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Abstract

The multimodal home healthcare scheduling (MHS) problem tackled in this thesis is modelled
based on the operational process of a Viennese home healthcare provider. The problem is to find
an assignment of jobs to nurses as well as the order in which these jobs are performed by each
nurse under consideration of contractual and legal constraints and preferences as well as travel
time based on the selected mode of transport.

The existing approach by the Austrian Institute of Technology is part of the project Carelog,
an automatic solving architecture to create reasonably good schedules based on constraint pro-
gramming and variable neighbourhood search. The focus of this thesis was to implement several
different metaheuristic approaches into the existing framework to solve one day real world in-
stances and compare the results with the existing approach.

Three metaheuristics have been selected and implemented based on experiences with them
on related problems, the vehicle routing problem with time windows and the nurse rostering
problem. First a simulated annealing hyper heuristic, a general optimization approach using
a set of so-called low-level heuristics, was implemented. This approach yielded similarly good
results compared to the existing approach in most of the tested instances. The second heuristic is
a so-called memetic algorithm. This population-based approach known for its good performance
when tackling related problems achieved the best results in all test instances within a relatively
short amount of time and provided an in-depth view into the structure of good solutions. The
third approach, the scatter search, is also a population-based approach using more deterministic
techniques in contrast to memetic algorithm. Results show that this metaheuristic needs high
runtimes to achieve a comparable solution quality of solutions and indicate that this approach is
not the best choice for this kind of problem.

In various tests the impact of parameter and design decisions on the performance of the
heuristics were observed and documented. Additionally a comparison with the existing ap-
proach is provided using real world instances. The results show that the memetic algorithm
performs best. Also in terms of their applicability in praxis, the MA provided the most satisfy-
ing solutions.
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Kurzfassung

Das multimodal home healthcare scheduling (MHS) Problem beschäftigt sich mit der Zuwei-
sung von HeimhelferInnen zu PatientInnen unter Berücksichtigung von Präferenzen sowie ge-
setzlicher und vertraglicher Bestimmungen als auch mit der Erstellung von Touren anhand der
zuvor festgelegten Zuteilung. Im Zuge des Projekts CareLog des Austrian Institute of Techno-
logy (AIT) wurde bereits ein Framework zur automatisierten Lösung eines solchen Problems
anhand der Fallstudie der Organisation Sozial Global entwickelt. Untersucht wurde das Lösen
von Ein-Tages-Problemen anhand einer vom AIT entwickelten Zielfunktion. In dieser Arbeit
werden die weiteren entwickelten Lösungsmethoden, die in das bestehende Framework imple-
mentieren wurden, beschrieben und mit dem vorhandenen Lösungsansatz verglichen.

Da das MHS mit den gut untersuchten vehicle routing problem with time windows und dem
nurse rostering problem verwandt ist, wurden drei Lösungsansätze aus diesem Bereich ausge-
wählt und an das MHS angepasst. Die erste Metaheuristik ist eine simulated annealing hyper
heuristic, welche mittels einer Menge an so genannten low-level heuristics eine gute Lösung
sucht. Bereits dieser Ansatz zeigte vergleichbar gute Ergebnisse mit dem existierenden Ansatz.
Der zweite Lösungsansatz ist ein Populations-basierter, ein so genannter memetic algorithm.
Dieser erzielte die besten Ergebnisse bereits nach kurzer Zeit. Der dritte Ansatz ist ebenfalls ein
Populations-basierter, ein so genannter scatter search, der deterministischere Techniken anwen-
det als der zuvor genannte memetic algorithm. Die Resultate zeigen jedoch, dass dieser Ansatz
sehr hohe Laufzeiten benötigt, um vergleichbar gute Ergebnisse zu erzielen.

In einer Vielzahl an Tests wurden Entscheidungen bezüglich Parameter und Methoden auf
ihre Auswirkung auf die Leistung der Ansätze überprüft sowie der bereits existierende Ansatz
mit den in dieser Arbeit Beschriebenen anhand von Instanzen aus der Praxis verglichen. Die
Ergebnisse zeigen, dass vor allem der memetic algorithm sehr gute Ergebnisse erzielt. Auch im
Bezug auf die praktische Verwertbarkeit liefert der memetic algorithm die besten Lösungen.
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CHAPTER 1
Introduction

The aim of this thesis is to adapt and evaluate metaheuristic approaches of related problems for
a multimodal home-healthcare scheduling (MHS) problem. As the average age is increasing and
patients prefer to be nursed at home it is of great significance to solve big real world instances
of this problem in an adequate amount of time. The MHS problem consist of finding an assign-
ment of home-care staff (nurses) to customers (patients) as well as an ordered tour based on the
assignment. In addition to time windows for services provided by a nurse, contractual and legal
issues have to be considered which add an additional degree of complexity to the problem. Also
multimodality is considered, where nurses have different travel times caused by their mode of
transport (e.g. car, public transport). The focus of this work lies on solving and optimizing one
day instances of the MHS problem.

The implementation is part of the project CareLog1 of the Austrian Institute of Technology
(AIT) in cooperation with Sozial Global, ITS Vienna Regions and ilogs. The problem descrip-
tion is based on the working procedures of Sozial Global, a Vienna based Home-Healthcare
company. However, a focus of this project is to provide a flexible solving architecture which can
be used by other Home-Healthcare companies with a minimal grade of adaptation needed.

The current scheduling task is performed by a human scheduler using the planning tools pro-
vided by the company ilogs. As these schedules rely on the huge expertise of the planning staff,
an automatic scheduling approach should help them by providing reasonable good schedules for
further adaptation. Additionally the consideration of travel times and multimodality should help
to improve the schedules, as the current (human) procedures do only consider static travel times.

Research in the field of home health care (HHC) problems started around 1997/98 with the
work of Begur et al. [4] and Cheng and Rich [22]. Begur et al. describe a decision support
system for a home-healthcare company in the USA using a model which does not consider time
windows.

Cheng and Rich present a mixed integer programming (MIP) formulation as well as a heuris-
tic approach to tackle an HHC problem. In their problem definition they distinguish between

1The project CareLog is partially funded by the Austrian Federal Ministry for Transport, Innovation and Tech-
nology (BMVIT) within the strategic programme I2VSplus
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full-time and half-time nurses and consider lunch-breaks. Their approach consists of a ran-
domized greedy algorithm to construct a first solution. In a second step the algorithm removes
assignments of two nurses with at least one of those nurses working overtime while fixing all
other patient to nurse assignments. The greedy algorithm is then started again on this partial
solution. The approach is evaluated using a set of randomly generated instances with 4 nurses
and 10 patients where optimal solutions are known and a set of three larger instances (up to 300
nurses and 900 patients). The authors were able to generate solutions for two out of the three
large data sets using their method. For the random instances they found the optimum for 17 of
the 40 test instances in less then a second compared to the exact approach with runtimes between
3 to 20 minutes.

Bertels and Fahle [8] use a combination of linear programming (LP), constraint program-
ming (CP) and simulated annealing as well as tabu search based metaheuristics. Considering
problem instances for a single day with 20 to 50 nurses and from 111 to 326 jobs, the focus
of their work is to provide reasonable solutions in relatively short time (600 to 840 seconds
per instance). They use a combination of LP and CP to create initial solutions, which are then
improved using metaheuristics and a solution pool. The main differences to our problem formu-
lation are the missing additional soft constraints (only preferred time windows are considered)
and the missing multimodality aspect.

Eveborn et al. [28] use a set-partitioning formulation to provide a flexible architecture and
solve the problem using repeated matching. Starting from an initial matching, this approach
iteratively creates a new perfect matching by local improvements and splitting until a predefined
termination condition is reached. Their problem definition also considers multimodality and
contains many constraints of this work but do not include preferred starting times or preferences.
However, the instances they use are rather small (up to 21 nurses and 123 jobs). Based on their
results, Eveborn et al. reported that the travelling time savings of their approach are about 20%
(on a moderate guess) compared to solutions made by the human counterpart.

Rasmussen et al. [46] formulate the problem also as a set partitioning problem and describe
a branch-and-price approach. Their model incorporates connected visits (dependencies on the
order of the tour) but allows some jobs to be left unassigned using a priority system. Their tests
use real-world instances with up to 15 nurses and 150 jobs.

Based on the work in this thesis a journal article has been submitted:
Gerhard Hiermann, Matthias Prandtstetter, Andrea Rendl, Jakob Puchinger, and Günther R.
Raidl. Metaheuristics for solving a Multimodal Home-Healthcare Scheduling Problem, submit-
ted 2012.

Outline of this thesis

The MHS is strongly related to two other problems, the vehicle routing problem with time win-
dows (VRPTW) and the nurse rostering problem (NRP), so chapter 2 will give a description of
these problems, followed by a more detailed problem definition of the MHS. The next chapter
will provide an introduction to the applied heuristic approaches and gives an overview of related
work done for the VRPTW and NRP. In chapter 4 the existing approach including the objec-
tive function, the solution generation as well as the already implemented metaheuristic will be
discussed in detail. Chapter 5 will then describe the implemented metaheuristics this thesis is
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focused on and provides an in-depth view into these algorithms. The experiments, including the
preliminary parameter tests as well as the final comparison are provided in chapter 6. In the final
chapter 7 the thesis is closed with concluding remarks.
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CHAPTER 2
Description of the Problem

An MHS problem can be described as a combination of a vehicle routing problem with time
windows (VRPTW) and the nurse rostering problem (NRP) as the problem consists of finding
an assignment of nurses to patients with respect to a large number of side constraints (e.g. legal
and contractual issues) as well as the corresponding tours of the nurses.

