
Graph Visualization

Yifan Hu and Martin Nöllenburg

Synonyms

• Graph Drawing
• Graph Layout
• Network Visualization

Definition

Graph visualization is an area of math-
ematics and computer science, at the
intersection of geometric graph theory
and information visualization. It is
concerned with visual representation
of graphs that reveals structures and
anomalies that may be present in the
data, and helps the user to understand
and reason about the graphs.

Overview

Graph visualization is concerned with
visual representations of graph or net-
work data. Effective graph visualization
reveals structures that may be present in
the graphs, and helps the users to under-
stand and analyze the underlying data.

A graph consists of nodes and edges.
It is a mathematical structure describing
relations among a set of entities, where
a node represents an entity, and an edge
exists between two nodes if the two cor-
responding entities are related.

A graph can be described by writing
down the nodes and the edges. For ex-
ample, this is a social network of people
and how they relate to each other:

{Andre ↔ Beverly, Andre ↔ Diane, An-
dre↔ Fernando, Beverly↔ Garth, Beverly↔
Ed, Carol ↔ Andre, Carol ↔ Diane, Carol ↔
Fernando, Diane ↔ Beverly, Diane ↔ Garth,
Diane ↔ Ed, Farid ↔ Aadil, Farid ↔ Latif,
Farid↔ Izdihar, Fernando↔ Diane, Fernando
↔ Garth, Fernando ↔ Heather, Garth ↔ Ed,

1

2 Yifan Hu and Martin Nöllenburg

Garth↔ Heather, Heather↔ Jane, Izdihar↔
Mawsil, Jane↔ Farid, Jane↔ Aadil, Latif↔
Aadil, Mawsil↔ Latif}.

This social network tells us that
“Farid” is a friend of “Aadil”, “Latif” is
a friend of “Aadil”, and so on. However,
this mathematical notation of the net-
work does not convey immediately the
structure of the network. On the other
hand, Fig. 1 shows a visualization of this
graph. We can see at a glance that this
graph has two clusters. This example
illustrates that graph visualization can
give us an overall sense of the data. It
reveals structures and anomalies, and
helps us to ask questions that can in turn
be answered through interacting with
the visualization itself, or by writing
algorithms to mine the data for evidence
seen in the visualization.

In this chapter, a graph G = (V,E)
consists of a set of nodes (vertices) V ,
and a set of edges E, which are pairs of
nodes. Denote by n = |V | and m = |E|
the number of nodes and edges, respec-
tively. If there is an edge from node i to
node j, we denote that as i→ j. If the
graph is undirected, then we denote the
edge as i↔ j, and call i and j neighbor-
ing (or adjacent) nodes.

Node-Link Diagrams and
Layout Aesthetics

By far the most common type of graph
layout is the so-called node-link dia-
gram as seen in Fig. 1. Here nodes are
represented by points or simple geomet-
ric shapes like ellipses or rectangles,
whereas edges are drawn as simple
curves linking the corresponding pair
of nodes. In this chapter we restrict our
attention to node-link diagrams; for al-

ternative types of graph representations
see the survey of von Landesberger et al
(2011).

The algorithmic graph layout prob-
lem consists in finding node positions
in the plane (or in 3-dimensional space)
and edge representations as straight lines
or simple curves such that the resulting
layout faithfully depicts the graph and
certain aesthetic quality criteria are
satisfied and optimized. We list the
most common criteria. The influence of
most of them on human graph reading
tasks has been empirically confirmed
(Purchase 1997).

