.

Therefore, let us assume that S does not obey the ASRPT rule. The idea of the
following is similar to the proof of the Theorem 4.2.2. We will construct a schedule
S ′ from S according to the ASRPT rule and show that the inequality holds for these
two (Σ replaced by S ′). Finally as the inequality also holds for S ′ we can deduce
transitively that it also holds for the original S.

Let t∗ be the first time that S does not obey the ASRPT rule. Again, we have
two cases. Due to the similarity, we will use the same notation as in Theorem 4.2.2.

(a) The machine is idle at time t∗ /∈ [aq, bq] for any unavailability period q and
there exists a task i that is available at t∗: We reschedule task i to be processed at
t∗ such that it ends earlier (i.e. setting δ′i(t∗) = 1 ∧ δ′i(ci) = 0). Therefore, there
surely is a task j such that

• min(c′i, c′j) ≤ min(ci, cj)

• max(c′i, c′j) ≤ max(ci, cj)

• c′k = ck ∀k 6= i ∧ k 6= j

Now we can apply Lemma 4.2.1 and obtain cS′[i] ≤ cS[i] ∀k.

(b) There is a task i such that its processing time is less than than that of task j at
time t∗. Still, task j is processed at t∗. Again, let ω := {t | t ≥ t∗∧δi(t)+δj(t) = 1}.
With the same argument as in the proof of Theorem 4.2.2 we can reschedule task i
and task j in ω, such that i is being processed at t∗ instead of j and obtain

• min(c′i, c′j) < min(ci, cj)

• max(c′i, c′j) = max(ci, cj)

• c′k = ck ∀k 6= i ∧ k 6= j

Again, with Lemma 4.2.1 we show that cS′[i] ≤ cS[i] ∀k.

Continuing this way, we can iteratively apply the ASRPT rule to construct a S(n)

from S which at the end does obey the ASRPT. As a result, we we have shown that
equality 4.8 holds for any S

cΣ
[i] = c

S(n)
[i] ≤ . . . ≤ cS

′

[i] ≤ cS[i] ∀k.
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4.2.2.6. Applying the lower bound computation over different resources

The Adapted Chu’s lower bound gives us a lower bound for the SMTTSP with
different release dates and unavailability periods. The Single Machine in SMTTSP
is equivalent to single resource in our problem. Of course this is already a lower
bound to our original problem. To sharpen it, we could compute it for each resource
separately and then take the maximum of each result.

We need to compute new lower bounds at every single expanded node. As this
happens quite often a balance of time consuming computation and acquiring sharp
lower bounds has to be found. Therefore, we need to decide which resources we
will use for the computation. Naturally, we will only include the resources which we
expect to be bottleneck resources and, as a consequence, yield larger lower bounds.

The way our instances are created, some resources can be expected to be bottle-
neck resources and some not. Hence, we tried the following approaches which will
be evaluated in the Computational Results Section 5.5:

1. The simplest solution is to only compute the lower bound for the beam resource
as almost all tasks require this resource for quite a long time. So this resources
is naturally a bottleneck resource.

2. Another group of resources that is expected to be bottleneck resources are the
room resources. So, to keep the computation time short we only include the
beam and the room resources in our calculation.

3. We also want to investigate the effect on the lower bound quality when includ-
ing all resources. But, as patient resources are needed by at most one task
and are available for the entire day, it is very unlikely that these will ever be
bottleneck resources. Therefore, we include all but patient resources.

4.3. CP model

As we already defined our problem mathematically in Chapter 2 it should be quite
easy formulate it as a CP model that can then be solved by a CP solver (as done
in Section 5.6). Here, we use the same notation and mostly the same inequalities as
defined and described in Section 2.3.
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min γextback 1
Hunit

∑
r∈R̂

max
(
Slast
r −W end

r , 0
)

+

γlateness 1
Hunit

∑
t∈T

σt+

γscatter 1
Hunit

∑
r∈Rscatter

ϕscatter
r

Slast
r −W start

r −
∑
t∈Qr

|Pt,r|



disjunctive
(
{(St + P start

t,r , St + P end
t,r ) | t ∈ Qr} (4.9)

∪ {(W̃ start,W start
r )} ∪ {(Ŵ end

r , W̃ end)} (4.10)
∪
{

(W start
r,w ,W

end
r,w ) | w ∈ {0, . . . , ωr − 1}

})
r ∈ R

(4.11)
SL
t ≤ St ∧ St ≤ SU

t t ∈ T
(4.12)

St + P end
t,r ≤ Slast

r r ∈ R̂ ∪Rscatter, t ∈ Qt

(4.13)
W start
r ≤ Slast

r ∧ Slast
r ≤ Ŵ end

r r ∈ R̂ ∪Rscatter

(4.14)
Slast
r = W̃ start r ∈ R \ (R̂ ∪Rscatter)

(4.15)
St − Ŝt ≤ σt t ∈ T

(4.16)
St ∈ [W̃ start, . . . , W̃ end] t ∈ T

(4.17)
Slast
r ∈ [W̃ start, . . . , W̃ end] r ∈ R

(4.18)
σt ∈ [0, . . . , W̃ end − W̃ start] t ∈ T

(4.19)

The objective function in our CP model looks exactly the same as in 2.3, hence
we skip straight to the constraints. The first constraint spans the lines 4.9, 4.10
and 4.11. It uses the global constraint disjunctive that ensures that the defined
intervals do not overlap. The first line 4.9 includes the processing times of all tasks
that require the given resource to prevent any overlapping of tasks. The intervals
in line 4.10 enforce that tasks do not use resources outside of their service times.
Similarly, including the unavailability periods in line 4.11 forbids the usage of the
resources during these times.
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The next constraints are rather self-explanatory. The constraint in line 4.12 en-
sures that the tasks’ starting times respect their lower and upper bounds. The next
three constraints deal with the helper variables Slast

r . In restriction 4.13 it is defined
to the last time resource r is needed. We need this information only for resources
with extended service time windows (R̂) or resources for which scattering is pe-
nalized (Rscatter). Therefore, we can set it to an arbitrary value for the remaining
resources to prune the solution space in line 4.15. Finally, line 4.16 defines σt for all
tasks t ∈ T . The last three lines describe the domains for these variables.
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5. Computational Study

In this chapter, we provide the results obtained by applying our different approaches
to predefined test instances of the I-PTPSP.

First, in Section 5.1, we present how we created our test instances to test our
approaches against and why we think that they may represent real world instances.
In Section 5.2, we depict briefly which machines were used to obtain the data, and
which technologies were used to develop our ideas. Next, in Section 5.3, we show
the results for our greedy approach when used with the different priority functions.
Then, in Section 5.4, the performances of the different enumeration strategies for our
Branch and Bound algorithm, as well as the various lower bound calculation tech-
niques, are shown. Finally, in Section 5.6, we compare the results of our approaches
against a reference implementation.

5.1. Generating instance sets

To test our algorithms, instances that resemble real-world situations need to be
generated. We will not create them from scratch but base them on PTPSP instances
and their generated solutions as described in [57] and [66]. An I-PTPSP instance
represents one day of the calculated PTPSP plan. In this section, we will describe
how we did this.

5.1.1. Resources and tasks in the original PTPSP instances

The original PTPSP instances that were used to create the test instances for our
I-PTPSP described working days of 24 hours with a resolution of Hunit = 60, i.e.
W̃ = [0, 1440). Beside of the patient resources which were assumed to be available
the entire day, the instances defined a beam and three room resources, with a regular
service window of 14 hours, an anesthetist that is available for the first 7 hours and
10 different assigned radio oncologists working in two overlapping shifts, each of
them lasting approximately 9 hours.

Each of the tasks requires the beam resource and one of the three rooms with a
total processing time of about 20 to 45 minutes. About 5% of the treatments also
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require an anesthetist and some require the attendance of an oncologist. The exact
details on how the tasks are created can be found in [57].

5.1.2. Simulating different scenarios

The I-PTPSP is designed to model the situation when due to some unexpected
occurrences the original schedule needs to be adapted to the new scenario. We want
to simulate different scenarios to test our algorithms against various circumstances.
We will do this by extracting a created schedule for a given day from a PTPSP
solution and then introducing some disturbances to simulate such a situation. In
total we create 4 different scenarios. For each scenario we generate two variants of
the instances where the considered time horizon starts after one and two hours after
the start of the day. We decided not to create more versions that start even later as
there would be only fewer tasks left leaving problem instances too small to challenge
the algorithms.

The first two instance sets, sets 1 and 2, simulate a general day to day scenario.
Nothing spectacular happened, some tasks that have not started yet although sched-
uled and others that started at a different time as expected. The next two instance
sets (3 and 4) model an unexpected delay in the preparation of the beam. All
treatments requiring the beam could not be processed and won’t until the beam
is ready. Sets 5 and 6 depict an unexpected upcoming unavailability of the beam
resource. This could be caused by an urgently needed maintenance work. Finally,
sets 7 and 8, simulate an unexpected upcoming unavailability of a room. This could
have similar reasons as in the previous scenarios but affects a room instead of the
beam resource.

One can assume that, in general, patients are not waiting for their therapy from
the very start of the day. To resemble this fact, the value SL

t of tasks t is set to
Ŝt − 30 ∗ Hunit to all described instances of set 1 to 8. Also, we set Hunit := 60 to
represent a time granularity of minutes.

Instance sets 1 and 2: general scenario We assume that a solution for the I-
PTPSP might be required at any time during the day. To simulate this, we suppose
a start time ts at which a solution is needed. All tasks t that are assumed to be
already completed (i.e., Ŝt+pt < ts) are removed from the instance. Next, all tasks t′
that are currently running are also removed. Additionally, the starting times W start

r

of the resources r that were used by these tasks t′ are set such that they become
available after the currently running tasks were finished occupying them.

Furthermore, currently running or already completed tasks are disturbed to sim-
ulate real world scenarios better in the following way:

59



• Tasks t that are already completed according to the original schedule are
reintroduced with a probability of

α = lb+ Ŝt − W̃ start

ts − W̃ start
· (ub− lb)

Value α lies between lb and ub and is the higher the later task t starts. We
used 0.01 and 0.05 for the parameters lb and ub, respectively.

Reintroducing tasks means that we assume that they were not processed for
some unknown reason (e.g. a patient was late) and still need to be scheduled.

• The start time Ŝt of currently running tasks t is disturbed by X, where X is
a random sample from the triangular distribution with a lower limit of −30,
an upper limit of 30 and a peak of 0.

We obtain our first instance sets 1 and 2 by applying these steps with ts = 60 and
ts = 120, respectively.