This chapter will first describe these related problems and then give the definition of the
MHC problem tackled in this thesis.

2.1 Vehicle Routing Problem with Time Windows (VRPTW)

The vehicle routing problem with time windows (VRPTW) is a generalization of the classic
vehicle routing problem (VRP) which can be defined as follows based on the formulation of
Laporte et al. [38]:

Let G = (V,A) be a graph where V = {0, . . . ,m + 1} is a set of vertices representing
customers with the depot located in vertex v0 = vm+1 andA is a set of arcs. Every arc (i, j), i 6=
j has a non-negative value assigned to it representing the travel time (or travel cost) with the
values being symmetrical, hence arc (i, j) = (j, i). Additionally assume that there are up to n
vehicles available, each having a capacity of D. The VRP then consists of designing a set of
tours (routes) minimizing the overall travel time in such a way that each city in V \{0} is visited
exactly once and all vehicles start from v0 and end in vm+1.

The VRPTW extends the VRP by introducing a time window [sj , ej ] for every node vj ∈
V [24]. For the depot nodes v0 and vm+1 a time window is also provided, i.e., [s0, e0] =
[sm+1, em+1] = [E,L], where E and L are the earliest and latest possible departure/arrival
times from/to the depot. The new objective extends the VRP by additionally assuring that the
tours satisfy all time windows, i.e., no vehicle arrives in node j ∈ V \ {0} later then ej or has to
wait until max(sj , si + duri + ttij), i ∈ V, i 6= j to start the service, where ttij represents the
travel time from node i to j and duri the service duration (for the depot dur0 = durm+1 = 0).

The problem now is not only to find proper tours (and minimize their cost), but to ensure
that the time windows are not violated. Some formulations relax the time window constraint by
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Figure 2.1: An example for time windows and a possible penalty function p(t)

measuring the violation and incorporate it into the objective function. An example can be seen
in Figure 2.1 where a penalty of p(t) is added to the objective if the service starts earlier than s
or ends later than e.

Earlier research in the field of VRPTW was more focused on exact methods, like in Desrosiers
et al. [26] and Cordeau et al. [24]. A survey of the heuristic approaches are provided in Bräysy
et al. [10, 11].

2.2 Nurse Rostering Problem (NRP)

The nurse rostering problem (NRP) consists of finding a periodic duty roster for nurses in a
hospital considering a large number of hard and soft constraints.

Figure 2.2 shows an example of a roster also described in [21] where a variable xij with val-
ues of the domain of possible shifts assigned to nurses ni on day d is used. The hard constraints,
which have to be met by the produced schedule, are usually the coverage of staff demands per
day per shift and the skill requirements. To measure the quality of a schedule the number of
soft constraint violations are used. These constraints include personnel policies (e.g. maximum
number of consecutive working days), preferences and day-offs.

A bibliographic survey is provided by Cheang et al. [21] where a wide variety of formula-
tions is presented due to hospital-specific requirements. Burke et al. [15] later provided a more
detailed survey of the research done in the field of nurse rostering as well as an overview of the
approaches. Based on the classification of Burke et al., Causmaecker et al. [20] only recently
presented an enhanced classification of the different NRP formulations based on an α|β|γ clas-
sification approach.

2.3 Multimodal Home-Healthcare Scheduling Problem

For the multimodal home-healthcare scheduling (MHS) problem the goal is to find an assign-
ment of nurses to patient requests (jobs) as well as the corresponding tours for the visits while
minimizing the total travel time and the violations of side constraints. As the problem allows
different modes of transport (MOT) for the nurses (i.e. by car of public transport), the travel
time depends on the selection.

6



d1 d2 d3 d4 d5 d6 d7
n1 E E L N - E L
n2 E L E - N N -
n3 L - - E E L N
n4 N N - L L - E

Figure 2.2: Example of a roster for a week with 3 different shifts (E ... early shift, L ... late shift,
N ... night shift, - ... day off)

An instance of an MHC problem consists of following sets and variables:

Nurses N This set contains all N nurses available to be scheduled. Each nurse can only work
within specified time windows. These time windows are given for each nurse n ∈ N in
the set TWn. Not every nurse has to be part of the schedule, but the scheduled ones have
a general minimal and maximal number of working hours per day (hmin, hmax).

Time T Time is represented by a set of discrete points in time T dividing the day into T time
units of τ minutes. For the instances used in this work, τ = 5.

Jobs J Contains each of the J jobs which have to be serviced by a nurse in N . For each job
j ∈ J where there exists an associated start time window [sj , ej ] where sj is the earliest
starting time and ej the latest starting time, a favoured start time tj with sj ≤ tj ≤ ej and
a duration durj . The time variables sj , ej , tj are of T and durj · τ gives the duration in
minutes, where durj ∈ N.
Set J consists of two types of jobs: pre-allocated jobs J pre (around 5% of all jobs), e.g.
team meetings and administrative work, which are assigned to be done at fixed locations
and fixed times and by a specific nurse (alloc(j) is used to retrive nurses n pre-allocated
to job j ∈ J pre ); and non-preallocated (reassignable) jobs J pre which are placed by
a specific customer cust(j) where the function cust(j) returns the customer of a set C
associated with job j.

Qualifications Q Every job in J and every nurse in N has an attribute qualification with one
of the values in the sorted set Q assigned. For this problem setup the set is given as Q =
{csw, vn, hn, ahn,mn} representing their qualification: community service worker (csw),
visiting nurse (vn), homecare nurse (hn), advanced homecare nurse (ahn) and medical
nurse (mn). As Q is a sorted set, following equation holds: csw < vn < hn < ahn <
mn. These qualifications represent the skill of a nurse n ∈ N and also the minimum
qualification required to perform a job j ∈ J with respect to the previously defined order.
This means that a nurse n can perform a job j only if the qualification needed for job j is
lower or equal than the qualification of nurse n.

Refusal Reasons F Customers and nurses may have contradicting preferences leading to a
refusal of the nurse/customer. The various reasons are summarized in the set F =
{dog, cat, smoker,male, female}. All refusal reasons of a customer c ∈ C are given by
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set Ac and for a nurse n ∈ N by An. This means that if a customer c has the refusal set
Ac = {cat,male}, then the customer has a cat and does not want to be serviced by a male,
whereas the same refusal set of a nurse n (An = {cat,male}) indicates that nurse n has a
cat and is a male. This means that wheneverAc ∩An 6= ∅, c ∈ C, n ∈ N nurse n may not
be assigned to customer c.

Preferred Mode of Transport P As the problem also considers multimodality (i.e. different
modes of transport), each nurse n ∈ N states her preferred mode of transport pn where
pn ∈ P and P = {car, publicTransport}. The home location of each customer c ∈ C and
nurse n ∈ N is retrieved by loc(c) and loc(n), respectively. The travel time from location
loc(a) to loc(b) using transport mode p is retrieved from the distance matrix ttpab ∈ T
where a, b ∈ C ∪N . This means, for instance, that an entry ttcarab = 3.5 states that driving
from loc(a) to loc(b) takes 3.5 time units, thus 3.5 ·τ = 17.5 minutes. Note that the actual
travel times rounded up to the next time unit, e.g. 17.5 minutes travel time are rounded up
to 20 minutes. Travel time estimates are based on data from the Viennese public transport
system, and a large set of historical data from Viennese floating car data [53].

Given these sets of instance data, a solution for the problem is denoted as σ = (R,S)
consisting of a set of tours R ⊆ 2J and a mapping of jobs to starting times S : J → T
representing the underlying roster. Each nurse n ∈ N is associated with exactly one tour, i.e.,
Rn ∈ R. Therefore the number of routes is equal to the number of nurses |R| = |N |. Each tour
Rn ∈ R associated to nurse n starts and ends at the nurse’s home location loc(n). Although a
sequence to the jobs along a tour is introduced by set S only, let us, for simplicity, denote by Rn

k

the k-th job in the tour of nurse n ∈ N . If Rn = ∅ holds, nurse n ∈ N is not scheduled for the
current day.

The constraints in the problem setup of this thesis are split into hard constraints, these con-
straints have to be fulfilled for a feasible solution σ, and soft constraints, for which the violations
are tried to be minimized. In the following listing of constraints, (2.1) - (2.6) are considered as
hard constraints and (2.7) - (2.10) as soft constraints.

• all jobs must be serviced by a nurse, i.e. must be part of a tour

∀j ∈ J : ∃n ∈ N : j ∈ Rn (2.1)

• each job may only be serviced by one nurse

∀n,m ∈ N : n 6= m⇒ Rn ∩Rm = ∅ (2.2)

• nurses must be qualified to perform the assigned jobs

∀n ∈ N : ∀j ∈ Rn : qj ≤ qn (2.3)

• the starting times of two consecutive jobs (of one nurse) must be chosen such that traveling
between them (using the appropriate mode of transport) is possible

∀n ∈ N : ∀1 ≤ i ≤ |Rn| − 1 : t(Rn
i ) + durRn

i
+ ttpnRn

i R
n
i+1
≤ t(Rn

i+1) (2.4)
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• the nurse may only work within the given working time windows

∀n ∈ N : ∀j ∈ Rn : ∃tw ∈ TWn : {t(j), . . . , t(j) + durj} ⊆ tw (2.5)

• pre-allocated jobs may only be assigned to the proper nurse

∀j ∈ J pre : n = alloc(j)⇒ j ∈ Rn (2.6)

• qualifications of nurses and (assigned) jobs should match

∀n ∈ N : ∀j ∈ Rn : qj = qn (2.7)

• the starting time of each job must lie within the specified time windows

∀j ∈ J : sj ≤ t(j) ≤ ej (2.8)

• the actual starting time of each job may be the favoured starting time stated by the cus-
tomer

∀j ∈ J : t(j) = tj (2.9)

• all refusal reasons have to be considered in the roster

∀n ∈ N : ∀j ∈ Rn : An ∩ Acust(j) = ∅ (2.10)

9





CHAPTER 3
Methods

This chapter will provide an introduction to the metaheuristic approaches described in this thesis
as well as an overview of related work done in the field of VRPTW and NRP using these kinds
of heuristics.

