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Abstract. Given a planar graph G = (V, E) and a vertex set W ⊆ V ,
the subgraph induced planar connectivity augmentation problem asks
for a minimum cardinality set F of additional edges with end vertices in
W such that G′ = (V, E∪F ) is planar and the subgraph of G′ induced by
W is connected. The problem arises in automatic graph drawing in the
context of c-planarity testing of clustered graphs. We describe a linear
time algorithm based on SPQR-trees that tests if a subgraph induced
planar connectivity augmentation exists and, if so, constructs a minimum
cardinality augmenting edge set.

1 Introduction

For an undirected graph G = (V, E), a subset of vertices W of V , and EW the
subset of E that contains only edges with end vertices in W let GW = (W,EW )
be the subgraph of G induced by W . If G is planar, a subgraph induced planar
connectivity augmentation for W is a set F of additional edges with end vertices
in W such that the graph G′ = (V, E ∪ F ) is planar and the graph G′

W is
connected.

We present a linear time algorithm based on the SPQR data structure that
tests if a subgraph induced planar connectivity augmentation exists and, if so,
constructs a minimum cardinality augmenting edge set. The difficulty of the
subgraph induced planar connectivity augmentation problem arises from the
fact that the computation of an appropriate planar embedding is part of the
problem. Once the embedding is fixed, the decision becomes trivial.

The subgraph induced planar connectivity augmentation problem arises for
example in the context of c-planarity testing of clustered graphs. A clustered
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graph is an undirected graph together with a nested family of vertex subsets
whose members are called clusters. The concept of c-planarity is a natural ex-
tension of graph planarity for clustered graphs and plays an important role in
automatic graph drawing. While the complexity status of the general problem
is unknown, c-planarity can be tested in linear time if the graph is c-connected,
i.e., all cluster induced subgraphs are connected [3,2]. In approaching the general
case, it appears natural to augment the clustered graph by additional edges in
order to achieve c-connectivity without losing c-planarity.

The results presented in this paper are the basis for a first step towards this
goal. Namely, the algorithm presented here leads to a linear time algorithm that
tests “almost” c-connected cluster graphs, i.e., cluster graphs in which at most
one cluster is disconnected, for c-planarity [6,8].

In general, connectivity augmentation problems consist of adding a set of
edges in order to satisfy certain connectivity constraints such as k-connectivity
or k-edge-connectivity. The first results in this area are due to Lovász [12]. Since
then, augmentation results for many different connectivity properties have been
proved. For more information on connectivity augmentation problems see the
surveys, e.g., by Frank [5] and Khuller [11].

Planar connectivity augmentation problems have been introduced by Kant
and Bodlaender [10]. They have shown that the problem of augmenting a planar
graph to a planar biconnected graph with the minimum number of edges is NP-
hard. Moreover, they have given a 2-approximation algorithm for the planar
biconnectivity augmentation problem. Fialko and Mutzel [4] have given a 5

3 -
approximation algorithm. Polyhedral investigations of this problem have been
conducted, e.g., in [13] and [14].

To our knowledge, this is the first time that subgraph induced planar connec-
tivity augmentation is investigated. It is a generalization of planar connectivity
augmentation. The subgraph induced connectivity augmentation problem is a
special case of a certain connectivity augmentation problem considered, e.g., by
Stoer [15] in the context of network survivability.

This paper is organized as follows. Section 3 describes the easy case in which
the embedding of the given graph is fixed for example, when the graph is tri-
connected. The most interesting case is the treatment of biconnected graphs in
Section 4 with the help of the SPQR-tree data structure and the results of the
previous section. Finally, Section 5 is concerned with the non-biconnected case
in which we construct the block-cut tree of G and use the algorithm for bicon-
nected graphs for each block along with a planarity testing step. All sections
are illustrated by an application to an example graph (see Figure 2 - Figure 5).
The proofs omitted in this extended abstract and the information about the
implementation will be given in the full version [7].

