
D I P L O M A R B E I T

Option Pricing by means of
Genetic Programming

ausgeführt am Institut für

Computer Graphik und Algorithmen
der Technischen Universität Wien

unter Anleitung von a.o. Univ.-Prof. Dipl.-Ing. Dr.techn. Günther Raidl

und Univ.-Prof. Dr. Michael Hanke

durch

Andreas Heigl

Markt 115
5611 GROSSARL

Datum Unterschrift

Abstract

This master thesis describes how to price options by means of Genetic Programming.
The underlying model is the Generalized Autoregressive Conditional Heteroskedastic
(GARCH) asset return process. The goal of this master thesis is to find a closed-form
solution for the price of European call options where the underlying securities follow a
GARCH process. The data are simulated over a wide range to cover a lot of existing
options in one single equation.

Genetic Programming is used to generate the pricing function from the data. Ge-
netic Programming is a method of producing programs just by defining a problem-
dependent fitness function. The resulting equation is found via a heuristic algorithm
inspired by natural evolution. Three different methods of bloat control are used. Addi-
tionally Automatic Defined Functions (ADFs) and a hybrid approach are tested, too.
To ensure that a good configuration setting is used, preliminary testing of many differ-
ent settings has been done, suggesting that simpler configurations are more successful
in this environment.

The resulting equation can be used to calculate the price of an option in the given
range with minimal errors. This equation is well behaved and can be used in standard
spread sheet programs. It offers a wider range of utilization or a higher accuracy,
respectively than other existing approaches.

1

Zusammenfassung

Diese Diplomarbeit beschreibt, wie Optionen mit Hilfe Genetischer Programmierung
bewertet werden können. Das zugrunde liegende Modell nennt sich GARCH (Gen-
eralized Autoregressive Conditional Heteroskedastic) Renditeprozess. Das Ziel dieser
Diplomarbeit ist eine geschlossene Formel, die als Ergebnis den Preis einer europäischen
Kaufoption liefert, dessen dahinter liegende Wertpapier einem GARCH Prozess folgt.
Die Daten werden innerhalb eines breiten Wertebereiches simuliert, um die meisten
existierenden Optionen mit einer Formel bewerten zu können.

Die Formel wird mittels Genetischer Programmierung aus den Daten generiert.
Genetische Programmierung ist eine Methode, bei der nur durch Definition einer zum
Problem passenden Bewertungsfunktion vollständige Programme produziert werden
können. Die Ergebnisgleichung wird schließlich mittels eines der Evolution ähnlichen
Algorithmus gefunden. Drei verschiedene Methoden zum Bloat Control wurden ver-
wendet. Zusätzlich wurden auch Automatisch Definierte Funktionen sowie ein hybrider
Ansatz untersucht. Um sicherzustellen, dass eine gute Konfiguration gewählt wird, gibt
es Vortests vieler verschiedener Konfigurationen. Es zeigt sich, dass in diesem Umfeld
einfachere Konfigurationen erfolgreicher sind.

Die Ergebnisgleichung kann schließlich zur Errechnung der Optionspreise mit min-
imalem Fehler verwendet werden. Diese Gleichung verhält sich gut und kann auch in
Standardtabellenkalkulationen verwendet werden. Im Vergleich mit anderen existieren-
den Ansätzen, bietet diese Gleichung eine weitere Verwendbarkeit beziehungsweise eine
höhere Genauigkeit.

2

Acknowledgements

I have to thank my family, my professors and all my friends. Special thanks to Dr.
Hanke, who has helped me to find this interesting topic of research and to Dr. Raidl,
who has showed me how to write a good master thesis. All the brave programmers who
have made libraries I have used, are mentioned here too. Magister Katarina Kocian
has read my thesis very often to find even the last mistake. Without these people it
would not have been possible to write this thesis.

3

Contents

1 Introduction 6

2 Option pricing 8
2.1 Basic approaches in option pricing . 8

2.1.1 Some definitions and basic models 8
2.1.2 The Black-Scholes formula . 10

2.2 Discrete-time stochastic processes and the GARCH model 11
2.2.1 Discrete-time stochastic processes 11
2.2.2 The GARCH model . 11
2.2.3 Monte Carlo simulation of a GARCH process 12

3 Overview of Genetic Programming 15
3.1 Genetic algorithms . 15

3.1.1 Basic terminology . 16
3.1.2 Flowchart of a simple genetic algorithm 18
3.1.3 Additional settings . 18

3.2 Genetic Programming . 19
3.2.1 Terminal set and function set 20
3.2.2 Creation of the initial population 20
3.2.3 Genetic operations . 21
3.2.4 Automatic defined functions . 23
3.2.5 Bloat control . 24
3.2.6 Control parameters . 24

4 A survey of existing approaches in option pricing 26
4.1 Neural networks . 26
4.2 Markov chain approximation . 27
4.3 Genetic Programming . 29

5 Strategic decisions of the new approach 31
5.1 GARCH process . 31
5.2 Genetic Programming . 32

5.2.1 Functions and terminals . 32
5.2.2 Fitness function and bloat control 32

4

5.2.3 Population size, number of generations and mutation 34
5.2.4 Automatic defined functions and hybrid approaches 34

6 Implementation details 36
6.1 Libraries . 36

6.1.1 The Genetic Programming kernel 36
6.1.2 A random number generator library 38
6.1.3 GNU Scientific Library . 40

6.2 New classes and functions . 41
6.2.1 Additional functions . 41
6.2.2 GPOPdata . 41
6.2.3 MyGPVariables . 42
6.2.4 MyGene . 42
6.2.5 MyGP . 43
6.2.6 MyPopulation . 43
6.2.7 Executables . 43

6.3 Overview UML diagram . 44

7 Results and statistics 46
7.1 Statistics of the identification of the best configuration 46

7.1.1 Setting of the test environment 46
7.1.2 Test results . 47
7.1.3 Utilization of the ADFs and the hybrid approaches 49

7.2 Comparison of the best equation found with the original process 50
7.2.1 Setting of the Genetic Algorithm 50
7.2.2 The result . 50
7.2.3 The original process . 52

7.3 Comparison of the results with other approaches 54
7.3.1 Comparison of the result with [Han98] 56
7.3.2 Comparison of the result with [DS01] 56
7.3.3 Comparison of the result with [Keb99] 57

8 Conclusion 58
8.1 New approaches . 58
8.2 Summary of the result . 58
8.3 Future issues . 59

5

Chapter 1

Introduction

Options are derivative securities. At expiration date the value of an option is exactly
determined by an underlying cash instrument. The process of finding the value of an
option before expiration date is called option pricing. The history of the theory of
option pricing began in 1900 when the French mathematician Louis Bachelier derived
an option pricing formula. His formula is based on the assumption that stock prices
follow a Brownian motion with zero drift. Since that time, numerous researchers have
contributed to the theory. In the year 1973 Fischer Black, Myron Scholes and Robert
Merton made a breakthrough in the pricing of options. They have derived a single
equation for pricing options, under the assumption of a lognormal distribution of the
underlying asset. Still there are some problems with the model’s assumption. Empiri-
cal evidence (compare with [BCK92]) has shown that the underlying securities do not
behave according to that assumption. The probability of large price changes is much
higher than it should be possible under the lognormality assumption. Another typical
feature of empirical return distributions is called heteroskedasticity, the changing of the
variance in time. In practise, many return series show volatility clustering, where bad
news lead to a significant increase of the volatility. After some time volatility returns
to the old value. The GARCH (Generalized Autoregressive Conditional Heteroskedas-
ticity) model of Tim Bollerslev is an answer to these problems. Jin-Chuan Duan has
developed an option pricing model for underlyings following GARCH processes. Still
one drawback remains. It is not possible to derive a closed-form equation for option
pricing similar to the Black-Scholes formula. Option prices can only be calculated via
Monte Carlo simulation, which is computationally expensive and time consuming.

Meanwhile new approaches to solve complex problems evolved in the field of com-
puter science. Many of them have been inspired by the way nature “solves problems”.
Neural networks are now widely used in different areas. [Hol75] introduced the concept
of Genetic Algorithms, which is very successful in the field of Operations Research.
[Koz92] enhanced the Genetic Algorithm to the so called Genetic Programming ap-
proach, which is applicable in fields as different as electrical engineering and symbolic
regression (compare with [K+03]).

Brokers frequently need to make decisions within seconds. Until recently it was not

6

possible to use the GARCH model for more than a small number of options, because
it takes too much time to perform a Monte Carlo simulation. [Han98] used a Neural
Network to overcome this problem. [DS01] provide a Markov chain approximation.
This master thesis will use Genetic Programming to derive an approximate analytic
formula for pricing options when the underlying follows a GARCH process.

The thesis is organized as follows. Chapter 2 provides a brief overview of the
concepts of option pricing. Chapter 3 introduces Genetic Programming. Chapter 4
gives an overview of existing approaches. They are all related to this work and are used
as a benchmark for the results. Our new approach is presented in chapter 5. It shows
also the strategic modus operandi of this work. Chapter 6 discusses implementation
issues. This chapter also gives information about the libraries used, which are freely
available on the internet. Chapter 7 gives a detailed experimental analysis of the results
and a comparison to existing approaches. It includes statistical tests to find out the
best configurations. Chapter 8 concludes this master thesis and gives some suggestions
for further research.

7

Chapter 2

Option pricing

This chapter gives a brief overview of option pricing and shows approaches which are
used in later chapters. A comprehensive introduction to option pricing can be found
in [Hul02]. Some of the more complex mathematical aspects can be found in [Nef00].

2.1 Basic approaches in option pricing

2.1.1 Some definitions and basic models

According to [Nef00], p. 2 “a financial contract is called a derivative security, or a
contingent claim, if its value at expiration date T is determined exactly by the market
price of the underlying cash instrument at time T. Hence, at the time of expiration of
the derivative contract, denoted by T, the price F(T) of a derivative asset is completely
determined by S(T), the value of the underlying asset. After that date, the security
ceases to exist.”

The underlying asset can be

• stocks,

• currencies,

• interest rates,

• indexes

• commodities like crude oil, gold and many more.

It is possible to group derivative securities under three general headings:

• Futures and forwards

• Options

• Swaps

8

A future and a forward contract is an obligation to buy (or sell) an underlying asset
at a specified price on a known date. If the specified price is not equal to the market
price of the underlying at expiry the holder of the contract makes a loss or a profit.

In contrast to that, an option is the right, but not the obligation to buy (or sell)
the underlying asset at a specified price on a specified date. The specified price in
the contract is known as the exercise price or strike price. The specified date in the
contract is known as the expiration date or maturity. If it is a right to buy it is a call
option, if it is a right to sell it is a put option (compare with [Hul02] p. 1 - 15).

Options may be classified by their exercise mode:

American options can be exercised at any time up to the expiration date.

European options can only be exercised on the expiration date itself.

If X is the strike price and ST is the final price of the underlying asset, the payoff
at the expiration time of a European call option is

max(ST −X, 0). (2.1)

This reflects the fact that the option will be exercised if ST > X and will not be
exercised if ST < X. Similarly the payoff at expiration time of a European put option
is

max(X − ST , 0). (2.2)

Before expiration, the price of a stock option is affected by six factors ([Hul02]):

• Current stock price.

• Strike price.

• Risk-free interest rate

• Volatility of the stock price, which is the annualized standard deviation.

• Time to expiration.

• Dividends expected during the life of the option.

If the current stock price is high then it is more likely that the stock price at
expiration time will be high too. According to equation 2.1 the value of a call option
will be higher when the stock price is higher at expiration time. The strike price is not
subject to change until the expiration date and influences the value of the option in a
direct manner.

The risk-free interest rate affects the price of an option in a less clear-cut way. As
interest rates in the economy increase, the expected growth rate of the stock price
tends to increase. However, the present value of any future cash flow received by the
holder of the option decreases.

9

As volatility increases, the chance that the stock will do very well or very poorly
increases. For the owner of the underlying, these two outcomes tend to offset each other.
However the owner of a call benefits from price increases but has limited downside risk
in the event of price decreases because he has no obligation to exercise the option.
Therefore as volatility increases the value of an option also increases.