First the variable neighbourhood search will be introduced as this approach is part of the
existing framework and is also used as embedded local search procedure in some of the imple-
mented metaheuristics. Then a general description of the three metaheuristics adapted in this
thesis will be provided. The selection of these methods was not only based on their performance
tackling the related VRPTW and NRP, but also based on their novelty on HHC and MHS prob-
lems in general. Further motivation for their selection are described in the respective sections.

3.1 Variable Neighbourhood Search

Variable neighbourhood search (VNS) [33] procedures try to improve a given solution by search-
ing in their neighbourhoods. A neighbourhood Ni(x) is a set of solutions reachable by a single
change, a so-called move. An example of a move is a single bit-flip of a binary string from 0 to
1 or vice versa. The neighbourhood defined by this move would contain all binary strings with
one single bit different from the actual string.

A variable neighbourhood descent (VND) [33] uses an ordered list of neighbourhood struc-
tures N1, N2, . . . , Nl. These are searched systematically by starting from the first structure N1

and switching to the next one N2 only if no improvements could be found. If an improvement
was found at any time in the search, the algorithm starts with the first neighbourhood N1 again.
If no improvement could be found in all neighbourhood structures, the algorithm terminates.

Determining which solution of Ni(x) is selected depends on the strategy, also called step-
function. Some of these are listed below:

• Random: one of the neighbours is selected at random
• Next-Improvement: the first neighbour better than the actual solution is selected
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• Best-Improvement: the best neighbour of all possible neighbours is selected
• Best-Of-Improvement: the best neighbour of a subset of neighbours is selected

As a VND may get stuck in a rather poor local optimum, this procedure is often embedded in
a general VNS scheme [33]. While VND tries to locally improve given solutions by systemati-
cally exploring and switching between different neighbourhood structures, VNS applies random
moves in order to escape local optima. The idea of a VNS is to alter a solution by performing
a shaking, i.e., a perturbation move, each time the embedded local search procedure is unable
to find an improvement for the current best solution. A possible implementation of shaking also
used in this thesis is to apply k+1 random shift moves in the k-th consecutive iteration without
improvement.

Related work

Burke et al. [16] proposed a VNS to improve schedules of hospitals in Belgium with 20 nurses.
Their approach uses constraint specific as well as large neighbourhood structures in a VND
procedure embedded in a VNS. However, not every neighbourhood is searched until no im-
provements can be found but uses a limited tabu search. They stated that this approach produces
good results but is very problem specific.

In the field of the VRPTW Rousseau et al. [49] presented a constraint-based approach using
constraint programming to obtain a first solution and a VND for the improvement. Their results
on the benchmark of Solomon [51] were promising as they achieved good results but with higher
runtime. Bräysy et al. [12] proposed a reactive VNS approach with an embedded VND. Their
approach constantly uses route-elimination procedures followed by the VNS for improvements
which lead to 4 new best solutions for the Solomon benchmark [51].

Motivation

The VNS approach excels with its fast and efficient way to be adapted to any optimization
problem. As there are only a minimal number of parameters to be optimized, the performance
depends on the designed neighbourhood structures and its search order. The MHS problem has
several straight forward neighbourhood definitions, like a shift of a job or the swap of whole
tours, which are derived from the related VRPTW. As these neighbourhoods can also be used by
other heuristics, the implementation of a VND as a optimization procedure was obvious.

3.2 Simulated Annealing Hyper-Heuristic

Simulated annealing (SA) [42] is a local search algorithm based on a heat treatment process in
metallurgy. Here a controlled heating and cooling process is used so that the atoms find new
positions to finally yield in a state of a closely minimal internal energy.

To mimic this behaviour the SA algorithm uses a probabilistic decision function based on
a slowly decreasing temperature variable and the current solution’s objective value which also
allows worse solutions to be accepted. Therefore this algorithm is able to escape local optima
in constrast to a classical local search algorithm. The algorithm starts with a high temperature,
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where many worse solutions may be accepted. During the run of the algorithm the temperature
decreases and only few worse solutions may be used leading to a converging state. Different
implementations also introduced a re-heating procedure to improve the overall performance.
This procedure increases the temperature to the point where the last best improvement could be
found.

A hyper heuristic is a “heuristic to select heuristics” [18] by maintaining a set of so-called
low-level heuristics and decides at each iteration which heuristic to apply next. A Simulated
Annealing Hyper Heuristic as proposed by Bai et.al. [3] selects from the set of heuristics in a
probabilistic way based on an tested/accepted ratio of a previous learning period or the newly-
created/tested ratio prior to the reheating phase. Each iteration the selected low-level heuristic
creates a new solution and is accepted if it is either better then the current solution or with an
probability of e−d/t, where d is the difference between the new and the current solution and t
is the current temperature. When running the algorithm K iterations the temperature is updated
every nrep iteration by Lundy and Mees’ nonlinear function [39]

t = t/(1 + βt), where β = ((tstart − tend) · nrep/K · tstart · tend), (3.1)

and tstart and tend are the temperatures at the beginning and the termination of the algorithm
and nrep is the number of iterations until the temperature will be changed again.

In their work, Bai et.al. [3] tested this algorithm for 3 different problems, i.e. NRP, timetabel-
ing and bin packing. Parameter-wise they only changed the total number of iterations K and the
used low-level heuristics for each problem. The results where very promising, as for the NRP
this algorithm could find better solutions than the best algorithm at this time (2003).

Related work

The previously described approach is based on the work of Cowling et al. [25]. They presented
a hyper-heuristic especially tailored for the NRP. In their approach they used choice-function
to rank the low-level heuristics during the search. These choice functions return information
regarding the individual, the joint performance of pairs and the time since the last call of the
low-level heuristics. Compared to the results of other approaches by Aickelin et al. [1] and
Dowsland [27] their approach proved to be more robust as it could find a valid solution each test
run.

Based on this work, Burke et al. [19] formulated a more general hyper-heuristic approach and
presented a tabu-search hyper-heuristic. Like the SAHH described before (which was developed
shortly after), this approach was not only tested for the NRP but for the timetabling and bin
packing problem and produced similar good results as the previous hyper-heuristic by Cowling
et al. [25].

In the field of VRPTW Pisinger et al. [43] presented a general heuristic to solve different
VRP problems, including the VRPTW using an adaptive large neighbourhood search (ALNS)
approach. According to Burke et al. [17] this approach is a so-called permutation hyper-heuristic.
The ALNS chooses and applies two neighbourhoods each iteration: a destroy neighbourhood
and a repair neighbourhood. The selection of the neighbourhoods is controlled stochastically
by an adaptive layer based on their past performance. Using this approach they were able to
improve the best known solutions of over one third of the tested instances [51].
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Motivation

A simulated annealing heuristic was considered in the early stages of this thesis. After the initial
research in the literature the extension to a hyper heuristic using more than a single neighbour-
hood structure for the search was selected. This approach has only been used for scheduling
and bin packing problems but another hyper heuristic – the ALNS described before – performed
very well for the VRPTW. Thus using this method seems very promising for a highly constrained
routing problem like the MHS.

3.3 Memetic Algorithm

Algorithms of the family of evolutionary algorithms (EA) [35] simulate the natural evolution.
Every step the algorithms try to use the given set of solutions, the so-called population, to gain
a better solution than before and every individual in the population competes to get into the
reproduction process. To compare the individuals an objective (evaluation) function is applied
to assign an objective (fitness) value to each one.

In this thesis a genetic algorithm (GA) was implemented and it proceeds in general as fol-
lows. First the population will be initialized randomly or by using a seeding algorithm. Then
these initial solutions will be evaluated. Now the evolution starts, until a predefined terminating
condition has been reached. Usually the GA terminates when a certain number of generations
has been created or a predefined good solution has been found.

The evolution process starts with a selection procedure where a number of individuals (so-
lutions) are selected to take part in the reproduction process. Then the selected individuals will
be recombined and/or mutated. Recombination combines features of parents, while mutation
typically performs small random alterations. After this step, the created new individuals will be
evaluated and the original generation will be replaced by the newly created ones using a replace-
ment strategy. During this replacement, some individuals from the original generation may stay
in the newly created generation.

To benefit from the population-based search of the GA and local search, both are combined to
a hybrid, a so-called memetic algorithm (MA). The idea is to simulate cultural evolution through
propagation and adaptation of information from one generation to the following one [41]. Typ-
ically the local search is used before the replacement takes place. This approach is sometimes
also referenced as a hybrid EA [32].

Related work

Aickelin et al. [1] proposed a GA to tackle an NRP defined by Dowsland [27] for a UK hospi-
tal’s requirements. The problem was to create a weekly schedule for approximately 30 nurses.
Dowsland’s model uses a binary representation where all possible shift patterns are enumerated
and each nurse is allocated to exactly one of them. Constraints are handled using penalty val-
ues for each nurse to pattern assignment. The Aickelin et al. [1] approach works with so-called
co-operating sub-populations. In this approach the solution string is sorted by the qualifications
of the nurses and sub-populations, containing all solutions of the population but using its own
objective function, are combined using individuals of complementary populations. Compared to
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previous results using tabu search [27] the approach was fast and robust but failed to find better
solutions.