• crossings: the fewer edge crossings
the better (a layout without crossings
exists only for planar graphs)

• bends: the fewer edge bends the bet-
ter; ideally edges are straight-line

• edge lengths: use as uniform edge
lengths as possible

• angular resolution: angles between
edges at the same node should be
large

• crossing angles angles of pairs of
crossing edges should be large

• area and aspect ratio: the layout
should be as compact as possible

• edge slopes: few and regularly
spaced edge slopes should be used
(e.g., orthogonal layouts use only
horizontal and vertical edges)

• neighborhood: neighbors of each
node in the graph should be neigh-
bors in the layout as well

The above list is not comprehensive
and there may be additional application-
specific constraints and criteria or global
aspects such as displaying symmetries.
Moreover, some criteria may contradict
each other. Typically only a subset of cri-
teria is optimized by a graph layout al-

Graph Visualization 3

�����

�����

�����

�������

������

�����

�����

��������
�����

�������
�����

�������
��

����

Fig. 1 Graph visualization of a small social network.

gorithm and trade-offs between different
criteria need to be considered.

Key Research Findings

Undirected Graph Drawing

The layout algorithms and techniques
presented in this section do not make
use of edge directions, but they can
obviously be applied to both undirected
and directed graphs. Undirected graphs
are often represented by node-link
diagrams with straight-line edges. We
denote by xi the location of node i in
the layout. Here xi is a point in 2- or
3-dimensional Euclidean space.

Spring embedders (Eades 1984;
Fruchterman and Reingold 1991;
Kamada and Kawai 1989) are the
most widely used layout algorithms
for undirected graphs. They attempt
to find aesthetic node placement by
representing the problem as one of
minimizing the energy of a physical
system. The guiding principles are that
nodes that are connected by an edge
should be near each others, while no
nodes should be too close to each other
(cf. neighborhood aesthetic). Depending
on the exact physical model, we could
further divide the spring embedders into

two types. For convenience, we call the
first type Spring-electrical model, and
the second type Spring/Stress model.

Spring-electrical model

This model was first introduced by
Peter Eades (1984). A widely used
variant, which is given below, is due to
Fruchterman and Reingold (1991). The
model is best understood as a system of
springs and electrical charges, therefore
we name this as the Spring-electrical
model, to differentiate the spring/stress
model that relies on springs only, even
though historically both are called
spring embedders.

In this model, each edge is replaced
by a spring with an ideal length of 0,
which pulls nodes that share an edge
together. At the same time, imagine that
nodes have the same type of electrical
charges (e.g., positive) that push them
apart. Specifically, there is an attractive
spring force exerted on node i from its
neighbor j, which is proportional to
the squared distance between these two
nodes,

Fa(i, j) =−
∥∥xi− x j

∥∥2

K
xi− x j∥∥xi− x j

∥∥ , i↔ j,

(1)

4 Yifan Hu and Martin Nöllenburg

where K is a parameter related to the
nominal edge length of the final layout.
The repulsive electrical force exerted on
node i from any node j is inversely pro-
portional to the distance between these
two nodes,

Fr(i, j) =
K2∥∥xi− x j‖

xi− x j∥∥xi− x j
∥∥ , i 6= j.

(2)
The spring-electrical model can be

solved with a force-directed procedure
by starting from an initial (e.g., random)
layout, calculating the combined attrac-
tive and repulsive forces on each node,
and moving the nodes along the direc-
tion of the force for a certain step length.
This process is repeated, with the step
length decreasing every iteration, until
the layout stabilizes. This procedure is
formally stated in Algorithm 1.

The spring-electrical model as de-
scribed by equations 1-2 cannot be used
directly for large graphs. The repulsive
force exists on all pairs of nodes, so the
computational complexity is quadratic
in the number of nodes. Force approx-
imation techniques based on space
decomposition data structure, such as
the Barnes-Hut algorithm, can be used
to approximate the repulsive forces
efficiently (Tunkelang 1999; Quigley
2001; Hachul and Jünger 2004).