The time to expiration influences the value of a call option in two ways. More time
until expiration means a higher change of large changes in the underlying price, which
increases the price of options. At the same time more interest has to be paid. This
decreases the value of an option.

According to [Hul02] p. 170, dividends have the effect of reducing the stock price
on the ex-dividend date. This is bad news for the value of call options and good news
for the value of put options. The value of a call option is therefore negatively related
to the size of any anticipated dividends, and the value of a put option is positively
related to the size of any anticipated dividends.

The moneyness ratio is defined as St/X. A call option is called out-of-the-money if
the moneyness ratio is less than 1. If it is worth more than 1, it is called in-the-money.
In case it is close to 1 it is called at-the-money.

2.1.2 The Black-Scholes formula

As long as it is possible to determine which process the underlying will follow in the
future it is possible to calculate the price of an option before the expiration date too.
Because there are countless factors which can influence the price of a stock and these
factors are usually not known in advance the process cannot be deterministic, but is
stochastic.

Stochastic processes can be classified as discrete-time or continuous-time. A
discrete-time stochastic process is one where the value of the variable can change only
at certain fixed points in time, whereas a continuous-time stochastic process is one
where change can take place at any time (compare with [Hul02] p. 216).

A Wiener process or Brownian motion is a continuous-time stochastic process. It
is a particular type of Markov stochastic process with a mean change of zero and a
variance rate of 1.0 per year. A good overview of the properties of a Wiener process
may be found in [Nef00] p. 173 - 202.

We are assume that the underlying follows a generalized Wiener process

dS = µSdt+ σSdz (2.3)

where S is the price of the underlying, dt is the time between two measure points, µ
is the expected return of the underlying, σ is the volatility of the process and z is a
standard Wiener process.

This equation implies that stock prices have the lognormal property. This means
that the percentage changes (dS/S) of stock prices are normally distributed.

[BS73] found a solution to a stochastic differential equation derived from this process
by constructing a locally riskless hedge-portfolio. This leads to the following formula

10

for pricing call options:
c = S0N(d1)−Xe−rTN(d2) (2.4)

where

d1 =
ln(S0/X) + (r + σ2/2)T

σ
√
T

(2.5)

and
d2 = d1 − σ

√
T (2.6)

The function N(x) is the cumulative standard normal probability distribution func-
tion. Furthermore r is the riskless interest rate and T is the time left to maturity. A
derivation of this formula can be found in [Nef00].

2.2 Discrete-time stochastic processes and the

GARCH model

2.2.1 Discrete-time stochastic processes

Another approach to model the price process of the underlying are discrete-time
stochastic processes. In contrast to the generalized Wiener process, only discrete time
steps are used. The discretized version of the generalized Wiener process leads to the
following equation:

St
St−1

= µ− σ2

2
+ εt (2.7)

where St is the price of the underlying at time t, µ is its expected return, σ its volatility
and εt is a normally distributed random variable with mean 0 and variance σ2. The
left-hand side of the equation is defined as the yield (y) of the underlying. With the
yield it is possible to calculate St from St−1 via the following formula:

St = St−1e
y (2.8)

As can be seen from equation 2.7 the Black-Scholes model assumes that the proba-
bility distribution of the underlying asset at any given future time is lognormal, which
is a less than perfect assumption because the probability of high losses and profits is
much higher in reality. Therefore the true probability distribution seems to have a
higher kurtosis than the normal distribution. Another wrong assumption of the Black-
Scholes model is that the volatility of the underlying is constant in time (compare
[Hul02] p. 331 - 345).

2.2.2 The GARCH model

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model was
first introduced by [Bol86]. It is a more flexible variant of the ARCH model proposed

11

parameter description

St/X moneyness ratio
r interest rate
σ2 unconditional variance

T − t expiration time√
ht/σ relation between conditional and unconditional standard deviation
a1 GARCH parameter
b1 GARCH parameter
λ risk premium

Table 2.1: Input data

by [Eng82]. A good overview of the different types and applications of the GARCH
model can be found in [BCK92].

The GARCH model is a discrete-time stochastic process. Every GARCH process
consists of two equations. One defines the mean, the other the conditional variance.
The yield of a GARCH(1,1) process is defined as

y =
St
St−1

= r + λ
√
ht − ht

2
+ ηt (2.9)

with
ht = a0 + a1η

2
t−1 + b1ht−1, (2.10)

where r is the riskless interest rate, St is the price of the underlying at time t, λ is the
risk premium, ht is the conditional variance, a0, a1, b1 are GARCH parameters and ηt
is a normally distributed random variable with mean 0 and variance ht (ηt ∼ N(0, ht)).

The difference between a GARCH process and the discretized Geometric Brownian
motion (used in the Black-Scholes model) is that the variance may now change over
time. The variance (ht) depends on the GARCH parameters (a0, a1, a2), the variance
from one period before and random disturbances (ηt). Although ηt is normally dis-
tributed, the unconditional variance of the whole process is not normally distributed.
Therefore, depending on the values of the GARCH parameters, the distribution is not
the same as in the Black-Scholes framework (compare with [Han98]).

Usually a GARCH process is estimated by the maximum-likelihood method, where
all parameters (a0, a1 and b1) are estimated at the same time. To produce sample
time-series Monte Carlo simulation might be used. Until yet it was not possible to find
a solution for the differential equations of the GARCH process in general.

2.2.3 Monte Carlo simulation of a GARCH process

The data will be simulated according to [Dua95] and [GS96]. In [Dua95] the concept
of locally risk-neutral valuation relationship (LRNVR) was introduced. The LRNVR

12

leads to a transformation of the formula of the yield and the conditional variance,
which holds under realistic assumptions about the behavior of investors.

The given input data are shown in table 2.1 and are usually estimated from historical
data. The condition a1 + b1 < 1 must always be satisfied, otherwise the unconditional
variance is not defined. The GARCH parameter a0 is given by the following formula:

a0 = σ2(1− (1 + λ2)a1 − b1) (2.11)

The next conditional variance is given by

ht+1 = a0 + a1(ηt − λ
√
ht)

2 + b1ht (2.12)

where η2
t = ht in the first case. Next time the ith instance (this means the ith path of

simulation) of ηt+1,i is constructed with standard normal random numbers zt+1,i:

ηt+1,i =
√
ht+1zt+1,i (2.13)

We get the yield with

y∗t+1,i = r − ht+1

2
+ ηt+1,i (2.14)

The new moneyness ratio can be calculated by

S∗t+1,i

X
=
St
X
ey
∗
t+1,i (2.15)

The yield, error term and conditional standard deviation at the next time points u =
t+ 2, ..., T are calculated equally:

y∗u,i = r − hu,i
2

+ ηu,i (2.16)

with
ηu,i =

√
hu,izu,i (2.17)

and
hu,i = a0 + a1(ηu−1,i − λ

√
hu−1,i)

2 + b1hu−1,i (2.18)

At the end we get the new moneyness ratio of the share:

S∗T,i
X

=
St
X
e
∑T

u=t+1
y∗u,i (2.19)

And finally the price of an European call option relative to the strike price K at time
t:

C∗t,i
X

= e−r(T−t) max(
S∗T,i
X
− 1, 0) (2.20)

To decrease the variance of the different simulation paths variance reduction meth-
ods are used. This reduces the time to do the simulation. [BBG97] describes the
theoretical fundamentals of this approach. Three methods are described.

13

The method of antithetic variates is described in [BBG97]. For each set of random
numbers (zui) another set with negative values of these random numbers (−zui) is
calculated. An option price is calculated by using the original random numbers (zui),
another by using the negative value of the original random numbers. The variance
reduced price is the average of these two prices.

The second is the Empirical Martingale Simulation (EMS) introduced by [DS95].
It is a simple enhancement of the Monte Carlo simulation that ensures that the price
estimated satisfies rational option pricing bounds. The new simulation procedure gen-
erates the EMS asset prices at a sequence of time points, t1, t2, ..., tm using the following
dynamics:

S∗i (tj, n) = S0
Zi(tj, n)

Z0(tj, n)
(2.21)

where

Zi(tj, n) = S∗i (tj−1, n)
Si(tj)

Si(tj−1)
(2.22)

Z0(tj, n) =
1

n
e−rtj

n∑

i=1

Zi(tj, n) (2.23)

Note that Si(t) is the ith simulated asset path at time t prior to the EMS adjustment.
The last one is called the control variate method which is described in [BBG97].

With the same random numbers used in the calculation of GARCH prices (P gsim)
Black-Scholes prices are simulated by using equation 2.8 which leads to a simulated
Black-Scholes price (P bssim). But the Black-Scholes price (P bsana) can also be calculated
analytically by the Black-Scholes formula given in 2.4. The new GARCH(1,1) price
(P gcv) after the control variate correction is

P gcv = P gsim − β(P bssim − P bsana) (2.24)

The β should be chosen to minimize the variance and is therefore:

β =
Cov[P gsim, P bssim]

V ar[P bssim]
(2.25)

14

Chapter 3

Overview of Genetic Programming

Genetic Programming has been introduced in [Koz92]. It is based on genetic algo-
rithms which were originally described in [Hol75]. These two basic approaches will be
introduced in the following sections.

3.1 Genetic algorithms

This section gives a brief overview of genetic algorithms. More information can be found
in [BFM97] or in [Mic92]. In biology the evolutionary process results in a selection of
the fittest individual in a given environment. The environment might be a specific area,
a continent or the whole world. In [Hol75] a general framework for adaptive systems
is given. The book shows how these adaptive systems (like the evolutionary process)
might be applied to artificial systems. Any problem in adaptation can generally be
formulated in genetic terms. Once formulated in those terms, such a problem can
often be solved by what we now call the “Genetic algorithm” (compare with [Koz92],
p. 17-18).

[Mic92], p. 14 states:

“The idea behind genetic algorithms is to do what nature does. Let us take
rabbits as an example: at any given time there is a population of rabbits.
Some of them are faster and smarter than other rabbits. These faster,
smarter rabbits are less likely to be eaten by foxes, and therefore more of
them survive to do what rabbits do best: make more rabbits. Of course,
some of the slower, dumber rabbits will survive just because they are lucky.
This surviving population of rabbits starts breeding. The breeding results
in a good mixture of rabbit genetic material: some slow rabbits breed with
fast rabbits, some fast with fast, some smart rabbits with dumb rabbits and
so on. And on the top of that, nature throws in a ‘wild hare’ every once in
while by mutating some of the rabbit genetic material. The resulting baby
rabbits will (on average) be faster and smarter than those in the original
population because more faster, smarter parents survived the foxes.”

15

3.1.1 Basic terminology

A genetic algorithm works on individuals (or genotypes, structures), which might be
a living organism in nature or a solution to a known problem in an artificial system
(=environment). Each individual is completely described by its constant-size genome.
This genome or chromosome may be encoded in bits and bytes, alphanumerical letters
or nucleotide bases, like it is done in nature. Chromosomes are also called strings. In
nature every species carries a certain number of chromosomes (humans for example,
have 46 of them). However in artificial problems usually one chromosome is sufficient.
Chromosomes are made of units - genes (also called features, characters) - arranged
in linear succession. Every gene controls the inheritance of one or several characters
(compare with [Mic92]).

Every individual has an associated fitness value. This fitness value describes the
capability of an individual to survive in the environment. Operations designed to mimic
the Darwinian principle of reproduction and survival of the fittest are used on a set of
individuals (=population). A population therefore consists of many individuals which
are in general different, but it can also contain identical individuals. An algorithm
describes which individuals are going to survive where the individuals with better
fitness will have a competitive advantage.

According to [Mic92] p. 17-18 a genetic algorithm for a particular problem must
have the following five components:

• a genetic representation for potential solutions to the problem,

• a way to create an initial population of potential solutions,

• an evaluation function that plays the role of the environment, rating solutions in
terms of their fitness,

• genetic operators that alter the composition of children during reproduction,

• values for various parameters that the genetic algorithm uses (population size,
probabilities of applying genetic operators, etc.).