Later on Aickelin et al. [2] presented another GA approach using indirect representations
of the problem. A solution is encoded as a permutation of the nurses and is decoded using one
of 3 different greedy construction algorithms based on (1) the cover, (2) the contribution (i.e.
the preferences of the nurses) and (3) a mixture of both of them. Using a combination of both
greedy strategies for the GA, Aickelin et al. [2] were able to find new best solutions for their test
instances also used in [1, 27].

Burke et al. [13] presented an MA for automated creation of schedules for hospitals in Bel-
gium. Their approach uses a tabu search as local search procedure and produces better results
than their previous work using a hybrid tabu search [19]. In 2007, Burke et al. proposed another
hybrid EA using the model of Dowsland [27]. Their approach embedded an SAHH as described
in the previous section 3.2, but not in the traditional way. Instead of calling the SAHH to inde-
pendently search for improvements for each individual, this approach stores information of the
search globally, i.e., the parameters are changed throughout every call of the SAHH. With this
hybrid approach they achieved even better results not only in terms of finding the best known
results, but also in terms of robustness compared to other approaches using the same definition
and test data [1–3, 25, 27].

For the VRPTW Blanton et al. [9] proposed a first hybrid EA using a greedy algorithm to
construct feasible solutions based on the permutation encoded order of customers in the individ-
uals. As summarized in the survey of Bräysy et al. [11] many hybridizations with GAs created
good results using construction heuristics [7,9], local searches [36,44,52] and other metaheuris-
tics [6, 34].

Motivation

The use of a population based approach like the GA to tackle this problem was motivated by
the overall good performance on related problems in the literature. Using the hybrid variant
was introduced early in the development process, as first results suggested that the pure GA
would not perform very well. This corresponds with the observations made for related problems
where a hybridisation improved the performance of the search. Another motivation to maintain
a population was the possible benefit when trying to solve multi day solutions, as a large pool of
solutions might be used for refinement.

3.4 Scatter Search

Scatter Search is another population based approach proposed by Glover et al. [31]. It presents a
more deterministic approach to population based search methods. The population of solutions,
the so-called reference set, is initialized to be diverse explicitly by selecting a diverse subset
of solutions from a construction method. To create new solutions, a subset generation method
creates subsets of solutions which are later combined by a subset combination method, improved
and then, based on the update strategy, included into the population.
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In their ongoing work they also presented techniques for the subset generation and combi-
nation [30, 40]. For the subset generation an iterative approach was suggested. The first set of
subsets U1 (type 1) consists of all pairs of the solutions

U1 =
⋃

(σi, σj), where i = 1, . . . , |RefSet | − 1, j > i. (3.2)

The following type 2 set U2 holds all subsets by creating a subset for each type 1 subset and
adding the best solution not already in the subset to it.

U2 =
⋃

(σi, σj , σk), where (σi, σj) ∈ U1, k = min{k|i 6= k 6= j, σk ∈ RefSet}. (3.3)

The same procedure is applied for type 3 subsets U3 using U2. As this might create duplicate
subsets (i.e. subsets containing the same solutions) only one of the duplicates is generated. If the
number of solutions in the reference set is larger than 4 then subsets of size i = 5, ..., |RefSet |
containing the i best solutions are generated, where |RefSet | is the size of the reference set, i.e.,

U = U1 ∪ U2 ∪ U3 ∪ (σ1, σ2, σ3, σ4, σ5) ∪ . . . ∪ (σ1, σ2, . . . , σ|RefSet |). (3.4)

As combination method they presented path relinking. Path relinking generates solutions
using the neighbourhood space. Given two solutions, the initiating solution and the guiding
solution, the method identifies the intermediate solutions by calculating a path π of moves from
the initiating solution and the guiding solution. Each entry in π is a neighbour of the previous
solution, starting with a neighbour of the initiating solution and ending with the last solution
before reaching the guiding solution.

After creating new solutions these are improved using for example local search heuristics
and afterwards some of these are put into the reference set. Glover et.al. discussed this process
and introduced a tier-based approach. In this approach, the reference set is split into 2 or 3 tiers.
In tier 1 the best solutions are stored, starting with the best solutions to the worst. This part
will be updated by replacing worse solutions with the best new solutions created. Tier 2 holds
a diverse set of solutions where solutions are stored and replaced based on their contribution to
the overall diversity of the set. Tier 3 was proposed by Laguna and Marti [37] where so-called
best generators are stored. These generators are solutions contributing best when used in the
combination method.

Related work

Based on their research of the NRP for hospitals in Belgium, Burke et al. [13] used a scatter
search to tackle the problem more efficiently. They used a constructive solution combination
technique (see also section 5.3) and tested a hill-climbing and a VND as local search procedure.
Compared with the MA approach in [13] the scatter search underperforms when using hill-
climbing and produces better results when using VND. However, when VND was used, the
computation time increased significantly.

Russel et al. [50] presented a scatter search for the VRPTW using an arc subset generation
approach and a global route combination approach where a set partitioning algorithm is used to
create new solutions. As local search procedure a previously proposed reactive tabu search [23]
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was used. Their approach was able to find 6 best known solutions out of 52 instances [51].
Other research using scatter search was done only for related problems, like the VRPTW with
split deliveries by Belfiore [5]

Motivation

As a more deterministic approach, the scatter search seemed promising to find reasonable good
solutions using more thorough search techniques then the other selected metaheuristics. The
possible high runtimes needed to produce competitive solutions as for related problems was also
considered, but the possible gain in terms of solution quality favoured the use of this approach.
Additionally the scatter searches’ pool might also be used to refine multi day solutions, although
the small size might not help as much as the population created by the MA.
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CHAPTER 4
Existing Approach

The metaheuristics implemented for this thesis are built into the already existing solving ar-
chitecture created at the AIT. This framework includes several vital procedures like loading
problem instances, creation of the travel time matrix and logging as well as the representation
and evaluation of the solution.

This existing architecture also contains a constraint programming (CP) approach to gener-
ate initial solutions in addition to a random generation method and a VND-VNS improvement
heuristic with several neighbourhood structures. As the metaheuristics implemented in this the-
sis use this framework and will be compared to the existing approach, this chapter will provide
details of parts of the framework.

4.1 Solution Representation

In the existing approach a solution σ = (R,S) is created by assigning jobs j ∈ J to routes
R ∈ R. Each of the job j ∈ J is assigned to at most one tour Rn and each job j ∈ Rn is
assigned to a specific position in tour Rn, i.e., for each job j ∈ J assigned to tour Rn has a
unique position i in the tour represented by Rn

i , where i = 1, . . . , |Rn|. An example is shown in
Fig. 4.1:

The set of starting times S is then constructed using a 2-step greedy algorithm illustrated in
Fig. 4.2: In a first step, the earliest possible start times for each job Rn

i for nurse n ∈ N , where
i = 1, . . . , |Rn|, are computed under consideration of the travel time from the location of the
previous job loc(Rn

i−1) (or the the home location loc(n), if i = 1) to the location job of Rn
i

as well as all time windows, i.e., starting time window of job Rn
i and the nurses’ working time

windows TWn. While the travel times are never violated, the time windows are considered as
soft constraints (see Sec. 2.3), thus violations of these windows are possible and allowed.

In a second step, all jobs Rn
i ∈ Rn except the last are moved backwards as far as possi-

ble. After each of the two steps, either version can be better due to particular soft constraints,
like meeting the desired start times of the customers. Therefore, the assignment is selected
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Figure 4.1: Illustration of the representation (a) and actual tours (b) using an exemplary assignment
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Figure 4.2: An example for the 2-step greedy heuristic for determining job starting times for nurse
n ∈ N : first step (a), starting with the first job, all jobs are set to the earliest possible start time considering
the job durations as well as the travel times between the jobs (dashed lines); second step (b), starting from
the second to last job, the jobs are moved as far as possible to the end (with respect to their durations and
travel times between them).

that results in a better objective value which will be described next. This improvement step is
performed whenever a solution is constructed or has been modified.

4.2 Objective Function

As described in the MHS formulation in section 2.3 the problem consists of several constraints
representing the interests of employer, employees and customers and a solution should be opti-
mal for all parties. Thus, the problem is defined as a minimization problem with an objective
function ob(σ) which assigns each solution σ a real number such that valid solutions evaluate to
values between 0 and 1 (including), and invalid solutions evaluate to values greater than 1. For
this purpose the objective function is split into three parts: the first one computes the number
of hard constraint violations (v1, . . . , v4), i.e., violations making a solution invalid, the second
one is a weighted sum of soft constraint violations (v5, . . . , v8), i.e., tolerated but undesired
constraint violations, and the third one introduces additional contributions to the objective like
working time or overall travel time (v9, v10v11):

ob(σ) =

4∑
i=1

vi +

8∑
i=5

vi · γi · φi +
11∑
i=9

vi · γi · φi (4.1)

As can be seen, the soft constraints and additional contributions to the objective function are
weighted using factors γi and φi, with 5 ≤ i ≤ 11. The values for γi are chosen such that
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∑11
i=5 γi = 1 holds, see table 4.1. The factors φi are normalization factors. I.e., for each term i

a normalization factor φi is computed such that the highest possible value maps to 1 (e.g. the
working time is normalized with respect to the maximal working time, which is ten hours in our
case due to legal restrictions). In combination with the weighting factors γi it is therefore assured
that the worst valid solution is better than the best invalid solution. Note that constraint 4 (travel
time constraint) is always fulfilled by the construction of a solution (see previous section 4.1).
To enable evaluations of schedules and rosters as finally coarried out in every day’s business,
this term is nevertheless improtant since unforseen incidents may occur leading to violations of
this contraint.