2 Preliminaries

SPQR-trees have been introduced by Di Battista and Tamassia [1]. They repre-
sent a decomposition of a planar biconnected graph according to its split pairs
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(pairs of vertices whose removal splits the graph or vertices connected by an
edge). The construction of the SPQR-tree works recursively (see Figure 2). At
every node v of the tree, we split the graph into the split components of the
split pair associated with that node. The first split pair of the decomposition is
an edge of the graph and is called the reference edge of the SPQR-tree. We add
an edge to each of the split components to make sure that they are biconnected
and continue by computing their SPQR-tree and making the resulting trees the
subtrees of the node used for the splitting. Every node of the SPQR-tree has
two associated graphs:

– The skeleton of the node associated with a split pair p is a simplified version
of the whole graph where some split-components are replaced by single edges.

– The pertinent graph of a node v is the subgraph of the original graph that
is represented by the subtree rooted at v.

The two vertices of the split pair that are associated with a node v are called the
poles of v. There are four different node types in an SPQR-tree (S-,P -,Q- and
R-nodes) that differ in the number and structure of the split components of the
split pair associated with the node (see Figure 1). The Q-nodes form the leaves
of the tree, and there is one Q-node for each edge in the graph. The skeleton
of a Q-node consists of the poles connected by two edges. The skeletons of S-
nodes are cycles, while the skeletons of R-nodes are triconnected graphs. P -node
skeletons consist of the poles connected by at least three edges. Figure 1 shows
examples for skeletons of S-, P - and R-nodes.

Skeletons of adjacent nodes in the SPQR-tree share a pair of vertices. In each
of the two skeletons, one edge connecting the two vertices is associated with a
corresponding edge in the other skeleton. These two edges are called twin edges.
The edge in a skeleton that has a twin edge in the parent node is called the
virtual edge of the skeleton.
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Fig. 1. Decomposition of biconnected graphs and the skeletons of the corresponding
nodes in the SPQR-tree. Here the three cases are illustrated.

Each edge e in a skeleton represents a subgraph of the original graph. This
graph together with e is the expansion graph of e.
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All leaves of the SPQR-tree are Q-nodes and all inner nodes S-, P - or R-
nodes. When we regard the SPQR-tree as an unrooted tree, then it is unique
for every biconnected planar graph. Another important property of these trees
is that their size (including the skeletons) is linear in the size of the original
graph and that they can be constructed in linear time [1,9]. As described in [1,
9], SPQR-trees can be used to represent the set of all combinatorial embeddings
of a biconnected planar graph. Every combinatorial embedding of the original
graph defines a unique combinatorial embedding for a skeleton of each node
in the SPQR-tree. Conversely, when we define an embedding for the skeleton
of each node in the SPQR-tree, we define a unique embedding for the original
graph. The skeletons of S- and Q-nodes are simple cycles, so they have only
one embedding. But the skeletons of R-and P -nodes have at least two different
embeddings. Therefore, the embeddings of the R- and P -nodes determine the
embedding of the graph and we call these nodes the decision nodes of the SPQR-
tree.

3 An Easy Case: Fixed Embedding

We consider the case that the planar graph G is given together with a fixed
embedding. In the following, we call the vertices belonging to W blue vertices.
Our task is to insert edges so that the induced subgraph GW is connected and
G is still planar after edge insertion.

Our algorithm looks at each face f in G that has at least two non-adjacent
blue vertices on its boundary. We start at an arbitrary blue vertex v on the
boundary of f and introduce a new edge through f that connects it to the next
blue vertex on the boundary. Thus we step through the blue vertices on the
boundary of f , connecting each to its successor on the boundary until we come
back to v. We call the resulting graph G′. Note that we only introduce a linear
number of edges in this step and that G′ is planar. Another important property
of G′ is that G′

W is connected if and only if there is a planar augmentation for
W in G.