For large graphs, the force-directed
algorithm, which uses the steepest de-
scent process and re-positions one node
at a time to minimize the energy locally,
is likely to be stuck at local minima,
because the physical system of springs
and electrical charges can have many lo-
cal minimum configurations. This can be
overcome by the multilevel technique. In
this technique, a sequence of smaller and
smaller graphs are generated from the

original graph, each captures the essen-
tial connectivity information of its par-
ent. The force-directed algorithm can be
applied to this sequence of graphs, from
small to large, each time using the layout
of the smaller graph as the start layout
for the larger graph. Combining the mul-
tilevel algorithm and the force approx-
imation technique, algorithms based on
the spring-electrical model can be used
to layout graphs with millions of nodes
and edges in seconds (Walshaw 2003;
Hu 2005).

Spring/Stress Model

The spring model, also know as the
stress model, assumes that there are
springs connecting all pairs of nodes in
the graph, with the ideal spring length
equal to the graph theoretical distance
between the nodes. The spring energy,
also known as the stress, of this spring
system is

∑
i6= j

wij
(∥∥xi− x j

∥∥−dij
)2, (3)

where dij is the ideal distance between
nodes i and j. The layout that minimizes
the above stress energy is an optimal lay-
out of the graph. Typically wij = 1/dij

2.
The spring model was proposed by

Kamada and Kawai (1989) in graph
drawing, although it dates back to Mul-
tidimensional Scaling (MDS) (Kruskal
1964; Kruskal and Seery 1980), and
the term MDS is sometimes used to
describe the embedding process based
on the stress model.

There are several ways to minimize
the spring energy (3). A force-directed
algorithm could be applied, where the

Graph Visualization 5

Algorithm 1 ForceDirectedAlgorithm(G,x, tol,K)

1 input: graph G = (V,E), initial positions x, tolerance tol, and nominal edge length K
2 set step = initial step length
3 repeat
4 x0 = x
5 for (i ∈V) {
6 f = 0 // f is a 2/3D vector
7 for (j↔ i, j ∈V) f ← f +Fa(i, j) // attractive force, see equation (1)
8 for (j 6= i, j ∈V) f ← f +Fr(i, j) // repulsive force, see equation (2)
9 xi← xi + step∗ (f/|| f ||) // update position of node i

10 }
11 until (||x− x0||< tol ∗K)
12 return x

force exerted on node i from all other
nodes j (j 6= i) is

F(i, j)=−wij(
∥∥xi− x j

∥∥−dij)
xi− x j∥∥xi− x j

∥∥ .
(4)

In recent years the stress majorization
technique (Gansner et al 2004) became
a preferred way to minimize the stress
model due to its robustness.

In the stress majorization pro-
cess, systems of linear equations are
repeatedly solved,

LwX = Lw,d Y (5)

here X and Y are matrices of dimension
n× 2, and the weighted Laplacian ma-
trix Lw is positive semi-definite and has
elements

(Lw)ij =

{
∑l 6=i wil, i = j
−wij, i 6= j (6)

and the right-hand-side Lw,d y has ele-
ments

(
Lw,d y

)
i =∑

l 6=i
wil dil(yi−yl)/‖yi− yl‖ .

(7)
Here matrix Y is the current best guess of
the optimal layout in 2D. The solution X
serves as Y in the next iteration. A good
initial layout Y is often helpful to achieve
a good final layout.

On large graphs, the stress model (3)
is not scalable. Formulating the model
requires computing the all-pairs shortest
path distances, and a quadratic amount
of memory to store the distance matrix.
Furthermore the solution process has
a computational complexity at least
quadratic in the number of nodes. In
recent years there have been attempts
(Brandes and Pich 2007; Gansner et al
2013; Ortmann et al 2016) at developing
more scalable ways of drawing graphs
that still satisfy the user specified edge
length as much as possible, without
having to carry out the all-pairs shortest
path distances.

6 Yifan Hu and Martin Nöllenburg

Directed graph drawing
algorithms

Directed graphs express relations
that have a source and a target, e.g.,
senders and recipients of messages or
hierarchical relationships in an orga-
nization. Using arrowheads to indicate
directions, any undirected graph layout
algorithm can be used for visualizing
directed graphs. Yet, often the edge
directions carry important information
that should directly influence the layout
geometry. In this section we discuss
layout algorithms that make use of edge
directions.