In table 4.1 a brief summary of the terms in the objective function is presented including the
settings of the weights γi as later used for final computational experiments. These weights were
found reasonable to qualify good solutions by favouring solutions with a low number of jobs
performed by overqualified nurses, a low derivation from the starting time windows as well as a
low number of preference violations.

4.3 Initial Solution Construction

To obtain a first (initial) solution two approaches are implemented in the existing approach: a
constraint programming (CP) approach and a simple random construction procedure. The CP
approach uses decompositions (qualification-wise and spatial clustering) to reduce the problem
size and thus improve the runtime performance. The constraint model is an extension of the clas-
sical vehicle routing problem with time windows (VRPTW) model from [48] and is described
in detail in [47]. The random construction algorithm constructs a solution by traversing the list
of available jobs in random order and assigning a job to a nurse in the list of nurses in a cyclic
manner. It only ensures that every job is assigned to a nurse (pre-assigned jobs are kept by the
originally intended nurse). Note, that the initial solutions produced from the CP approach are
valid, while those from the random construction heuristic are (most likely) invalid.

4.4 VND-VNS

The improvement heuristic used in the existing approach is a VNS with an embedded VND as
described in section 3.1. The implemented VND uses the following neighbourhood structures
(Figure 4.3):

shift job: This move shifts one job j ∈ J pre from one tour Ri1 to another tour Ri2 , i1 6= i2.
In the new tour the best position (according to the objective function) is searched for the
shifted job.

reposition job: A job Rn
i1
∈ J pre of a nurse n ∈ N is moved to another position i2, where

i2 = 1, . . . , |Rn| and i2 6= i1, without reordering the other jobs.

swap nurses: By this move, two nurses n1 ∈ N and n2 ∈ N are swapped with each other, i.e.,
the tour of the first nurse is then handled by the second nurse and vice versa. Excluded
from the swap are nurses with at least one job j ∈ J pre assigned to them.
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Table 4.1: Influencing terms in the objective function

γi

v1 — contains the number of invalid job-assignments, i.e. either a missing assign-
ment of a job to a nurse or an insufficient qualification of a nurse (Constraint
1 - 3)

v2 — counts the number of travel time violations, i.e., the number of times a nurse
cannot reach a customer before the service should start. (Constraint 4)

v3 — contains the number of violations of nurse availabilities, i.e. the number of
jobs that are assigned to nurses outside of the nurses’ time window. (Con-
straint 5)

v4 — contains the number of violations concerning pre-allocated jobs that must not
be shifted to other times or nurses. (Constraint 6)

v5 0.2 quantifies the distances from the required qualification qj of all jobs j ∈ J
to the qualification qn of the assigned nurse n ∈ N . The distance between
two qualifications qi and qi′ is defined as |i− i′|. (Constraint 7)

v6 0.2 quantifies the deviation from the start time windows [sj , ej ] of all jobs j ∈ J .
Violations of these time windows are penalized using a quadratic function
except that deviations of three hours and above are considered equally bad.
(Constraint 8)

v7 0.1 quantifies the deviation from the desired start time tj of all jobs j ∈ J .
Deviations from the start time are linearly penalized, except that similarly to
time window violations, deviations of one hour and above are assumed to be
equally bad. (Constraint 9)

v8 0.2 quantifies violations of preferences stated by nurses and customers and is
normalized over the number of jobs. (Constraint 10)

v9 0.1 quantifies the working time outside the daily maximal working time (addi-
tional hours of work are counted as overtime and are therefore higher paid,
resulting in higher costs for the employer)

v10 0.1 quantifies the working time of all nurses n ∈ N up to the daily maximal
working time

v11 0.1 quantifies the overall travel time of all nurses.

As step function a next improvement strategy is applied and the initial neighbourhood order
is shift jobs, swap nurses, followed by reposition job.

Although this initial neighbourhood order leads to rapid improvements during the starting
phase of VND, preliminary tests revealed that dynamic neighbourhood reordering as applied
in [45] frequently leads to better results. This reordering is done by first storing the improve-
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Figure 4.3: Examples for the 3 neighbourhood structures: (a) shift job, (b) reposition job and (c) swap
nurse.

ment/examined ratio of each neighbourhood and then reordering them when an improved solu-
tion has been found. The outline of the VND approach can be seen in algorithm 4.1.

As the algorithm may get stuck in a rather poor local optimum using VND only, it is embed-
ded as a local search phase in a general VNS scheme as described in section 3.1 using a random
shift job move as shaking procedure and k = 1, . . . , 5 (see Algorithm 4.2).
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Input: Solution σ, Neighborhood ordering N
Output: Best solution σ∗ found

1 l← 1; lmax ← |N |; σ∗ ← σ;
2 while l ≤ lmax do
3 σ ← Ni(σ

∗);
4 Nl.examined← Nl.examined+ 1;
5 if ob(σ) < ob(σ∗) then
6 σ∗ ← σ;
7 l← 1;
8 Nl.improved← Nl.improved+ 1;
9 reorder(N);

10 else
11 l← l + 1;
12 end
13 end
14 return σ∗;

Algorithm 4.1: VND

Input: Solution σ, Integer kmax

Output: Best solution σ∗ found
1 k ← 1; σ∗ ← σ;
2 while k ≤ kmax do
3 σ ← shaking(k, σ∗); // perform k random shift moves on σ∗

4 σ ← VND(σ); // do local search (in our case the VND)
5 if ob(σ) < ob(σ∗) then
6 σ∗ ← σ;
7 k ← 1;
8 else
9 k ← k + 1;

10 end
11 end
12 return σ∗;

Algorithm 4.2: VNS
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CHAPTER 5
Metaheuristics

Based on the methods described so far, this chapter will present the three metaheuristics im-
plemented into the existing framework to tackle the MHS problem. An important feature of
the solving architecture developed at the AIT is the ability to be adapted to the requirements
of different providers easily, thus the use of constraint dependent solving methods have been
omitted.

Additional information about the parameters and operators used is also provided in the re-
spective sections of the metaheuristics. Further preliminary experiments are described in the
next chapter.

5.1 Simulated Annealing Hyper-Heuristic

The developed approach differs from Bai et al.’s SAHH (see section 3.2) as the low-level heuris-
tics and parameters have been adapted to solve the MHS problem. The outline of the algorithm
is shown in algorithm 5.1.

The low-level heuristics for the NRP proposed in the work of Bai et al. uses low-level
heuristics creating solutions based on specific constraints. As this thesis focus on a constraint-
independent approach, more general low-level heuristics have been implemented. These are
variants of simple local search procedures, which are created by combining every move type
described in section 4.4 with two improvement strategies, i.e. the classic next improvement and
a random-improvement strategy, leading to a total number of six low-level heuristics.

The use of random improvement is obvious as the SAHH should be able to accept also
worse solutions in order to escape local optima. Using next improvement in favour of best
improvement provides the higher chance to escape a local optimum after a worse solution of the
same neighbourhood structure has been accepted. Another feature of next improvement is the
lower search time needed in average as not the whole neighbourhood has to be searched. The
same arguments can be used when comparing with the best of improvement strategy.

Bai et al. suggest that around 10% of the solutions should be accepted at the beginning
(rstart) and only 0.5% at the end of the search (rend). As described in section 3.2 the probabilistic
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Input: Solution σ
Output: Best solution found σ∗

1 i← 1; σ∗← σ;
2 t← tstart; timp← tstart;
3 resetLLHStats();
4 while i ≤ K do
5 h← selectLLH (H);
6 σ′← h(σ);
7 h.tested← h.tested+ 1;
8 if σ′ = null then d← +∞;
9 else d← ob(σ′)− ob(σ);

10 if d < 0 then
11 σ← σ′;
12 h.new ← h.new + 1; h.accept← h.accept+ 1; C ← C + 1;
13 if ob(σ′) < ob(σ∗) then σ∗← σ′;
14 else
15 if e−d/t > Random() then
16 σ← σ′;
17 h.accept← h.accept+ 1; C ← C + 1;
18 end
19 C ← C + 1;
20 end
21 if reheating = true then
22 timp ← timp/(1− (beta() ∗ timp));
23 if timp > tstart then timp ← tstart;
24 t← timp;
25 else if i% nrep = 0 then
26 t← t/(1 + (beta() ∗ t));
27 end
28 if i % LP = 0 then
29 if C/LP < rend then
30 reheating ← true; timp ← timp/(1− (beta() ∗ timp));
31 t← timp; σ ← σ∗;
32 adjustLLHNew ();
33 else
34 adjustLLHAccept();
35 end
36 resetLLHStats();
37 end
38 i← i+ 1;
39 end
40 return σ∗;

Algorithm 5.1: Simulated Annealing Hyper-Heuristic procedure
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Table 5.1: Parameter settings for SAHH

SAHH Parameters Settings

K (# iterations) 10000
acceptance prob. (start) 0.10
acceptance prob. (end) 0.005
learn period K/500
nrep (#iter/temp) 6 (#neighbourhoods)
min weight 0.1
change of temperature t Lundy and Mees’ nonlinear function: t← t/(1 + βt),

β = ((tstart − tend) · nrep/K · tstart · tend)

decision whether to accept an inferior solution is based on the formula e−d/t. To calculate the
start and end temperature a proper value for the term d in the following equations has to be
found: e(−d/tstart) = 0.1 and e(−d/tend) = 0.005.