Then we compute the graph G′′ by deleting all vertices from G′ that are not
blue. We assign value 1 to all edges introduced in the first step and 0 to all other
edges. We can find a minimum spanning tree in G′′ in linear time because there
are only two different weights on the edges. One way to do this is to use Prim’s
Algorithm where we use two lists instead of the priority queue. The algorithm
may now determine that G′′ is not connected. Then we know that there is no
planar augmentation for G. Otherwise, the edges of weight 1 in the minimum
spanning tree are our solution. Thus, we can solve the problem in linear time.

4 The Algorithm for the Biconnected Case

In this section we present an algorithm for the case that the given graph G
is biconnected. First, we compute the SPQR-tree T of G. In Section 4.1, we
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present a recursive algorithm for coloring all edges in all skeletons of the SPQR-
tree. This coloring stores information about the position of the blue vertices in
each skeleton of the SPQR-tree by assigning three different colors to the edges.
The coloring enables us to test if an augmentation is possible by examining the
colors in each skeleton. If an augmentation is possible, we compute an embedding
of the graph that allows an augmentation (see Section 4.2). Then we can apply
the algorithm of the previous section to this fixed embedding in order to compute
the list of edges needed to solve the augmentation problem. Algorithm 1 gives
an overview of the algorithm for biconnected graphs.

Algorithm 1: The algorithm BiconnectedAugmenter computes a planar
connectivity augmentation for a planar biconnected graph G and a subset W
of the vertices, if it exists.

Input: A biconnected planar graph G and a subset W of its vertices,
Result : true if and only if there is a planar augmentation for W ; in the positive

case an embedding Π and a minimum cardinality augmenting edge
set will be computed.

Calculate the SPQR-tree T of G;
Make an arbitrary node r which is not a Q-node the root of T ;
MarkEdgesPhase1(r, W );
MarkEdgesPhase2(r, W );
BiconnectivityFeasibilityCheck(T );
Embedding Π = CalculateEmbedding;
return FixedEmbeddingAugmenter(Π, W );

4.1 The Coloring Algorithm

Again we call a vertex blue, if it is contained in W and black otherwise. Figure
2 shows an example graph, in which the set W is given by {3, 8, 10} (shown by
bold circles). The skeletons are shown in Figure 3, which displays essentially the
SPQR-tree without the Q-nodes. The blue vertices in the tree are marked by
circles.

5

7

10

1

2 3 4

6

12 8
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Q

S

P RQQQ

S SS

Q Q Q QQ Q

Q QS QQ

Q Q

Fig. 2. Example: A graph G and its SPQR-tree.
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We assign one of two colors to each edge in each skeleton: blue or black. We
call an edge in a skeleton blue, if its expansion graph contains blue vertices and
black otherwise. For example, in Figure 5 in the skeleton of the S-node of the
SPQR-tree, the edge between the vertices 1 and 5 is blue because the blue vertex
3 is contained in its expansion graph. It is represented by a dashed line.
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1
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1

4
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7

12

8

S-node

P-node
R-node

S-node

S-node

Fig. 3. Continuation of Figure 2: Q-nodes are omitted; assigning blue to the vertices
of the subset W .

Additionally, we assign the attribute permeable to some blue edges. Intu-
itively, an edge is permeable if we can construct a path connecting only blue
vertices through its expansion graph. Therefore, in Figure 5 the edge between
the vertices 1 and 5 in the skeleton of the root node does not get the attribute
permeable. But we assign for example the attribute permeable to the edge be-
tween the vertices 1 and 5 in the skeleton of the P-node whose expansion graph
contains the vertex 10. In Figure 5, the permeable edges are represented by a
dotted line. Let G(e) be the expansion graph of edge e in skeleton S. In any pla-
nar embedding G(e), there are exactly two faces that have e on their boundary.
This follows from the fact that in a planar biconnected graph, every edge is on
the boundary of exactly two faces in every embedding. We call the edge e in S
permeable with respect to W , if there is an embedding Π of G(e) and a list of
at least two faces L = (f1, . . . , fk) in Π that satisfies the following properties:

1. The two faces f1 and fk are the two faces with e on their boundary.
2. For any two faces fi, fi+1 with 1 ≤ i < k, there is a blue vertex on the

boundary between fi and fi+1.