Layered graph layout

Layered graph layout is particularly
useful for hierarchical graphs, which
have no or only few cyclic relationships.
For such graphs it is a natural to ask
for a drawing, in which all or most
edges point into the same direction,
e.g., upward. A classic algorithmic
framework for upward graph layouts
is layered graph drawing, often also
known as Sugiyama layout named after
the fundamental paper by Sugiyama
et al (1981). Each node is assigned to a
layer and for each edge it is required that
the layer of the source node is below the
layer of the target node. For a detailed
survey of layered graph layout methods
see Healy and Nikolov (2014).

The process of computing layered
graph layouts consists of a series of four
steps. Each step influences the input to
the subsequent steps and thus also the
achievable layout quality.

1. Cycle removal. If the graph contains
directed cycles, this step determines a

small set of so-called feedback edges
whose reversal yields an acyclic
graph. The subsequent steps will
draw this acyclic graph and in the
end of the process the original edge
directions are restored. Finding a
minimum set of edges to reverse
is equivalent to finding a so-called
minimum feedback arc set, a classical
NP-hard problem (Karp 1972).
Several heuristics and approxima-
tions algorithms can be used to
find small feedback edge sets in
practice (Gansner et al 1993; Eades
et al 1993).

2. Layer assignment. This step assigns
each node to a horizontal layer,
which can be thought of as an
integer y-coordinate, such that all
edges point upward. Multiple nodes
can be assigned to the same layer.
Typical goals in this phase are to
find compact layer assignments that
use few layers and distribute nodes
evenly to the layers, while ensuring
that all edges point from a lower
layer to a higher layer. After the layer
assignment, some edges may span
several layers. Such long edges are
usually subdivided by dummy nodes
to guarantee that for the next step all
edges connect nodes in neighboring
layers. In order to keep edges short, a
natural goal is to minimize the num-
ber of dummy nodes needed. Suitable
layer assignments can be computed
efficiently for most optimization
goals, e.g., minimizing the number of
layers based on topological sorting
of the graph. For compact layouts
with few dummy nodes and bounds
on the number of nodes per layer the
ILP-based algorithm of Gansner et al
(1993) provides good results.

Graph Visualization 7

3. Crossing minimization. The cross-
ing minimization step needs to
determine the node order in each
layer such that the number of edge
crossings among the edges between
two neighboring layers is minimized.
Crossing minimization between
two layers is again an NP-hard
optimization problem (Eades and
Wormald 1994). Several heuristics
and (non-polynomial) exact algo-
rithms for minimizing crossings
between neighboring layers are
known and evaluated in the experi-
mental study by Jünger and Mutzel
(1997). For computing node orders
in all layers usually a layer-by-layer
sweep method is applied that cycles
through all layers and optimizes
node orders in neighboring layers,
but global multi-level optimization
methods exist as well (Chimani et al
2011).

4. Edge routing. Once layers and node
orders in each layer are fixed it
remains to assign x-coordinates to
all nodes (including dummy nodes)
that respect the node orders and
optimize the resulting edge shapes. A
typical optimization goal is to draw
edges as vertical as possible with
few bends for long edges (or with
at most two bends with a strictly
vertical middle segment) while main-
taining a minimum node spacing in
each layer and avoiding node-edge
overlaps. Algorithms for coordinate
assignment either use mathematical
programming (Sugiyama et al 1981;
Gansner et al 1993) or a linear-time
sweep method (Brandes and Köpf
2002).