After some preliminary testing d = 1.0 was selected, thus 10% of the solutions with an
objective value of 1.0 worse than the current one are selected at the beginning and 0.5% at the
end. The final settings are summarized in table 5.1.

5.2 Memetic Algorithm

As described in section 3.3 an MA might be encoded using a alternative form of representation to
benefit from special recombination operators or heuristic decoding algorithms. In an early stage
of development, a binary as well as an integer based encoding has been considered to represent
an assignment of a job to a nurse of vice versa. The both binary approaches as well as the integer
representation of the nurses assigned to a job would need a decoding algorithm to determine the
order in which the jobs are served. This would need additional computational effort or perhaps
another heuristic which would decrease the overall performance of this approach. The other
integer encoding (job to nurse) is the existing representation when each job only occurs once
and the number of jobs per nurse is known.

Another design choice made early was the number of offsprings created in each iteration.
The final choice of a single offspring per iteration was made after first test runs indicated that
the creation of a larger number of offsprings with the additional local search calls lead to a slow
converge of the population to good solution regions.

In the following, the initialization, selection and replacement as well as the special operators
implemented for this representation and problem are described in detail. A summary of the final
operators used can be found in table 5.2.

Initialization. To avoid duplicates as well as to provide an initial diversity of the population
a random diverse constructor was implemented to create the initial solutions. These are con-
structed using a memory of already used assignments in previously generated solutions. To
construct a new solution most different from the already constructed ones, for each job j, a
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Table 5.2: Operator setup for the Memetic Algorithm (MA)

MA Operator Settings
selection binary tournament
recombination tour replace crossover
mutation move all unfixed missions to best other nurse
replacement replace the worst similar solution in the population pool
improvement cyclic search of neighborhoods

- reorder mission neighborhood (best of improvement)
- shift mission neighborhood (best of improvement)
- swap nurse neighborhood (best of improvement)

nurse that has been least often assigned to j is selected and job j is added to the end of the
tour of the nurse. Possible ties are broken randomly. The constructor memory is initialized with
the starting solution (CP or random) by increasing the count of the corresponding job to nurse
assignments. This solution is also always part of the initial population.

Selection. As selection strategy a binary tournament selection is used where solutions are se-
lected by repeatedly picking two solutions at random and including the better one into the set
of selected solutions. Note that this approach does not check for duplicates, i.e., solutions may
appear multiple times in the set of selected ones.

Recombination Operator. As solutions are lists of tours (one for each nurse), a special re-
combination operator was implemented (Figure 5.1): given two parent solutions (P1, P2), the
offspring is initially set to have the same tours as P2. Then one nurse of P1 is selected at ran-
dom (n). Each non-preallocated job of the tour Rn assigned in P1 is removed in the offspring
solution. Then every remaining job of Rn in the offspring solution is moved to the best other
nurses’ tours Rm, where n 6= m,m ∈ N . In the final step, the jobs of Rn in P1 are assigned to
Rn in the offspring solution.

This recombination operator was implemented early in the thesis and performed very well
due to the fact that the changes made to the parent solution are rather small – only the jobs of
two tour are moved – thus preserving much of the solution structure. By selecting a nurses’
tour at random, the operator need very little computational time which allows the local search
procedure more of the overall runtime. An additional design choice was made by allowing not
only the parent so be identical, but also to allow the random selection of a nurses’ tour which is
identical in both parents. By allowing parents to become offsprings, a possible local search call
will improve this parent further, thus this intentional creation of duplicates enhance the ability
of the MA to exploit the search space.

Mutation. To provide higher diversity during the search of the MA, the offspring is mutated
by selecting a tour Rn at random and reassigning all unfixed jobs of this tour to other tours Rm,
where n 6= m and n,m ∈ N , minimizing the objective value.

This mutation procedure was considered due to the structure of the MHS problem. The
idea is to support the search to remove nurses from the schedule by clearing their tours, i.e.,
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R3 j8 j1 j7
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R1 j7 j4

R2 j3 j8 j6 j2

R3 j1 j5
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R1 j3 j6 j4

R2 j5 j2

R3 j8 j1 j7

(a)

offspring

R1 j4

R2 j5

R3 j1 j7

(b)

R1 j5 j4

R2

R3 j1 j7

(c)

R1 j5 j4

R2 j3 j8 j6 j2

R3 j1 j7

(d)

Figure 5.1: An example for the recombination operator (whereR2 is selected) step by step: (a) offspring
is set to be as P2, (b) all jobs of R2 in P1 are removed from the offspring, (c) all remaining jobs in R2 in
the offspring are moved, (d) R2 in the offspring is filled with the jobs of R2 in P1

performing chained shift job moves which may not be considered by the local search procedure.
Another mutation operator tested was a single job shift move but preliminary results showed that
the other operator performs better.

Local Search. For a given probability, a local search heuristic tries to further improve the
offspring. To achieve a controlled balance between exploration and exploitation, the heuristic
aborts after a certain time limit. Two local search algorithms are applied: a VND, as described
in section 4.4 and a cyclic search of neighbourhoods (CNS). The CNS is similar to the VND but
always turns to the next neighbourhood structure in a cyclic manner when a local optimum in
one neighbourhood structure or a time limit has been reached.

A similar approach is the so-called token-ring search proposed by Gaspero et al. [29]. Pre-
liminary results showed that the CNS yields better results than the VND.

Replacement. The population is replaced using a slightly changed steady-state approach [35],
where an offspring always replaces the most similar solution in the current population that is
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Table 5.3: Parameter settings for SS

SS Parameters Settings
RefSet size 5
combination operator path-relinking
smax 100
time-limit LS 10sec
termination time limit or no improvement after an iteration

worse than the offspring. To calculate the similarity of two solutions, the number of same job to
nurse assignments in the compared solutions are counted.

This straight forward approach ensures a minimal grade of diversity by omitting duplicates.
In preliminary tests a alternative replacement strategy was tested. This alternative replaced the
most similar worse solution in the population with the newly created one. This lead to a slow
converge of the average quality of the solutions in the population and did not yield considerable
better results.

5.3 Scatter Search

Like for the MA a scatter search metaheuristic also consists of several operators like the subset
combination and the improvement operator. For the subset generation the classic approach as
described in section 3.4 is used with a minor modification: instead of creating all three types of
subsets, only type 1 and 2 are created and k was set to four. Thus only one subset containing the
best four solutions is created and added to U .

This has been modified after preliminary results showed that the metaheuristic need very
high runtimes to find reasonable solutions, thus the number of solutions generated and improved
per iteration was reduced.

For the improvement the same local search procedures as described in the previous section
are used. The initialization is also done using a random diverse constructor. In the remainder of
this section the implemented subset combination methods will be described in detail as well as
the update method. The final settings are summarized in table 5.3.

Subset Combination 1. For the combination of solutions for each subset a ’construction by
voting’ combination algorithm as suggested by Glover et al. [31] and described by Burke et
al. [14] was implemented. This approach creates a new solution using candidates. A candidate
for our problem is an assignment of a job j to a tour Rn. Figure 5.2 shows an example using
two solutions as voters and procedure itself is outlined in algorithm 5.2.

First, all possible candidates are created and the solutions from the subset with the same
assignment are linked to the corresponding candidate. Then the list of candidates are sorted
descending by the number of solutions (voters) linked to it. After this step, the construction
starts at the beginning of the list.
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R1 j2 j1

R2 j3 j4

u1

R1 j2 j3

R2 j1 j4

u2

R1 j2 j1

R2 j4 j3

σnew

candidates voters
j2 → R1 u1, u2
j4 → R2 u1, u2
j1 → R1 u1
j1 → R2 u2
j3 → R1 u2
j3 → R2 u1

Figure 5.2: Example for the construction by voting subset combination method: using a list of candidates
(middle) of two solutions (left) to create a new solution (right). Unused candidates are grey.

Input: set of solutions U
Output: constructed solution σ

1 σ ← createEmptySolution();
2 assignFixedMissions(σ);
3 foreach j ∈ J pre do
4 foreach u ∈ U do
5 if ∃cj,R ∈ C then V oters[cj,R ]← V oters[cj,R ] ∪ u);
6 else
7 V oters[cj,R ]← {u};
8 C ← C ∪ cj,R ;
9 end

10 end
11 end
12 sortByV oters(C); // cj1,R1 > cj2,R2 if |V oters[cj1,R ]| > |V oters[cj2,R2]|
13 foreach cj,R ∈ C do
14 C ′ ←

⋃
cj,i ∈ C, where ∀i ∈ R;

15 cj,R ← selectFrom(C ′);
16 apply(cj,R , σ);
17 C ← C \ {cj,i},∀i ∈ R;
18 end
19 return σ;

Algorithm 5.2: Subset Combination: “construction by voting”

If an assignment of a job j has two candidates with the same number of voters, a tie breaking
mechanism is used to decide, which candidate will be applied. First the number of successful
votes of the voters are counted (i.e. how many times a candidate of a solution was used to
construct the new solution), and the candidate with the least used voters is used. As this count
could also be equal, a second tie breaker compares the sum of objective values of the voters and
takes the candidate with the lowest sum.