Instance sets 3 and 4: unavailable beam We want to simulate an unavailable
beam. To do this, we perform the same steps as described above, first. Additionally,
we assume that the beam resource is unavailable for another 60 minutes (i.e. until
ts + 60). This means that all tasks in the past that needed the beam resource could
not be processed and are still needed to be scheduled.

The instance sets 3 and 4 are obtained by setting ts = 60 and ts = 120, respec-
tively.

Instance sets 5 and 6: planned unavailability period on the beam resource
These sets simulate an unavailability period on the beam resource. This could be
caused by a suddenly and urgently needed maintenance of the beam.

To obtain the instance sets 5 and 6, we apply the same steps as for the sets 1 and
2 and insert an unavailability period of an hour on the beam 60 minutes after ts,
respectively.

Instance sets 7 and 8: planned unavailability period on a room resource Simi-
lar to the previous instance sets we want to simulate a planned unavailability period.
But this time it shall be applied to a room. The instance sets 7 and 8 are obtained
with the same parameters as the sets 5 and 6 except that the unavailability period
is applied to the second most intensively used room of the given day.
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5.1.3. Final instance set used for our benchmarks

The steps applied in the previous section to each day of a PTPSP solution will
lead to I-PTPSP instance sets of different size (i.e., different amount of tasks to be
scheduled) due to natural fluctuations of the amount of treatments per day. To be
able to compare the performance of our approaches to instances of different sizes,
we need equally distributed instance sizes.

Therefore, we transformed multiple PTPSP instances and their corresponding
solutions into I-PTPSP instance sets of type 1 to 8. Afterwards, we divided them
into 6 different bins according to their sizes: 1-10 tasks, 11-20 tasks, . . . and 51-60
tasks. Finally, we picked 40 instances of each type out of every bin resulting in an
instance set of 1920 instances.

5.2. Implementation Details

The greedy construction heuristic and the Branch and Bound algorithm are im-
plemented in C++ 14, compiled with g++-6 (version 6.4.0)1. The CP model was
implemented in MiniZinc v2.1.5 and solved with Gecode v5.0.0.

The results in this chapter was obtained by running the approaches on an Intel
Xeon E5-2640 v4, 2.40GHz, 4GB RAM, single-threaded2 with a time limit of 5
minutes per problem instance.

5.3. Greedy Construction Heuristic

We want to compare impacts on the performance of Greedy Construction Heuristic
obtained by applying different priority functions priority_func(task) defined in Sec-
tion 4.1.1. For this purpose, we applied them to each instance of the sets 1 to 8 as
described in Section 5.1.3. They are listed here again for an easier reference.

1. Early planned tasks: task t has a higher priority than task t′ if Ŝt < Ŝt′ .

2. Tasks that require resources with their regular time window ending early: task
t has a higher priority than task t′ if t requires a resource r with a lower W end

r

than any of t′.

3. Tasks that minimize scattering of the beam resource: task t has higher priority
than task t′ if the idle time that emerges on the beam resource is lower if task
t is scheduled next rather than task t′.

1We also developed a visualisation tool for the generated solutions as shown in the Appendix B
2More details on our grid engine are found at https://www.ac.tuwien.ac.at/students/

grid-engine/
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4. Expensive tasks regarding their relative utilization time of the beam: task t
has higher priority than task t′ if the ratio of the occupied time of the beam
resource and the entire processing time (i.e.,

P end
t,rB−P

start
t,rB

pt
) of the task t is lower

than the one of task t’.

5. apply function 1 first, then 2

6. apply function 1 first, then 3

7. apply function 1 first, then 4

8. apply function 3 first, then 1

9. apply function 3 first, then 2

10. apply function 3 first, then 4

The results are shown in Table 5.1. The first column specifies the used priority
function. The next four columns show the mean, standard deviation, minimum and
maximum of the objective values of the obtained solutions. The last columns shows
the relative amount of times a feasible solution was found.

We start by comparing the simple functions of type 1 to 4 first. Function 1 and
3 clearly outperform functions 2 and 4. Not only are the objective values of their
solutions multiple times worse, they also fail to find a feasible solution for a third of
the instances.

The main reason for the better performance of function 1 and 3 is that both
functions focus on minimizing lateness. The first function does this directly. The
third function prioritizes tasks that lead to the least scattered utilization of the
beam resource. Due to the fact, that tasks in our instances have a lower bound on
their allowed starting times set to 30 minutes before their initially planned starting
time, scheduling them according to function 3 will automatically prioritize initially
early scheduled tasks and therefore minimizing their lateness.

It is true that lateness is only the second highest weighted part of the priority
function but disturbances of the initially planned schedule can easily lead to every
single task beeing late, even in an optimal solution, easily adding up to a quite large
objective value. While on the other side, if a resource’s extended time window must
be used, only a few tasks directly affect the objective value. What is more, focusing
on minimizing lateness also leads to a solution that is similar the original schedule.
If we assume that the original PTPSP solution is well scheduled, we can conclude
that trying to resemble the original solution will lead to a good solution.

The main difference between function 1 and 3 is that the former sticks rigidly
to the order of the tasks in the original schedule while the latter does this more
flexible. If a task that was initially scheduled first cannot be processed due to one
of its needed resources being blocked, function 3 will prioritize an early task that
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does not depend on this blocked resource while function 1 will stick to the first task
leaving the other resources unused.

Figure 5.1 shows an example. Task 40197 has a lower Ŝ than task 11469. Hence,
function 1 will prioritize the former task over the latter leading to the Greedy Con-
struction Heuristic scheduling this one first, although, the room 2 is blocked (refer
to Subfigure 5.1a). Function 3, on the other hand, will prioritize task 11469 due
to it not depending on a blocked resource. In this example, it is even possible to
process the entire task 11469 without delaying the task 40197 (as can bee seen in
Subfigure 5.1b).

Finally, when comparing the results of applying the composed function 5-10, on
can see that applying a second priority function in case of ties leads to moderate
performance gains.

priority function mean(obj) sd(obj) min(obj) max(obj) runs
1 27.197 35.502 0.004 217.337 100%
2 209.396 223.716 0.012 831.072 70.9%
3 19.806 28.338 0.004 258.059 100%
4 264.038 291.533 0.028 1619.937 67.6%
5 27.465 36.055 0.004 217.337 100%
6 26.846 34.831 0.004 217.337 100%
7 27.197 35.502 0.004 217.337 100%
8 15.146 21.191 0.004 148.671 100%
9 16.095 21.077 0.004 157.29 100%
10 19.806 28.338 0.004 258.059 100%

Table 5.1.: Comparison of the impact of the different priority
functions on the performance of the Greedy Con-
struction Heuristic. The first column specifies the
used priority function. The next four columns show
the mean, standard deviation, minimum and max-
imum of the objective values of the obtained solu-
tions. The last columns shows the relative amount
of times a feasible solution was found.
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(a) Solution obtained by Greedy Construction Heuristic with priority function 1

(b) Solution obtained by Greedy Construction Heuristic with priority function 3

Figure 5.1.: Comparing the effects of priority function 1 and
3 on the results obtained by the Greedy Construc-
tion Heuristic. Task 40197 has a lower Ŝ than task
11469. Hence, function 1 will prioritize the former
over the latter leading to the Greedy Construc-
tion Heuristic scheduling this one first although
the room 2 is blocked (as can be seen in Subfig-
ure 5.1a). Function 3, on the other hand, will pri-
oritize task 11469 due to it not depending on a
blocked resource. In this example, it is even pos-
sible to process the entire task 11469 without de-
laying the task 40197 (as can bee seen in Subfig-
ure 5.1b
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5.4. Branch and Bound

5.4.1. Optimality Gap

In the following sections we will often use the optimality gap as a measure for the
performance of our algorithms. It shows the difference of the lowest lower bound
of all open partial solutions in our branching tree and the objective value of the
currently best known solution as relative amount of the latter. The lowest lower
bound of all open partial solutions is a lower bound to the global optimum of the
given problem. The currently best known objective value is an upper bound to
the global optimum. Hence, the optimality gap is an upper bound to the relative
difference of our current solution to the global optimum. If it is zero, that is, when
the current solution is equal to the lowest lower bound of our solution tree, whe
have proven, that our current solution is optimal.

Definition 5.4.1 (Optimality gap). The optimality gap fo minimization problems
is defined as

optimality gap = 100 · ub− lb
ub

where ub denotes the upper bound (i.e. the currently best known objective value),
and lb the lower bound (i.e. the currently lowest lower bound of all partial solutions).

5.4.2. Comparing the impact of different priority functions on
Branch and Bound

In the last section, we compared the performance of the different priority functions.
We saw that the functions 3, 8 and 9 provided on average the best solutions on
the Greedy Construction Heuristic. In this section, we will have a closer look on
their impact on the performance when used for the branch and bound algorithm
as described in Section 4.2. Their impact on the performance on the Branch and
Bound may slightly differ from the one on the Greedy Construction Heuristic as not
only the values of the objective function but also the time needed to compute it
influence the performance of the Branch and Bound.

The data in this section is obtained by applying the Branch and Bound with the
Most Promising First strategy (refer to Section 4.2.1.3 for more information on this)
and using the lower bound computed by the modified Chu’s lower bound algorithm
(Section 4.2.2.5) and the resource set 3 as described in Section 4.2.2.6.

Table 5.2 and Table 5.4 show the mean of the optimality gap as well as the relative
number of instances for which it could be proved that the solution found was optimal
(i.e., the Branch and Bound was not canceled prematurely due to reaching its time
limit). These values are shown for each of the considered priority function. While
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the first Table 5.2 summarizes this information for all instances of specific sizes (i.e.,
number of tasks to be scheduled), the second Table 5.4 also differentiates between
the scenarios as described in Section 5.1.2. The lowest mean of the optimality gap
in each row is written in bold font.

Of the three functions the function 9 tends to produce the best results. While the
number solutions that could be proved to be optimal is equal for all three of them,
the mean of optimality gaps reported by function 9 is almost always the lowest.
This tendency is not broken, when considering the other two tables.

Table 5.3 and Table 5.5 are similarly structured. Again, the results are shown for
the three considered priority functions and instance sets, either summarized only
by size or size and scenario. But this time, the mean and standard deviation of
the objective values as well as the mean time needed to finish (in seconds, limited
by 300 seconds) are depicted. The lowest mean of the objective value in each row
is written in bold font. Opposing to the previous tables, only values in the same
row should be compared. It does not make sense to compare this value for different
instance sets as it does not necessarily reflect the quality of the solution.