We call a skeleton S of a node v of T permeable if the pertinent graph of v
together with the virtual edge of S have the two properties stated above. So S
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is permeable if the twin edge of its virtual edge is permeable. For example, in
Figure 5 the skeleton that contains the vertex 3 is permeable.

We develop an algorithm that marks each edge in every skeleton of the SPQR-
tree T of G with the colors black or blue and assigns the attribute permeable
depending on the expansion graph of the edge. The algorithm works recursively.
We assume that T is rooted at node r and r is not a Q-node.

First we mark all the edges of the skeletons of the children of r recursively
black or blue and assign the permeable attribute by treating them as the roots of
subtrees. Each edge in the skeleton S of r except the reference edge corresponds
to a child of r. Let e be such an edge in S, v the corresponding child of r and
S ′ the skeleton of v. If S ′ contains a blue edge or vertex, we mark e blue and
otherwise black. The permeability of e depends on the type of v:

Q-node: We mark e permeable if the skeleton S ′ contains a blue vertex.
S-node: If the skeleton S ′ contains a blue vertex or a permeable edge, we mark

e permeable.
P -node: If the skeleton S ′ contains only permeable edges or a blue vertex, we

mark e permeable.
R-node: We consider a graph H where the vertices are the faces of S ′ and there

is an edge between two vertices if there is a permeable edge or a blue
vertex on the boundary that separates the two faces. Let s and t be the
two faces left and right of the virtual edge of S ′. If there is a path in
H connecting s and t, we mark e permeable (see Figure 4).
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Fig. 4. A permeable R-node with the graph H: permeable edges are represented by
dotted lines, the virtual edge of the skeleton by a dashed line.

After executing this algorithm, which we call MarkEdgesPhase1, all edges of
the skeleton of the root node r are marked, because we have seen all the blue
vertices of the graph. All other skeletons except the skeleton of r contain one
edge that is not yet marked: the virtual edge of the skeleton.

The algorithm MarkEdgesPhase2 works top down by traversing T from the
root to the leaves. The edges of the skeleton of the root r of T are already
marked in the first step, therefore we can proceed to the children and mark
the virtual edges of its children. Let v be a node in T where the skeleton S ′
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of the parent node is already completely marked. We mark the virtual edge e
in the skeleton S of v blue if there is a blue edge or vertex in the skeleton of
the parent. The permeability of e again depends on the type of the skeleton in
exactly the same way as in the algorithm MarkEdgesPhase1 (see Figure 5). Note
that the case Q-node is irrelevant here because the Q-nodes form the leaves of
the tree. In Figure 5 we see a result of the two algorithms MarkEdgesPhase1 and
MarkEdgesPhase2 for our example graph. Permeable edges are represented by
dotted lines, blue edges that are not permeable by dashed lines and blue vertices
by a circle around them.
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P-node
R-node

S-node

S-node

Fig. 5. Continuation of Figure 3: After calling the algorithms MarkEdgesPhase1 and
MarkEdgesPhase2.

The two algorithms MarkEdgesPhase1 and MarkEdgesPhase2 can both be
implemented in linear time because the size of the SPQR-tree of a planar bi-
connected graph including all skeletons is linear in the size of the graph [1].

Lemma 1. Let e be an edge in a skeleton of an inner node and G(e) its ex-
pansion graph. Then the coloring algorithm marks e blue if and only if G(e)
contains a vertex of W . Furthermore, e is marked permeable if an only if there
is an embedding Π of G(e) together with a sequence of faces f1, . . . , fk with the
following property:
(*) The two faces f1 and fk are the two faces with e on their boundary and for

any two faces fi, fi+1 with 1 ≤ i < k, there is a blue vertex on the boundary
between fi and fi+1.