Layouts for Specific Graph
Classes

Previous sections covered visualization
algorithms for general undirected and
directed graphs. There is a variety of
tailored algorithms for more specific
graph classes, including prominent ex-
amples such as trees and planar graphs.
These algorithms exploit structural
properties when optimizing certain
layout aesthetics. It is beyond the scope
of this chapter to cover such specific
graph classes and their visualization
algorithms. Rather we refer to Rusu
(2013) for a survey on tree layout and
to Duncan and Goodrich (2013) and
Vismara (2013) for surveys on planar
graph layout. Further general books on
graph drawing algorithms (Di Battista
et al 1999; Tamassia 2013) contain
chapters on specific layout algorithms.

Examples of Application –
Graph Visualization Software

There are many software packages
and frameworks for visualizing and
drawing graphs. A non-exhaustive list of
non-commercial ones are given below.
We divide the list into two parts. The
follow are packages that can handle
relatively large graphs

• Cytoscape is a Java based software
platform particularly popular with the
biology community for visualizing
molecular interaction networks and
biological pathways.

• Gephi is a Java based network anal-
ysis and visualization software pack-
age which is able to handle static and

8 Yifan Hu and Martin Nöllenburg

dynamic graphs. It is supported by a
consortium of french organizations.

• Graphviz is one of the oldest open-
source graph layout and rendering
engines, developed at AT&T Labs.
It is written in C and C++ and hosts
layout algorithms for both undirected
(multilevel spring-electrical and
stress models) and directed graphs
(layered layout), as well as various
graph theory algorithms. Graphviz
is incorporated in Doxygen, and
available via R and Python.

• OGDF is a C++ class library for auto-
matic layout of diagrams. Developed
and supported by German and Aus-
tralian researchers, it contains spring-
electrical algorithms with fast multi-
pole force approximation, as well as
layered, orthogonal and planar layout
algorithms.

• Tulip is a C++ framework originating
from University of Bordeaux I for de-
veloping interactive information vi-
sualization applications. One of the
goals of Tulip is to facilitate the reuse
of components; it integrates OGDF
graph layout algorithms as plugins.

The following are a few other free
software each with its own unique merit,
but not designed to work on very large
graphs. For example,

• Dunnart is a C++ diagram editor de-
veloped at Monash University, Aus-
tralia. Its unique feature is the ability
to layout diagrams with constraints.

• D3.js is a popular JavaScript library
for manipulating web documents
based on data. It contains spring-
electrical model based layout
modules solved by a force directed
algorithm. Since D3 works with
SVG, it cannot scale beyond a few
thousand graphical objects. However,

a WebGL based JavaScript library
VivaGraph could be used for larger
graph visualization in the browser.

Future Directions for Research

Since the 1980’s, a great deal of progress
has been made in laying out graphs.
The key enabling techniques are fast
force approximations, the multilevel ap-
proach, and techniques for the efficient
solution of the stress models. In addi-
tion, progress in the speed of GPU and
graphics library also made it possible to
display graphs with millions of nodes
and edges. Furthermore, there has also
been progress in abstracting the visual
complexity of large graphs, for example,
by grouping similar nodes together,
and representing certain subgraphs such
as cliques as a motif. But as graphs
become increasingly large, complex,
and time-dependent, there are a number
of challenges to be addressed.

The Increasing Size of the
Graphs

The size of graphs is increasing expo-
nentially over the years (Davis and Hu
2011). Social networks are one area
where we have graphs of unprecedented
size. As of late 2017, Facebook, for
example, has over 2.07 billion monthly
active users, while Twitter has over
330 million. Other data sources may
be smaller, but just as complex. For
instance, Wikipedia currently has 5.5
million interlinked articles, while Ama-
zon offers around 400 million items,
with recommendations connecting each

Graph Visualization 9

item to other like-items. All these pale in
comparison when we consider that there
are 100 billion interconnected neurons
in a typical human brain, and trillions of
websites on the Internet. Each of these
graphs evolves over time. Furthermore,
graphs like these tend to exhibit the
small-world characteristic, where it is
possible to reach any node from any
other in a small number of hops. All
these features present challenges to
existing algorithms (Leskovec et al
2009).