Priority func 3 Priority func 8 Priority func 9
# tasks gap opt gap opt gap opt
1-20 0.005 99.84% 0.002 99.84% 0.005 99.84%
21-30 0.643 92.19% 0.932 92.19% 0.532 92.19%
31-40 2.476 81.88% 3.179 81.88% 2.302 81.88%
41-50 10.204 63.44% 10.557 63.44% 9.69 63.44%
51-60 29.006 33.75% 30.128 33.75% 27.638 33.75%

Table 5.2.: Comparing the mean of the optimality gaps and the
relative number of times a solution was proven to
be optimal (time limit = 300 seconds) for each of
the three considered priority functions when used
in the Branch and Bound. The size of the instances
that were used is shown on the left hand side. The
bold numbers mark the minimum for each row.
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Priority func 3 Priority func 8 Priority func 9

# tasks obj sd(obj) t[s] obj sd(obj) t[s] obj sd(obj) t[s]
1-20 3.02 3.35 1.4 3.02 3.35 1.5 3.02 3.35 1.3
21-30 6.25 5.92 29.2 6.33 6.2 30.8 6.22 5.82 28.2
31-40 8.56 6.89 79.9 8.79 7.51 80.2 8.51 6.74 77.7
41-50 12.5 12.9 135.8 12.77 13.25 135 12.18 12.07 135.1
51-60 27.35 26.17 219.7 28.17 26.5 217.7 25.93 24.25 219.7

Table 5.3.: Comparing the mean and standard deviation of the
objective values as well as the mean of the time in
seconds needed to finish (time limit = 300 seconds)
for each of the three considered priority functions
when used in the Branch and Bound. The size of
the instances that were used is shown on the left
hand size. The bold numbers mark the minimum
for each row.
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Priority func 3 Priority func 8 Priority func 9
# tasks set gap opt gap opt gap opt

1-20 1-2 0 100% 0 100% 0 100%
1-20 3-4 0.021 99.38% 0.007 99.38% 0.019 99.38%
1-20 5-6 0 100% 0 100% 0 100%
1-20 7-8 0 100% 0 100% 0 100%
21-30 1-2 0 100% 0 100% 0 100%
21-30 3-4 2.297 75% 3.447 75% 1.843 75%
21-30 5-6 0.274 93.75% 0.281 93.75% 0.284 93.75%
21-30 7-8 0 100% 0 100% 0 100%
31-40 1-2 0.114 97.5% 0.146 97.5% 0.098 97.5%
31-40 3-4 6.115 48.75% 8.295 48.75% 5.656 48.75%
31-40 5-6 3.359 82.5% 3.969 82.5% 3.156 82.5%
31-40 7-8 0.318 98.75% 0.306 98.75% 0.297 98.75%
41-50 1-2 1.965 93.75% 2.322 93.75% 1.911 93.75%
41-50 3-4 17.989 22.5% 20.049 22.5% 16.93 22.5%
41-50 5-6 16.58 51.25% 15.772 51.25% 15.725 51.25%
41-50 7-8 4.283 86.25% 4.083 86.25% 4.194 86.25%
51-60 1-2 10.925 70% 10.955 70% 10.857 70%
51-60 3-4 44.324 1.25% 47.259 1.25% 41.625 1.25%
51-60 5-6 42.216 13.75% 43.622 13.75% 39.939 13.75%
51-60 7-8 18.557 50% 18.677 50% 18.132 50%

Table 5.4.: Comparing the mean of the optimality gaps and the
relative number of times a solution was proven to
be optimal (time limit = 300 seconds) for each of
the three considered priority functions when used
in the Branch and Bound. The size as well as the
scenarios (Section 5.1.2) that should be simulated
by the used instances are depicted on the left hand
size. The bold numbers mark the minimum for each
row.
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Priority func 3 Priority func 8 Priority func 9

# tasks set obj sd(obj) t[s] obj sd(obj) t[s] obj sd(obj) t[s]

1-20 1-2 1.24 1.26 0 1.24 1.26 0 1.24 1.26 0
1-20 3-4 6.17 4.05 3.4 6.17 4.05 3.8 6.17 4.05 3.2
1-20 5-6 3.12 2.99 0.1 3.12 2.99 0.1 3.12 2.99 0.1
1-20 7-8 1.57 1.7 2 1.57 1.7 2.3 1.57 1.7 2
21-30 1-2 2.31 2.07 0.8 2.31 2.07 0.8 2.31 2.07 0.8
21-30 3-4 12.58 6.61 88 12.91 7.28 92.5 12.45 6.36 86
21-30 5-6 7 4.67 25.6 7 4.67 27.4 7 4.68 23.5
21-30 7-8 3.1 2.2 2.4 3.1 2.2 2.5 3.1 2.2 2.6
31-40 1-2 3.16 3.15 13.4 3.16 3.17 16 3.16 3.15 13.3
31-40 3-4 16.19 4.96 206.7 16.84 6.07 207.6 16.05 4.62 201.1
31-40 5-6 10.65 6.21 73.7 10.93 7.13 74.9 10.58 6.03 70.6
31-40 7-8 4.24 2.57 25.8 4.24 2.56 22.5 4.24 2.56 25.7
41-50 1-2 3.95 5.28 35.6 4.14 6.32 33.8 3.95 5.35 35.6
41-50 3-4 21.16 9.32 265.9 22.09 10.4 265.6 20.55 8.14 263.7
41-50 5-6 18.99 16.85 175.9 18.97 16.59 172 18.31 15.44 175
41-50 7-8 5.9 6.02 66 5.9 5.92 68.7 5.89 6.07 66.1
51-60 1-2 8.54 10.09 119.4 8.64 10.42 115.7 8.49 10.04 118.1
51-60 3-4 44.69 22.53 299.4 46.99 23.09 300 42 20.87 299.2
51-60 5-6 42.5 29.48 273.7 43.4 28.49 272.8 39.74 26.89 273.5
51-60 7-8 13.68 14.24 186.1 13.66 13.77 182.3 13.49 14.02 187.9

Table 5.5.: Comparing the mean and standard deviation of the
objective values as well as the mean of the time in
seconds needed to finish (time limit = 300 seconds)
for each of the three considered priority functions
when used in the Branch and Bound. The size as
well as the scenarios (Section 5.1.2) that should be
simulated by the used instances are depicted at the
left hand side. The bold numbers mark the mini-
mum for each row.
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5.4.3. Comparing the performance of the Most Promising First
strategy with different “dive” frequencies

In this section we compare how different frequencies of “diving” affect the perfor-
mance of the Most Promising First strategy which is explained in Section 4.2.1.3.

The data in this section is obtained by applying the Branch and Bound with the
Most Promising First strategy and using the lower bound computed by the modified
Chu’s lower bound algorithm (Section 4.2.2.5), the resource set 3 as described in
Section 4.2.2.6 and priority function 9 (Section 4.1.1).

Table 5.6 shows the aggregated results over all instance sets for the diving fre-
quencies 1, 3, 4, 5, 7, 10, 25, 50, 100, 500 and 1000. The first row depicts the number
of instances (of total 1920) it could be proved that the solution found was optimal.
The other three rows show the means of the objective value, the optimality gap and
the time needed to solve (limited with 300 seconds), respectively.

We got the best results, when we set the diving frequency to 4. Here, we obtained
the best optimality gaps. While diving more often seems to find marginally better
solutions (on average) but does not perform that well in proving. Diving more rarely
than every 5 to 7 times on the other hand, decreases the the quality of the solutions
as well as the gaps.
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5.4.4. Comparing the performance of the different branching
strategies

In this section, we compare the performance of the different branching strategies,
which are introduced in Section 4.2.1.

We obtained the data, which is provided in this section, by applying the Branch
and Bound with the different branching strategies. We used the lower bound com-
puted by the modified Chu’s lower bound algorithm (Section 4.2.2.5), the resource
set 3 as described in Section 4.2.2.6 and priority function 9 (Section 4.1.1). The
Most Promising First strategy was applied with a diving frequency of every 4 steps.
Each run is given a time limit of 300 seconds. If the algorithm did not end (and
proved the optimality of the solution) until then, the process is stopped and the best
solution found so far is returned.

The structure of the tables in this section is similar to the one in Section 5.4.2.
The first two tables show the data aggregated over all instances of specific size, the
latter two show the same data broken down to the different instance sets (which
describe the different use cases, see Section 5.1.2 for more information about this).
In each table, the best results of each row are written in bold font.

The Tables 5.7 and 5.9 depict the mean of the optimality gaps as well as the
relative number of times the found solution was proven to be optimal. The Tables 5.8
and 5.10, on the other hand, show the mean and the standard deviation of the
objective values, as well as the mean of time needed to solve the given instances.

As assumed, the sophisticated approach of the Low Inversion First strategy pro-
duces better results as the naive Depth First procedure. But still, the branching
strategy Most Promising First outperforms both of them. Not only are its optimal-
ity gaps smaller, but the found solutions are – thanks to the “dives” – also better
in almost all cases.

We also examined how strong the different branching strategies influence the time
until good solutions are found. To do this, we plotted the currently best known
objective values relative (in percent) to the best known value for this instance for
each time point from 0 to 300 seconds.

Figure 5.2 shows the aggregated data over all instances, while Figure 5.3 breaks
it down to different instance sizes. The red line shows the data for the Branch
and Bound with the Depth First strategy, the green one depicts the Low Inversion
First approach and the blue line stands for the Most Promising First strategy. The
horizontal axis on the graph shows the time from 0 to 300 seconds, the vertical axis
shows the means of the percentages of the currently best known objective values to
the best known ones. Note that the y-axes are differently scaled for each Figure.
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Depth First Low Inv. First Most Prom. First
# tasks gap opt gap opt gap opt

1-20 0 99.84% 0 99.84% 0.004 99.84%
21-30 1.205 92.19% 1.662 92.19% 0.525 92.19%
31-40 7.153 82.19% 5.588 82.19% 2.249 82.19%
41-50 22.864 63.44% 18.233 63.44% 9.497 63.44%
51-60 48.463 34.38% 40.098 34.38% 27.548 34.38%

Table 5.7.: Comparing the mean of the optimality gaps and the
relative number of times a solution was proven to
be optimal (time limit = 300 seconds) for each of
the labeled branching strategies. The size of the
instances that were used is depicted on the left hand
side. The bold numbers mark the minimum for each
row.