4.2 The Embedding Algorithm

Let S be a skeleton of a P -node. We call the embedding of S admissible if all
blue edges are consecutive and the blue edges that are not permeable (if they
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exist) are at the beginning and at the end of the sequence (see Figure 6 for three
examples of admissible orderings). For example, in Figure 5 the skeleton of the
P-node has already an admissible embedding.

Fig. 6. Admissible embeddings of a P -node skeleton (permeable edges are dotted, blue
edges that are not permeable are dashed).

Our algorithm for finding an augmentation or proving that no augmentation
exists works in two phases:

1. Using the colors and attributes of the edges in each skeleton, we fix an em-
bedding for every P - and R-node skeleton and thus determine an embedding
for G.

2. We use the algorithm of Section 3 for fixed embeddings to determine whether
an augmentation is possible.

The embedding computed in the first step has the property that it allows an
augmentation if and only if there is an embedding of G that allows an augmen-
tation.

We set the embedding for the skeletons of the R- and P -nodes recursively
using the structure of the SPQR-tree. We assume that the vertices in G are
numbered and that all edges are directed from the vertex with lower number to
the vertex with higher number.

For simplicity, we consider whether a special case is present where a planar
connectivity augmentation cannot exist.

Theorem 1. Let G be a biconnected series-parallel planar graph and W a subset
of its vertices. There exists a planar connectivity augmentation for W in G if
and only if all P -nodes of the SPQR-tree of G contain at the most two edges
that are blue but not permeable.

The conclusion of the theorem is that if there exists a P -node that contains a
skeleton with more than two blue edges in a biconnected graph G, there cannot
exist a planar connectivity augmentation. For example, in Figure 5 there are no
edges that are blue but not permeable in the skeleton of the P-node.

First, we test whether the biconnected graph contains only P -nodes with
skeletons that have at the most two edges. Then we can sort the two blue edges
as mentioned in Figure 6 to obtain an admissible embedding. Note that the two
blue but not permeable edges are not consecutive in an admissible embedding if
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there are additionally black and permeable edges. Therefore, there is nothing to
do for the skeleton of the P-node in Figure 5.

Next, we construct an algorithm that marks edges in the skeletons with a
new attribute that can have three different values: left, right and nil. If the
virtual edge (the edge whose twin edge is in the parent of v) in a skeleton of
node v is marked left, then the pertinent graph of v must be embedded in such
a way that there is a blue vertex on the boundary of the face left of the virtual
edge. If the edge is marked right, a blue vertex must be on the boundary of
the face right of the virtual edge. If the virtual edge is marked nil, there is no
restriction on the embedding of the pertinent graph of v.

For each node v in the SPQR-tree, where the embedding of the parent node
has already been fixed, we perform two steps:

1. We determine an embedding using the attribute of the virtual edge and the
colors and attributes of the other edges.

2. We determine the attribute for the virtual edge in the skeleton of each child
of v.

Only the skeletons of R- and P -nodes have more than one embedding, so the
first step is only important for these node types. First we consider the case where
v is an R-node. In this case, its skeleton has two embeddings. If the attribute on
the virtual edge is nil, we can choose any of the two embeddings. Otherwise,
we choose an embedding where there is a blue edge or vertex on the face left
(right) of the virtual edge if the attribute was left (right). If none of the two
embeddings has this property, no augmentation is possible. If v is a P -node, we
can only choose among the admissible embeddings of the skeleton. Again, we
choose an embedding according to the attribute and if no suitable embedding
exists, there can be no augmentation.

Now we have to determine the attribute for the virtual edge of each child of v.
Let S be the skeleton of v. For all edges in S that are either black or permeable,
we pass nil to the corresponding child. Let L be the set of edges in S that are
blue but not permeable.

First we consider the case that v is an S-node. If the attribute of the virtual
edge is nil, we pass nil to every child that corresponds to an edge in L. Oth-
erwise, the attribute on the virtual edge designates one of the two faces of the
S-node skeleton as the one that must have a blue vertex on the boundary. For
each edge e in L, we pass left to the corresponding child if this face is right of
e and right otherwise.

