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Abstract

In this study, we propose a robust variant of a dynamic facility location problem that
arises from optimizing the emergency service network of Police Special Forces Units
(PSFUs) in the Republic of Serbia. We present for the first time a mathematical
programming formulation of the problem under consideration. We further propose
a Variable Neighborhood Search (VNS) method with an efficient local search pro-
cedure for solving real-life problem instances that remained out of reach of CPLEX
solver. The results presented in this paper may help in optimizing the network of
PSFUs and other security networks as well.
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1 Problem formulation

The study presented in this paper introduces a dynamic variant of the emer-
gency location problem considered in [1], whose main concern is to establish
and optimally utilize the network of PSFUs in the Republic of Serbia. It is
defined as follows. Let J = {1, ..., m} be the set of potential locations for
locating a PSFU and I = {1, ..., n} be the set of locations of cities, where
I ⊆ J , n ≤ m. The distance matrix is denoted by D = [dij], i, j ∈ J , and it
is assumed that for every two nodes i and j from J , there exists a direct link
between them. For each city i ∈ I and a potential PSFU location j ∈ J , we
define Cij = {k ∈ J |dik ≤ dij}. For each j ∈ J and a given constant c, we
define Sj = {i ∈ I|dij ≤ c} as the set of cities i ∈ I that lie within the range c
from the location j ∈ J , and Dj is defined as the complement of Sj . Constant
c > 0 is chosen as the maximal distance between a PSFU at location j and
the city at i, such that a PSFU at j is able to reach the city at i in a timely
manner.

Furthermore, we extend the problem from [1] by introducing the given
set of time periods T = {1, ..., p} and thus obtain the dynamic variant. The
motivation lies in the fact that police units usually have 8-hours or 12-hours
work shifts, and that the number of criminal acts during day and night shifts
may vary significantly. By introducing time periods, a decision maker has a
greater degree of flexibility in security planing. For each city i ∈ I and time
period t ∈ T , we assign the value of fit ≥ 0 that represents the average number
of serious criminal acts in the city i ∈ I for the time period t ∈ T .

In practice, a limited number of PSFUs is available to establish a security
network, and therefore, in our study, the number of established PSFUs in all
time periods is limited to kmax > 0. In addition, we limit the difference in the
number of established PSFUs in two subsequent time periods t− 1 and t to a
constant mt, 2 ≤ t ≤ |T |. A single allocation scheme is used, meaning that in
each time period each city is allocated to exactly one established PSFU. Since
we deal with emergency situations, each city is assigned to its nearest located
PSFU.

Two sets of binary decision variables are used in the model. Variable yjt
is equal to 1 if a PSFU is established at location j in time period t, and 0
otherwise. Variable xijt takes the value of 1 in the case that the city at i is
assigned to a PSFU at j in time period t, and 0 otherwise. A continuous,
non-negative decision variable Lmax ≥ 0, which represents the maximum load
of located PSFUs through all time periods.

Following the idea from [1], the load of an established PSFU location at



node j ∈ J in a time period t ∈ T is calculated as
∑

i∈Sj
fitxijt+

∑
i∈Dj

fit(1+

pij)xijt, and it depends on the distance that a PSFU needs to travel to a crime
scene and the number of heavy criminal acts in the assigned city in the given
time period. Parameter pij is used as a penalty in the case that a city i ∈ Dj

is assigned to a PSFU at location j. The value of parameter pij is defined as

pij = min{|dij−c

c
|, 1}, for j ∈ J and i ∈ Dj . The goal of the problem is to

minimize the maximum load of a located PSFU unit through all time periods,
while preserving the efficiency of the emergency system.

Using the notation mentioned above, we intoduce the mathematical for-
mulation of the problem as follows:

min Lmax (1)

subject to:

∑

j∈J
xijt = 1 ∀i ∈ I ∀t ∈ T, (2)

xijt ≤ yjt ∀i ∈ I ∀j ∈ J ∀t ∈ T, (3)

yjt ≤
∑

k∈Cij

xikt ∀i ∈ I ∀j ∈ J ∀t ∈ T, (4)

∑

t∈T

∑

j∈J
yjt ≤ kmax, (5)

−mt ≤
∑

j∈J
(yjt − yj,t−1) ≤ mt, ∀t ∈ T, t ≥ 2 (6)

∑

i∈Sj

fitxijt +
∑

i∈Dj

fit(1 + pij)xijt ≤ Lmax ∀j ∈ J ∀t ∈ T, (7)

xijt ∈ {0, 1} ∀i ∈ I ∀j ∈ J ∀t ∈ T, (8)

yjt ∈ {0, 1} ∀j ∈ J ∀t ∈ T, (9)

Lmax ≥ 0. (10)

The objective function (1) combined with constraint (7) minimizes the
maximum load of established emergency units in all time periods, such that
the difference between the number of established locations for all consecutive



time periods t− 1 and t is limited to mt – constraint (6). Constraints (2) and
(3) ensure that each city is assigned to exactly one, previously located PSFU.
By combining constraint (4) with (3), each city is allocated to its nearest
located PSFU [4]. By constraint (5), the number of established PSFUs in all
time periods is limited to kmax. Constraints (8)–(9) denote that variables xijt

and yjt are binary, while (10) reflects the non-negativity of continuous variable
Lmax.