Genetic operations which determine a genetic algorithm are

reproduction where one individual can reproduce itself (in real life this means that
it is able to live longer than the others).

crossover or sexual reproduction where two individuals (parents) produce one or more
individuals.

mutation where the genome of an individual (and therefore the individual itself too)
are changed in a random way.

16

Gen:=0

Create initial

random population

Termination

criterion satisfied?

Designate

result

End

Evaluate fitness of

each individual in

population

Yes

No

i:=0

i=M?Gen:=Gen+1 Yes

Select genetic operation

probabilistically

No

Select two

individuals based

on fitness

Select one

individual based

on fitness

Select one

individual based

on fitness

Pr Pm

Pc

i:=i+1Perform

redproduction
Perform mutation

Perform

CrossoverCopy into new

population

Insert mutant into

new population

Insert two

offspring into new

population

i:=i+1

Figure 3.1: Flowchart of a simple genetic algorithm. Source: [Koz92]

17

3.1.2 Flowchart of a simple genetic algorithm

In figure 3.1 the basic steps of a genetic algorithm are shown. First the generation
(=population) counter is set to zero. Then an initial population is generated randomly
and the fitness of each individual in the population is examined. If the termination
criterion is already satisfied, the genetic algorithm will stop and the result may be used.
The termination criterion might be a limit on the number of generations or a specific
quality criterion of the individuals. The result is usually the best individual found in
the whole algorithm.

To produce a new generation the variable i counts the number of new individuals,
which will be set to zero initially. The number of individuals in each population equals
M . The next steps are repeated until M new individuals have been created.

The three different genetic operations are chosen randomly. With probability Pr
an individual is simply selected, reproduced and copied to the new population. With
probability Pm an individual will be mutated and with probability Pc crossover will
occur. In this case two individuals are selected, some kind of crossover is performed
and the two offspring are copied into the new population.

This is repeated until the new generation is completed. The generation counter is
now increased. Then the fitness of each individual is evaluated to find out whether the
termination criterion is satisfied.

3.1.3 Additional settings

There are numerous minor variations of the basic genetic algorithm shown in figure
3.1. Some approaches put the mutation operation after crossover and reproduction
with some (low) probability. It is not shown how the crossover operation is done
exactly. This is often domain dependent, which means that it depends on the specific
problem the genetic algorithm is supposed to solve.

Another variation is called the steady state framework which is first used in [Rey92]
and was originally proposed in [Hol75]. In this case the new population is not produced
at once and then replaces the old one, but there exists just one population. The
parents are chosen from this population and the generated offsprings are immediately
incorporated into the population by replacing one or two existing individuals. The
individuals to be replaced can be the worst or randomly chosen ones. An iteration
(generations do not exist any more) is considered as completed, once the number of
children created by this method is equal to the size of the population. This procedure
saves memory and increases the convergence. The disadvantage is that it increases the
danger of premature convergence which leads to worse results.

Two selection strategies are important to mention (compare [Fra94]). Possible
solutions or chromosomes are assigned a fitness f by the fitness function. In fitness
proportionate selection, the probability P selection that a specific individual y will be
selected is

P selection
y =

fy∑N
x=1 fx

(3.1)

18

where N is the number of individuals in the population. While candidate solutions with
a lower fitness will be less likely to be selected, there is still a chance that they may be.
Contrast this with a less sophisticated selection algorithm, such as truncation selection,
which will choose a fixed percentage of the best candidates. With fitness proportionate
selection there is a chance some weaker solutions may survive the selection process; this
is an advantage, as though a solution may be weak, it may include some components
which could prove useful following the recombination process.

Tournament selection chooses a specific number of individuals from the population
(for example 10). These individuals are selected randomly with each individual having
the same probability to be chosen. Then the best one or best two of these individuals
will be selected for the genetic operation. This method is easier to implement and
more robust than fitness proportional selection. The disadvantage is that the fitness
measure is no longer an absolute value which determines the probability to be chosen.
The fitness measure just provides a relative measure for the selection process.

With demetic grouping the selection process may also be altered. In this case the
whole population is subdivided into a number of groups. These groups undergo their
own genetic algorithm and interact only rarely. This allows the demes to evolve along
separate paths with solutions differing more from each other, which might lead to better
individuals at later generations.

3.2 Genetic Programming

Genetic Programming was introduced by [Koz92]. A good introduction can be found in
[BNKF98]. It is an extension of the genetic algorithms where the chromosomes are of
variable size. The chromosomes now describe hierarchical computer programs encoded
in tree-like structures. This leads to additional complexity and some further issues
described in the following subsections.

According to [KBAK99], p. 33 the five major preparatory steps for Genetic Pro-
gramming entail determining

1. the set of terminals (e.g., the actual variables of the problem, zero-argument
functions, and random constants, if any) for each branch of the to-be-evolved
computer program,

2. the set of primitive functions for each to-be-evolved branch,

3. the fitness measure (or other arrangements for explicitly measuring fitness),

4. the parameters for controlling the run, and

5. the termination criterion and the method of result designation for the run.

19

+

IF

< X /

2 YX Y

ln

Y

Figure 3.2: An example of a genetic program

3.2.1 Terminal set and function set

An example of a genetic program is given in figure 3.2. With this tree-like represen-
tation it is possible to describe every computer program. In the example we have an
IF statement, some elementary mathematical functions, variables and a constant. The
statements may be subdivided into a function set and a terminal set. The terminal
set consists of end-points of the tree (=leaves) which do not have any arguments. The
variables and constants are subsets of it. The function set statements or non-terminals
all have arguments (one or more subtrees) and consist of the subsets of arithmetic
operations (+,-,*,/), mathematical functions (such as sin, log), Boolean operations,
conditional operations (like IF) and functions causing iterations (like do-until loops).

The function and the terminal set must fulfill two properties. The closure property
requires that each of the functions be able to accept, as its arguments, any value and
data type that may possibly be returned by any function and any value that may
possibly be assumed by any terminal (compare with [Koz92], p. 81 - 88). The divide
function for example does not fulfill the closure property when the second argument
is zero. Solutions to this problem are to define an extra value, like “undefined” or the
function may return a very high (or very low when maximizing) value. The sufficiency
property requires that the set of terminals and functions are in principle capable of
expressing a solution to the given problem.

3.2.2 Creation of the initial population

The initial population of Genetic Programming is usually created in some random
way. Here, we have the problem of variable size chromosomes. The type of creation
performed can (according to [Koz92], p. 91 - 94) be one of five types:

Variable: Where a created genetic program can be of a size or structure up to the
maximum depth specified for creation. This means that at any point in the tree a
function or terminal is arbitrarily chosen. If the maximum size is reached (which
need not be the case) a terminal will be selected.

20

Grow: Where the creation mechanism can only choose functions until the maximum
depth is reached when a terminal must be chosen. This causes the size and
structure of the genetic program to be the same in all random creations.

Ramped variable: It changes the variable creation type so that the creation mech-
anism attempts to produce genetic programs with increasing limiting depths up
to the maximum depth for creation.

Ramped grow: It changes the grow creation type so that the creation mechanism
attempts to produce genetic programs with increasing limiting depths up to the
maximum depth for creation.

Ramped half-and-half: This is the creation mechanism used in the majority of Ge-
netic Programming applications. The algorithm permits half the population to
be created with ramped variable and the other half to use ramped grow (compare
with [Fra94]).

3.2.3 Genetic operations

Reproduction is defined similarly as in the genetic algorithm approach. It just copies
the selected individual to the next generation.

Crossover is a little more complicated. Figure 3.3 shows two parents and two
possible offsprings. After two parents have been selected, one random point in each
parent has to be found. In figure 3.3 these are in both cases the right-hand sides after
the root functions. Note that the two parents typically are of unequal size and that the
crossover point may also be above a terminal. Then the subtrees are exchanged and the
results are the two children for the new generation (compare [Koz92], p. 101 - 105). If
accidentally the newly created individuals are bigger than the maximum allowed size,
new crossover points have to be chosen and the crossover operation is repeated.

The mutation operation introduces random changes in structures of the population.
The point where mutation takes place may be chosen randomly like it is done in the
crossover operation. According to [Fra94], two types of mutation are meaningful. Allele
mutation just swaps an n-argument function with another n-argument function or a
terminal with another terminal. This operation preserves the shape of an individual.
Shrink mutation as described in [Fra94] takes the child of a particular gene and moves
that child into the position of the parent. This means that genetic programs will shrink.
This is a particularly useful property considering how large some genetic programs get
as the evolutionary process continues. In [KBAK99], p. 43 - 44, another approach to
mutate genetic programs is used. A random point is chosen in the parental program.
The subtree rooted at the chosen mutation point is deleted from the program, and a
new subtree is randomly grown, using the available functions and terminals in the same
manner as trees are grown when creating the initial random population of generation
0. Then the random subtree is implanted at the chosen mutation point. According

21

+

IF

< X /

2 YX Y

ln

Y

-

X Y

+

IF

< X /

2 YX Y

ln

Y

-

X

Y

Figure 3.3: An example of a crossover operation

22

to [KBAK99], p. 44, “the mutation operation is generally sparingly used in Genetic
Programming”.

An operation which is not defined in genetic algorithms is editing. This operation
is asexual in that it operates on only one individual. The editing operation applies
some domain-specific editing rules. This usually decreases the size of individuals by
mathematical simplifications of formulas and similar editing rules.

3.2.4 Automatic defined functions

In [Koz94] the concept of automatic defined functions (=ADF) is elaborated in detail.
With ADFs the search space may be significantly decreased by using problem domain
knowledge. In fact ADFs correspond to the concept of subroutines which may be
reused many times by the main program.

Therefore the set of non-terminals will be augmented by some ADFs (=subroutines)
in the main tree. These subroutines may have a specific (domain dependent) number
of arguments. Each ADF now is a genetic program itself and has a terminal and a
non-terminal set, which might be useful to a specific problem.

If a problem can be divided into subproblems then ADFs are useful. The description
of each ADF equals the description of the subproblem. In general it is not necessary
to have premature knowledge of the subproblem. This can be solved by the Genetic
Programming algorithm. The whole problem may then be solved by using the solutions
of the ADF. Another advantage is that an ADF might be used in the main genetic
program more than once. This increases the efficiency of the genetic program.

If ADFs are used in addition to the five major preparatory steps (compare with
chapter 3.2), the architecture of the to-be-evolved program must be determined in
some way. For example this can be the number of different ADF’s and the number of
arguments each ADF has. According to [KBAK99] p. 71 - 74, five methods have been
used previously for making the necessary architectural choices. The first four of these
methods are manual; the fifth is an automated technique:

1. prospective analysis of the nature of the problem, where human insight is used
after analyzing the problem in advance,

2. retrospective analysis of the results of actual runs of similar problems,

3. seemingly sufficient capacity,

4. affordable capacity, which might be the memory-size of a computer, and

5. evolutionary selection of the architecture.

The last method uses the same genetic algorithm to choose the architecture. After
generation 0, there is a competition among the existing architectures during the course
of the run. This means that individuals with different architectures exist in every
population. A whole book [KBAK99] describes in detail all the problems which arise

23

from this approach and how new architectures may emerge and bad architectures may
disappear.

3.2.5 Bloat control

When evolutionary computation uses arbitrarily-sized representations, often the evo-
lutionary process progresses not only towards fitter individuals, but to dramatically
larger individuals. This rapid increase in size, known as bloat, can hinder the evolu-
tionary mechanism itself and can slow down successive generations to a point where
further progress is not feasible anymore (compare with [PL04]). This is especially true
when Genetic Programming gets out of memory.

According to [PL04], the most common approach to bloat control is establishing
hard limits on size or depth, primarily because this approach was popularized by early
work in Genetic Programming [Koz92]. If a newly created child is deeper than a
specific number, it is rejected and a new child will be created with lower depth. Depth
limiting has proven a surprisingly successful method and usually all other methods are
combined with some restrictions on tree depth as well.