To make the following descriptions more concise, we call a face permeable,
if it has a permeable edge or a blue vertex on its boundary. If v is a P -node,
L contains at most two edges. For each of edge e in L, there are three possible
cases:

1. Exactly one of the faces with e on its boundary contains a blue edge. If this
is the face on the right of e, we pass left to the child corresponding to e
and right otherwise.
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2. One of the faces with e on its boundary is permeable and the other is not.
If the permeable face is left of e, we pass right to the child corresponding
to e and left otherwise.

3. The faces left and right of e are both permeable or both contain only black
edges and vertices. In this case, we pass nil to the child.

If v is an R-node, we also have to consider the faces left and right of each edge
e in L. The same cases as for P -nodes apply, but there is one additional case
that cannot occur in a P -node: Both faces left and right of e are not permeable
but both contain a blue edge except e (if this happens in a P -node, there can
be no augmentation). In this case, we pass nil to the corresponding child. For
example, in Figure 5 the attributes of all virtual edges are nil.

To start the process, we choose an arbitrary P - or R-node as the root of
the SPQR-tree. If we choose an arbitrarily R-node, we select one of the two
embeddings of the skeleton. If we select a P -node, we choose an arbitrary ad-
missible embedding. Now we can compute the attributes we pass to the children
of the node as stated above and compute an embedding for each skeleton of the
SPQR-tree by applying the algorithm in depth first or breadth first sequence to
all inner nodes of the tree.

This algorithm defines an embedding for each R- and P -node in the SPQR-
tree and thus for the graph G. Since we touch each skeleton only once and
the operations we perform for each skeleton can be done in time linear in the
size of the skeleton, the embedding can be computed in linear time. Then we
apply the algorithm from Section 3 to the fixed embedding. This algorithm either
computes the list of edges that constitutes the planar connectivity augmentation
or it signals that no augmentation is possible for this embedding.

Theorem 2. Let Π be the embedding of G determined by the algorithm de-
scribed above. G has a planar connectivity augmentation with respect to W if
and only if there exists a planar connectivity augmentation for G with respect to
the embedding Π.

The proof uses structural induction over the SPQR-tree. We first show that
the claim holds for graphs whose SPQR-tree has only one inner node and then
use induction to show that it holds for graphs whose SPQR-tree has more than
one inner node. Because of space considerations we show the proof in [7].

Theorem 3. Given a biconnected planar graph G = (V, E) and a subset of
vertices W ⊆ V . The algorithm BiconnectedAugmenter tests correctly whether
a subgraph induced planar connectivity augmentation exists and, if so, constructs
a minimum cardinality augmenting edge set. It runs in time O(|V |).

5 The Algorithm for the Connected Case

Using BC-trees, this algorithm can be extended for connected graphs. Because
of space considerations we omit a detailed description that is available in [7].
Using this result for non-connected planar graphs, the problem becomes easy.



272 C. Gutwenger et al.

References

1. Di Battista, G., Tamassia, R. (1996) On-line planarity testing. Journal on Com-
puting 25 (5), 956–997

2. Cohen, R.-F., Eades, P., Feng, Q.-W. (1995) Planarity for clustered graphs. In
P. Spirakis (ed.) Algorithms – ESA ’95, Third Annual European Symposium, Lec-
ture Notes in Computer Science 979, Springer-Verlag, 213–226

3. Dahlhaus, E. (1998) Linear time algorithm to recognize clustered planar graphs
and its parallelization (extended abstract). In C. L. Lucchesi (ed.) LATIN ’98, 3rd
Latin American symposium on theoretical informatics, Campinas, Brazil, Lecture
Notes in Computer Science 1380, 239–248

4. Fialko, S., Mutzel, P. (1998) A new approximation algorithm for the planar aug-
mentation problem. In Proceedings of the Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’98), San Francisco, California, ACM Press, 260–
269

5. Frank, A. (1992) Augmenting graphs to meet edge-connectivity requirements.
SIAM J. Discrete Mathematics 5 (1), 25–53
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