The unique features of these networks
call for rethinking of the algorithms and
visual encoding approaches. The large
size of some networks means that find-
ing a layout for such a graph can take
hours even with the fastest algorithms
available. There has been work in using
GPUs and multiple CPUs (e.g., (Ingram
et al 2009)) to speed up the computation
by a factor of 10–100.

Even though state of the art graph lay-
out algorithms can handle graphs with
many millions of nodes and billions of
edges, with so many nodes and edges,
the traditional node-link diagram repre-
sentation is at its limit. A typical com-
puter screen only has a few million pix-
els, and we are running out of pixels just
to render every node.

One solution is to use a display with
high resolution, including display walls,
and various novel ways to manipulate
such a display (e.g., gesture or touch
based control). But even the largest pos-
sible display is unlikely to be sufficient
for rendering some of the largest social
networks. One estimate puts human eyes
as having a resolution of just over 500
million pixels. Therefore even if we can
make a display with higher resolution,
our eyes can only make partial use of
such a display at any given moment.

Since the purpose of visualization is
to help us to understand the structures
and anomalies in the data, for very large
graphs, it is likely that we need algo-
rithms to discover structures and anoma-
lies first (Akoglu et al 2010), and display
these in a less cluttered form, but allow-
ing the human operator to drill down to
details when needed.

Node-link diagram representation,
while most common, may not be the
most user-friendly to the general public,
nor is it the most pixel-efficient. Other
representations, such as a combination
of node-link diagrams and matrices
(Henry et al 2007), have been proposed.

Large complex networks call for fast
and interactive visualization systems
to navigate around the massive amount
of information. A number of helpful
techniques for exploring graphs interac-
tively, such as link-sliding (Moscovich
et al 2009), have been proposed. Further
research in this area, particularly at a
scale that helps to make sense out of
networks of billions of nodes and edges,
are essential in helping us to understand
large network data.

Finally, the stress model is currently
the best algorithm for drawing graphs
with predefined edge length. Improving
its high computation and memory com-
plexity is likely to remain an active area
of research as well.

Time-varying and Complex
Graphs

All the large and complex networks
mentioned earlier are time-evolving.
How to visualize such dynamic net-
works is an active area of research
(Frishman and Tal 2007), both in

10 Yifan Hu and Martin Nöllenburg

terms of graph layout (van Ham and
Wattenberg 2008),and in displaying
such graphs. For example, time-varying
graph can be displayed as an animation,
or as small multiples. Researchers have
been studying Archambault and Pur-
chase (2016) whether to use one form
or the other, when measured in terms of
preservation of the users’ mental maps,
and in improving comprehension and
information recall. Dynamic network
visualization will likely continue to be
an area of strong interest.

Visualizing multivariate graphs is
another challenging area. In a multi-
variate graph, each node and edge may
be associated with several attributes.
For example, in a social network, each
node is a person with many possible
attributes. Each edge represents a
friendship which could entail multiple
attributes as well, such as the type of
friendship (e.g., school, work, church),
and the length and strength of the
friendship. Displaying these information
in a way that helps our understanding
of all these complex attributes is a chal-
lenge. It requires careful consideration
of both visual design and interaction
techniques (Wattenberg 2006; Kerren
et al 2014).