Depth First Low Inv. First Most Prom. First

# tasks obj sd(obj) t[s] obj sd(obj) t[s] obj sd(obj) t[s]

1-20 3.02 3.35 0.4 3.02 3.35 0.5 3.02 3.35 1.3
21-30 6.24 5.91 22.9 6.26 5.94 28.7 6.21 5.82 27.8
31-40 8.79 7.42 74.8 8.54 6.86 73.5 8.49 6.72 76.7
41-50 14.53 15.86 143.5 12.33 12.16 138.4 12.1 12.08 135.6
51-60 32.78 31.14 229.7 26.28 25.04 222.6 25.69 23.95 219.2

Table 5.8.: Comparing the mean and standard deviation of the
objective values as well as the mean of the time in
seconds needed to finish (time limit = 300 seconds)
for each of the labeled branching strategies. The
size of the instances that were used is depicted on
the left hand side. The bold numbers mark the
minimum for each row.
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Depth First Low Inv. First Most Prom. First
# tasks set gap opt gap opt gap opt

1-20 1-2 0 100% 0 100% 0 100%
1-20 3-4 0 99.38% 0 99.38% 0.017 99.38%
1-20 5-6 0 100% 0 100% 0 100%
1-20 7-8 0 100% 0 100% 0 100%
21-30 1-2 0 100% 0 100% 0 100%
21-30 3-4 3.472 75% 5.352 75% 1.827 75%
21-30 5-6 1.35 93.75% 1.298 93.75% 0.271 93.75%
21-30 7-8 0 100% 0 100% 0 100%
31-40 1-2 0.564 97.5% 0.251 97.5% 0.084 97.5%
31-40 3-4 15.754 50% 14.832 50% 5.433 50%
31-40 5-6 11.457 82.5% 6.72 82.5% 3.185 82.5%
31-40 7-8 0.837 98.75% 0.551 98.75% 0.296 98.75%
41-50 1-2 5.866 93.75% 3.371 93.75% 1.907 93.75%
41-50 3-4 36.767 22.5% 32.598 22.5% 16.757 22.5%
41-50 5-6 36.543 51.25% 27.874 51.25% 15.231 51.25%
41-50 7-8 12.281 86.25% 9.09 86.25% 4.091 86.25%
51-60 1-2 24.611 71.25% 18.272 71.25% 10.813 71.25%
51-60 3-4 58.059 1.25% 52.037 1.25% 41.409 1.25%
51-60 5-6 70.814 13.75% 59.04 13.75% 40.342 13.75%
51-60 7-8 40.367 51.25% 31.045 51.25% 17.628 51.25%

Table 5.9.: Comparing the mean and standard deviation of the
objective values as well as the mean of the time in
seconds needed to finish (time limit = 300 seconds)
for each of the labeled branching strategies. The
size as well as the uses cases (Section 5.1.2) that
should be simulated by the used instances are de-
picted on the left hand side. The bold numbers
mark the minimum for each row.
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Depth First Low Inv. First Most Prom. First

# tasks set obj sd(obj) t[s] obj sd(obj) t[s] obj sd(obj) t[s]

1-20 1-2 1.24 1.26 0 1.24 1.26 0 1.24 1.26 0
1-20 3-4 6.17 4.05 1 6.17 4.05 1.5 6.17 4.05 3.3
1-20 5-6 3.12 2.99 0.2 3.12 2.99 0.1 3.12 2.99 0.1
1-20 7-8 1.57 1.7 0.3 1.57 1.7 0.4 1.57 1.7 2
21-30 1-2 2.31 2.07 2 2.31 2.07 1.4 2.31 2.07 0.8
21-30 3-4 12.45 6.41 69 12.61 6.65 83.2 12.45 6.37 84.6
21-30 5-6 7.13 5.02 17.4 7.01 4.7 28 7 4.67 23.2
21-30 7-8 3.1 2.2 3.3 3.1 2.2 2.3 3.1 2.2 2.4
31-40 1-2 3.17 3.23 15.7 3.15 3.13 15.2 3.15 3.14 13.1
31-40 3-4 16.35 5.5 180.3 16.08 4.76 185.1 15.99 4.56 199.9
31-40 5-6 11.43 7.56 83.9 10.71 6.39 74.7 10.59 6.06 69.8
31-40 7-8 4.22 2.52 19.3 4.22 2.52 18.9 4.24 2.56 23.9
41-50 1-2 4.41 6.85 44.7 3.9 5.03 34 3.94 5.25 34.8
41-50 3-4 24 13.11 256.9 20.74 7.93 262.1 20.45 8.19 264.2
41-50 5-6 22.83 19.66 190.9 18.81 15.61 187.5 18.17 15.62 177.9
41-50 7-8 6.88 9.3 81.7 5.87 6.05 70.2 5.85 5.96 65.4
51-60 1-2 10.27 14.6 142.5 8.58 10.43 121.2 8.51 10.23 116.3
51-60 3-4 48.77 26.78 300 40.87 19.34 300.6 41.33 20.41 299.4
51-60 5-6 54.48 33.77 284 42.71 29.47 284.8 39.59 26.42 275.2
51-60 7-8 17.59 19.02 192.2 12.96 13.96 183.7 13.34 14.13 186.1

Table 5.10.: Comparing the mean and standard deviation of the
objective values as well as the mean of the time in
seconds needed to finish (time limit = 300 seconds)
for each of the labeled branching strategies. The
size as well as the uses cases (Section 5.1.2) that
should be simulated by the used instances are de-
picted on the left hand side. The bold numbers
mark the minimum for each row.
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.
Figure 5.2.: Means of the currently best known objective val-

ues relative (in %) to the best known value for this
instance, plotted by time. The red line shows the
data for the Branch and Bound with the Depth
First strategy, the green one depicts the Low In-
version First approach and the blue line stands for
the Most Promising First strategy.
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(a) τ ≤ 10 (b) 10 < τ ≤ 20

(c) 20 < τ ≤ 30 (d) 30 < τ ≤ 40

(e) 40 < τ ≤ 50 (f) 50 < τ ≤ 60

Figure 5.3.: means of the currently best known objective value
relative (in %) to the best known value for this in-
stance, plotted by time, split by the size of the in-
stances. The red line shows the data for the Branch
and Bound with theDepth First strategy, the green
one depicts the Low Inversion First approach and
the blue line stands for the Most Promising First
strategy. Note that the y-axes are differently scaled
in each subfigure.
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5.5. Comparing the performance of the different
lower bounds when used in the Branch and
Bound

In this section, we compare the performance of the different lower bounds, which
are introduced in Section 4.2.2. The first subsection will focus on the different
calculation techniques, the second will examine the differences of the various resource
sets.

5.5.1. Comparing the different calculation techniques

In Section 4.2.2.3, we provided different approaches to calculate a lower bound for
the lblateness-part of objective function. Here, we will examine their impacts on the
performance of the Branch and Bound algorithm.

These are the three different approaches we tested:

no lateness The lower bound consists of the objective value of the current partial
solution and the lower bound for the remaining lbextback part of the objective
function (as described in Section 4.2.2).

Chu This lower bound consists of the previous one plus an additional part for the
remaining lblateness part of the objective function. This is calculated according
to Chu as shown in Section 4.2.2.4.

modified Chu This lower bound is similar to the previous one, but instead of cal-
culating the remaining lblateness part according to Chu, we use the theorem we
developed to respect the unavailability periods in Section 4.2.2.5.

We obtained the data, which is provided in this section, by applying the Branch
and Bound with the different lower bound calculation techniques in combination
with the Most Promising First3 strategy (refer to Section 4.2.1.3 for more informa-
tion on this enumeration strategy), the resource set 3 as described in Section 4.2.2.6
and priority function 9 (Section 4.1.1). Each run is given a time limit of 300 seconds.
If the algorithm did not end (and proved the optimality of the solution) until then,
the process is stopped and the best solution found so far is returned.

Table 5.11 shows the mean of the optimality gaps, as well as the mean of the time
needed to solve the problem instances (with a maximum time limit of 300 seconds)
for each of the three lower bound variants, aggregated by the problem size. The
best gap of each row is written in bold font.

3You can find the results for other combinations in the Appendix C.
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When comparing the first variant with the other two, it can be clearly seen that
calculating a lower bound for the lblateness part of the objective function is essential
for better results.

no lateness Chu modified Chu

# tasks gap time [s] gap time [s] gap time [s]

1-20 35.209 128.55 0.046 1.78 0.004 1.34
21-30 95.879 294.26 1.439 40.42 0.525 27.75
31-40 98.776 300.31 5.681 101.06 2.249 76.66
41-50 97.315 300.9 14.959 155.91 9.497 135.58
51-60 93.897 301.25 35.594 232.1 27.548 219.24

Table 5.11.: Comparing results for different lower bound tech-
niques when used in combination with the Most
Promising First strategy (refer to Section 4.2.1.3)
and the resource set 3 (Section 4.2.2.6). The Table
shows the mean of the optimality gaps, as well as
the mean of the time needed to solve the problem
instances (with a maximum time limit of 300 sec-
onds) for each of the three lower bound variants,
aggregated by the problem size. The best gap of
each row is written in bold font.

Due to using lower bounds to bound unpromising nodes and as a result to minimize
the number of visited nodes in a Branch and Bound calculation, it is also interesting
to examine how well they serve this purpose. Figure 5.4 compares these indicators
for problem instances with a size of 12 tasks.

Subfigure 5.4a shows a Boxplot of the total visited node for each of the three lower
bound calculation variants against the depth in the node tree.

Naturally, the number of visited nodes starts growing with the depth, i.e., the
number of scheduled tasks, as there are more possibilities to schedule them in dif-
ferent order (worst case n!

(n−d)! , where n is number of all tasks and d is the depth).
But on the other hand, the more tasks are scheduled, the sharper is the lower bound
and we should be able to bound more nodes which leads to less visited nodes. These
effects lead to a graph that will first increase and finally decrease with a single
maximum somewhere in between. Better lower bounds lead to flatter curves.

Subfigure 5.4b shows a Boxplot of the relative number of bounded nodes for each
of the three lower bound calculation techniques against the depth in the node tree.

One can see that the shape of the first lower bound variant clearly differs from
the one of the other two.
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The no lateness variant produces relatively weak lower bounds which leads to
only few bounded nodes in the beginning. The more tasks are scheduled, i.e. with a
rising depth, the bounds become sharper and we are able to bound more and more
nodes.

The other two techniques, on the other hand, produce quite sharp lower bounds
quite early. As a result, we can bound many nodes very early. This leads to only
few very strong partial solutions being available in greater depths of the node tree.
This is an explanation why the first variant is able to bound more nodes at greater
depths than the other two techniques. Many of the nodes, that are bounded by
the no lateness technique at greater depths, cannot be bounded by the other two
variants because their ancestors were already bounded at much lower depths in the
node tree.