The key challenge in the considered problem of locating PSFUs is the un-
certainty of criminal attacks. Robust optimization showed to be an efficient
strategy to involve data uncertainty in cases when distribution of input pa-
rameters is not known, see [2,3]. In robust variant of our problem, we assume
that the input parameters fit, i ∈ I, t ∈ T are subject to uncertainty. Each fit,
i ∈ I, t ∈ T is modeled as independent, symmetric and bounded random vari-
able with unknown distribution, denoted as f̃it. The variable f̃it takes values
from [fit− f̂it, fit+ f̂it], where f̂it ≥ 0 represents a deviation from nominal co-
efficient fit. Without loss of generality, we may assume that f̃it ∈ [fit, fit+ f̂it],
i ∈ I, t ∈ T , since by linear substitutions the case of symmetric interval may
be reduced to the non-symmetric one.

In practice, it is unlikely that all of the f̂it will change. Therefore, it
is assumed that only a subset of the coefficients fit will change in order to
adversely affect the solution. We introduce protection level parameters Γt,
t ∈ T that take values from the interval [0, |Kt|], where Kt = {i ∈ I | f̂it > 0}.
The role of the parameters Γt is to control the level of robustness in the
objective. Our goal is to be protected against all cases where up to Γt of
coefficients fit are allowed to change. In the case of Γt = 0, we completely
ignore the influence of cost deviations, while in the case of Γt = |Kt|, we
consider all possible cost deviations, which is indeed most conservative. In
general, a higher value of Γt increases the level of robustness at the expense
of higher nominal cost [3]. Following the results presented in [3], the discrete
dynamic model is extended to a robust optimization model as follows:

min Lmax (11)

subject to (2)–(6), (8)–(10) and

∑

i∈Sj

fitxijt +
∑

i∈Dj

fit(1 + pij)xijt + ztΓt +
∑

i∈Kt

rit ≤ Lmax ∀j ∈ J ∀t ∈ T, (12)

zt + rit ≥ f̂itxijt ∀i ∈ Kt ∀j ∈ J ∀t ∈ T, (13)



rit ≥ 0 ∀i ∈ Kt ∀t ∈ T, (14)

zt ≥ 0 ∀t ∈ T. (15)

2 Proposed VNS method

The proposed VNS method for solving the considered problem consists of two
phases: the Multi-start Reduced Variable Neighborhood Search (MRVNS)
and the Basic Variable Neighborhood Search (VNS) [5]. The idea is to use
the MRVNS method to quickly find a good initial solution for the basic VNS.

Regarding the nature of the considered problem, the solution’s code con-
sists of p binary segments of length m, where each segment corresponds to a
time period and each bit in a code’s segment represents a potential location
for establishing a PSFU in the corresponding time period. If the bit on the
position j ∈ J in the segment t ∈ T takes the value of 1, it means that a
PSFU is located at node j in time period t. If not, the bit on the j-th position
in the segment t has the value of 0. Neighborhood structures that are used in
the proposed VNS method are defined as follows. Let sol be a solution of the
given problem, code(sol) its binary code. We will say that

• sol′ ∈ N1(sol), if within a segment t ∈ T of code(sol), two randomly chosen
positions i, j ∈ J with different bit values are exchanged and code(sol′) is
obtained;

• sol′ ∈ N2(sol), if in two different segments t1, t2 ∈ T of code(sol), two
randomly chosen positions i ∈ J (from segment t1) and j ∈ J (from segment
t2) having different bit values are exchanged and code(sol′) is obtained;

• sol′ ∈ N3(sol), if we find bit positions i, j ∈ J that have different values
in all segments t ∈ T of code(sol) (if such positions exist); By exchanging
the corresponding bit values in all segments t ∈ T of code(sol), we obtain
code(sol′);

• sol′ ∈ N4(sol), if we invert the bit value on a randomly chosen position
i ∈ J in a segment t ∈ T , and code(sol′) is obtained.

The set of initial solutions soli, i = 1, 2, ...40 for the MRVNS phase is
generated randomly. Then, in the main MRVNS loop, we iteratively try to
improve a current solution soli by changing the neighborhoods and randomly
choosing a solution sol′i ∈ Nk(soli), k = 1, 2, 3, 4, i = 1, 2, .., 40. The MRVNS
stops with improving each of the soli if the maximal number of 5000 iterations
is reached.