Another straightforward approach is called parsimony pressure. Parsimony pressure
has often been parametric, meaning that it considers the actual value of size and
fitness together in a parametric statistical model for selection. This may easily be done
by adding a penalty to the fitness function which is proportional to the size of the
individual. Care has to be taken of the penalty factor, because this influences Genetic
Programming in a high manner. A penalty factor that is too high leads to small (in
size) but poor (in quality) results.

[PL04] suggests a new approach which is called death by size. Death by size is
intended for methods such as steady-state evolution which requires a procedure for
marking individuals for death. The bloat control approach uses fitness to select indi-
viduals for breeding, as usual, but when selecting an individual for death, selection is
done by size (preferring to kill larger individuals).

3.2.6 Control parameters

[Koz92] has defined 19 control parameters which determine a Genetic Programming al-
gorithm. These control parameters include such important variables as the population
size, the maximum number of generations and some probabilistic values. In table 3.1
these parameters are shown with the default values proposed by [Koz92]. Of course in
practice the values of the control parameters should be domain-dependent.

24

Parameter Default value

Population size 500
Maximum number G of generations to be run 51

Probability of crossover 90 %
Probability of reproduction 10 %

Probability of choosing internal points for crossover 10 %
Maximum size for S-expressions created during the run 17

Maximum size for initial random S-expressions 6
Probability of mutation 0 %

Probability of permutation 0 %
Frequency of editing 0

Probability of encapsulation 0 %
Condition for decimation NIL

Decimation target percentage 0 %
Generative method for initial random population ramped half-and-half

Basic selection method fitness proportionate
Spousal selection method fitness proportionate

Adjusted fitness used
Over selection not used
Elitist strategy not used

Table 3.1: Control parameters

25

Chapter 4

A survey of existing approaches in
option pricing

This chapter gives a brief overview of existing approaches in option pricing. [Han97]
and [DS95] use two different methods to price options, where the underlying follows a
GARCH process. [Keb99] is the first attempt to use Genetic Programming in option
pricing at all. He assumes that the underlying follows a Wiener process (compare with
chapter 2.1.2). These approaches will also be used later to assess the quality of the
results of the new approach. The new approach will use Genetic Programming to price
options following a GARCH process (compare with chapter 5).

4.1 Neural networks

The first approach to use neural networks for pricing options according to a GARCH
model was introduced by [Han98] (some results may also be found in [Han97]). In this
doctoral thesis a huge variation of different models and options have been estimated
by neural networks. It ranges from European to Asian options, from the Black-Scholes
framework to the GARCH framework and even empirical data have been used to train
the neural networks. At the end an adaptive non-linear model has been proposed,
which is built upon a hybrid approach of Black-Scholes prices and the daily deviation
between these prices and the market prices.

The network topology used in [Han97] is feedforward, i.e. loop-free. Three layers
have been used, where each layer is connected to the next one fully (i.e. each neuron
of a specific layer is connected to every neuron of the next layer). The first layer is
called the input layer. This layer has the number of input parameters as the number of
neurons. Each neuron is therefore assigned to a specific input parameter. The second
layer is called the hidden layer. This layer is tested with different numbers of neurons
for each problem. It ranges between 4 and 40 neurons with step size 4. The third layer
is called the output layer. It consists of only one neuron, because the output should
only lead to one result: The price of the given option.

26

The activation function of the neurons in the hidden layer is the hyperbolic tangent
function:

ψ(x) =
1− e−x
1 + e−x

, (4.1)

where x is the sum of the weighted values of all input neurons. The output neuron
computes the sum of all values from the hidden layer using its own weights and it
applies the identity function (id(x) = x) as activation function. This leads to the
following mathematical representation of the whole neural network:

o(x,w) = w0 +
J∑

j=1

wj
1− e−

∑I

i=0
wijxi

1 + e−
∑I

i=0
wijxi

(4.2)

where o(x,w) is the output (the result) of the neural network, I is the number of input
parameters and J is the number of hidden neurons. xi is therefore a specific input
parameter, except x0 which is a constant. All w’s are the weights of the connections
between two neurons.

The determination of the weights (w) is called learning. In [Han97] the back prop-
agation algorithm and the Broyden-Fletcher-Goldfarb-Shanno one-step memoryless
quasi-Newton method is used for learning. In all cases the second method leads to
better results. Both learning methods are supervised, which means that they use data
(historical or model driven) to determine the weights. 1000, 2500, 5000 and 10000 data
points are used for each learning algorithm.

In the first step the neural network is trained according to the Black-Scholes model
and then the results are compared to the calculated values (with the Black-Scholes
formula). The best result gives a root mean squared error (RMSE) of 1.99∗10−4 where
the (RMSE) is defined as follows:

RMSE =

√√√√ 1

N

N∑

n=1

e(n)2 (4.3)

with N the number of data points and e(n) the network error.
In the second step European call options are estimated under the GARCH model.

The simulation of the GARCH prices is done exactly as described in chapter 2.2.3. The
input data are uniformly distributed in the ranges listed in table 4.1. The best results
give a RMSE of 5.63 ∗ 10−4.

In both cases a short analysis of the deviation related to some input data ranges is
given. Noticeable is the higher deviation for at-the-money options. The deviation is
also significantly higher for short-maturity options. Additionally in the GARCH case
the deviation is higher at long maturities.

4.2 Markov chain approximation

[DS01] propose a Markov chain approximation to price options. The stock prices and
the volatilities are assumed to be discrete and elements of a fixed set. This fixed

27

parameter description range

St/X moneyness ratio [0.7,1.3]
r annualized risk free interest rate [0,0.1]
σ2 annualized unconditional variance [0.01,0.16]

T − t expiration time in days [1,30]√
ht/σ relation between conditional and unconditional standard

deviation
[0.8,1.2]

a1 GARCH parameter [0,1]
b1 GARCH parameter [0,1]
λ risk premium [0,0.001]

Table 4.1: Input data ranges in [Han98]

partitioning of the state space simplifies the task of option pricing to a sequence of
standard matrix operations. Under a Markov chain representation, the conditional
expected value is simply a product of two components. For European options, the first
component is the transition probability matrix raised to a power equal to the maturity
of the option (measured in terms of the basic transition period), and the second is the
payoff vector associated with the option.

The time step is fixed to one day. A mn× 1 vector V (t) contains the approximate
option values at time t for all possible states. This means that the stock price can only
have m different values while the volatilities can take n different values. The transition
probability matrix is given by the conditional distribution function. Additionally the
option values at each time step are adjusted to

S∗t = e−(r−(1/2)h∗)tSt (4.4)

to avoid a trend in time of the option prices. Additional information about the problems
of implementing American options by a Markov chain approximation can be found in
[DS01].

Four different types of options are evaluated. The first two are European put
options and American put options in the Black-Scholes framework. The others are
European put options and American put options in the GARCH framework. The
GARCH option pricing model used in the paper is the NGARCH(1,1) model. This
model has an additional term to capture the leverage effect (by the leverage parameter
θ).

The European put prices in the Black-Scholes framework are compared with the
Black-Scholes prices. The parameters like the interest rate and the GARCH parameters
are set to realistic values (see table 4.2). Three values for the maturity (1, 3 and 9
months) and three values for the moneyness ratio (1.1, 1.0 and 0.9) are used. In the
Black-Scholes framework, volatility is assumed to be constant, therefore n = 1, while
m is simulated in the range between 11 and 501. The results are good, they only vary
in the range of 10−4 for m = 501.

28

parameter describtion value

S0 initial price of the option 50
r annualized interest rate 0.05
β0 GARCH parameter 0.00001
β1 GARCH parameter 0.8
β2 GARCH parameter 0.1
θ leverage factor 0.3
λ risk premium 0.2

Table 4.2: Parameter values in [DS01]

parameter description value

S0 initial price of the option [10,100]
r annualized interest rate [3%,7%]
σ annualized volatility [5%,50%]
α moneyness ratio [0.9,1.1]

∆T maturity of the option [0,1] years

Table 4.3: Parameter range in [Keb99]

European put prices under the GARCH framework are compared to prices calcu-
lated by Monte carlo simulation. Realistic values for the parameters are chosen and
listed in table 4.2. The values for the moneyness ratio and the maturity are chosen as
before. The values of n are in the range between 25 and 51, while m ranges from 25
up to 357. When m = 357 and n = 51 the results vary dependent on the maturity
(higher maturity means less accuracy). At a maturity of 1 month the error is at worst
6 ∗ 10−3 and at 3 and 9 months around 12 ∗ 10−3.

4.3 Genetic Programming

The first implementation of Genetic Programming for option pricing is [Keb99]. He
uses this approach to determine a formula for American put options. In this case the
prices of the options are calculated by the finite difference method (an introduction
can be found in [Hul02], p. 418 - 426). The ranges of the parameters are given in table
4.3.

As terminals he uses the variables S0, X, r, T , σ, α and the constants π and e.
As functions he uses the mathematical functions +, −, ∗, /, √x, ln(x), x2, xy, the
distribution function of the standard normal distribution Φ(x), the logical functions
<, ≤, =, >, ≥ and the functions with side effects IF, THEN and ELSE.

The size of the population is fixed with only 50 individuals, the crossover and muta-

29

tion probability were pc = 0.9 and pm = 0.01 respectively. The number of generations
is set to 20000. The fitness function is defined as

fr(c) =
n∑

i=1

∆(Ai, A
S
i) (4.5)

where Ai refers to the value calculated by the genetic program and ASi refers to the
real value.

The results are good compared to other numerical approaches to find prices for
this specific type of option. The derivation of the evaluation equation yields - as a
by-product - an expression for the killing price. This gives the pricing equation a nice
economic interpretation. Usually the equation derived via Genetic Programming is
empirically good, but it is not possible to analyze them economically.

A disadvantage of this approach is that usually the underlying of the option doesn’t
follow a Wiener process, but more likely a GARCH process. Still the result of the work
shows that it is possible to use Genetic Programming in the area of option pricing and
that even American options can be priced via this method.

30

Chapter 5

Strategic decisions of the new
approach

This chapter describes all the strategic decisions and approaches used in this master
thesis. The result should be an analytic formula that calculates prices of European
options when the underlying follows a GARCH(1,1) process. Therefore, in a first step,
sample data points have to be generated. Then Genetic Programming searches for a
formula (which is a subset of a program) which fits best to the sample data points.
This task is called symbolic regression (compare with [Koz92]).

5.1 GARCH process

The input data are used similar to [Han98] and are shown in table 5.1. All input data
are uniformly distributed in the given ranges except St/X has a normal distribution
with mean 1 and standard deviation 0.1.

Option prices are then simulated using the Monte Carlo approach described in

parameter description range

St/X moneyness ratio N(1,0.1)
r annualized risk free interest rate [0,0.1]
σ2 annualized unconditional variance [0.01,1.00]

T − t expiration time (days) [1,90]√
ht/σ relation between conditional and unconditional standard

deviation
[0.8,1.2]

a1 GARCH parameter [0,1]
b1 GARCH parameter [0,1]
λ risk premium [0,0.001]

Table 5.1: Input data and ranges

31

chapter 2.2.3. In the data set all values are transformed from annually to daily, with
the assumption of 260 trading days a year. The number of simulation paths is set to
10000 to get values with a low variance. Two samples are produced, one with 1000
data points and one with 10000 data points. Both are used in my analysis, the first
one for the derivation of option prices via Genetic Programming, and the second one to
evaluate the results. On my computer (AMD Athlon XP 2200+ CPU with 512 MByte
DDRAM) it took around one hour for the 1000 data points and around ten hours for
the 10000 data points to be generated via Monte Carlo simulation.

5.2 Genetic Programming

5.2.1 Functions and terminals

Table 5.2 shows all the terminals used in the Genetic Programming algorithm. The
terminal set consists of constants and variables. The constants 0, 1 and 2 are added
to get some basic numbers. The Genetic Programming algorithm can generate all
numbers of the set of rational numbers from these constants via simple functions. The
constant 2 is selected to allow for easy generation of the square and the square root
from the power function. The constants π and e increase the numbers the Genetic
Programming algorithm can create to some irrational numbers. They also support the
creation of some special functions from basic functions (e.g. ex).