Finally, Figure 5.5 compares the sharpness of the three lower bounds. Here, we
took the branch in the node tree that lead to the optimal solution and calculated
the sharpness lbv,d/val∗, where lbv,d describes the value of the lower bound of the
variant v at depth d in the selected branch and val∗ denotes the objective value of
the best solution (i.e., the last node of the selected branch). We use the lower bound
to guess the value of the optimal objective value, therefore, the larger the sharpness,
the better the lower bound. This lower bound is, precisely spoken, a lower bound of
the best objective value of the sub tree in the entire node tree that has the selected
node as root. Hence, we expect the sharpness of lower bounds to increase with
greater depth, as the amount of possible solutions decreases or, in other words, as
there is more information about how the optimal solution might look like.

This Figure shows the sharpness for the solutions of problem instances of size 30
on the y-axis against the depth on the x-axis. As previously argued, it can be clearly
seen how the latter two variants of the lower bound calculation outperform the first
one regarding their sharpness.
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(a) Shows the total number of visitied nodes against the depth in the
node tree for each of the three lower bound variants.

(b) Shows the relative number of bounded nodes against the depth in
the node tree for each of the three lower bound variants

Figure 5.4.: Comparing the node trees of a Branch and Bound
that uses the three different lower bound variants.
Only problem instances with exactly 12 tasks were
used for this data.
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.
Figure 5.5.: This Figure shows the sharpness of the three lower

bound calculation techniques for the solutions of
problem instances of size 30.
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5.5.2. Comparing the different resource sets

In Section 4.2.2.6, we described different resource sets that could be used to calculate
the lower bounds. The larger the sets are, the slower is the calculation time but on
the other hand the sharper is the lower bound. Now, we will examine their impacts
on the performance of the Branch and Bound.

Here we provide a short description of these sets for a better reference. For more
information on them refer to Section 4.2.2.6.

beam Computes the lower bound only for the beam resource.

beam & rooms Computes the lower bound for the beam and room resources.

all Computes the lower bound for all but patient resources.

We obtained the data, which is provided in this section, by applying the Branch
and Bound with the different lower bound calculation techniques in combination
with the Most Promising First4 strategy (refer to Section 4.2.1.3 for more infor-
mation on this enumeration strategy), the modified Chu’s lower bound technique as
described in Section 4.2.2.5 and priority function 9 (Section 4.1.1). Each run is given
a time limit of 300 seconds. If the algorithm did not end (and proved the optimality
of the solution) until then, the process is stopped and the best solution found so far
is returned.

Table 5.12 shows the mean of the optimality gaps, as well as the mean of the time
needed to solve the problem instances (with a maximum time limit of 300 seconds)
for each of the three resource sets, aggregated by the problem size. The best gap of
each row is written in bold font.

Opposing to the different calculation variants, the resource sets do not strongly
differ in their impact on the performance. But still, it seems that using the largest
resource set and, therefore, obtaining sharper lower bounds outweigh the additional
calculation time.

Figure 5.6 examines the node tree. Subfigure 5.6a shows the total number of
visited nodes against the depth in the node tree for each of the three lower bound
variants. Subfigure 5.6b depicts the relative amount of bounded nodes against the
depth. Similar to the data in Table 5.12, one can see, that the different resource sets
affect the node tree only slightly (at least when comparing the effects of the three
different calculation variants).

Finally, Figure 5.7 shows the sharpness of the lower bounds when calculated over
the three different resource sets. The sharpness of the lower bounds, when calculated
only for the beam resource, is continuously smaller in the first half of the solution

4You can find the results for other combinations in the Appendix C
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(a) Shows the total number of visitied nodes against the depth in the
node tree for each of the three lower bound variants.

(b) Shows the relative number of bounded nodes against the depth in
the node tree for each of the three lower bound variants

Figure 5.6.: Comparing the node trees of a Branch and Bound
that uses different resource sets for the lower bound
calculation. Only problem instances with exactly
12 tasks were used for this data.
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beam beam & rooms all

# tasks gap time [s] gap time [s] gap time [s]

1-20 0.09 2.61 0.004 1.31 0.004 1.34
21-30 0.653 34.32 0.559 28.25 0.525 27.75
31-40 3.323 95.82 2.352 77.39 2.249 76.66
41-50 11.204 145.63 9.606 136.47 9.497 135.58
51-60 29.752 226.88 27.771 219.81 27.548 219.24

Table 5.12.: Comparing results for different lower bound tech-
niques when used in combination with the Most
Promising First strategy (refer to Section 4.2.1.3)
and the modified Chu’s lower bound technique as
described in Section 4.2.2.5. The Table shows the
mean of the optimality gaps, as well as the mean
of the time needed to solve the problem instances
(with a maximum time limit of 300 seconds) for
each of the three lower bound variants, aggregated
by the problem size. The best gap of each row is
written in bold font.

branch (refer to the previous Section for how we define sharpness). The sharpness
for the latter two resource set differs only slightly.
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.
Figure 5.7.: his Figure shows the sharpness of the three lower

bound resource sets for the solutions of problem
instances of size 30.
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5.6. Reference implementation in a CP solver

When implementing and examining new approaches to solve a specific problem it is
also interesting to see how the new approach performs compared to general purpose
solutions. Hence, we created a CP model for our problem in Section 4.3 that we
want to solve with a CP solver.

While many solvers come with their proprietary modeling languages5, there are
also more generic modeling languages like AMPL [34] and MiniZinc [23] that are
supported by various solvers. We decided to use MiniZinc for our implementation as
it is a widely supported6 open source modeling language actively developed at the
Monash University with Data61 Decision Sciences and the University of Melbourne7.
Furthermore, MiniZinc is a quite easily understood language8 as it is very similar
to the formal language of mathematics. Therefore, we can implement the problem
with only little risk of introducing errors and use the results as an additional test
for the correctness of the implementation of our Branch and Bound algorithm.9

As a solver, we decided to use Gecode [69], an open-source constraint solver with
state-of-the-art-performance that won multiple gold medals at the MiniZinc Chal-
lenges in several years10. We used the MiniZinc bundle version 2.1.5 and the included
Gecode solver version 5.0.0 to obtain the data in this section.

5.6.1. Search annotations

MiniZinc supports the concept of search annotations. These are predefined ways
of telling the solver backend how to solve a given model. These annotations are
not mandatory. In fact, it is not required that the solver backends implement und
understand them at all [51]. A complete set of all different search annotations
is found in the MiniZinc Standard Library [25]. As the number of all possible
combinations of different annotations is quite limited we simply tried all of them to
find the best combination (which we set to the solution variable S of the model).

There are three different types of annotations that can be set: variable selection
annotations, value choice annotations and exploration strategy annotations. Cur-
rently the MiniZinc Standard Library defines only one exploration strategy (namely
the complete strategy, which tells the backend to perform a complete search), we
will, therefore, focus only on the former two.

5e.g. IBM’s CPLEX [41] comes with its proprietary OPL [42]
6A list of all solvers can be found at[24].
7http://www.minizinc.org
8A good tutorial that is officially recommended can be found in [51].
9For details on the implementation in MiniZinc refer to the Appendix D

10http://www.gecode.org/index.html
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Their impact on the Gecode solver was quite big as can be seen in Table 5.13.
For better readability, we included only the five best and two worst combinations
regarding the number of times an optimal solution was found. It is interesting that
the combinations of annotations that lead to the largest number of optimal solutions
can be quite bad at finding a solution at all. While the combination occurrence-
indomain_split only found a solution to 52% of all problem instances, it was able to
find an optimal solution for 41% of all instances, the highest score of all combinations
of search annotations.

Annotations

search ann choice ann obj time [s] sol. found optim. found
occurrence indomain_split 2.9927 181.4565 51.61% 40.99%
dom_w_deg indomain_split 27.0992 185.9616 100.00% 39.64%
dom_w_deg indomain_min 27.2321 190.1396 100.00% 38.65%
anti_first_fail indomain_split 3.1124 191.6132 54.95% 37.66%
smallest indomain_split 18.4388 193.1991 100.00% 37.03%
. . . . . . . . . . . . . . . . . .
anti_first_fail indomain_reverse_split 246.8801 265.0679 20.83% 12.24%
smallest indomain_reverse_split 245.951 276.7355 14.58% 8.12%

Table 5.13.: Comparing the results of different search and
choice annotations on Gecode, ordered by the rela-
tive number of times an optimum was found. The
columns depict the mean of the objective values
of the solutions, the mean of the time needed to
find a solution (limited to 300 seconds), the rela-
tive number of times a solution was found and the
relative number of times the optimum was proved.
Only the best five and worst two combinations are
shown.

For an easier reference, we provide the definitions (according to the MiniZinc
Standard Library [25]) of some selected search annotations here:

Variable selection annotations

occurence choose the variable with the largest number of attached constraints

anti_first_fail choose the variable with the largest domain

smallest choose the variable with the smallest value in its domain

dom_w_deg choose the variable with largest domain, divided by the number
of attached constraints weighted by how often they have caused failure
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Value choice annotations

indomain assign values in ascending order

indomain_split bisect the domain, excluding the upper half first

indomain_reverse_split bisect the domain, excluding the lower half first

indomain_min assign the smallest value in the domain

indomain_max assign the largest value in the domain

Due to our problem requirements, we need to focus only on search annotations that
ideally find a solution in every given instance. A comparison of the combinations that
found solutions for every given problem instance can be found in Table 5.14. Again
only the best five and worst two combinations are shown for a better readability.

Annotations

search ann choice ann obj time [s] sol. found optim. found
smallest indomain_split 18.4388 193.1991 100.00% 37.03%
smallest indomain_min 18.6163 201.0388 100.00% 34.79%
smallest indomain 18.7217 204.9384 100.00% 33.39%
dom_w_deg indomain_split 27.0992 185.9616 100.00% 39.64%
dom_w_deg indomain_min 27.2321 190.1396 100.00% 38.65%
. . . . . . . . . . . . . . . . . .
largest indomain_max 700.2672 260.4428 100.00% 14.06%
largest indomain_reverse_split 708.2842 257.1837 100.00% 15.05%

Table 5.14.: Comparing the results of different search and
choice annotations in gecode, ordered by the mean
of the objective value of the solution found. The
columns depict the mean of the objective values
of the solutions, the mean of the time needed to
find a solution (limited to 300 seconds), the rela-
tive number of times a solution was found and the
relative number of times the optimum was proved.
Only combinations that found a solution in every
run are considered and only the best and worst
combinations are shown.