If a candidate with an already assigned job is encountered during the search, the candidate
is removed.
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Input: sorted set of solutions U = {u1, . . . , ul} of size l, where
obj(u1) ≥ obj(u2) ≥ · · · ≥ obj(ul)

Output: constructed solution σ
1 σ ← u1;
2 for i← 2, . . . , l do
3 d← bdifference(σ, ui)/lc;
4 for z ← 1, . . . , d do
5 N ′ ← {σ∗|σ∗ ∈ N shift(σ) where job assignment in σ was different to ui};
6 σ′ ← N ′1;
7 for q ← 2, . . . ,max(|N ′|, smax) do
8 if obj(N ′q) < obj(σ′) then σ′ ← N ′q;
9 end

10 σ ← σ′;
11 end
12 end
13 return σ;

Algorithm 5.3: Subset Combination: Path-Relinking

Subset Combination 2. After some preliminary tests indicating that the previously described
approach does not perform well, a second approach was designed and implemented using a
path-relinking algorithm (see section 3.4). Instead of using the proposed approach when using
multiple guiding solutions in Glover et al. [31] – where the initial solution moves to a solution
created by combining all parent solutions – a different procedure was designed: To create a
solution σnew out of a sorted subset U = {u1, . . . , ul} of size l, where ob(u1) ≥ . . . ≥ ob(ul),
the algorithm moves iteratively from the worst solution u1 to the best ul. Then σnew = u′l,
where

u′i = u′i−1 →PR ui, i = 2, ..., l, u′1 = u1 (5.1)

and the path-relinking operatorA→PR B movesA difference(A,B)/l steps toB (the function
difference returns the number of different job to tour assignments). To determine which moves
are performed first, the change in the objective per move is calculated and the move with the
best change (which can also be worse) is performed. In order to prevent high runtimes due to a
possible large set of moves to be tested, the number of moves to be calculated is restricted with
a parameter smax. The outline of this algorithm is shown in alg. 5.3.

This approach is built upon the idea that a good solution for further improvement is situated
between solutions in the reference set. Thus by performing a fixed number of steps toward these
solutions and trying to improve the first solution as much and deteriorate as least as possible, a
solution not only of good quality in terms of the objective function should be generated but also
a solution with an rather unexamined neighbourhood space.

Reference Set Update. After each combination of a subset, the generated solution will be
improved and replaces the worst solution in the current reference set, but only if it is not already
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in the set. The diversity control, as considered in the original scatter search proposed by Glover
et al. [31] will be not be maintained. Burke et al. [14] recommend this step in order to have
more computational time to search in better regions (based on the objective value). Preliminary
results suggested that the use of a diverse set does not improve the overall performance.
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CHAPTER 6
Results

This section describes the experimental results obtained. This includes the comparison of all
described approaches with long runtimes as well as parameter tests with shorter but reasonable
runtimes.

6.1 Test Environment

The tests used 8 instances with the following dimensions:

day 1 day 2 day 3 day 4 day 5 day 6 day 7 day 8
# nurses 509 491 504 482 496 518 500 505
# missions 711 700 679 682 708 699 717 679

The real-world instances tested were taken from a random selection of 2011 instances pro-
vided by Sozial Global. All techniques have been implemented within the same framework in
Java 1.6.

The tests for the final comparison where run on a single core of a Intel(R) Core(TM)2 Quad
CPU Q9300 2.50GHz with (at most) 4GB RAM assigned. The parameter tests were run on a
Intel(R) Core(TM) i7-2630QM CPU 2.0GHz with (at most) 16GB RAM assigned.

6.2 Parameter Testing

To justify the selection of final parameter setting this subsection will describe the tested param-
eters as well as the impact of algorithm design changes made. The tests used 4 instances (day
4-7) and were run 10 times per instance with a maximum runtime of 10 minutes per run. For the
most interesting cases, tables with the average best solutions are provided as well as the standard
deviation below.
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Table 6.1: SAHH parameter tests with different d-values in e−d/t = r

day 4 day 5 day 6 day 7

init. 0.08962 0.08854 0.08667 0.09038
d = 0.5 0.03493 0.03396 0.03273 0.03614

±0.00285 ±0.00158 ±0.00066 ±0.00294

d = 1.0 0.03425 0.03424 0.03291 0.03502
±0.00201 ±0.00183 ±0.00119 ±0.00247

d = 2.0 0.03427 0.03393 0.03233 0.03537
±0.00205 ±0.00261 ±0.00168 ±0.00202

Simulated Annealing Hyper-Heuristic

Two influential parameters for the SAHH are the number of iterations (and therefore the anneal-
ing duration) as well as the starting and ending acceptance ratio. Another factor tested was the
acceptance of random moves increasing the number of hard constraint violations.

Number of iterations K. Starting from a rather low number of iterations (1000) the number
was steadily increased as the search ended after a short amount of time. It was also observed
that the number of iterations performed in a time limit of 10 minutes differs between the runs.
Thus the call of the algorithm was built into a loop, so that the algorithm will restart with the
best solution found so far if the iteration limit was reached before the time limit was exceeded.

Calculation of the inital temperature tstart | tend. As described in section 5.1 the start and
end temperature were calculated by defining the value d in the formula e−d/t = r, where r is the
desired probability at the beginning or at the end. As the selected d has an high impact for the
calculation of the temperature, different assignments have been tested. As shown in table 6.1,
no value seems to outperform the other. Thus 1.0 was selected to provide a balance between
exploration and exploitation for larger runtimes.

Acceptance of invalid solutions. The general approach for a simulated annealing procedure
is to also accept far worse solutions (but with a very low probability). As part of the preliminary
tests, an additional acceptance criterion was introduced. This only allows solutions with at most
the same number of violated hard constraints as the current solution and therefore only accepting
more ’valid’ solutions. As the results show (Table 6.2), this additional criterion does not lead to
a considerable improvement in this short amount of time used in the tests. As such a restriction
may lead to a high probability to get stuck in a local optima it was removed in the final algorithm.

Memetic Algorithm

For the memetic algorithm different local search procedures were tested, i.e. VND and CNS.
Further another mutation operator was considered and the influence of the population size was
observed.
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Table 6.2: SAHH parameter tests comparing the performance of accepting only solutions at most the
same number of hard constraint violations (only valid) and the classic variant where all could be accepted
(all)

day 4 day 5 day 6 day 7

init. 0.08962 0.08854 0.08667 0.09038
all 0.03425 0.03424 0.03291 0.03502

±0.00201 ±0.00183 ±0.00119 ±0.00247

only valid 0.03470 0.03437 0.03279 0.03607
±0.00256 ±0.00185 ±0.00166 ±0.00229

Table 6.3: Objective values obtained using no local search (pure EA), VND and CNS

day 4 day 5 day 6 day 7

init. 0.08962 0.08854 0.08667 0.09038
pure EA 0.03853 0.03849 0.03692 0.03902

±0.00108 ±0.00065 ±0.00137 ±0.00112

MA with VND 0.03097 0.03093 0.02928 0.03154
±0.00089 ±0.00066 ±0.00094 ±0.00101

MA with CNS 0.02940 0.02958 0.02808 0.03039
±0.00065 ±0.00065 ±0.00059 ±0.00107

Local search procedure. Table 6.3 presents results for three different setups: a pure evolu-
tionary algorithm (EA), i.e. the MA without local search phase, the VND and the CNS. At a
first glance, it can be observed that the hybrid setups are more promising than the pure EA.
Furthermore, the embedding of CNS seems to be more reasonable than the application of VND.
This can be explained by the fact, that the time limit for VND/CNS is relatively tight such
that VND, which examines the first neighbourhood until no further improvement can be found
therein, often does not reach the second or even third neighbourhood. CNS, in contrast, achieves
improvements for all defined neighbourhood structures and therefore better exploits the existing
improvement potential. The results show that the use of a local search procedure is an important
addition but also that the recombination operator performs good on its own.

Mutation operator. A second mutation operator was also tested: a simple random shift job
move where a job is selected at random and is shifted to another nurse. Preliminary results
showed that both operators perform almost equally well, but more in favour of the mutation
operator described in section 5.2 (clearing a tour by moving the jobs to other nurses).

Population size. The influence of the population size also affects the progress of the search,
i.e. the smaller the size, the sooner the population converges to a local optimum and the larger the
population, the longer it searches in less promising regions. After preliminary tests a population
size of 100 was selected.
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Table 6.4: Objective values obtained SS1 and SS2 (after 75 minutes)

day 4 day 5 day 6 day 7

init. 0.08962 0.08854 0.08667 0.09038

SS1 0.03897 0.04030 0.03865 0.08639
±0.00062 ±0.00091 ±0.00120 ±0.00104

SS2 0.03220 0.03202 0.03057 0.03300
±0.00062 ±0.00091 ±0.00120 ±0.00104

Scatter Search.

As for the MA, the influence of both local search procedures were tested as well as the effect of
the reference size on the performance of this approach. Another test was performed to compare
the two subset combination technique described in Section 5.3.

Subset combination technique. As shown in table 6.4, the path-relinking method outperforms
the ’construction by voting’ approach significantly. The reason for this lies in the low objective
value of the constructed solutions in the second approach, and thus the inefficient local search
call. Note that these experiments were run for 75 minutes to obtain detailed information on these
time consuming approaches.

Local search procedure. Both local search procedures, the VND and CNS, were tested as
improvement method in the final scatter search approach. These tests indicated that both proce-
dures perform equally well. Thus VND was selected for the final comparison as it provides a
more deterministic and thorough performance.

Reference set size. Changes in the size of the reference set were also tested and it was observed
that a size of 5 provides a reasonable good balance between the computational effort of each
iteration using larger sizes and to avoid to converge to local optima early due to a small set size.