The remaining terminals correspond to the input parameters of section 5.1. Assum-
ing that these variables have a large impact on the value of the option, all variables
must be part of a function (genetic program) which calculates the price of the option.

Table 5.3 shows all the functions used in the Genetic Programming algorithm. They
consist of the four basic functions addition, subtraction, division and multiplication.
The natural logarithm and the power function are also used to get functions like ex and
many more. The maximum and the minimum function seem to be important because
of equations 2.1 and 2.2.

Due to the utilization in the Black-Scholes formula and in [Keb99], a distribution
function seems to be useful too. The normal distribution function, the Student-t distri-
bution function and the paretian stable distribution function, respectively, are therefore
added. The paretian stable distribution function was calculated according to [Nol97].

5.2.2 Fitness function and bloat control

The overall task is to find an equation that approximates as good as possible the price
of a call option depending on the input data. This is done via Genetic Programming as
described in [Koz92]. The fitness function will be the root mean square error (RMSE)
between the result of the genetic program and the real result (see also equation 4.3).

One major task in Genetic Programming is to prevent the resulting equations from
being too large in size. The concept is called bloat control (compare with [PL04]).
Three methods which are all described in [PL04] are used in this master thesis.

32

Symbol description type

0 zero constant
1 one constant
2 two constant
π PI constant
e Euler’s constant constant

St/X moneyness ratio variable
r annualized risk free interest rate variable
σ2 annualized unconditional variance variable

T − t expiration time (days) variable√
ht/σ relation between conditional and unconditional standard

deviation
variable

a1 GARCH parameter variable
b1 GARCH parameter variable
λ risk premium variable

Table 5.2: Terminal set

name of the function description number of arguments

addition x+ y 2
subtraction x− y 2
division x/y 2
multiplication xy 2
natural logarithm ln y 1
power function xy 2
maximum max (x; y) 2
minimum min (x; y) 2
normal distribution function N(x) 1
student distribution function S(t, x) 2
paretian stable distribution function P (α, β, x) 3

Table 5.3: Function set

33

name of the approach number of genetic program trees equation assumed

standard 1 no
standard with ADF 2 no

hybrid without ADFs 2− 6 yes
hybrid with ADFs 3− 9 yes

Table 5.4: Different approaches used

The first is called depth limiting method, where the resulting tree is restricted to
certain depth limit. In this case it will be set to a small number between 7 and 10.
The other two approaches use a depth limit too, but it will be relaxed to 20.

The second approach is called parsimony pressure. In this approach, the fitness
function penalties bigger trees by the following equation:

Fitness = StandardF itness+
Length

Penalty
(5.1)

where Length means the number of nodes in a given genetic program and Penalty is a
constant penalty factor. The higher Penalty is, the lower bigger trees will worsen the
Fitness. Values between 50000 and 100000 have shown to lead to good results.

The third method is introduced in [PL04] and is called death by size. Here bigger
individuals are selected for death randomly at some time in the program.

5.2.3 Population size, number of generations and mutation

Two different major configurations are used. The configuration without mutation is
proposed by [Koz92]. Here we have a huge population size (like 40000) and no mutation
at all. A small number of generations (like 50) is assumed to be sufficient to build the
best fitted solution.

The configuration with mutation uses only a small population size (like 4000) but a
much higher number of generations (like 500). To ensure that genetic material cannot
be lost forever, mutation is used in this case. This approach was used in an even more
extreme way by [Keb99].

5.2.4 Automatic defined functions and hybrid approaches

Four different approaches are selected. They differ in the number of automatic defined
functions (ADFs) and in the type of equations assumed. In table 5.4 they are listed.

The standard approach uses just one genetic program tree, where all functions of the
function set from table 5.3 might be used. (Usually just one of the three distribution
functions is used.) Also all terminals from the terminal set from table 5.2 are used.
Therefore the task of the Genetic Programming algorithm is to find a single equation

34

which fits best to the given data set, without the use of any pre-defined knowledge and
automatic defined functions.

The standard with ADF approach uses two genetic program trees at the same time.
In addition to the standard approach the main tree can also call a second genetic tree
with two arguments. The second genetic tree uses all functions from the function set
except for the distribution functions. As terminals it uses only the two arguments
which are calculated at run-time, depending on the kind of arguments it gets from the
main program. This corresponds exactly to the concept of automatic defined functions
with one ADF and two arguments as described in chapter 3.2.4.

The two hybrid approaches assume an equation similar to the Black-Scholes func-
tion, which has the following form:

CT/X = St/Xcdf(f0(x), ...)− e−r(T−t)cdf(f1(x), ...) (5.2)

Depending on the type of the cumulated density function (cdf) it may have one (nor-
mal), two (student-t) or three (stable paretian) arguments, where each argument is a
genetic program tree (fx). In the hybrid without ADFs approach, the 2−6 genetic pro-
gram trees are not used with ADFs and are therefore solved separately. In the hybrid
with ADFs approach two genetic program trees, which represent the same argument
in the two cdf’s, have one additional genetic program tree. This additional genetic
program tree might be called from the two genetic program trees without arguments
and is therefore an ADF.

35

Chapter 6

Implementation details

This chapter provides an overview of the implementation details of the genetic program.
It shows which libraries are used and how they are used. Furthermore, all classes are
described and finally a UML (Unified Modeling Language) diagram gives some insight
into the relationships between the classes. It does not provide a full description of the
source code.

6.1 Libraries

The whole program is written in C++ and should correspond to the ANSI standard
(compare with [Str98]). It should therefore be platform independent. In fact, I was
able to run it under Microsoft Windows 2000 and SUSE LINUX 9.0 without changing
any line of code. The CD you can find attached to this thesis reflects this by offering
a standard make-file for Linux and at the same time a configuration file for Microsoft
Visual C++ 6.0.

Luckily, it was not necessary to implement the whole program from scratch. I take
advantage of the possibility to use several libraries which are available for free from the
internet. The next few chapters give a short overview of all libraries I have used with
www-links and some additional information.

6.1.1 The Genetic Programming kernel

The first Genetic Programming library in C++ was implemented by [Sin94]. It was not
really object-orientated and pretty hard to use. Therefore, in [Fra94] a better approach
was started. Later it was modified by [Wei97]1 and is now a save and widely usable
tool for a wide range of problems that make use of the Genetic Programming approach.

Figure 6.1 shows the class hierarchy of this library. It is according to the UML
Version 1.5 specification, which can be found in [Obj03]. Two different abstract classes
are defined. The class GPObject is the base class of all classes used in this library.

1The library can be found at http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/weinbenner/gp.html

36

� � � � � �� � � � � � � � �� � � � 	 � � � � � � �
� �
 � � � � � � � � � � � �� �� � � � � � � � � � �

��
� �� � � � � � � � ��� � � ��� � � ��� � �� �� � �

�� �
�

Figure 6.1: UML diagram of the Genetic Programming kernel. Source: [Wei97]

This means that all classes are derived from GPObject. Another abstract class is
GPContainer. This class manages an array of objects of type GPObject. It provides
all necessary methods to handle its objects.

GPNode is a class derived from GPObject which represents a node that can be a
terminal or a function, respectively. Each genetic tree has its own function and terminal
set. For this purpose, the class GPNodeSet is introduced and serves as a container to
hold all the different nodes. A genetic program consists of the main tree and the ADF
trees. Each tree type can have different functions and terminals. This allows the user
to introduce a priori knowledge of the task to be performed by the genetic program
(compare with chapter 3.2.4). The container class GPAdfNodeSet is used to collect the
node sets for each ADF and the main tree, respectively. If the GPAdfNodeSet object
has only one GPNodeSet object, no ADFs were defined (compare with [Wei97]).

A GPPopulation object is a container that contains all the genetic programs of a
population. It also has one object of type GPAdfNodeSet to have the information of
all the different nodes it might use for creation. One genetic program is represented by
the class GP. For each ADF and the main program, a GP contains one object of type
GPGene which represents the root of a genetic program tree. Genetic Programming
uses this tree structure to internally store genetic programs (compare with chapter
3.2.1). A tree consists of genes, each of which can be the parent gene for one or more
children. A gene is also a container, so the class GPContainer is used as a base class.
A gene object has only one component: a pointer to an object of class GPNode. By
referencing a node object, GPGene knows which type of function it represents (compare
with [Wei97]).

37

Parameter Possible range

Population size [1...MaxInt]
Number of generations [0...MaxInt]
Crossover probability [0.0...100.0] %
Creation probability [0.0...100.0] %

Creation type [0...5]
Maximum depth for creation [2...MaxInt]
Maximum depth for crossover [MaximumDepthForCreation...MaxInt]

Selection type [0...1]
Tournament size [1...MaxInt]
Demetic grouping [0...1]

Deme size [0...PopulationSize]
Demetic migration probability [0.0...100.0]

Swap mutation probability [0.0...100.0]
Shrink mutation probability [0.0...100.0]
Add best to new population [0..1]

Steady state [0..1]

Table 6.1: Properties of GPVariable. Source: [Wei97]

The GPVariable class is used to control the behavior of several aspects of Genetic
Programming. Each GPPopulation object has an object of this class as a member.
Table 6.1 shows all the variables used by this library. The creation type is the same
as defined in chapter 3.2.2, except that there is an additional one, which is a user
defined creation type. The selection type may be probabilistic selection or tournament
selection, respectively. ”Demetic grouping” and ”Add best to population” may be
switched on (when equals one) or off (when equals zero).

6.1.2 A random number generator library

Newran02B2 is a C++ library for generating sequences of random numbers from a wide
variety of distributions. It is particularly appropriate for the situation where sequences
of identically distributed random numbers are required since the set up time for each
type of distribution is relatively long, but the generation of a new random number
is fast. The library includes classes for generating random numbers from a number
of distributions and is easily extended to be able to generate random numbers from
almost any of the standard distributions (compare with [Dav02]).

Figure 6.2 shows the static UML structure of the Newran library. Random is a
class used by all other classes as base class at least indirectly. It generates uniformly
distributed random numbers by the Lewis-Goodman-Miller algorithm with Marsaglia

2The library can be found at http://www.robertnz.net

38

Random

Uniform

Constant

PosGen

ChiSq

AsymGen

Gamma

Pareto

DiscreteGen

Poisson

Binomial

OperationRandom

SymGen

Normal

Cauchy

Exponential

PosGenX

SymGenX

AsymGenX

NegativBinomial

Figure 6.2: UML diagram of Newran02B. Source: [Dav02]

39

Name Description

normal cdf Returns the normal distribution function
students cdf Returns the Student t distribution function

gsl integration qag Numerical integration

Table 6.2: Some functions of the GNU Scientific Library

mixing. Via the static method Set, the random generator is initialized with a real
number between zero and one.

It is possible to instance one of the distribution classes to get random numbers via
the Next method. I have only used the Uniform and the Normal class to create the
random numbers for the Monte Carlo simulation and to get random distributed input
data, respectively.

All distribution classes (like Uniform, Pareto, Normal, Cauchy, ...) provide ran-
dom numbers with different distributions. They usually take as input the uniformly
distributed random numbers created by the Random base class. Therefore, they just
have to provide an inverse distribution function to generate the random numbers. Op-
erationRandom is a synonym for a whole range of classes which provide some functions
to existing distribution classes and may also have subclasses. Details can be found in
[Dav02].

6.1.3 GNU Scientific Library

The GNU Scientific Library3 (gsl) is a collection of numerical routines for scientific
computing. A complete documentation can be found in [G+04] 4.

The library files specfns.h and gsl integration.h contains some globally defined func-
tions which are used in the program. They are listed in table 6.2.

The normal cdf function returns the normal distribution function and the sut-
dents cdf returns the Student-t distribution function.

The gsl integration qag implements a numerical integration. This function is used
to calculate the distribution function of the paretian stable distribution function. The
QAG algorithm is a simple adaptive integration procedure. The integration region
is divided into subintervals, and on each iteration the subinterval with the largest
estimated error is bisected. This reduces the overall error rapidly, as the subintervals
become concentrated around local difficulties in the integrand.