5.6.2. Comparing the performance of our Branch and Bound
approach to the CP solver

In this section we compare the performance of our Branch and Bound approach
versus the chosen CP solver.
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On the one side, the results are obtained by applying the Branch and Bound with
theMost Promising First strategy (Section 4.2.1.3), using the lower bound computed
by the modified Chu’s lower bound algorithm (Section 4.2.2.5), the resource set 3 as
described in Section 4.2.2.6) and priority function 9 (Section 4.1.1). On the other
side, the results for the CP approach are produced by the Gecode solver and the
search annotations smallest—indomain_split as described in the previous section.

Both solvers were given exactly 5 minutes to solve each instance of our instance
set as described in Section 5.1.3.

The following two tables compare the number of times the Branch and Bound
solver performed better, equal or worse than the gecode solver. First, in Table 5.15,
the total number of times an approach found a better solution than the other is
shown. Second, in Table 5.16, these are split by different problem sizes and instance
sets.

BaB perf. better equally well Gecode perf. better
number of occurences 1155 763 2
rel. number of occurences 60.16% 39.74% 0.10%

Table 5.15.: Comparison of the number of times the solution of
the BaB solver was better, equal or worse than the
one of the Gecode solver

The next two tables are similar to the previous ones. But this time the relative
quality of the solutions, i.e. objvalBaB

objvalGecode
, is compared. Again, the first Table 5.17

shows these summed up and the second Table 5.18 split by different problem sizes
and instance sets.

When examining the Tables 5.16 and 5.18, it can be seen that the larger the
problem instances are, the more is the Gecode solver outperformed by our Branch
and Bound solver. For the largest instance sets the Branch and Bound solver even
returned solutions that were twice as good as the solutions returned by Gecode.

Finally, Table 5.19 compares the mean and standard deviation of the time needed
to solve the given problem instances in seconds and split by problem sizes and
different instance sets. The time of execution was limited to 300 seconds.
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# tasks set BaB perf. better equally well Gecode perf. better
1-20 1-2 6.88% 93.12% 0.00%
1-20 3-4 28.12% 71.88% 0.00%
1-20 5-6 28.12% 71.88% 0.00%
1-20 7-8 11.25% 88.75% 0.00%
21-30 1-2 35.00% 65.00% 0.00%
21-30 3-4 70.00% 30.00% 0.00%
21-30 5-6 80.00% 20.00% 0.00%
21-30 7-8 55.00% 45.00% 0.00%
31-40 1-2 52.50% 47.50% 0.00%
31-40 3-4 97.50% 2.50% 0.00%
31-40 5-6 92.50% 6.25% 1.25%
31-40 7-8 72.50% 27.50% 0.00%
41-50 1-2 67.50% 32.50% 0.00%
41-50 3-4 100.00% 0.00% 0.00%
41-50 5-6 100.00% 0.00% 0.00%
41-50 7-8 85.00% 15.00% 0.00%
51-60 1-2 90.00% 8.75% 1.25%
51-60 3-4 100.00% 0.00% 0.00%
51-60 5-6 100.00% 0.00% 0.00%
51-60 7-8 97.50% 2.50% 0.00%

Table 5.16.: Comparison of the number of times the solution of
the BaB solver was better, equal or worse than the
one of the Gecode solver — split by problem sizes
and different instance sets

objvalBaB/objvalGecode

mean 0.749
median 0.843
sd 0.278

Table 5.17.: Relative comparison of the objective values, i.e.
objvalBaB

objvalGecode
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Instances objvalBaB/objvalGecode

# tasks set mean median sd

1-20

1-2 0.978 1 0.106
3-4 0.96 1 0.076
5-6 0.938 1 0.14
7-8 0.959 1 0.148

21-30

1-2 0.852 1 0.266
3-4 0.859 0.861 0.129
5-6 0.786 0.802 0.183
7-8 0.8 0.929 0.254

31-40

1-2 0.724 0.894 0.319
3-4 0.762 0.754 0.125
5-6 0.669 0.628 0.193
7-8 0.673 0.638 0.269

41-50

1-2 0.637 0.614 0.333
3-4 0.65 0.674 0.148
5-6 0.491 0.469 0.195
7-8 0.518 0.471 0.287

51-60

1-2 0.437 0.388 0.307
3-4 0.537 0.524 0.183
5-6 0.473 0.464 0.19
7-8 0.423 0.361 0.229

Table 5.18.: Relative comparison of the objective values, i.e.
objvalBaB

objvalGecode
— split by problem sizes and different

instance sets
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Instances BaB Gecode

# tasks set time [s] sd(time) time [s] sd(time)

1-20

1-2 0.02 0.12 32.16 91.01
3-4 3.26 24.74 99.48 137.9
5-6 0.06 0.19 121.9 143.12
7-8 2.01 23.73 51.19 111.11

21-30

1-2 0.83 2.88 114.67 143.14
3-4 84.6 127.73 233.63 120.45
5-6 23.16 73.06 266.74 85.8
7-8 2.42 7.6 178.34 146.43

31-40

1-2 13.08 48.92 165.98 147.77
3-4 199.92 124.54 296.47 31.58
5-6 69.79 118.32 293.87 38.56
7-8 23.87 63.27 237.31 120.31

41-50

1-2 34.78 85.52 214.56 131.33
3-4 264.22 87.82 300 0.01
5-6 177.91 136.22 300 0.01
7-8 65.42 111.62 255.6 106.41

51-60

1-2 116.25 131.05 276.53 79.26
3-4 299.37 15.93 300 0
5-6 275.23 78.81 300 0.01
7-8 186.11 133.71 293.62 40.73

Table 5.19.: Comparing the mean and standard deviation of the
time needed to solve the given problem instances
in seconds and split by problem sizes and different
instance sets. The time of execution was limited
to 300 seconds. The shorter time in each row is
written in bold font.
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5.7. Summarizing our results and comparing our
three approaches

In this section, we want to summarize the obtained results and compare the perfor-
mance of our three methods with their individually best configuration.

First, we use the Greedy Construction Heuristic in combination with the prior-
ity function 8 (as described in Section 4.1.1). Second, we apply the Branch and
Bound approach with the Most Promising First strategy and a diving frequency
of 4 (Section 4.2.1.3), the lower bound calculation technique modified Chu’s lower
bound (Section 4.2.2.5), the resource set 3 (Section 4.2.2.6), and the priority func-
tion 9 (Section 4.1.1). Last but not least, we take the results of the CP solver
that are produced by Gecode using the search annotation combination smallest and
indomain_split as described in Section 5.6.1.

We assumed 5 minutes of waiting time for the recreation of a treatment schedule
to be an acceptable time span. Hence, every solver was given 5 minutes to solve
each problem instance of our instance set that we described in Section 5.1.3. If this
limit was reached, the solve process was stopped and the best solution found so
far returned. Of course, the Greedy Construction Heuristic never reached this time
limit as no solve process even exceeded 15 milliseconds.

The following two tables compare the mean of the objective values for each solution
obtained by the three solvers. Furthermore, the standard deviation of the objective
values is depicted. In addition, the results for the Branch and Bound approach also
contain the mean of the optimality gap (refer to Section 5.4.1 for the definition we
used). While the first Table 5.20 shows this information aggregated over problem
instances of similar size, the second Table 5.21 differentiates also between different
scenarios as described in Section 5.1.2.

While all three approaches deliver reasonably good results for smaller instances,
the Branch and Bound solver clearly outperforms the other two on larger instances.
Interestingly, when comparing the Greedy Construction Heuristic and the Gecode
solver, on can see that the general purpose solution performs slightly better on
small instances but is clearly outrun by our construction heuristic on the larger
instances.
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Greedy CH BaB Gecode
# tasks obj sd(obj) obj sd(obj) gap obj sd(obj)
1-20 3.94 4.58 3.02 3.35 0 3.39 4.06
21-30 8.78 8.39 6.21 5.82 0.52 8.37 8.44
31-40 13.06 10.39 8.49 6.72 2.25 13.68 12.72
41-50 20.19 19.58 12.1 12.08 9.5 25.54 28.33
51-60 40.96 33.27 25.69 23.95 27.55 56.27 47.47

Table 5.20.: Comparing the the mean of the objective values
obtained when solving with our three presented
solvers: the Greedy Construction Heuristic, the
Branch and Bound approach and the CP solver
Gecode (each of them had a time limit of 300 sec-
onds per instance). Additionally, the standard de-
viation of the objective value is provided for all
three solvers and the Branch and Bound section
also includes the mean of the optimality gaps. The
size of the instances that were used is depicted on
the left hand side. The bold numbers mark the
minimum of the mean of the objective values for
each row.
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Instances Greedy CH BaB Gecode
# tasks set obj sd(obj) obj sd(obj) gap obj sd(obj)
1-20 1-2 1.73 1.81 1.24 1.26 0 1.34 1.5
1-20 3-4 7.47 5.03 6.17 4.05 0.02 6.65 4.75
1-20 5-6 4.26 5.01 3.12 2.99 0 3.68 4.24
1-20 7-8 2.31 3.23 1.57 1.7 0 1.87 2.45
21-30 1-2 3.44 3.09 2.31 2.07 0 3.17 2.96
21-30 3-4 16.28 9.09 12.45 6.37 1.83 15.67 9.69
21-30 5-6 10.75 8.51 7 4.67 0.27 9.96 8.41
21-30 7-8 4.64 3.5 3.1 2.2 0 4.69 4.1
31-40 1-2 4.94 4.92 3.15 3.14 0.08 6.79 12.77
31-40 3-4 22.47 7.46 15.99 4.56 5.43 22.22 10.21
31-40 5-6 17.9 10.83 10.59 6.06 3.18 17.91 12.98
31-40 7-8 6.93 4.55 4.24 2.56 0.3 7.79 6.47
41-50 1-2 7.04 11.37 3.94 5.25 1.91 7.94 9.27
41-50 3-4 31.9 16.31 20.45 8.19 16.76 34 18.39
41-50 5-6 30.65 21.76 18.17 15.62 15.23 42.86 37.49
41-50 7-8 11.17 13.14 5.85 5.96 4.09 17.36 25.55
51-60 1-2 14.68 15.57 8.51 10.23 10.81 21.85 20.68
51-60 3-4 60.11 25.33 41.33 20.41 41.41 84.37 46.7
51-60 5-6 65.7 33.74 39.59 26.42 40.34 86.08 49.27
51-60 7-8 23.34 21.01 13.34 14.13 17.63 32.77 24.59

Table 5.21.: Comparing the the mean of the objective values
obtained when solving with our three presented
solvers: the Greedy Construction Heuristic, the
Branch and Bound approach and the CP solver
Gecode (each of them had a time limit of 300 sec-
onds per instance). Additionally, the standard de-
viation of the objective value is provided for all
three solvers and the Branch and Bound section
also includes the mean of the optimality gaps. The
size of the instances that were used is depicted on
the left hand side. The bold numbers mark the
minimum of the mean of the objective values for
each row.
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6. Conclusion and Outlook

In this thesis we tackled the I-PTPSP, a particle therapy scheduling problem with
a time horizon of a single day and already assigned starting times for the pending
treatments. Due to the many uncertainties when creating a treatment schedule, it
frequently happens that the original schedule must be dynamically altered to adapt
to the current situation like a suddenly unavailable treatment room, a no-show of a
patient or a delay of a treatment device. Solving the new problem within a short time
frame is crucial to minimize the negative effects of such incidents on the throughput
and the running costs of the facility.