6.3 Empirical Comparison

For these 8 days, each algorithm was run 10 times per initial construction method and 75 minutes
per run. Table 6.5 shows the results of these test runs. Depending on the construction method
(CP or Random Construction), each improvement algorithm uses the same initial solution. The
value in the 3. column shows the objective value of the initial solution. For each algorithm
(starting from column 4) the average best solution is provided as well as the standard derivation
(below). The VND results have been obtained by using the objective value after the first VND
call in the VNS. Note: instance 3 (day 3) has an error in the data which makes it impossible to
create a valid solution.

As table 6.5 shows, the MA approach obtained the best results over all tested instances,
whether using the CP or random initialized solution. Also in terms of robustness the MA per-
forms best compared to the other approaches as it produces very similar results in terms of the
objective value.
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Table 6.5: Final objective values for each metaheuristics, averaged over 10 runs

constr. init. VND VNS EA SAHH SS

day 1 cp 0.0885 0.03080 0.03038 0.02744 0.03260 0.03097
±0.00067 ±0.00034 ±0.00057 ±0.00090 ±0.00034

rand. 162.1513 0.33083 0.33064 0.02707 0.03257 4.03197
±0.48339 ±0.48340 ±0.00031 ±0.00058 ±0.00065

day 2 cp 0.0894 0.03090 0.03038 0.02794 0.03381 0.03120
±0.00039 ±0.00028 ±0.00037 ±0.00081 ±0.00050

rand. 152.1521 0.53162 0.43109 0.02767 0.03321 3.03098
±0.52725 ±0.51647 ±0.00037 ±0.00082 ±0.00055

day 3 cp 1.0860 1.02879 1.02837 1.02600 1.03063 1.02931
±0.00055 ±0.00044 ±0.00051 ±0.00096 ±0.00051

rand. 148.1494 1.02895 1.02851 1.02553 1.03023 2.02875
±0.00043 ±0.00040 ±0.00036 ±0.00070 ±0.00048

day 4 cp 0.0896 0.03132 0.03083 0.02874 0.03302 0.03220
±0.00044 ±0.00048 ±0.00042 ±0.00073 ±0.00051

rand. 155.1532 0.03232 0.03188 0.02784 0.03470 0.03069
±0.00083 ±0.00087 ±0.00056 ±0.00113 ±0.00040

day 5 cp 0.0885 0.03117 0.03076 0.02850 0.03283 0.03202
±0.00052 ±0.00050 ±0.00044 ±0.00083 ±0.00077

rand. 168.1506 0.03167 0.03131 0.02805 0.03286 0.03106
±0.00057 ±0.00068 ±0.00047 ±0.00061 ±0.00048

day 6 cp 0.0867 0.03028 0.02964 0.02665 0.03200 0.03057
±0.00055 ±0.00060 ±0.00048 ±0.00080 ±0.00068

rand. 145.1523 0.03040 0.02992 0.02646 0.03228 0.02947
±0.00051 ±0.00056 ±0.00025 ±0.00076 ±0.00043

day 7 cp 0.0904 0.03209 0.03165 0.02947 0.03377 0.03300
±0.00049 ±0.00054 ±0.00035 ±0.00098 ±0.00050

rand. 149.1516 0.03270 0.03218 0.02900 0.03318 1.03271
±0.00085 ±0.00080 ±0.00042 ±0.00062 ±0.00049

day 8 cp 0.0872 0.02914 0.02846 0.02576 0.02994 0.02995
±0.00071 ±0.00056 ±0.00038 ±0.00061 ±0.00046

rand. 158.1446 0.22922 0.22893 0.02520 0.02969 4.46026
±0.63228 ±0.63227 ±0.00041 ±0.00064 ±0.53455

The VNS approach implemented by the AIT got the second best scores but only if started
with a valid solution, i.e., a solution constructed using CP. For day 1, 2 and 8 the VNS failed to
find valid solutions using a randomly initialized solution for at least one run.

These instances seem to be difficult to solve using only a randomly generated solution as for
them and the day 7 instance the scatter search as proposed in this thesis could not find a valid
solution on any run. The results of the scatter search are similar to those of the VNS except for
the mentioned instances using random starting solutions.

From the results of the SAHH it can be observed that this approach may not find solutions
as good as the other approaches, but it is independent of the starting solution and could find a
solution for the previously mentioned difficult instances every run.

More information on the behaviour of the metaheuristics can be obtained by comparing
the changes of the objective value with the changes of the average travel time and the number
of nurses during the search. These values have been taken from intermediate solutions of the
search procedures using the best run of the day 1 instance with either the CP (6.1a,6.2a,6.2c) or
the random generated solution (6.1b,6.2b,6.2d). Note: The VNS values shown in the figures are
obtained every iteration of the VNS, i.e., not every step of the embedded VND is plotted.
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Figure 6.1: Changes in the objective value over runtime for day1 for CP (a) and random (b) initialization.

The changes of the objective value (6.1a,6.1b) show that the MA finds a solutions better
than obtained by the other approaches early in the search and is able to improve it further. As it
can be seen in figure 6.2a the number of nurses increases slightly while the average tour length
(Figure 6.2c) decreases at the same time. Therefore it can be argued that first improvements of
the initial solution generated by the CP can be obtained by increasing the number of nurses and
decreasing the travel time. More interesting are the further improvements made by the MA. By
decreasing the number of nurses below the number of the initial value while still having travel
times also below the initial one the MA can outperform the other approaches.

A similar observation can be made when looking at figures 6.2b and 6.2d for the randomly
initialized solution. Here the first improvements are made by optimizing the travel times and
reducing the number of nurses at the same time (as, by construction, all nurses have at least one
job assigned). After the initial decrease of the average travel time it increases again while the
number of nurses still decreases.

Both observations suggest, that a good solution based on the objective function used in this
thesis is more characterised by a low number of nurses used than on a low average travel time
per nurse.

The changes in the objective value of the approaches for the other instances in this compari-
son are shown in figures 6.3, 6.4, 6.5 and 6.6. These show a similar behaviour as the discussed
results of the day 1 instance. The MA and the SAHH converges early to the region of very good
solutions but only the MA is able to further decrease the objective value thus leading to superior
results.

With respect to the number of nurses used within the solution, it can be observed that all
approaches reach solutions where the final number of nurses employed is relatively low (see
table 6.6). Such solutions are preferred as future work will consider solving multi day instances
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Figure 6.2: Key indicator performance over runtime for day1: number of used nurses for CP (a) and
random initialization (b); average travel time per nurse for CP (c) and random initialization (d).

which have additional constraints for employed working days. Thus a low number of nurses will
provide an additional grade of flexibility when refining a day’s schedule.
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Objective value development over time on Day2 (CP)
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Objective value development over time on Day2 (Random)
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Objective value development over time on Day3 (CP)
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Figure 6.3: Changes in the objective value for day 2 with CP (a) and random initialization (b); and day
3 with CP (c) and random initialization (d). Note that day 3 has an error in the instance data making it
impossible to create a valid solution.
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Objective value development over time on Day4 (CP)
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Figure 6.4: Changes in the objective value for day 4 with CP (a) and random initialization (b); and day 5
with CP (c) and random initialization (d).
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Objective value development over time on Day6 (CP)
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Figure 6.5: Changes in the objective value for day 6 with CP (a) and random initialization (b); and day 7
with CP (c) and random initialization (d).
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Objective value development over time on Day6 (CP)
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Figure 6.6: Changes in the objective value for day 8 with CP (a) and random initialization (b).

Table 6.6: Number of nurses finally scheduled for each day.

day 1 day 2 day 3 day 4 day 5 day 6 day 7 day 8

VNS 200 205 212 208 204 202 216 211
MA 175 178 175 178 178 174 183 180
SAHH 202 206 213 202 203 203 216 204
SS 201 206 213 212 210 212 216 208
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CHAPTER 7
Conclusion

In this thesis three metaheuristics were implemented tackling a multimodal home healthcare
scheduling problem based on the working procedures of a Viennese home healthcare company.
A detailed description of the problem and solution as well as the solving architecture for the
single-day instance was provided. The algorithms were selected for their performance on related
problems, i.e., the vehicle routing problem with time windows and the nurse rostering problem,
and adapted to the MHS.

First a simulated annealing hyper heuristic was adapted by using the already existing neigh-
bourhoods as low-level heuristics and experimenting with the parameters and temperature val-
ues. Also a constrained variant for the random improvement strategy was proposed but discarded
after preliminary results indicated no improvement compared to the unconstrained variant. The
results show the good performance in comparison with the existing VND and VNS approaches.

As a second approach a memetic algorithm was implemented which was redesigned early
to a steady-state approach using a tailored recombination operator. Another improvement was
obtained using a cyclic search of the neighbourhoods as embedded local search procedure. As
the results of the final comparison showed, this approach performs best compared to the other
proposed metaheursitics.

The last approach implemented was a scatter search. After first tests, the construction by
voting approach was observed to not be suitable to tackle the problem, thus a path-relinking like
algorithm was proposed which improved the performance considerably. However, even with this
improvement and after experiments with different parameters and local search procedures, this
search performed worst of all compared approaches when using a randomly initialized solution,
as the search was not able to find valid solutions on each run of 4 out of the tested 8 instances.

Future work could consist of using these metaheuristics to solve multi-day solutions. This
could be realised using the proposed algorithms in a repeating 2-phase approach where solutions
are created per day and refined by adapting the objective function. Of all presented approaches,
the memetic algorithm might perform very well considering its ability to find good results early
in the search with a low number of nurses used. Furthermore the population maintained by
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the MA could be used to refine a multi-day solution without the need to start a new search
procedure.
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