The algorithm is based on Gauss-Kronrod rules. A Gauss-Kronrod rule begins
with a classical Gaussian quadrature rule of order m. This is extended with additional
points between each of the abscissas to give a higher order Kronrod rule of order 2m+1.
The Kronrod rule is efficient because it reuses existing function evaluations from the

3The current stable version is available from ftp.gnu.org in the directory /pub/gnu. The project
homepage is http://www.gnu.org/software/gsl/.

4This book is also online available at http://www.gnu.org/software/gsl/manual/

40

Name Description

stable cdf Returns the Stable distribution function
gsl integration Gives an easy accessible interface to the gsl integration functions

simpson Returns the value of a bounded integral according to the simpson
algorithm

trapez Returns the value of a bounded integral according to the trapezoid
algorithm

adapt Returns the value of a bounded integral according to an adaptive
algorithm

Table 6.3: Additional functions

Gaussian rule. The higher order Kronrod rule is used as the best approximation to the
integral, and the difference between the two rules is used as an estimate of the error in
the approximation (compare with [G+04]).

6.2 New classes and functions

6.2.1 Additional functions

Table 6.3 shows the additionally programmed functions. They are included in the
library headers integration.h and specfns.h.

The distribution function of the stable distribution is written according to the
numerical approximation in [Nol97]. This is necessary, because there are no analytic
formulas for most stable densities and distribution functions. This approximation uses
integral formulas for the density and distribution function according to [Zol86]. Some
problems emerge when α is close to 1, then α is set to one. I assume that this is a
good approximation.

6.2.2 GPOPdata

To give an easy access to the data and to create the data in a unified way, I have
programmed the class GPOPData and its subclass. The structure is shown in figure
6.3. GPOPdata is the base class and provides all the basic functions necessary. The
methods save and load provide access to a file, which is in ASCII text style. It is
a character separated value (csv) file where all the data are separated by tabs. The
methods value and varname provide access to a value or the name of the variable,
respectively. Size vars and Size data return the size of the data matrix.

The method create makes the data from scratch. This is the only method which
differs in the GPOPgarch class. In this case it produces random data according to a
GARCH process. These data can be stored and read by a GPOPdata class.

41

+save()

+load()

+value() : double

+varname() : char

+size_vars() : int

+size_data() : int

+create()

-data : double

-varNames : char

GPOPdata

+create()

GPOPgarch

Figure 6.3: UML diagram of GPOPdata

Parameter Possible range

Bloat method [0...2]
Penalty [0...MaxInt]
Normal [0...1]
Student [0...1]
Stable [0...1]

Infofilename String
Datafilename String

Table 6.4: Properties of GPVariable. Source: [Wei97]

6.2.3 MyGPVariables

This class is similar to the GPVariables class of the Genetic Programming kernel (com-
pare with chapter 6.1.1). It adds some additional parameters to the program. In table
6.4, all the additional parameters are listed. If the bloat method parameter (compare
with chapter 3.2.5) is set to 0, no bloat control (except depth limiting) will be enforced.
If the parameter is set to 1, parsimony pressure, and if it is set to 2, death by size will
be used. The penalty parameter is only necessary when parsimony pressure is used and
leads to a worse fitness (compare with chapter 5.2.2).

The parameters normal, student and stable add the appropriate distribution func-
tion to the function set, when they are set to 1 instead of 0. Additionally the name of
the resulting file (Infofilename) and the name of the data source (Datafilename) can be
given, too. If not given, the resulting files will have the name “result” and the filename
will be “data.in”. All these parameters are determined in the initialization file.

6.2.4 MyGene

The class MyGene is derived from the GPGene class of the Genetic Programming
kernel. Table 6.5 shows all the methods which have to be rewritten. The printOn
method calls the printMathStyle method and the printTexStyle method, respectively

42

Methods Description

printOn Output function
printMathStyle Output function to ASCII style
printTeXStyle Output function to TeX style

evaluate Evaluates the gene

Table 6.5: Methods of MyGene

Methods Description

printOn Output function
evaluate Evaluates the genetic program

Table 6.6: Methods of MyGP

depending on a global variable. The printTeXStyle method prints a Gene according to
the TeX style and the printMathStyle according to a normal math style with brackets.

One of the core functions in Genetic Programming is the evaluate method. It
calculates the result of a single gene. It has to provide values for the whole function
set defined in the genetic program. The value of variables and constants used in the
genetic program has to be returned, too. If ADFs (compare with chapter 3.2.4) exist,
it has to provide the arguments of the ADFs.

6.2.5 MyGP

The class MyGP is derived from the GP class of the Genetic Programming kernel. Table
6.6 shows all the methods which have to be rewritten. The printOn method outputs all
the necessary information for TeX style output files. The evaluation method calculates
the fitness of a genetic program. It calculates the root of the average of the squared
errors of all data points (compare with chapter 5.2.2).

6.2.6 MyPopulation

The class MyPopulation is derived from the GPPopulation class of the Genetic Pro-
gramming kernel. Table 6.7 shows all the methods which have to be rewritten. The
tournamentSelection method has to be rewritten to provide death by size as bloat
control method.

6.2.7 Executables

According to chapter 5, four different strategies to solve the problem are used. This
leads to four different executables (files which are executed by the operating system)

43

Methods Description

tournamentSelection Rewrites the selection strategy

Table 6.7: Methods of MyPopulation

Executable Description

gpop Simple Genetic Programming
gpop2 Simple Genetic Programming with pre-build function

adf Genetic Programming with one ADF
adf2 Genetic Programming with ADFs and pre-build function

proddata Executable to make file with the GARCH-data

Table 6.8: Executables

for Genetic Programming. They only differ in the type of function which are prede-
termined for evaluation and in the number and type of ADFs used. Table 6.8 shows
the different executables which are produced and what they are supposed to do. They
also correspond to the four different approaches from table 5.4.

Proddata is the executable file which simulates the GARCH process to get the
sample data points (compare with chapter 6.2.2).

6.3 Overview UML diagram

Figure 6.4 shows a UML diagram of the whole program. The GNU library on the right
hand side is globally defined and is used by various parts of the program. The two
utilities are the executables and they actually produce output. The output is written to
a file, which a user can specify via the initialization file. The name of the initialization
file is given as a parameter to the program.

44

G
P
N
o
d
e

G
P
N
o
d
e
S
e
t

G
P
A
d
fN
o
d
e
S
e
t

G
P
V
a
ri
a
b
le

A
b
s
tr
a
c
t
c
la
s
s
:
G
P
O
b
je
c
t

A
b
s
tr
a
c
t
c
la
s
s
:
G
P
C
o
n
ta
in
e
r

G
P
G
e
n
e

G
P

G
P
P
o
p
u
la
ti
o
n

1
*

11
..
*

11
..
*

11
..
*

1

1
..
*

1

0
..
*

1
0
..
*

1
1

1

1

R
a
n
d
o
m

U
n
if
o
rm

P
o
s
G
e
n

S
y
m
G
e
n

N
o
rm

a
l

G
N
U

S
c
ie
n
ti
fi
c

L
ib
ra
ry

G
P
O
P
d
a
ta

G
P
O
P
g
a
rc
h

M
y
G
P
V
a
ri
a
b
le

M
y
G
e
n
e

M
y
G
P

M
y
P
o
p
u
la
ti
o
n

«
u
ti
lit
y
»

g
p
o
p
,
g
p
o
p
2
,
a
d
f,
 a
d
f2

1

1

1

1

1
1

1

1

1

1

1

1

1
1

«
u
ti
lit
y
»

p
ro
d
d
a
ta

1 1

1

1
..
*

1

1
..
*

Figure 6.4: UML diagram of the whole program

45

Chapter 7

Results and statistics

This chapter shows the results of the best genetic programs found. In the early stages
I have tried to figure out which is the most promising configuration. Therefore the
chapter starts with a statistical test of different configurations. Afterwards the best
genetic program found is introduced and some properties of this equation are shown.
At the end, my result is compared with the three existing approaches described in
chapter 4.

7.1 Statistics of the identification of the best

configuration

7.1.1 Setting of the test environment

Each of the two configurations from 5.2.2 (with and without mutation) is used with
the three bloat control methods described in chapter 5.2.2. Additionally, all 6 resulting
approaches are tried with a Student t distribution and with a standard normal distri-
bution. This leads to 12 different test cases where each test is repeated 25 times to get
statistically relevant results. Table 7.1 shows all different test cases.

Due to the huge number of test cases (12 ∗ 25 = 300), the control parameters
(compare with chapter 3.2.6) have been chosen as run-time decreasing and as little
memory consuming as possible:

1. The configuration without mutation is used with a population size of 30000 and
for 50 generations.

2. The configuration with mutation is used with a population size of 3000 and for
500 generations.

3. In the depth limiting bloat control method, the maximum depth parameter is set
to 7.

46

No. configuration bloat control cdf used

1 without mutation depth limiting normal
2 without mutation depth limiting student-t
3 without mutation parsimony pressure normal
4 without mutation parsimony pressure student-t
5 without mutation death by size normal
6 without mutation death by size student-t
7 with mutation depth limiting normal
8 with mutation depth limiting student-t
9 with mutation parsimony pressure normal

10 with mutation parsimony pressure student-t
11 with mutation death by size normal
12 with mutation death by size student-t

Table 7.1: Test cases for configuration identification

4. In the death by size and the parsimony pressure bloat control method, the max-
imum depth is set to 20.

5. The penalty parameter in the parsimony pressure bloat control method is set to
only 20000.

7.1.2 Test results

Table 7.2 shows the mean and the standard deviation of the results as well as the
average execution time. The computer I have used is an AMD Athlon XP 2200+ CPU
with 512 MByte DDRAM. To draw statistically correct conclusions, the results are
compared according to Student’s t-test. This test shows whether two samples come
from the same population. This statistical test works under the assumption of a normal
distribution of the universe, that both samples are statistically independent and that
the population of both have identical variances. According to [Vie97] it applies the
following formula:

Z =
Xm − Y n − µx + µy√

(1
m

+ 1
n
) (m−1)S2

m+(n−1)S2
n

m+n−2

∼ tm+n−2 (7.1)

where X ∼ N(µx, σ
2) and Y ∼ N(µy, σ

2) are the two stochastic variables, S2
y and S2

x

are the variances of the sample, and Y n and Y m are the averages of the sample.
The hypothesis H0 : µx = µy has to be abolished, when the following equation

holds:

Z =

∣∣∣∣∣∣
xm − yn√

(1
m

+ 1
n
) (m−1)s2m+(n−1)s2n

m+n−2

∣∣∣∣∣∣
≥ tm+n−2;1−α

2
(7.2)

with the probability α of rejecting a correct null hypothesis.

47

No. Mean Deviation Average time

1 0.01532 0.00126 158
2 0.01545 0.00144 190
3 0.01875 0.00183 126
4 0.01825 0.00137 127
5 0.04356 0.00455 12
6 0.04361 0.00342 15
7 0.01853 0.00294 204
8 0.02057 0.00525 205
9 0.02512 0.00917 109

10 0.02978 0.01024 74
11 0.06559 0.00925 3
12 0.06884 0.01006 3

Table 7.2: Results of configuration identification

No 1 2 3 4 5 6 7 8 9 10 11 12
1 - 74.1 1.0 7.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 74.1 - 2.6 16.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1.0 2.6 - 27.2 0.0 0.0 0.9 0.1 0.2 0.0 0.0 0.0
4 7.3 16.4 27.2 - 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 - 96.5 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 96.5 - 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.9 0.0 0.0 0.0 - 9.7 3.2 0.0 0.0 0.0
8 0.0 0.0 0.1 0.0 0.0 0.0 9.7 - 28.1 0.3 0.0 0.0
9 0.0 0.0 0.2 0.1 0.0 0.0 3.2 28.1 - 8.5 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 8.5 - 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 24.1
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.1 -

Table 7.3: Results of the t-statistic in percent

48

The result of the t-test of each tuple of configuration is shown in table 7.3. This
table shows the probability in percent of α - the probability of rejecting a correct null
hypothesis. If α is higher than 5%, I have assumed that the two configurations are
of the same quality. Additionally this table shows which configuration is better with
respect to the mean value according to table 7.2. A grey entry signifies that the row
configuration is better (on average) than the column configuration. If the entry is
black, it is vice versa.