First, we introduced a greedy construction heuristic and proposed several priority
functions that could be used to improve the obtained solutions. Then, we presented
a Branch and Bound algorithm, capable of solving the problem exactly. We provided
three different implementations of the priority queue, namely a Depth First Vari-
ant, a Low Inversion Number First strategy and a Most Promising First approach.
The first one combines the ideas of depth first enumeration of the node tree of the
Branch and Bound algorithm with the greedy construction heuristic and its priority
functions, we introduced before. The second approach was to enumerate the sched-
ules that most resemble the original one first. The idea was that, first, a slightly
changed scenario should require only slightly changed solutions and second, as one
of the main objective is to minimize the lateness of the tasks, their order, according
to their starting times, should not be mixed up completely. To do this, we used a
smart encoding of the “distance” to the original solution that involved the use of
inversion numbers. Finally, we applied the Most Promising First, or sometimes also
referred to as Best First, strategy.

Furthermore, a sharp lower bound was developed in several steps. First, we used a
simple approach to calculate a lower bound for the extended service time part of the
objective function. Additionally, the calculated lower bounds were further refined by
considering the structural characteristics of the remaining tasks. Then, we adapted
Chu’s proposal of a lower bound for total tardiness scheduling problems [19] to
work in our case as well. Afterwards, we extended it even more to also support
unavailability periods as such. Finally, we studied three different resource sets to be
used for the lower bound computation.

Lastly, we compared the performance of the different proposed variants of our
Branch and Bound algorithm. For this purpose, a large instance set was created
that resembled real world scenarios. In the end, we compared the results of our
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best Branch and Bound variant against the greedy construction heuristic and the
ones obtained by a state-of-the-art CP solver. It was shown that the Branch and
Bound method clearly outperformed the other two approaches. Interestingly, also
the construction heuristic performed better than the CP solver on the largest prob-
lem instances.

In future work, the I-PTPSP should be extended to meet further possible require-
ments. First, beam changing times when switching beetween rooms and proton and
carbon therapies may be included. Furthermore, the objective function will be ex-
tended to penalize multiple changes of the type of beam. Second, the problem
formulation can be further extended by precedence graphs for different tasks. This
allows to depict multiple tasks that belong to the same treatment of a single patient
and that need to be completed in a specified order. This would allow to model tasks
that are loosely coupled to the “main” task and possibly do not require bottleneck
resources like the beam but still affect the overall schedule, e.g. an additional image
processing. Furthermore, minimum and maximum time lag constraints beetween
these connected treatments will be introduced. For instance, the minimum time
lags could reflect the required transfer times between rooms within the facility. The
maximum time lags, on the other hand, could be used to prevent schedules that
require patients to wait for their succeeding appointment for an exceptionally long
time. Moreover, the objective function will be extended, to consider these maximum
time lag constraints that result from tasks that already completed and affect tasks
that still need to be scheduled.

In addition to that, the proposed Branch and Bound algorithm needs to be ex-
tended with a type of domination strategy to diminish symmetries in nodes of the
solution tree that result from introducing the mentioned precedence graphs.
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A. Symbols

ϕscatter
r priority value for avoiding scattering of resource r ∈ Rscatter

Hunit time resolution for an hour
γextback weight for the penalization of the use of extended service time

windows
γlateness weight for the penalization of tasks that are delayed from their

initial starting time
γscatter weight for the penalization of an scattered schedule
nR number of resources
nT number of tasks
R set of all resources
Rscatter subset of resources for which scattering should be avoided
R̂ subset of resources having an extended service time window
rB resource representing the beam
S represents a solution, i.e. a schedule
St starting time of task t in the solution S
Sfirst
r the first time when resource r is used
SL
t lower bound for the starting time of task t
Slast
r the last time when resource r is used
Spartial represents a partial solution, i.e. a schedule that does not

define starting times for every task yet
SU
t upper bound for the starting time of task t
Ŝt initial starting time of task t
σt the amount of time task t is delayed from its initial starting

time
T set of all tasks
Pt,r the time interval when task t requires resource r relative to

the task’s starting time
P end
t,r time until which task t requires resource r relative to its start-

ing time
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P start
t,r time from which on task t requires resource r relative to its

starting time
pt entire processing time of task t
Qt set of resources required by task t
Qr set of tasks that require resource r
Wr service time window of resource r
W end
r end of the service time window of resource r

W start
r start of the service time window of resource r

W̃ fundamental opening time interval
W̃ end end time of the fundamental opening time interval
W̃ start start time of the fundamental opening time interval
W r unavailability periods of resource r
W

end
r,w end of the w-th unavailability period of resource r

W
start
r,w start of the w-th unavailability period of resource r

Ŵr extended service time window of resource r
Ŵ end
r end of the extended service time window of resource r

Ŵ start
r start of the extended service time window of resource r
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B. Tool for the visualisation of
solutions

We created a tool that visualizes our I-PTPSP solutions for a more pleasant work-
flow.

The Visualisation Tool basically consists of two sections. The first section shows
all the details that are preceded by number signs (#) in the JSON files. These usually
contain information about which parameters were used to create the instance and
solution, the objective value, the weight parameters of the objective function and so
on.

The second section depicts the resource assignment of the various tasks in a time-
line chart as shown in Figure B.1. Additionally, unavailability periods and extended
time spans of the resources are shown and further information on the tasks can be
obtained from the related tooltips. Furthermore, a range filter is located at the
bottom. This allows the user to zoom into the chart and is especially useful for
solutions with many tasks that are spread over the entire day.

This tool is developed using web technologies to allow for platform independent
usage. Hence, it is written in HTML, CSS and Javascript. Especially, it uses the
Google Charts libraries1.

1https://developers.google.com/chart/
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Figure B.1.: Visualisation Tool, showing a timeline chart to vi-
sualize a solution
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C. Additional Results

C.1. Comparing lower bounds when used in
combination with the Low Inversion Number
First strategy

In this section, we provide similar data as was introduced and explained in Sec-
tion 5.5 but obtained with Branch and Bound in combination with the Low Inversion
Number First strategy instead of Most Promising First. For further explanation and
information on these tables and Figures refer to Section 5.5. For further information
on the Low Inversion Number First strategy refer to Section 4.2.1.2.

C.1.1. Comparing the different calculation techniques
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(a) Shows the total number of visitied nodes against the depth in the
node tree for each of the three lower bound variants.

(b) Shows the relative number of bounded nodes against the depth in
the node tree for each of the three lower bound variants

Figure C.1.: Comparing the node trees of a Branch and Bound
that uses the three different lower bound variants.
Only problem instances with exactly 12 tasks were
used for this data.
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no lateness Chu modified Chu

# tasks gap time gap time gap time

1-20 38.782 121.61 0 1.06 0 0.52
21-30 96.754 294.9 3.613 38.11 1.662 28.71
31-40 98.979 300.08 11.563 97.06 5.588 73.49
41-50 97.978 300.47 25.986 155.79 18.233 138.44
51-60 95.789 300.52 48.485 230.74 40.098 222.59

Table C.1.: Comparing results for different lower bound tech-
niques when used in combination with the Low
Inversion Number First strategy (refer to Sec-
tion 4.2.1.2) and the resource set 3 (Section 4.2.2.6).
The Table shows the mean of the optimality gaps,
as well as the mean of the time needed to solve the
problem instances (with a maximum time limit of
300 seconds) for each of the three lower bound vari-
ants, aggregated by the problem size. The best gap
of each row is written in bold font.

C.1.2. Comparing the different resource sets
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(a) Shows the total number of visitied nodes against the depth in the
node tree for each of the three lower bound variants.

(b) Shows the relative number of bounded nodes against the depth in
the node tree for each of the three lower bound variants

Figure C.2.: Comparing the node trees of a Branch and Bound
that uses different resource sets for the lower
bound calculation. Only problem instances with
exactly 12 tasks were used for this data.
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beam beam & rooms all

# tasks gap time gap time gap time

1-20 0.257 2.4 0 0.52 0 0.52
21-30 2.199 33.24 1.754 29.19 1.662 28.71
31-40 8.384 92.29 6.006 75.82 5.588 73.49
41-50 20.572 146.98 18.649 139.75 18.233 138.44
51-60 43.754 228.51 40.823 222.68 40.098 222.59

Table C.2.: Comparing results for different lower bound tech-
niques when used in combination with the Low
Inversion Number First strategy (refer to Sec-
tion 4.2.1.2) and the modified Chu’s lower bound
technique as described in Section 4.2.2.5. The Ta-
ble shows the mean of the optimality gaps, as well
as the mean of the time needed to solve the problem
instances (with a maximum time limit of 300 sec-
onds) for each of the three lower bound variants,
aggregated by the problem size. The best gap of
each row is written in bold font.

C.2. Comparing lower bounds when used in
combination with the Depth First strategy

In this section, we provide similar data as was introduced and explained in Sec-
tion 5.5 but obtained with Branch and Bound in combination with the Depth First
strategy instead of Most Promising First. For further explanation and information
on these tables and Figures refer to Section 5.5. For further information on the
Depth First strategy refer to Section 4.2.1.1.

C.2.1. Comparing the different calculation techniques
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(a) Shows the total number of visitied nodes against the depth in the
node tree for each of the three lower bound variants.

(b) Shows the relative number of bounded nodes against the depth in
the node tree for each of the three lower bound variants

Figure C.3.: Comparing the node trees of a Branch and Bound
that uses the three different lower bound variants.
Only problem instances with exactly 12 tasks were
used for this data.
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no lateness Chu modified Chu

# tasks gap time gap time gap time

1-20 25.885 87.17 0 0.56 0 0.36
21-30 97.913 295.51 2.46 30.43 1.205 22.91
31-40 99.897 300.01 11.96 95.12 7.153 74.81
41-50 99.225 300.01 29.198 158.58 22.864 143.54
51-60 97.39 300.01 54.465 236.65 48.463 229.69

Table C.3.: Comparing results for different lower bound tech-
niques when used in combination with the Depth
First strategy (refer to Section 4.2.1.1) and the re-
source set 3 (Section 4.2.2.6). The Table shows the
mean of the optimality gaps, as well as the mean
of the time needed to solve the problem instances
(with a maximum time limit of 300 seconds) for
each of the three lower bound variants, aggregated
by the problem size. The best gap of each row is
written in bold font.