The best solution from the MRVNS phase bestSol is taken as the initial so-
lution for the VNS phase. The VNS part consists of three steps: shaking, local
search and neighborhood exchange, which are repeated until maximal number
of 10 000 iterations is reached. Note that the first improvement strategy is
used within the local search phase. In order to improve the efficiency of the
objective function calculation of the neighbor sol′ of the current solution sol,
we apply the following strategies.

Algorithm 1. Pseudocode of the proposed VNS-based algorithm
1: MRVNS part of the algorithm:
2: randomly generate initial solutions soli, i = 1, 2, .., 40, for the VNS
3: for each soli, i = 1, 2, .., 40 do
4: while maximal number of iteration is less than 5 000 do
5: k ← 1
6: while k ≤ 4 do
7: Generate a random sol′i ∈ Nk(soli)
8: if V alue(sol′i) < V alue(soli) then
9: soli ← sol′i

10: k ← 1
11: else
12: k ← k + 1
13: end if
14: end while
15: end while
16: end for
17: Basic VNS part of the algorithm:
18: bestSol = argmini=1,2,..,40 V alue(soli)
19: while maximal number of iteration is less than 10 000 do
20: k ← 1
21: while k ≤ 4 do
22: Generate a random bestSol′ ∈ Nk(bestSol)
23: bestSol′′ ← FirstImprovement(bestSol′)
24: if V alue(bestSol′′) < V alue(bestSol) then
25: bestSol← bestSol′′

26: k ← 1
27: else
28: k ← k + 1
29: end if
30: end while
31: end while

• If a bit value at position j ∈ J in segment t ∈ T of code(sol) changed its
value from 1 to 0, it means that the PSFU is closed on location j in time
period t. For the new solution sol′, the corresponding load for location
j ∈ J in time period t is set to 0, while all cities i ∈ I that were previously
allocated to j ∈ J are now being allocated to their nearest PSFU located



in period t, and their corresponding loads are being updated.
• If a bit value at position j ∈ J in segment t ∈ T of code(sol) changed its
value from 0 to 1, it means that the PSFU is opened on location j in time
period t. In the new solution sol′, for each city i ∈ I we check if the newly
opened PSFU location j ∈ J is closer compared to its closest opened PSFU
location k ∈ J from sol in time period t. If it is the case, we re-allocate city
i ∈ I to j ∈ J and update the loads of both j ∈ J aand k ∈ J for the time
period t.

3 Computational results
All computational tests were performed on an Intel Core i5-2430M on 2.4
GHz with 8GB RAM memory under Windows 7 operating system. The op-
timization package CPLEX 12.1, was used to obtain optimal solutions on
considered instances (if possible). The proposed VNS was implemented in
C++ programming language. Computational experiments were performed
on the set of real-life problem instances from [1], which are modified for the
problem under consideration. The description of instances can be found at
http://poincare.matf.bg.ac.rs/ stefan/vns psfu/. We have considered T = 2
and T = 3 time periods, and different values of protection parameter Γ. Con-
ducted computational experiments show the efficiency of the proposed VNS
method for solving all instances of the considered problem. In this paper, we
present only the results obtained for instance i12 with 17 cities and 21 possible
PSFU locations and the largest instance i all including whole territory of Ser-
bia. In Table 1, we present optimal solutions obtained by CPLEX solver and
the best solutions obtained by the proposed VNS method, together with the
corresponding CPU times (in seconds) and percentage of the deviation from
the nominal objective (Γ = 0). In cases when CPLEX produced no solution
within 2 hours, a dash is written in the corresponding column.

As it can be seen from Table 1, for all considered cases of the largest
instance i all, the CPLEX 12.1 was not able to find the solution. The proposed
VNS approach reached all optimal solutions for instance i12 and provided best
solutions for instance i all in short CPU time. The total VNS running time
was under 68 seconds for the largest instance i all. From column Dev. in
Table 1, we can notice that that deviation of solution increases as Γ increases,
and also that for smaller number of possible PSFU reallocations between time
periods we obtain larger deviations. Having in mind that the average objective
value is smaller when this number is smaller, the proposed approach is better
compared to the case when the number of PSFU locations is equal in all time
periods.



The obtained results indicate the possibility that the proposed VNS method
may be adapted for solving similar emergency network problems. The results
presented in this paper may help in optimizing emergency service network of
PSFUs and in identifying a sustainable security strategy. The proposed ro-
bust dynamic facility location model and VNS approach may be applicable in
designing and management of other emergency-service networks as well.

Table 1
The results of the RVNS-VNS algorithm for instances i12 i i all

References

[1] Grujičić, I. and Z. Stanimirović, Variable neighborhood search method for
optimizing the emergency service network of police special forces units, Electronic
Notes in Discrete Mathematics 39 (2012), pp. 185–192.

[2] Ben-Tal, A. and A. Nemirovski, Robust solutions of linear programming problems
contaminated with uncertain data, Mathematical programming 88 (2000), pp.
411–424.

[3] Bertsimas, D. and M. Sim, Robust discrete optimization and network flows,
Mathematical programming 98 (2003), pp. 49–71.
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