The configuration with mutation leads in all cases to a significantly worse result
than the configuration without mutation. Also the execution time is most of the time
longer with mutation. Therefore, I have decided to prefer the configuration without
mutation for all further experiments.

The death by size bloat control method doesn’t work well in my analysis. It kills all
the long genetic programs immediately and at the same time the entire gene pool. At
the end a couple of very small genetic programs survive with a very bad performance.
The execution time is extremely short. The depth limiting bloat control method per-
forms in most cases equally well as the parsimony pressure method, but it takes on
average twice as much time. Therefore the Penalty factor has been set to low to allow
a suitable judgement. I will use both methods in my further experiments. Death by
size will be discarded, due to its poor performance.

The usage of the Student-t or the normal cumulative distribution function as func-
tion in the Genetic Programming algorithm doesn’t lead to significantly different re-
sults in all cases. This might be because the normal distribution is a special case of the
Student-t distribution. The additional properties of the Student-t distribution do not
lead to better results. Usually the execution time is slightly higher with the Student-t
distribution.

7.1.3 Utilization of the ADFs and the hybrid approaches

In order to identify which approach (compare with chapter 5.2.4) is the best one, all
approaches have been tested with the best configurations. The standard with ADF
approach is even tried with all configurations. In the case of significantly different
results, this would show that there are some interdependencies.

Table 7.4 shows the performance of ten runs for each configuration with the ADF
approach. It is worse than the average of the standard configuration in all cases.
I conclude therefore that the approach with ADF does not lead to better results.
This might be because it is not possible to divide the problem into easily solvable
subproblems. Another conclusion is that the different configurations lead to comparable
results as before. I assume that this is a general pattern.

The hybrid approach was not successful. In both cases with and without ADFs it
has not worked in the way that I expected. In all cases results are worse than with the
simpler methods. Another drawback was the usage of the Paretian stable distribution
function. It is complicated to calculate (with numerical integrals), which takes a lot
of time (20 times longer than with a normal distribution function), but has not led to

49

No. Mean Deviation Average time

1 0.02183885 0.00383879 131
2 0.02224098 0.00477594 144
3 0.02579130 0.00565985 131
4 0.02666881 0.00390301 142
5 0.04172123 0.00467133 63
6 0.04438526 0.00412538 87
7 0.02979943 0.01253381 288
8 0.03159794 0.01802966 258
9 0.04453466 0.01503629 56

10 0.03586901 0.00740740 60
11 0.06872159 0.00799661 9
12 0.06238697 0.01195662 11

Table 7.4: Fitness values of the ADF approach

better results (not even results of equal quality).

7.2 Comparison of the best equation found with the

original process

7.2.1 Setting of the Genetic Algorithm

To get the best possible results, the most promising configurations have been tested
with all approaches. Additionally, the control parameters are set to the maximum
values, where preliminary tests have indicated that they will lead to best results.

1. This leads to a maximum population size of 50000,

2. the number of generations is still set to 50,

3. the maximum depth in the depth limiting bloat control method is set to 10

4. and the penalty factor in the parsimony pressure bloat control method is set to
200000.

This configuration does not overflow my memory with 512 MByte RAM and only
takes reasonable time (around 10 hours) on the average.

7.2.2 The result

The best equation has been found after months of exhaustive testing with the most
promising configurations. It has been discovered with the depth limiting configuration

50

without mutation and the simple approach without ADFs. The best found equation is
(with some simplifications):

f1 = max((max(NORMAL(min(ln(S
X

); dt · r)); S
X

)− (max(min(a1 · b1; a
dt·σ2)
1 +

a
r+

ht
σ

1 · (dt · σ2 + dt · σ2); max(ln(S
X

) +

min(dt · σ2; pi+ r); dt · σ2 · (dt · σ2 + dt · σ2))))) · (min(dt · σ2;

(dt+ dt · σ2) · S
X
· σ2 · S

X
) + max(ln(S

X
); min(min(b1; dt · σ2); dt · r))) +

min(ln(S
X

); min(ln(S
X

); min(min((dt+ b1 + e) ·max(S
X

; 1) · σ2; dt · r);
NORMAL(1− (S

X
))))); max((max(max(ln(S

X
); min(dt+ max(S

X
; 1); dt · r)); S

X
)−

(max(a
r+

ht
σ

1 · (dt · σ2 + dt · σ2) + a
r+

ht
σ

1 a1b1; max(dt · σ2; a
r+

ht
σ

1 (dt · σ2 + dt · σ2)))))

(min(((ln(S
X

)) · S
X

+ dt) · σ2; (dt+ ln(S
X

)) · S
X
· σ2 · S

X
) +

max((ln(S
X

))

(r+
ht
σ

)
· σ2; min(a

r+
ht
σ

1 ·
(dt · σ2 + dt · σ2); dt · r))); S

X
− ((dt · σ2 + dt · σ2)dt·σ

2)

−(max(
min(ln(S

X
);Lambda+ S

X
)+a

r+
ht
σ

1 ·(dt·σ2+dt·σ2)

b1+e
; min(dt · σ2; ln(S

X
))))))

The complete equation in Microsoft EXCEL style:

max((max(STANDNORMVERT(min(min(ln(S/X);ln(S/X));dt*r));S/X)-

(max(min(a1*b1;a1^(dt*Sigma2))+a1^(r+ht/Sigma)*(dt*Sigma2+dt*Sigma2);

max(min(ln(S/X);ln(S/X))+min(dt*Sigma2;pi+r);dt*Sigma2*

(dt*Sigma2+dt*Sigma2)))))*(min(dt*Sigma2;((dt+dt*Sigma2)*

(S/X-0)*Sigma2)/(1/S/X))+max(ln(S/X);min(min(b1;dt*Sigma2);dt*r)))+

min(ln(S/X);min(ln(S/X);min(min((dt+b1+e)*max(S/X;1)*Sigma2;dt*r);

STANDNORMVERT(1-(max(S/X-0;S/X))))));max((max(max(ln(S/X);

min(dt+max(S/X;1);dt*r));S/X)-(max(a1^(r+ht/Sigma)*

(dt*Sigma2+dt*Sigma2)+a1^(r+ht/Sigma)*a1*b1;max(dt*Sigma2;

a1^(r+ht/Sigma)*(dt*Sigma2+dt*Sigma2)))))*(min(((ln(S/X))/(1/S/X)+dt)*

Sigma2;((dt+ln(S/X))*(S/X-0)*Sigma2)/(1/S/X))+max((ln(S/X))/

(r+ht/Sigma)*Sigma2;min(a1^(r+ht/Sigma)*(dt*Sigma2+dt*Sigma2);dt*r)));

max(S/X-0;S/X)-((dt*Sigma2+dt*Sigma2)^(dt*Sigma2))-(max((min(ln(S/X);

Lambda+S/X)+a1^(r+ht/Sigma)*(dt*Sigma2+dt*Sigma2))/(b1+e);

min(dt*Sigma2;ln(S/X))))))

The quality of the result in relation to different numbers of data points is listed in
table 7.5. With more data points, the RMSE even gets better. This is a sign that no
over-fitting has occurred. Under the assumption that the underlying follows in reality
a GARCH process and the prices of the options are calculated (wrongly) according to
the Black-Scholes model, table 7.5 also shows the RMSE of the Black-Scholes formula.
The newly found equation is therefore about 25% better suited to find the price of a
European option.

51

Number of data points RMSE of best
equation

RMSE of Black-
Scholes

Improvement

1000 0.010656375 0.014230704 25.12 %
10000 0.010115501 0.013133606 22.98 %

Table 7.5: Results of the best found equation

Name dt in days S/X
data-095-30 30 0.95
data-100-30 30 1.00
data-105-30 30 1.05
data-095-60 60 0.95
data-100-60 60 1.00
data-105-60 60 1.05
data-095-90 90 0.95
data-100-90 90 1.00
data-105-90 90 1.05

Table 7.6: Simulation of the process

7.2.3 The original process

To get some idea about the original GARCH process, I have simulated the option prices
100 times with 9 different settings. The values for S/X and dt varies according to table
7.6 and the values for r, σ2, ht/σ, a1, b1 and λ have been set to 0.05, 0.5, 1.0, 0.8, 0.15
and 0.001, respectively.

In table 7.7, the standard deviation of the original process, the RMSE of the best
equation and the RMSE of the Black-Scholes formula are shown with respect to the
simulated data described above. The average standard deviation is 0.00085 and the
RMSE is an order of magnitude higher. This seems to be realistic, because it is not
possible to construct a formula which reaches a value that is lower than the standard
deviation of a constant data set. In this case, the RMSE of the Black-Scholes formula
is three times inferior on average. Depending on the value of S/X and dt, the RMSE
varies between 0.00290 and 0.02019. This indicates that better results are still possible.

Figure 7.1 shows that the RMSE of the best equation found behaves regularly in
comparison to the RMSE of the Black-Scholes formula (compare with figure 7.2). The
best found equation has therefore no significant bad properties at a specific point.

A different error measure which may be of economical interest is the Mean Absolute
Percentage Error (MAPE) which is defined as follows:

MAPE =
1

N

N∑

n=1

|e(n)

y(n)
| (7.3)

52

Name Std. deviation RMSE RMSE Black-Scholes

data-095-30 0.00079 0.00995 0.02955
data-095-60 0.00100 0.00919 0.04411
data-095-90 0.00094 0.01070 0.05394
data-100-30 0.00074 0.01842 0.03168
data-100-60 0.00097 0.00290 0.04587
data-100-90 0.00090 0.00298 0.05554
data-105-30 0.00068 0.02019 0.03032
data-105-60 0.00091 0.00885 0.04524
data-105-90 0.00070 0.01456 0.00460

Average 0.00085 0.01086 0.03787

Table 7.7: Standard deviation and RMSE

0.95

1.00

1.05

90

60

30

0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

RMSE

Moneyness ratio

Maturity

Figure 7.1: RMSE - best equation found

53

0.95

1.00

1.05

90

60

30

0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

RMSE

Moneyness ratio

Maturity

Figure 7.2: RMSE - Black-Scholes

where N is the number of data points, e is the error term and y is the Genetic Pro-
gramming result.

Table 7.8 shows the different option prices the three methods get with the 9 constant
data sets. In all cases the newly found equation leads to better results than the Black-
Scholes formula. Still the MAPE is between 2.43% (which seems to be acceptable) and
27.66% (which seems to be too high).

In figure 7.3 one can also observe the much higher relative differences at an expira-
tion time of 30 days than at 90 days in all cases. The RMSE (compare with figure 7.1 is
much better behaved than the MAPE, which is logical, because the driving force (the
fitness function) is in my case the RMSE. To get better relative differences I should
have used the MAPE as fitness function or maybe a combination of both. But this
would increase the calculation complexity. With the Black-Scholes formula such a rela-
tion is not observable. Figure 7.4 shows that the Black-Scholes formula seems to have
a significantly higher MAPE around the at the money point (where S/X equals 1.0).

7.3 Comparison of the results with other

approaches

This section compares the equation generated via Genetic Programming with the three
existing approaches described in chapter 4.

54

Name Average
Result
GARCH

Result
Equation

MAPE Result
Black-
Scholes

MAPE

data-095-30 0.04292 0.05284 23.12 % 0.07246 12.78 %
data-095-60 0.06824 0.07737 13.38 % 0.11234 32.96 %
data-095-90 0.08942 0.10008 11.92 % 0.14335 45.24 %
data-100-30 0.06655 0.08496 27.66 % 0.09822 11.45 %
data-100-60 0.09404 0.09131 2.91 % 0.13990 157.67 %
data-100-90 0.11655 0.11939 2.43 % 0.17209 228.22 %
data-105-30 0.09777 0.11795 20.64 % 0.12808 14.69 %
data-105-60 0.12511 0.13391 7.04 % 0.17034 64.29 %
data-105-90 0.19860 0.18406 7.32 % 0.20314 6.21 %

Average 0.09991 0.10687 12.94 % 0.13777 29.27 %

Table 7.8: Average results of the process

0.95

1.00

1.05

90

60

30

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

MAPE

Moneyness ratio

Maturity

Figure 7.3: MAPE - best equation found

55

0.95

1.00

1.05

90

60

30

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

MAPE

Moneyness ratio

Maturity

Figure 7.4: MAPE - Black-Scholes

7.3.1 Comparison of the result with [Han98]

In [Han98] the best found neural network has a RMSE of 5.63 ∗ 10−4 which is much
better than the 101.16∗10−4 I get in my result equation. The analysis of the simulated
price paths (compare with table 7.7) shows that even the standard deviation is higher
with a value of 8.5 ∗ 10−4. Therefore I conclude that a result with this accuracy is not
possible in my setting.