C.2.2. Comparing the different resource sets
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(a) Shows the total number of visitied nodes against the depth in the
node tree for each of the three lower bound variants.

(b) Shows the relative number of bounded nodes against the depth in
the node tree for each of the three lower bound variants

Figure C.4.: Comparing the node trees of a Branch and Bound
that uses different resource sets for the lower
bound calculation. Only problem instances with
exactly 12 tasks were used for this data.
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beam beam & rooms all

# tasks gap time gap time gap time

1-20 0.054 0.86 0 0.31 0 0.36
21-30 1.31 23.83 1.232 22.02 1.205 22.91
31-40 8.635 82.76 6.907 75.49 7.153 74.81
41-50 24.252 145.38 22.848 141.94 22.864 143.54
51-60 50.574 231.33 48.111 228.45 48.463 229.69

Table C.4.: Comparing results for different lower bound tech-
niques when used in combination with the Depth
First strategy (refer to Section 4.2.1.1) and the
modified Chu’s lower bound technique as described
in Section 4.2.2.5. The Table shows the mean of
the optimality gaps, as well as the mean of the
time needed to solve the problem instances (with
a maximum time limit of 300 seconds) for each of
the three lower bound variants, aggregated by the
problem size. The best gap of each row is written
in bold font.
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D. Implementation in MiniZinc

In this section we will describe the most important and interesting parts of the
implemented model in the MiniZinc modelling language. If you are already familiar
with the Chapter 2 that describes the formal mathematical model of the I-PTPSP,
you will recognize many similarities in the MiniZinc model. If not, we recommend
reading it first as it will help to understand this section.

First of all, we need to define our input parameters which we will later obtain by
transforming the same JSON -file that is needed for the Branch and Bound algorithm
into a MiniZinc data file.

Listing D.1 describes some general parameters, like some global time input values
and the gamma-values needed for the objective function. These should be quite self
explanatory.

Listing D.1: MiniZinc model: general input parameters
1 % time parameters
2 int: Hunit; % time units per hour
3 int: Wtilde_start; % fundamental opening time
4 int: Wtilde_end; % fundamental closing time
5 % objective function parameters
6 float: gamma__extback;
7 float: gamma__lateness;
8 float: gamma__scatter;

Next, you can find all parameters related to resources in Listing D.2. Some of
these are redundant and could be computed based on other data that is provided
(e.g.: R__scatter could be easily obtained from phi__scatter). But this informa-
tion is already provided in the JSON files that serve as input for the Branch and
Bound algorithm, so there is no sense in throwing them away and calculating them
from scratch. Maybe we even gain some performance boost. An additional auxil-
iary variable that needed to be introduced is max_Wbar and Wbars. The minizinc
modeling language does not know lists or other types of ordered datastructures with
variable length [23]. Hence, these variables are needed to implement information
about the unavailability periods in arrays. This comes with one limitation: if there
are no unavailability periods at all, max_Wbar cannot be simply set to 0 without
adjusting the model. So it will be set to 1 in these cases.
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Listing D.2: MiniZinc model: input parameters related to re-
sources

1 int: n_R; % number of Resources
2 set of int: R = 1..(n_R); % set of resources
3 int: r__B; % index of the beam resource
4 int: r__P; % index of the proton

particle r.
5 int: r__C; % index of the carbon

particle r.
6 array[R] of int: R__id; % Resources’ IDs
7 array[R] of string: R__name; % Resources’ names
8 % set of resources which have an extended service window
9 set of int: Rhat;

10 % set of resources which have phi_r_scatter > 0
11 set of int: R__scatter;
12 % resources’ priorities to avoid unnecessary scattering
13 array[R] of float: phi__scatter;
14 % resources’ service window start times
15 array[R] of Wtilde_start..Wtilde_end: W__start;
16 % resources’ service window end times
17 array[R] of Wtilde_start..Wtilde_end: W__end;
18 % resources’ extended end times
19 array[R] of Wtilde_start..Wtilde_end: What__end;
20 % maximum number of poss. unavail. periods per res.
21 int: max_Wbar;
22 set of int: Wbars = 1..max_Wbar;
23 % Describes the starts of unavailability periods
24 array[R, Wbars] of Wtilde_start..Wtilde_end: Wbar__start;
25 % Describes the lengths of unavailability periods
26 array[R, Wbars] of 0..(Wtilde_end − Wtilde_start):

Wbar__dur;

Finally, as the last part of the input parameters, we find those that are related to
tasks in Listing D.3.

Listing D.3: MiniZinc model: input parameters related to tasks
1 int: tau; % number of tasks
2 set of int: T = 1..(tau); % set of all tasks
3 array[T] of int: T__id; % Tasks’ IDs
4 array[T] of string: T__name; % Tasks’ names
5 % Tasks’ durations
6 array[T] of 0..(Wtilde_end − Wtilde_start): p;
7 % Tasks’ initial starting times
8 array[T] of 0..Wtilde_end: Shat;
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9 % Tasks’ lower bound for their starting times
10 array[T] of 0..Wtilde_end: S__L;
11 % Tasks’ upper bound for their starting times
12 array[T] of 0..Wtilde_end: S__U;
13 % Set of the tasks’ required resources
14 array[T] of set of int: Q;
15 % Qbar[r] defines the set of all tasks that require res.

r
16 array[R] of set of int: Qbar;
17 % element P__start[t][r] denotes the start time relative

to the Tasks’s start time at which resource r is
needed

18 array[T, R] of 0..(Wtilde_end − Wtilde_start): P__start;
19 % element P__end[t][r] denotes the end time relative to

the Tasks’s start time at which resource r is needed
20 array[T, R] of 0..(Wtilde_end − Wtilde_start): P__end;
21 % P__dur = P__end[t][r] − P__start[t][r]
22 array[T, R] of 0..(Wtilde_end − Wtilde_start): P__dur;

The solution variables are defined in Listing D.4. S denotes the tasks’ starting
time. These are values we are looking for eventually. In addition, we defined some
helper variables, that come handy for defining the objective function and improve
the readability of the model. The domains of all these variables are bounded as
much as possible to restrict the solution space and, as a consequence, improve the
solver performance.

Listing D.4: MiniZinc model: solution variables
1 % tasks’ starting times
2 array[T] of var Wtilde_start..Wtilde_end: S;
3 % helper vars
4 % S_r_last denotes the last time resource r is needed
5 array[R] of var Wtilde_start..Wtilde_end: S__last;
6 % sigma denotes the delay of task t with respect to its

planned starting time Shat
7 array[T] of var 0..(Wtilde_end−Wtilde_start): sigma;

As already mentioned, the smaller the solution space, the better the solver per-
formance. Hence, as S__last is only needed for tasks in Rhat and R__scatter, we
can prune the solution space even more, by setting the other values of S__last to
a dummy value. This is done in Listing D.5.

Listing D.5: MiniZinc model: prune the solution space. Fix
unnecessary variables

1 constraint forall(r in R diff(Rhat union
R__scatter))(S__last[r] = Wtilde_start);
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For the next step, we need to define our helper variables. We can achieve this with
additional constraints. Listing D.6 restricts our S__last and Listing D.7 specifies
sigma. In addition, the last one also restricts our solution variable S to be within
its lower and upper bounds.

Listing D.6: MiniZinc model: define S__last
1 constraint
2 forall(r in (Rhat union R__scatter))(
3 forall(t in Qbar[r])(
4 S[t] + P__end[t,r] <= S__last[r]) /\
5 W__start[r] <= S__last[r] /\ S__last[r] <=

What__end[r]
6 );

Listing D.7: MiniZinc model: define sigma
1 constraint
2 forall(t in T)(
3 S[t] − Shat[t] <= sigma[t] /\
4 S__L[t] <= S[t] /\ S[t] <= S__U[t]
5 );

The maybe most complex and also most interesting constraint is the next one,
found in Listing D.8. We need to prevent the tasks from overlapping each other.
Furthermore, we need to make sure, that also the individual starting end ending
times as well as the unavailability periods of the resources are respected. Luckily,
there is a so called global constraint that helps us to do this. Global constraints
are generic constraints that are already defined in the MiniZincuniverse and not
only make complex constraints more readable but also help to improve the solver
performance as many solver-backends are able to implement these constraints very
efficiently. We use the global constraint called disjunctive(starts, durations)
which expects a list of starting points and durations that describe the given tasks
that shall not overlap.1 It also allows using durations of zero length (which will be
ignored) what we will use to also respect unavailability periods (which are of length
zero if not existent).

Listing D.8: MiniZinc model: prevent overlaps
1 constraint
2 forall(r in R where card(Qbar[r]) > 0)(
3 disjunctive(
4 % startpoints
5 [Wtilde_start] ++ % Resource start
6 [What__end[r]] ++ % Resource end

1Refer to the MiniZincDocumentation [25] for more information on disjunctive() in special or
global constraints in general.

121



7 [S[t] + P__start[t,r] | t in Qbar[r]] ++ % tasks
8 row(Wbar__start, r), % unavailability periods
9 % durations

10 [W__start[r]−Wtilde_start] ++ % Resource start
11 [Wtilde_end − What__end[r]] ++ % Resource end
12 [P__dur[t,r] | t in Qbar[r]] ++ % tasks
13 row(Wbar__dur,r)) % unavailability periods
14 );

Last but not least, we need to specify the objective function what is done in
Listing D.9. The implementation of the objective function looks almost exactly the
same as the definition in Section 2.3. We therefore just refer to that section for more
in-depth explanation. We did not divide the objective function by Hunit as this is
an additional calculation step and does not affect the minimization objective.

Listing D.9: MiniZinc model: objective function
1 solve
2 minimize (gamma__extback) ∗ sum(r in

Rhat)(max(S__last[r]−W__end[r],0)) +
3 (gamma__lateness) ∗ sum(t in T)(sigma[t]) +
4 (gamma__scatter) ∗ sum(r in R__scatter where

card(Qbar[r]) > 0)(phi__scatter[r] ∗
(S__last[r]−Wtilde_start−sum(t in
Qbar[r])(P__dur[t,r])));
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