References

Akoglu L, McGlohon M, Faloutsos C (2010)
Oddball: Spotting anomalies in weighted
graphs. In: Proceedings of the 14th Pacific-
Asia conference on Advances in Knowledge
Discovery and Data Mining (PAKDD 2010)

Archambault D, Purchase HC (2016) Can ani-
mation support the visualisation of dynamic
graphs? Inf Sci 330(C):495–509

Brandes U, Köpf B (2002) Fast and simple hor-
izontal coordinate assignment. In: Mutzel
P, Jünger M, Leipert S (eds) Graph Draw-

ing (GD’01), Springer-Verlag Berlin Hei-
delberg, LNCS, vol 2265, pp 31–44

Brandes U, Pich C (2007) Eigensolver methods
for progressive multidimensional scaling of
large data. In: Proc. 14th Intl. Symp. Graph
Drawing (GD ’06), LNCS, vol 4372, pp 42–
53

Chimani M, Hungerländer P, Jünger M, Mutzel
P (2011) An SDP approach to multi-level
crossing minimization. In: Algorithm Engi-
neering and Experiments (ALENEX’11), pp
116–126

Davis TA, Hu Y (2011) University of Florida
Sparse Matrix Collection. ACM Transaction
on Mathematical Software 38:1–18

Di Battista G, Eades P, Tamassia R, Tollis IG
(1999) Algorithms for the Visualization of
Graphs. Prentice-Hall

Duncan CA, Goodrich MT (2013) Planar or-
thogonal and polyline drawing algorithms.
In: Tamassia R (ed) Handbook of Graph
Drawing and Visualization, CRC Press,
chap 7, pp 223–246

Eades P (1984) A heuristic for graph drawing.
Congressus Numerantium 42:149–160

Eades P, Wormald NC (1994) Edge crossings in
drawings of bipartite graphs. Algorithmica
11:379–403

Eades P, Lin X, Smyth WF (1993) A fast
and effective heuristic for the feedback arc
set problem. Information Processing Letters
47(6):319–323

Frishman Y, Tal A (2007) Online dynamic
graph drawing. In: proceeding of Euro-
graphics/IEEE VGTC Symposium on Visu-
alization (EuroVis), pp 75–82

Fruchterman TMJ, Reingold EM (1991) Graph
drawing by force directed placement. Soft-
ware - Practice and Experience 21:1129–
1164

Gansner ER, Koutsofios E, North SC, Vo KP
(1993) A technique for drawing directed
graphs. IEEE Trans Software Engineering
19(3):214–230

Gansner ER, Koren Y, North SC (2004) Graph
drawing by stress majorization. In: Proc.
12th Intl. Symp. Graph Drawing (GD ’04),
Springer, LNCS, vol 3383, pp 239–250

Gansner ER, Hu Y, North SC (2013) A maxent-
stress model for graph layout. IEEE Trans
Vis Comput Graph 19(6):927–940

Hachul S, Jünger M (2004) Drawing large
graphs with a potential field based multi-
level algorithm. In: Proc. 12th Intl. Symp.

Graph Visualization 11

Graph Drawing (GD ’04), Springer, LNCS,
vol 3383, pp 285–295

van Ham F, Wattenberg M (2008) Centrality
based visualization of small world graphs.
Computer Graphics Forum 27(3):975–982

Healy P, Nikolov NS (2014) Hierarchical draw-
ing algorithms. In: Tamassia R (ed) Hand-
book of Graph Drawing and Visualization,
CRC Press, chap 13, pp 409–454

Henry N, Fekete JD, McGuffin MJ (2007)
Nodetrix: a hybrid visualization of social
networks. IEEE Transactions on Visualiza-
tion and Computer Graphics 13:1302–1309

Hu Y (2005) Efficient and high quality force-
directed graph drawing. Mathematica Jour-
nal 10:37–71

Ingram S, Munzner T, Olano M (2009) Glim-
mer: Multilevel mds on the gpu. IEEE
Transactions on Visualization and Computer
Graphics 15:249–261

Jünger M, Mutzel P (1997) 2-layer straightline
crossing minimization: Performance of ex-
act and heuristic algorithms. J Graph Algo-
rithms Appl 1(1):1–25

Kamada T, Kawai S (1989) An algorithm for
drawing general undirected graphs. Infor-
mation Processing Letters 31:7–15