Another difference is that I have simulated the data in a much wider range. In
[Han98] the expiration time has been simulated between 1 and 30 days and the annu-
alized unconditional variance between 0.01 and 0.16. In comparison, I have used the
range [1, 90] for the maturity and [0.01, 1.00] for the unconditional annualized variance,
respectively. These data simulate a higher number of options and offer a broader ap-
plication, but lead at the same time to a higher variance of the original Monte Carlo
simulation.

7.3.2 Comparison of the result with [DS01]

[DS01] price options where the underlying follows a GARCH process via a Markov
chain approximation. They use fixed values for all variables except for the expiration
time and the moneyness ratio. This leads to a lower variance of the original process
than in my analysis. What is more complex in [DS01] is the usage of the NGARCH(1,1)
model, where the leverage effect is considered too. Still the results can be compared.

At different maturities they get an error between 6 ∗ 10−3 and 12 ∗ 10−3 which is as
good than my average value of 10.116−3. It seems that the approach of [DS01] and my

56

new approach are equally suitable to price options in a GARCH framework. I think
that my result of using only a single formula is easier than solving a 3 dimensional
Markov chain. Therefore it is more likely to be used in practise.

7.3.3 Comparison of the result with [Keb99]

The quality of the results is not comparable because Keber uses a different type of
option with a different model for the underlying. In my case it is not possible to
analyze the best equation found theoretically, because it is just an equation which fits
best according to the fitness function. I think in general one should not expect, to
get a short equation via the Genetic Programming approach which lends itself well to
economic interpretation. Maybe [Keb99] was only lucky, or he restricted the problem
domain so that no other type of equation was able to emerge.

Still this thesis has shown that Genetic Programming is also suitable for a complex
type of model (GARCH) and with a broad range of input parameters. [Keb99] has
shown that this approach is also suitable for American options.

57

Chapter 8

Conclusion

8.1 New approaches

This master thesis uses for the first time the Genetic Programming approach to price
options which follow a GARCH process. The data sample is produced via the well
known Monte Carlo simulation method. The range of the simulated data is much
higher than in other existing approaches. This leads to the situation that all European
call options with an expiration time of up to 90 trading days are covered. The only
additional assumption is that the underlying follows a GARCH(1,1) process, where one
can find a lot of empirical evidence that this assumption is realistic.

Also new is the usage of different settings for the Genetic Programming approach
in the area of option pricing. A configuration with and without mutation is tested with
different bloat control methods. Additionally three different distribution functions are
used. As a state-of-the-art feature, the new approach of Automatic Defined Functions
is utilized. A hybrid model with a Black-Scholes analog function is tried, too. It was
expected that this hybrid model would harmonize well with the Automatic Defined
Functions.

8.2 Summary of the result

The experiments lead to the conclusion that the easier settings are more successful
than the complicated ones. Mutation does not work well and the simplest bloat control
methods (depth limiting and parsimony pressure) are successful. At the same time the
use of a normal distribution function seems sufficient, because the use of others does
not lead to better results. Even the use of Automatic Defined Functions and the hybrid
approach, respectively does not improve the results.

The best equation found is about 25% better (in term of RMSE) suited to price
European call options following a GARCH process than the Black-Scholes formula.
Over-fitting was avoided and the behavior of the equation is regular. It does not have
any specific area where the quality of the equation is low. It offers therefore reasonable

58

prices for all European call options which are traded at exchanges. The conclusion
is therefore that Genetic Programming is well suited to find pricing equations in this
environment.

8.3 Future issues

The Genetic Programming approach has the property that with higher computer power,
the results tend to get better. Therefore, in a few years a repetition of my tests with a
more powerful computer might lead to better results. The field of Genetic Programming
is still an active area of research. New results may show new configuration settings
which are especially beneficial in the environment of option pricing. Additionally,
there are still many more configurations possible with the Automatic Defined Function
approach which I could not test in this master thesis due to limited time. Especially
the evolutionary finding of the best architecture seems to be promising, but resource
expensive at the same time.

The field of option pricing is also an area of intensive research. New models emerge,
like the NGARCH and the EGARCH to name just a few. These models also capture
the leverage effect (compare with [DS01]). The more complicated the models will
become, the less likely it is that a closed formula can be derived. I conclude therefore
that in the future there will be increasing necessity for guided empirical model finding
methods like Genetic Programming.

59

List of Figures

3.1 Flowchart of a simple genetic algorithm. Source: [Koz92] 17
3.2 An example of a genetic program . 20
3.3 An example of a crossover operation 22

6.1 UML diagram of the Genetic Programming kernel. Source: [Wei97] . . 37
6.2 UML diagram of Newran02B. Source: [Dav02] 39
6.3 UML diagram of GPOPdata . 42
6.4 UML diagram of the whole program . 45

7.1 RMSE - best equation found . 53
7.2 RMSE - Black-Scholes . 54
7.3 MAPE - best equation found . 55
7.4 MAPE - Black-Scholes . 56

60

List of Tables

2.1 Input data . 12

3.1 Control parameters . 25

4.1 Input data ranges in [Han98] . 28
4.2 Parameter values in [DS01] . 29
4.3 Parameter range in [Keb99] . 29

5.1 Input data and ranges . 31
5.2 Terminal set . 33
5.3 Function set . 33
5.4 Different approaches used . 34

6.1 Properties of GPVariable. Source: [Wei97] 38
6.2 Some functions of the GNU Scientific Library 40
6.3 Additional functions . 41
6.4 Properties of GPVariable. Source: [Wei97] 42
6.5 Methods of MyGene . 43
6.6 Methods of MyGP . 43
6.7 Methods of MyPopulation . 44
6.8 Executables . 44

7.1 Test cases for configuration identification 47
7.2 Results of configuration identification 48
7.3 Results of the t-statistic in percent . 48
7.4 Fitness values of the ADF approach . 50
7.5 Results of the best found equation . 52
7.6 Simulation of the process . 52
7.7 Standard deviation and RMSE . 53
7.8 Average results of the process . 55

61

Bibliography

[BBG97] Phelim Boyle, Mark Broadie, and Paul Glasserman. Monte carlo methods
for security pricing. Journal of Economic Dynamics and Control, pages
1267–1321, 1997.

[BCK92] Tim Bollerslev, Ray Y. Chou, and Kenneth F. Kroner. ARCH modeling in
finance: a review of the theory and empirical evidence. Journal of Econo-
metrics, 52:5–95, 1992.

[BFM97] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz. Handbook of
Evolutionary Computation. Oxford University Press, New York, 1997.

[BNKF98] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Fran-
cone. Genetic Programming - An Introduction. Morgan Kaufmann, San
Francisco, California, USA, 1998.

[Bol86] Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity.
Journal of Econometrics, 31:307–327, 1986.

[BS73] Fischer Black and Myron Scholes. The pricing of options and corporate
liabilities. Journal of Political Economy, 81:637–659, 1973.

[Dav02] Robert B. Davis. Newran02b - a random number generator library. Tech-
nical report, Statistics Research Associates Limited, Wellington, New
Zealand, 2002.

[DS95] Jin-Chuan Duan and Jean-Guy Simonato. Empirical Martingale Simulation
for Asset Prices. CIRANO Working Papers, 95s-43, 1995.

[DS01] Jin-Chuan Duan and Jean-Guy Simonato. American option pricing under
GARCH by a markov chain approximation. Journal of Economic Dynamics
& Control, 25:1689–1718, 2001.

[Dua95] Jin-Chuan Duan. The GARCH option pricing model. Mathematical Fi-
nance, 5(1):13–32, 1995.

[Eng82] Robert F. Engle. Autoregressive conditional heteroskedasticity with esti-
mates of the variance of u.k. inflation. Econometrica, 50:987–1008, 1982.

62

[Fra94] Adam P. Fraser. Genetic Programming in C++. Technical Report 040,
University of Salford, Cybernetics Research Institute, 1994.

[G+04] M. Galassi et al. GNU Scientific Library Reference Manual. Network The-
orie Ltd., Bristol, United Kingdom, 2 edition, 2004.

[GS96] Alois L. J. Geyer and Walter S. A. Schwaiger. GARCH Effekte in der
Optionsbewertung. Zeitschrift für Betriebswirtschaft, 65(5):534–540, 1996.

[Han97] Michael Hanke. Neural Network Approximation of Option Pricing Formulas
for Analytically Intractable Option Pricing Models. Journal of Computa-
tional Intelligence in Finance, 5(5):20–27, Sep 1997.

[Han98] Michael Hanke. Optionsbewertung mit neuronalen Netzen. Dissertation,
Wirtschaftsuniversität Wien, 1998.

[Hol75] John H. Holland. Adaption in Natural and Artificial Systems. University
of Michigan Press, 1975.

[Hul02] John C. Hull. Options, futures, and other derivatives. Prentice Hall Inter-
national, Inc., Upper Saddle River, New Jersey, USA, fifth edition, 2002.

[K+03] John R. Koza et al. Genetic Programming IV: Routine Human-Competitive
Machine Intelligence. Kluwer Acadamic Publishers, 2003.

[KBAK99] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A. Keane.
Genetic Programming III, Darwinian Invention and Problem Solving. Mor-
gan Kaufmann Publishers, San Francisco, California, USA, 1999.

[Keb99] Christian Keber. Option Pricing with the Genetic Programming Approach.
Journal of Computational Intelligence in Finance, 7(6):26–36, 1999.

[Koz92] John R. Koza. Genetic Programming. The MIT Press, Cambridge, Mas-
sachusetts, USA, 1992.

[Koz94] John R. Koza. Genetic Programming II, Automatic Discovery of Reuseable
Programs. The MIT Press, Cambridge, Massachusetts, USA, 1994.

[Mic92] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs. Springer, Berlin, Germany, 1992.

[Nef00] Salih N. Neftci. An Introduction to the Mathematics of Financial Deriva-
tives. Acadamic Press, San Diego, California, USA, second edition, 2000.

[Nol97] John P. Nolan. Numerical calculation of stable densities and distribution
functions. Commun. Statist. - Stochastic Models, 13(4):759–774, 1997.

63

[Obj03] Object Management Group, Inc. OMG Unified Modeling Language Speci-
fication, Ver. 1.5, March 2003.

[PL04] Liviu Panait and Sean Luke. Alternative Bloat Control Methods. In Lecture
Nodes in Computer Science 3103, pages 630–641. Springer-Verlag, 2004.

[Rey92] Craig W. Reynolds. An evolved, vision-based behavioral model of coor-
dinated group motion. In Meyer and Wilson, editors, From Animals to
Animats (Proceedings of Simulation of Adaptive Behaviour). MIT Press,
1992.

[Sin94] Andy Singleton. Genetic Programming with C++. BYTE Magazin, Febru-
ary 1994.

[Str98] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley
Longman, Reading Mass, USA, third edition, 1998.

[Vie97] Reinhard K. Viertl. Einführung in die Stochastick. Springer-Verlag, Wien,
second edition, 1997.

[Wei97] Thomas Weinbrenner. The Genetic Programming Kernel. Technical report,
Institute for Mechatronics, Technical University of Darmstadt, 1997.

[Zol86] V. M. Zolotarev. One-dimensional Stable Distributions. Amer. Math. Soc.
Transl. of Math. Monographs, 65, 1986.

64