Karp RM (1972) Reducibility among combi-
natorial problems. In: Miller RE, Thatcher
JW, Bohlinger JD (eds) Complexity of Com-
puter Computations, pp 85–103, DOI 10.
1007/978-1-4684-2001-2 9

Kerren A, Purchase H, Ward MO (eds)
(2014) Multivariate Network Visualization:
Dagstuhl Seminar # 13201, Dagstuhl Castle,
Germany, May 12-17, 2013, Revised Dis-
cussions, Lecture Notes in Computer Sci-
ence, vol 8380, Springer International Pub-
lishing

Kruskal JB (1964) Multidimensioal scaling by
optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika 29:1–27

Kruskal JB, Seery JB (1980) Designing net-
work diagrams. In: Proceedings of the First
General Conference on Social Graphics, U.
S. Department of the Census, Washington,
D.C., pp 22–50, bell Laboratories Technical
Report No. 49

von Landesberger T, Kuijper A, Schreck T,
Kohlhammer J, van Wijk JJ, Fekete JD,
Fellner DW (2011) Visual analysis of
large graphs: State-of-the-art and future re-
search challenges. Computer Graphics Fo-
rum 30(6):1719–1749

Leskovec J, Lang K, Dasgupta A, Mahoney M
(2009) Community structure in large net-
works: Natural cluster sizes and the ab-
sence of large well-defined clusters. Internet
Mathematics 6:29–123

Moscovich T, Chevalier F, Henry N, Pietriga E,
Fekete J (2009) Topology-aware navigation
in large networks. In: CHI ’09: Proceedings
of the 27th international conference on Hu-
man factors in computing systems, ACM,
New York, NY, USA, pp 2319–2328

Ortmann M, Klimenta M, Brandes U (2016)
A sparse stress model. In: Graph Draw-
ing and Network Visualization - 24th In-
ternational Symposium, GD 2016, Athens,
Greece, September 19-21, 2016, Revised
Selected Papers, pp 18–32

Purchase HC (1997) Which aesthetic has the
greatest effect on human understanding? In:
Proc. 5th Intl. Symp. Graph Drawing (GD
’97), Springer-Verlag, LNCS, pp 248–261

Quigley A (2001) Large scale relational in-
formation visualization, clustering, and ab-
straction. PhD thesis, Department of Com-
puter Science and Software Engineering,
University of Newcastle, Australia

Rusu A (2013) Tree drawing algorithms. In:
Tamassia R (ed) Handbook of Graph Draw-
ing and Visualization, CRC Press, chap 5,
pp 155–192

Sugiyama K, Tagawa S, Toda M (1981) Meth-
ods for visual understanding of hierarchical
systems. IEEE Trans Systems, Man and Cy-
bernetics SMC-11(2):109–125

Tamassia R (2013) Handbook of Graph
Drawing and Visualization. Chapman &
Hall/CRC

Tunkelang D (1999) A numerical optimization
approach to general graph drawing. PhD
thesis, Carnegie Mellon University

Vismara L (2013) Planar straight-line drawing
algorithms. In: Tamassia R (ed) Handbook
of Graph Drawing and Visualization, CRC
Press, chap 6, pp 193–222

Walshaw C (2003) A multilevel algorithm for
force-directed graph drawing. J Graph Al-
gorithms and Applications 7:253–285

Wattenberg M (2006) Visual exploration of
multivariate graphs. In: Proceedings of the
SIGCHI Conference on Human Factors in
Computing Systems, ACM, New York, NY,
USA, CHI ’06, pp 811–819

	Graph Visualization
	Yifan Hu and Martin Nöllenburg
	Synonyms
	Definition
	Overview
	Node-Link Diagrams and Layout Aesthetics

	Key Research Findings
	Undirected Graph Drawing
	Directed graph drawing algorithms
	Layouts for Specific Graph Classes

	Examples of Application – Graph Visualization Software
	Future Directions for Research
	The Increasing Size of the Graphs
	Time-varying and Complex Graphs

	References

